Canad. Math. Bull. Vol. 24 (1), 1981

A REMARK ON NONEXPANSIVE MAPPINGS

BY
KAZIMIERZ GOEBEL AND MAŁGORZATA KOTER

Let X be a closed convex subset of a Banach space and let $T: X \rightarrow X$ be a nonexpansive mapping, i.e.

$$
\|T x-T y\| \leq\|x-y\| \quad \text { for } x, y \in X .
$$

It is well known that the set Fix T of fixed points of T may be empty unless X has some "nice" geometrical and topological properties [see e.g. [1], [2], [3], [4]].

We are going to prove a fixed point theorem assuming nothing more about the regularity of X but putting some additional condition on the mapping T itself.

Let us call a nonexpansive mapping $T: X \rightarrow X$ "rotative" if there exists an integer $n \geq 2$ and a real number $a<n$ such that for any $x \in X$

$$
\begin{equation*}
\left\|x-T^{n} x\right\| \leq a\|x-T x\|, \tag{1}
\end{equation*}
$$

and use the notation " k-rotative" if T is rotative for $n=k$.
We should note that if T is nonexpansive, then for each positive integer m, $\left\|x-T^{m} x\right\| \leq m\|x-T x\|$. One can observe that if T is n-rotative, it is also m-rotative for $m>n$.

The simplest examples of rotative nonexpansive mappings are all contractions, rotations of Euclidean space \mathbb{R}^{n} or any periodic nonexpansive mappings in any Banach space.

Theorem. If a nonexpansive mapping $T: X \rightarrow X$ is rotative then Fix $T \neq \varnothing$.
Proof. Since T is nonexpansive, $I-\alpha T$ is invertible for each $\alpha \in(0,1)$; thus let us define a mapping $F_{\alpha}: X \rightarrow X$ by $F_{\alpha}=(I-\alpha T)^{-1}(1-\alpha) I$. It is easy to see that Fix $T=$ Fix F_{α} and F_{α} is also nonexpansive. Actually we have

$$
y=F_{\alpha} x \Leftrightarrow y=(1-\alpha) x+\alpha T y,
$$

implying

$$
F_{\alpha} x=(1-\alpha) x+\alpha T F_{\alpha} x, F_{\alpha}^{2} x=(1-\alpha) F_{\alpha} x+\alpha T F_{\alpha}^{2} x, \ldots, \text { etc. }
$$

and

$$
(1-\alpha)\left(x-F_{\alpha} x\right)=\alpha\left(F_{\alpha} x-T F_{\alpha} x\right) .
$$

Received by the editors January 8, 1979 and, in revised form, February 8, 1980.

Thus we have

$$
\begin{aligned}
\left\|F_{\alpha} x-F_{\alpha}^{2} x\right\| & =\left\|F_{\alpha} x-(1-\alpha) F_{\alpha} x-\alpha T F_{\alpha}^{2} x\right\|=\alpha\left\|F_{\alpha} x-T F_{\alpha}^{2} x\right\| \\
& \leq \alpha\left\|F_{\alpha} x-T^{n} F_{\alpha} x\right\|+\alpha\left\|T^{n} F_{\alpha} x-T F_{\alpha}^{2} x\right\| \\
& \leq \alpha a\left\|F_{\alpha} x-T F_{\alpha} x\right\|+\alpha\left\|T^{n-1} F_{\alpha} x-F_{\alpha}^{2} x\right\| \\
& =(1-\alpha) a\left\|x-F_{\alpha} x\right\|+\alpha\left\|T^{n-1} F_{\alpha} x-F_{\alpha}^{2} x\right\| ;
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left\|F_{\alpha} x-F_{\alpha}^{2} x\right\| \leq(1-\alpha) a\left\|x-F_{\alpha} x\right\|+\alpha\left\|T^{n-1} F_{\alpha} x-F_{\alpha}^{2} x\right\| \tag{2}
\end{equation*}
$$

Using only the nonexpansive property of T, we proceed by induction to establish the following inequality which is needed:

$$
\begin{equation*}
\alpha\left\|T^{k-1} F_{\alpha} x-F_{\alpha}^{2} x\right\| \leq\left[(k-1)-k \alpha+\alpha^{k}\right]\left\|x-F_{\alpha} x\right\|+\alpha^{k}\left\|F_{\alpha} x-F_{\alpha}^{2} x\right\| . \tag{3}
\end{equation*}
$$

For $k=2$

$$
\begin{aligned}
\alpha\left\|T F_{\alpha} x-F_{\alpha}^{2} x\right\| & =\alpha\left\|T F_{\alpha} x-(1-\alpha) F_{\alpha} x-\alpha T F_{\alpha}^{2} x-\alpha T F_{\alpha} x+\alpha T F_{\alpha} x\right\| \\
& \leq \alpha(1-\alpha)\left\|T F_{\alpha} x-F_{\alpha} x\right\|+\alpha^{2}\left\|T F_{\alpha} x-T F_{\alpha}^{2} x\right\| \\
& \leq(1-\alpha)^{2}\left\|x-F_{\alpha} x\right\|+\alpha^{2}\left\|F_{\alpha} x-F_{\alpha}^{2} x\right\| .
\end{aligned}
$$

For $k=n+1$, we have

$$
\begin{aligned}
\alpha\left\|T^{n} F_{\alpha} x-F_{\alpha}^{2} x\right\| & =\alpha\left\|(1-\alpha) T^{n} F_{\alpha} x+\alpha T^{n} F_{\alpha} x-(1-\alpha) F_{\alpha} x-\alpha T F_{\alpha}^{2} x\right\| \\
& \leq \alpha(1-\alpha)\left\|T^{n} F_{\alpha} x-F_{\alpha} x\right\|+\alpha^{2}\left\|T^{n} F_{\alpha} x-T F_{\alpha}^{2} x\right\| \\
& \leq n \alpha(1-\alpha)\left\|T F_{\alpha} x-F_{\alpha} x\right\|+\alpha^{2}\left\|T^{n-1} F_{\alpha} x-F_{\alpha}^{2} x\right\| \\
& =n(1-\alpha)^{2}\left\|x-F_{\alpha} x\right\|+\alpha^{2}\left\|T^{n-1} F_{\alpha} x-F_{\alpha}^{2} x\right\|
\end{aligned}
$$

and by the induction hypothesis

$$
\begin{aligned}
\alpha\left\|T^{n} F_{\alpha} x-F_{\alpha}^{2} x\right\| \leq & n(1-\alpha)^{2}\left\|x-F_{\alpha} x\right\|+\alpha\left[(n-1)-n \alpha+\alpha^{n}\right]\left\|x-F_{\alpha} x\right\| \\
& +\alpha^{n+1}\left\|F_{\alpha} x-F_{\alpha}^{2} x\right\| \\
= & {\left[n+(n+1) \alpha+\alpha^{n+1}\right]\left\|x-F_{\alpha} x\right\|+\alpha^{n+1}\left\|F_{\alpha} x-F_{\alpha}^{2} x\right\| }
\end{aligned}
$$

as desired.
From (2) and (3) we conclude that

$$
\begin{aligned}
\left\|F_{\alpha} x-F_{\alpha}^{2} x\right\| & \leq \frac{(1-\alpha) a+(n-1)-n \alpha+\alpha^{n}}{1-\alpha^{n}}\left\|x-F_{\alpha} x\right\| \\
& =\left[(a+n)\left(\sum_{i=0}^{n-1} \alpha^{i}\right)^{-1}-1\right]\left\|x-F_{\alpha} x\right\| \\
& =g(\alpha)\left\|x-F_{\alpha} x\right\| .
\end{aligned}
$$

Since g is continuous and decreasing on $(0,1\rangle$ with $g(1)<1$, then there exists $b \in(0,1)$ such that $g(\alpha)<1$ for each $\alpha \in(b, 1)$. This observation implies the
convergence of iterates $\left\{F_{\alpha}^{n} x\right\}$ for any $x \in X$, thus the existence of fixed point for T.

One can notice that the set Fix T is a nonexpansive retract of X. Actually the mapping $R x=\lim _{n \rightarrow \infty} F_{\alpha}^{n} x$ is the retraction of X onto Fix T.

We feel that rotativeness is quite natural metrical assumption. However we are aware of the fact that for concrete mapping T it may be difficult to check whether it is rotative or not.

References

1. F. E. Browder, Nonexpansive nonlinear operators in Banach spaces, Proc. Nat. Acad. Sci. USA 54 (1965), 1041-1044.
2. D. Goehde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251-258.
3. L. E. Karlovitz, On nonexpansive mappings, Proc. Amer. Math. Soc. 55 (1976), 321-325.
4. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006.

Maria Curie-Skxodowska University
Department of Mathematics
Nowotki 10, 20-031 Lublin
Poland

