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Abstract

We consider some unconventional partition problems in which the parts of the partition are
restricted by divisibility conditions, for example, partitions n = ax +... + a* into positive integers
«!, ..., ak such that ax | a2 I ••• I ak. Some rather weak estimates for the various partition
functions are obtained.

Subject classification (Amer. Math. Soc. (MOS) 1970): 10 A 45, 10 J 20.

1. Introduction

In this paper, we shall consider various partition problems in which the parts of the
partitions are restricted by divisibility conditions. Most of our remarks concern the
following two situations:

(i) 'Chain partitions', that is partitions n = a1 + ... +ak into positive integers
a1,...,ak such that a^a^ ...\ak.

(ii) 'Umbrella partitions', that is partitions into positive integers such that every
part divides the largest one. Our aim is to estimate the partition functions which
arise in each case for partitions with distinct parts and for partitions in which
repetitions are allowed.

This work arose from a question of R. W. Robinson about chain partitions with
repetitions which, in turn, came from attempts to count a certain kind of tree. This
particular partition problem is closely connected with wj-ary partitions, that is
partitions as sums of powers of a fixed integer m, which are obvious instances
of the types of partitions described above. In another direction, the problem of
representing numbers by umbrella partitions has some connections with the
'practical numbers' of Srinivasan.

We would like to thank Dr. B. Richmond for criticisms which have helped us to
remove some of the obscurities in our original manuscript.
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320 P. Erdos and J. H. Loxton [2]

Throughout the paper, c denotes a generic positive constant, not necessarily the
same at each occurrence, and log and log2 denote logarithms to base e and base 2
respectively.

2. Chain partitions with distinct parts

Let p(n) be the number of partitions n = ax +... + ak into distinct positive integers
cij with a^a^... \ak and let pt(ri) be the number of partitions of this type with
a1=l. Clearly,

(1) P(n)=p1(n)+p1(n+l)

and, by considering the partitions of n with ax = 1 and a^ = d and summing over
the possible values of d, we find the recurrence

( 2 ) P l ( n ) = 2 P l /
d\n-l,d>l d| n-1, d<n-l

It is easy to see that p(ri) tends to infinity with n, and even a little more.

THEOREM 1. For n ̂  6, we have /»(«) ̂  log2 n. For n > 27, we have p^ri) > | logs "»
except when n—\ is prime, in which case px(ri) = 1.

PROOF. First consider p(n). For each integer k with U 2 * ^ n/3, we can choose an
odd integer t satisfying n—2k+1<2kt^n and we obtain one of the partitions
counted in p(n) by writing n—2kt in the binary scale, that is using some or all of
the parts 1,2,22,..., 2k, and adding the last part 2kt. If we also count the partition
arising from the binary representation of n, we have

(3) p{n) > log2 [n/3]+2> log2 n,

for n ~£ 6. The same argument shows that the inequalities (3) also hold for/^/i) for
odd n. Finally, if n is even and n — 1 is composite, then n— 1 has an odd proper
divisor d^(n— 1)* and by (2) and what we have already proved

>\ Iog2(« -1) +1 Ss $ log2 n,

for n^ 27, as required.

We can say rather more about the sum functions of the partition functions p(n)
and Pi(ri). Since they behave similarly, by (1), we introduce only
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[3] Problems in partitio numerorum 321

By considering the partitions of n with ax = 1 and a^ = d and summing over d,
we get

(4) i>x(*)

This functional equation for Pj(x) is essentially the same as a functional equation
arising in the theory of 'factorisatio numerorum'. (See Kalmar (1931), Hille (1936),
Erdos (1941) and Grosswald (1974).) Denote by/(/i) the number of representations
of n as a product of factors greater than 1. Here, two representations are considered
identical if and only if they have the same factors in the same order. We define
/ ( I ) = 1. By arguments like those used above, we get

(5) /(«)= 2 fid)
dln,(Kn

and, for the sum function of the/(«),

(6) F(*)» £ / (« )= S F(x/d) + l.
I 2d

Starting from (6), Erdos (1941) gave an elementary proof that F(X)~CXP as
x->oo, where p is the unique positive root of £(/>) = 2. With a few minor modifica-
tions, this method yields the following result for Pi(x).

THEOREM 2. Let p be the unique positive root o/£(/>) = 2, where £(s) is the Riemann
zeta function. Then P1(x)~cxp as *-*-oo.

For the factorization problem, the standard machinery of analytic number
theory is also available. Indeed, from (5),/(n) has the generating Dirichlet series

5/to L_
n-i n> 2-C(s)

and so, by the Wiener-Ikehara Tauberian theorem,

x

as x -> oo, for every s > 0. (See Hille (1936).) For our partition problem, we have not
been able to evaluate the constant c in Theorem 2, but we can still show that

(7) P1(x)-cxe+Qjix'-)

as x->co, for every e>0 . The assertion (7) is clearly true if lim sup/>1(«)/«'>~<! > 0.
On the other hand, if p^n) < c{e)n''~*, for some positive constant c(e), and we
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introduce the Dirichlet series

n=i n' n=i n*

then (p{s)—^{s) is regular in res>p—e and, from (2), we obtain the equation
= £(*)?>(*), that is

Thus 9?(J) has a meromorphic continuation to the half plane re*>p-e and it is an
almost periodic function of ims in this region since both the factors on the right in
the above equation have this property. Next, {2—£Cs)}-1 has a simple pole at
s = p and, by Theorem 2, <p(s) has some sort of singularity at s = p, so (p(s) must
have a simple pole at s = p and, by almost periodicity, it has poles in every vertical
strip p— 8<Tes<p(O<8<e). Consequently, the assertion (7) holds in this case
as well.

We are unable to obtain accurate upper and lower estimates for the functions
p(n) and p^n) beyond the results of Theorems 1 and 2. Computations of these
functions for n < 10 000 suggest that the upper bound p(n) < c(e)«/)~1+* might be
true for every £>0. If so, this would be in marked contrast to the behaviour of the
factorization function/(«) for which it is known that limsup/(n)/n')-«>0 for every
e>0. (See Hille (1936) and Erdos (1941).) In view of the naivete of Theorem 1,
it seems likely that/>(n)/logn->oo as «->oo, but the rather limited experimental data
mentioned above do not convincingly confirm or contradict this.

In this connection, it may be observed that if the numbers n and 2n+1 are both
prime, then p(2n+l) = p(n) +1 and, indeed, if the numbers n} = 2 ' (n+l)- l
(0</<fc) are all prime, then p(nk) = p(n)+k. So the problem of estimating p{n)
from below is inextricably bound up with the problem of estimating the least
composite number in a sequence of the shape nij = 2im — \ (y>0). We cannot
prove very much about these sequences unconditionally. However, if we assume
the truth of Artin's conjecture that the number of primes less than x for which 2 is
a primitive root is asymptotically c^x/logx as ;c-»-oo, then we can show that the
least composite w3- is less than mc+1+« for large m and any e > 0. For, we can choose
a prime p<(c+e)logm such that pJ(m and 2 is a primitive root mod/j and we
observe that one term in every p consecutive terms of the sequence {ntj} is a
multiple of p. Indeed, Hooley has shown under hypotheses similar to those which
he used to prove Artin's conjecture that almost all the terms in a sequence of this
type are composite. (See Hooley (1976), Chapters 3 and 7.) These conditional
results do not seem to give any improvement on Theorem 1. We can show un-
conditionally only that the least composite number mi = 2im — l is less than
2m/4m, providing m > 6. For, if/> is an odd prime divisor of m—2l for some /, then
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m*<p-D-t is composite whenever k > J/(p— 1) because

">*(„_„_, = 2*«i'-1>-'m-l = 2*<*>-1>-1 = 0 (modp).

Now, if m > 12 and mo = m—l is prime, it can be seen that one of the numbers
m—2, w - 4 , TO—8 has an odd prime divisor less than nt/4 and so we have a
composite rrij less than 2m/im, as asserted.

We remark on another connection between chain partitions and the factorization
problem. Let p(m,n) be the number of partitions n = a1+...+ak into distinct
positive integers at with ax \ a^ \ •. • | ak \ m and let Pi(m, n) be the number of partitions
of this type with Oy—\. As before,

p(m, n) = p^m, n) +p1(m, n +1).

To each factorization d=axa^...ak into factors greater than 1, we make correspond
the partition n=\+a1+a1ai-\-...+a1a2...ak. On counting the number of
partitions and factorizations which arise as d runs through all the divisors of m
less than m, we get the equation

£pi(n)= S f{d)=f{m).
n-=l dim, d<m

This suggests the related question of estimating how many numbers n with
1 < « < / M can be represented by a partition n = a1+...+ak into distinct positive
integers at with a ^ ^ l ••• \ak\m- Clearly, the number of representable numbers is
less than m unless m is a power of 2. Moreover, if m =p1p2 •••P)iis the product
of A primes, not necessarily distinct, then there are at least 2h representable numbers,
namely the numbers eo+s1p1+e2p1p2+... + eh_1p1p2...ph_1(ei = O or 1).
However, if m is the product of the first h primes, say, we cannot decide whether
there are as many TM* representable numbers for some 8 > 0.

3. Chain partitions with repetitions

Let q(n) be the number of partitions n = ax+... + ak into positive integers Oj with
... \ak, repetitions being allowed. Arguing as before, we find

(8) q(n) = Xq((n-d)/d) = Srfrf-1),
din d\n

with the convention that ?(0) = 1. Included among the partitions counted in q(n)
are the binary partitions of n, that is the partitions of n as sums of powers of 2; we
denote the number of these by b(n). The function b{n) satisfies the recurrence

(9) b(2n+l) = b(2n), b(2n) = b(2n-l)+b(n)
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and we have
B(x)= 2 b(n) = b(2[x]).

For B(x), de Bruijn (1948) has proved the extremely precise asymptotic result

as x->oo, where U{t) is a certain periodic function with period 1. In fact, he gives
the periodic function U(t) explicitly by its Fourier series and further analyses the
structure of the o(l) term. Our aim in this section is the following estimate for the
sum function

which parallels the above result for B(x), except that we cannot give the
oscillatory term explicitly.

THEOREM 3. We have

as x-*-co, where V(t) is a certain periodic function with period 1.

The proof of Theorem 3 is rather long and we proceed by means of a number of
lemmas. We begin with a first approximation to Theorem 3 which shows that at
least b(n) accounts for a positive proportion of the partitions of q(n).

LEMMA 1. We have b(ri) < q{n) < cb(n).

PROOF. TO prove the second inequality, we use (8) and induction. From (9), b(n)
is increasing, so by (9) again, we have

(11) S*W-l)<*0i-l)+ S b(-\ = *(«)+ s b(-\.
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Write b(n/d) = b(n)w(n,ä). From (10), after a little calculation, we obtain 

(12) l o , w f a O < _ l ° g £ J o g « + O o g ^ + l o g r f . l o g l o g B 

log 2 2 log 2 log 2 

as «->oo. Let S be a positive number so small that the number -q defined by 

, ? = 4 " ( 1 + S ) i o i 3 

is also positive. For the rest of the argument, we assume that n is a positive integer 

chosen sufficiently large so that all the inequalities are valid. If ni, then from (12). 

log¿Z.log« /3 7?\ 

log M<M)< ¡555-(H> 
by our choice of n, and so 

d\n, 3s£d5£ni 

Again, if then 

. , (log*/)2 ( log«) 2 

and so 

S M « , ^ < e x p ( - ^ M ^ + l o g « ! 
din,d>n* I 8 log 2 

Hence, from (11), 

1)< W { 1 + 0(«" 1 -*)} 

and, finally, by (8) and a simple induction, we have 

q{n) < bin) n {1 + Oim-1-8)} < cb(n), 

as required. 

Now let N be a positive integer and define a sequence {tfJV(«)} by 

aN(n)=q(n) (0^n<2N) 
and 

0 (̂2/1 + 1 ) = aN(2n), aN(2n) = aN(2n - 1 ) + aN(n) (n ^ TV). 
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We show next in Lemma 2 that, for large N, aN(n) is a good approximation to q(n).
Then, to complete the proof of Theorem 3, we use a Tauberian theorem of Ingham
(1941) to show that the sum function of a^ri) has the behaviour specified for Q(x)
in the theorem. A similar application of Ingham's Tauberian theorem was made by
Pennington (1953) in discussing the binary partition function.

LEMMA 2. Given e > 0, there is a positive number N^e) such that

for all n, whenever

PROOF. By (8) and (9) and Lemma 1, we have

b(n) < aN(n) < q(n) «S cb{n).

So, by the argument used in the proof of Lemma 1, if S>0 is sufficiently small,
we have

which gives the lemma.

The generating function of the b(ri) is

We set F(s) =f(e~s) for r e j>0 . The following formula for F(s) is due to de Bruijn
(1948).

LEMMA 3. Let 0<6<n/2 and let A(0) be the sector \ args\ < 8. Then

as s-*-0, uniformly in A(0). Here, W(t) is a certain periodic function of period 1 ana
W(-logs/log2) is bounded in

Now, we introduce the functions

and we set Gn(s) ~ gn(e~s) for re s > 0.
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LEMMA 4. Let O<0< TT/2 and let A(0) be as in Lemma 3. For each fixed n, we have

Gn(s)~F(s)exp{Wn(-logs/log2)},

as s-+0, uniformly in A(0). Here, Wn(t) is a periodic function of period 1 and
Wn(-logs/log2) is bounded in A(0).

PROOF. Let p be the unique root of pn = l — p2 with 0 < p < 1; p has the asymptotic
expansion

Suppose 0<x< 1 and choose m to be the integer satisfying *ap<p<jc2""1. Finally,
define y by pv = xv". Thus, 1<^<2 and Iog7/log2 is the fractional part of
(loglog;r"1-loglog/>-1)/log2. We can now write

where the terms shown are, in fact, the biggest terms of the series. In the first tail
the common ratios of consecutive terms are

p2 v)<l-pm

by (13), and in the second tail, they are

p2nV _ ( l - p y > _ /lQgli\
l_piy l_piy

 U \ n )'

so the series is dominated in both directions by a geometric series with common
ratio O(logn/n). Further, by (13) and Lemma 3,

is n->oo, uniformly in y in the interval K ^ < 2. This proves the assertions of the
emma for real s and they follow for complex s since all the functions involved are
•egular in
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The generating function of the a^ri) is

*<) = s
n=iV k=O

where

= ™i:\q{n)-q(n-\)}z"+q{N-\)zN.
n=N

This can be most easily seen by observing that/^z) is the unique solution of the
functional equation f^z2) = (1 —z)fN(z)—hN{z) which is regular at the origin and
vanishes there. We write F^s) =/jv(e~*) for rej>0. By Lemma 4,

(14) F^-i^exp^-logs/k^)},

as 5->0, uniformly in the sector A(0), for each 8 with O<0<TT/2 and for eacl
fixed N. Again, X^t) is a periodic function with period 1 and X^—logs/log2) is
bounded in A(0). Set

AN(x)=

We follow Pennington (1953) in applying a Tauberian theorem of Ingham to th<
transform

FN(S)
Jo

Indeed, by (14) and Lemma 3, the functions F(s) and F^s) have the same asymptoti<
behaviour as s->0, so the details of the Tauberian argument for F^s) are exactly
the same as those for F(s) given in Pennington (1953), pp. 540-544. Consequently
log A#(x) has the same asymptotic behaviour as log B(x) for large x, that is log A^x
has the shape specified in Theorem 3. The theorem follows from this remark anc
Lemma 2. For, given s > 0, we can choose TV so large that log Q(x) is approximatec
to within e/2 by log^^x) for all large x. Hence \o%Q(x) satisfies the estimate o
Theorem 3 with error at most e, say, for all large x and this gives the required result

Our methods could be used to give bounds for the oscillation of Q(x)/B(x) foi
large x, but we have not been able to decide whether or not Q(x)/B(x) approaches
a limit as JC->OO.
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4. Umbrella partitions with distinct parts

Let r(ri) be the number of partitions of n into distinct positive integers such that
each part divides the largest one. As usual, we do not distinguish between partitions
differing only in the order of their terms. We write

(15) £(«)= max d(m),

where d(m) denotes the number of positive divisors of the integer m. The next
theorem gives an estimate for r(n).

THEOREM 4. We have Ioglogr(n)~log2.1ogn/loglog« as n->ao. More precisely,
log r(n) ~ log 2. D(n) as n -*• oo.

PROOF. The second statement implies the first by the well-known estimate for the
maximum order of d(n). (See, for example, Hardy and Wright (1968), Theorem
317.)

We show first that log2r(/j)^{l+o(l)}D(n). Indeed, each partition of r(n) with
largest part m corresponds to some subset of the divisors of m which make up the
terms of the partition. Since there are at most n choices for the largest part m, this
gives r(n)^2Din)n, as asserted.

It remains to show that log2r(n)>{l +o(l)} £>(n), and for this we need some of
the properties of the highly composite numbers of Ramanujan (1915). A positive
integer n is called highly composite if d(m) < d(n) for every positive integer m less
than n. Now, given a positive integer n, let m be the largest highly composite number
not exceeding /i/2. By Ramanujan (1915), Section 28, we have m~n/2 and
d(m)~D(ri) as n->oo. Moreover, from Sections 8 and 23 of Ramanujan's paper,
m = 2a3P5?... with a>/J^y>. . . and a~loglogn/log2(logloglogn)*. We choose
a sequence a\ = 1 < a\ <... < dk = m of divisors of m with dt < 2dj_x (2 <y s£ k) and
with k as small as possible. Clearly, this can be done with fc<clogn. Now, let
Dx < D2 <... be the consecutive divisors of m excluding the dt and choose r so that

We assert that r~d(ni), for the number 2~"m with K = [(log log/M)*] has
{l+o(l)}d(m) divisors whose sum is less than m. With this construction, we can
write n = m+s+t where s is a sum of the D/s and t is a sum of the dfs, giving a
partition of the required sort for n. There are in all 2r choices for s, so we have

r(n
as required.
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By analogy with the concluding remarks of Section 2, we can ask what positive
integers m enable us to represent all numbers n with K n ^ / n by an umbrella
partition with largest part dividing m. These are the 'practical numbers' of
Srinivasan. Sierpinski (1955) showed that m is a practical number if and only if it
has the prime factorization m = 2au>pllp^...pj* where p1<p2<---<ph are odd
primes, afoo ,̂...,<xA are positive integers and Pj+i^l + <r(Z*°P?P2t--PT) f°r

0 < / < A - l . (Here, a(n) denotes, as usual, the sum of the positive divisors of n.)
Consequently, the practical numbers have zero density. We can prove the stronger
assertion that the density of integers m for which a given integer n is the sum of
distinct divisors of m tends to 0 as M->OO. The proof is omitted.

5. Umbrella partitions with repetitions

Finally, we consider the partition function s(n) which is the number of partitions
of n into positive integers in which each part divides the largest part and repetitions
are allowed. We obtain an estimate similar to the one in Section 4.

THEOREM 5. We have Ioglog5(/i)~log2.1og«/loglogn as n->ao. More precisely,
logj(n)~£Z)(n)logn as n->ao, where D(ti) is defined by (15).

PROOF. Let s(m, n) be the number of partitions of n with largest part m and with
all parts dividing m.Jfd divides m, then d occurs at most n/d times in any partition
of s(m,n) and, moreover, any choice for the divisors d with each occurring at most
n/d times gives a partition of s(m, nd(m)). Hence

s(m, n) < II ([n/d]+1) < s(m, nd(m)).

From this,

s(n)=
m=l

n I n \d(m)

m~l

I n \d

1-r)
lV"V

because, for any e>0, the terms of the sum with KKH1-' are absorbed in the
error term. On the other hand,

U
d\m
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and so

s(n)~2 S s(m,[n/d(m)])> S ([n/d(m)]/m*)d<m>>«{«•<«>««)
m=l m=l

because, from Section 28 of Ramanujan (1915), there is a term of the sum with
m = D(ri) and m = {1 + o(l)}«. This proves the theorem.
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