IMPROVED VERSIONS OF FORMS OF PLESSNER'S THEOREM

PETER COLWELL

1. Introduction. With the aid of a theorem about the Julia points of a function meromorphic in the unit disk, this paper strengthens a theorem of K. Meier. As a consequence a stronger form of Plessner's Theorem is seen to hold which contains a theorem of E. F. Collingwood. An additional consequence is a stronger form of Meier's analogue to Plessner's Theorem.

First we set the terminology and notation. If $D=\{z:|z|<1\}, C=$ $\{z:|z|=1\}$, and W is the Riemann sphere, let $f: D \rightarrow W$ be meromorphic. If $\gamma \in C$ and T is a chord in D ending at $\gamma, C(f, \gamma, T)$ denotes the chordal cluster set of f at γ along $T ; C(f, \gamma, T)$ is the set of points $w \in W$ for which there exists a sequence $\left\{z_{n}\right\} \subset T$ such that $z_{n} \rightarrow \gamma$ and $f\left(z_{n}\right) \rightarrow w$. We let

$$
\Pi^{*}(f, \gamma)=\cap C(f, \gamma, T)
$$

where the intersection is taken over all chords T at γ.
A Stolz angle Δ at γ is a triangular domain in D bounded by two chords in D ending at γ, and the cluster set $C(f, \gamma, \Delta)$ is the set of points $w \in W$ for which there exists a sequence $\left\{z_{n}\right\} \subset \Delta$ such that $z_{n} \rightarrow \gamma$ and $f\left(z_{n}\right) \rightarrow w$. A point $\gamma \in C$ is called a Fatou point of f if there exists $w \in W$ such that $C(f, \gamma, \Delta)=$ $\{w\}$ for every Stolz angle Δ at γ; we call $\gamma \in C$ a Plessner point of f if $C(f, \gamma, \Delta)=$ W for every Stolz angle Δ at $\gamma . F(f)$ and $I(f)$ will denote the set of Fatou points of f and the set of Plessner points of f, respectively.

A chord T at $\gamma \in C$ is called a Julia segment for f if, for every Stolz angle Δ at γ containing T, f assumes every value of W, with at most two exceptions, infinitely often in Δ. If every chord at γ is a Julia segment for f, then γ is called a Julia point of f. We let $J S(f)$ be the set of points of C at which f has a Julia segment, and $J(f)$ will denote the set of Julia points of f.

If A is a set of C, "almost every (nearly every) point of A " will mean "every point of A with the exception of a set of linear measure zero (first category) on C."

The results we present in $\S \S 2,3$ and 4 rest on the following result.
Theorem 1. If f is meromorphic in D, then almost every and nearly every point of $J S(f)-J(f)$ lies in $\left\{\gamma \in C: \Pi^{*}(f, \gamma)=W\right\}$.

For expository reasons we defer the proof of Theorem 1 to $\S 5$.

[^0]2. Meier's Theorem. If, for each $\gamma \in C, \Lambda(f, \gamma)$ denotes the set of values on W which f assumes infinitely often in every Stolz angle at γ, Meier's Theorem [6, Satz 1] states: if f is meromorphic in D, then almost every point of C lies in one of the three sets: (i) $F(f)$; (ii) $J(f)$; (iii)
$$
\left\{\gamma \in C: \Lambda(f, \gamma) \cup \Pi^{*}(f, \gamma)=W\right\}
$$

Theorem 1 permits the following stronger version.
Theorem 2. If fis meromorphic in D, then almost every point of C lies in one of the three sets: (i) $F(f)$; (ii) $J(f)$; (iii) $\left\{\gamma \in C: \Pi^{*}(f, \gamma)=W\right\}$.

Proof. Let E be the set of points on C which lie in none of the sets (i), (ii), (iii), and suppose that E has positive measure on C. Then E contains a set U of positive measure such that $U \subset I(f)-J(f)$, and $\Pi^{*}(f, \gamma) \neq W$ for each $\gamma \in U$. Thus, if $\gamma \in U$, there is a chord T at γ such that $C(f, \gamma, T) \neq W$. Since $\gamma \in I(f)$, it will be the case that T is a Julia segment for f. (The justification for this fact appears in §5.) Hence $U \subset J S(f)-J(f)$. Theorem 1 produces a contradiction.
3. Stronger forms of Plessner's Theorem. Plessner's Theorem [7; 2, Theorem 8.2] states: if f is meromorphic in D, then almost every point of C is either a Fatou point or a Plessner point.

In [1, Theorem 1], Collingwood applied Meier's Theorem to show that for at least one class of meromorphic functions (Tsuji functions) one can replace "Plessner points" by "Julia points." We use Theorem 2 in place of Meier's Theorem in Collingwood's argument.

Theorem 3. Let f be meromorphic in D and suppose that $\Pi^{*}(f, \gamma) \neq W$ at almost every point of C. Then almost every point of C is either a Fatou point or a Julia point.

Proof. Suppose not. Then $U=[I(f)-J(f)] \cap\left\{\gamma \in C: \Pi^{*}(f, \gamma) \neq W\right\}$ has positive measure on C. But

$$
U \subset[J S(f)-J(f)] \cap\left\{\gamma \in C: \Pi^{*}(f, \gamma) \neq W\right\}
$$

and this last set has measure zero by Theorem 1.
The hypothesis in Theorem 3 is relatively mild: for almost every point $\gamma \in C$ there exists a chord T at γ for which $C(f, \gamma, T) \neq W$. This suggests an interesting question for which the methods of this paper are not effective.

Question. Suppose f is meromorphic in D and for almost every point $\gamma \in C$ there exists a curve Γ in D ending at γ such that $C(f, \gamma, \Gamma) \neq W$. Must almost every point of C then be either a Fatou point or a Julia point?
4. Meier's analogue of Plessner's Theorem. If $\gamma \in C, C(f, \gamma) \neq W$, and $\Pi^{*}(f, \gamma)=C(f, \gamma)$, we call γ a Meier point of f, and we denote by $M(f)$
the set of Meier points of f. In [6, Satz 5] Meier proved this result: if f is meromorphic in D, then nearly every point of C is either a Meier point or a Plessner point.

With Theorem 1 we obtain a result bearing the same relation to Meier's analogue as Theorem 3 bears to Plessner's Theorem.

Theorem 4. Let f be meromorphic in D and suppose that $\Pi^{*}(f, \gamma) \neq W$ at nearly every point of C. Then nearly every point of C is either a Meier point or a Julia point.

Proof. At any Plessner point of f where $\Pi^{*}(f, \gamma) \neq W, f$ has a Julia segment (cf. details in §5.) Thus
$I(f)-J(f)-\left\{\gamma: \Pi^{*}(f, \gamma)=W\right\} \subset J S(f)-J(f)-\left\{\gamma: \Pi^{*}(f, \gamma)=W\right\}$.
By Theorem 1 this last set is of first category; by hypothesis $\left\{\gamma: \Pi^{*}(f, \gamma)=W\right\}$ is of first category. Hence $I(f)-J(f)$ is of first category, and Meier's analogue to Plessner's Theorem implies $M(f) \cup J(f)$ is residual on C.
5. Proof of Theorem 1. For the proof some additional notation and preliminary facts will be helpful.

Let $\gamma \in C$ and $\alpha \in(-\pi / 2, \pi / 2)$. By $T(\gamma, \alpha)$ we denote the chord at γ making angle α with the radius to γ. If $\beta \in(0, \pi / 2-|\alpha|), \Delta(\gamma, \alpha, \beta)$ will be the Stolz angle at γ symmetric about the chord $T(\gamma, \alpha)$ with vertex angle β. And for $r \in(0,1)$, we let $\Delta_{r}(\gamma, \alpha, \beta)=\Delta(\gamma, \alpha, \beta) \cap\{z:|z|>r\}$.

For $z, w \in D, \rho(z, w)$ is the hyperbolic distance between z and w.
Lemma 1. Let $\alpha \in(-\pi / 2, \pi / 2)$ and $\beta \in(0, \pi / 2-|\alpha|)$ be fixed, and set $M(\beta)=\tanh ^{-1}\{\sin (\beta / 2) /[4+\sin (\beta / 2)]\}$. For any $\gamma \in C$, if $z \in T(\gamma, \alpha)$, then

$$
\{w \in D: \rho(w, z)<M(\beta)\} \subset \Delta(\gamma, \alpha, \beta)
$$

Proof. From a lemma of P. Lappan [5, Lemma 2], if $\rho(w, z)<M(\beta)$, then

$$
\begin{aligned}
|w-z| /(1-|z|) & \leqq[2 \tanh M(\beta)] /[1-\tanh M(\beta)] \\
& =(1 / 2) \sin (\beta / 2)<\sin (\beta / 2)
\end{aligned}
$$

Thus $|w-z|<(1-|z|) \sin (\beta / 2) \leqq|\gamma-z| \sin (\beta / 2)$, and $w \in \Delta(\gamma, \alpha, \beta)$.
In [3], P. Gauthier defined the concept of a ρ-sequence of points in D. A result of Gauthier [4, Theorem 1] contains the following fact.

Lemma 2. Let f be meromorphic in $D, \gamma \in C$, and T be a chord at γ. If $C(f, \gamma, T) \neq \cap C(f, \gamma, \Delta)$, the intersection being taken over all Stolz angles Δ at γ containing T, then T contains a ρ-sequence for f.

Lemma 3. If f is meromorphic in $D, \gamma \in C$, and T is a chord at γ containing a ρ-sequence for f, then T is a Julia segment for f.

Proof. Let $T=T(\gamma, \alpha)$ and $\Delta=\Delta(\gamma, \alpha, \beta)$ be any Stolz angle containing T. Suppose $\left\{z_{n}\right\}$ is a ρ-sequence for f on T.

By Lemma 1, for any $r, 0<r<M(\beta)$, and each positive integer n, $\left\{w \in D: \rho\left(w, z_{n}\right)<r\right\} \subset \Delta(\gamma, \alpha, \beta)$. Since $\left\{z_{n}\right\}$ is a ρ-sequence for $f,[\mathbf{3}$, Theorem 2] implies that for each such r and all n sufficiently large there exist sets $E(r, n)$ and $G(r, n)$ on W, with chordal diameters at most r, such that

$$
W-[E(r, n) \cup G(r, n)] \subset f\left[\left\{w \in D: \rho\left(w, z_{n}\right)<r\right\}\right] .
$$

Hence T is a Julia segment for f.
(We note that if γ is a Plessner point for f, and $\Pi^{*}(f, \gamma) \neq W$, Lemmas 2 and 3 imply f has a Julia segment at γ.)

Let $E=J S(f)-J(f)$. Clearly $E \cap F(f)=\emptyset$ and $E \cap M(f)=\emptyset$, so almost every and nearly every point of E is a Plessner point. Let $F=E \cap I(f)$, and $G=F \cap\left\{\gamma \in: \Pi^{*}(f, \gamma) \neq W\right\}$.

For any $\gamma \in G$, since $\gamma \notin J(f)$, there exist rational numbers $\alpha \in(-\pi / 2$, $\pi / 2)$ and $\beta \in(0, \pi / 2-|\alpha|)$ such that f omits at least three values of W in $\Delta(\gamma, \alpha, \beta)$. Also for some chord $T(\gamma, \mu), \mu \in(-\pi / 2, \pi / 2), C(f, \gamma, T(\gamma, \mu)) \neq$ W. Since $\gamma \in I(f)$, Lemma 2 implies $T(\gamma, \mu)$ contains a ρ-sequence for f.

Now let $\alpha \in(-\pi / 2, \pi / 2), \beta \in(0, \pi / 2-|\alpha|)$, and $r \in(0,1)$ all be rational, and let k be a positive integer. Define the subset $G(\alpha, \beta, r, k)$ of G as follows: $\gamma \in G(\alpha, \beta, r, k)$ if $\gamma \in G$, if the set $W-f\left[\Delta_{r}(\gamma, \alpha, \beta)\right]$ contains at least three points, and if for any two sets A, B on W such that $A \cup B=W-f\left[\Delta_{r}(\gamma, \alpha, \beta)\right]$, either A or B has chordal diameter at least $1 / k$. It is not difficult to show that

$$
G=\bigcup_{\alpha, \beta, r, k} G(\alpha, \beta, r, k) .
$$

We wish to show that G is of measure zero and of first category on C.
(i) If G has positive measure on C, then for some choice of α, β, r, k - henceforth fixed $-H=G(\alpha, \beta, r, k)$ has positive measure on C. Let L be a perfect subset of H of positive measure on C.

Form a simply connected domain R in D by taking all the domains $\Delta_{r}(\gamma, \alpha, \beta / 2)$ for $\gamma \in L$, together with $\{z:|z|<r\}$ and appropriate open arcs on $\{z:|z|=r\}$. The boundary of R is a rectifiable Jordan curve Γ with $\Gamma \cap C=L$. At almost every point of L there is a tangent to L which coincides with the tangent to C at that point. Let $\lambda \in L$ be any such point.

Except for the point λ itself, some "last segment" of every chord in D at λ must lie in R. Since $\lambda \in L \subset H$, there exists chord $T(\lambda, \mu)$ containing a ρ sequence $\left\{z_{n}\right\}$. For n sufficiently large, each $z_{n} \in R$, and hence there is a corresponding point $\gamma_{n} \in L$ such that $z_{n} \in \Delta_{r}\left(\gamma_{n}, \alpha, \beta / 2\right) \subset \Delta_{r}\left(\gamma_{n}, \alpha, \beta\right)$. Both $z_{n} \rightarrow \lambda$ and $\gamma_{n} \rightarrow \lambda$. From Lemma 1, for all n sufficiently large,

$$
\left\{w \in D: \rho\left(w, z_{n}\right)<M(\beta / 2)\right\} \subset \Delta_{r}\left(\gamma_{n}, \alpha, \beta\right) .
$$

Now choose $s, 0<s<\min \{M(\beta / 2), 1 / k\}$. If we let $\mathscr{D}\left(z_{n}, s\right)=$ $\left\{w \in D: \rho\left(z_{n}, w\right)<s\right\}$, since $\left\{z_{n}\right\}$ is a ρ-sequence, we know that for all n suffi-
ciently large $f\left[\mathscr{D}\left(z_{n}, s\right)\right]$ must cover all of W except for two sets $A(s, n)$, $B(s, n)$ whose chordal diameters are less than $1 / k$. The same is then true for $f\left[\Delta_{r}\left(\gamma_{n}, \alpha, \beta\right)\right]$. But each $\gamma_{n} \in H$ and we have a contradiction.
(ii) If G is of second category on C, then for some choice of α, β, r, k - henceforth fixed $-H=G(\alpha, \beta, r, k)$ is of second category on C and thus dense in some arc Γ of C. Let Ω be a closed nondegenerate subarc of Γ and R be the domain $\cup_{\gamma \in \Omega} \Delta_{r}(\gamma, \alpha, \beta / 2)$. If $L=\Omega \cap H$, let λ be any point of L lying in the interior of Ω. The argument proceeds as in (i) to a contradiction.

Thus G is of measure zero and of first category on C, and Theorem 1 is proved.

References

1. E. F. Collingwood, A boundary theorem for Tsuji functions, Nagoya Math. J. 29 (1967), 197-200.
2. E. F. Collingwood and A. J. Lohwater, The theory of cluster sets (Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge, 1966).
3. P. Gauthier, A criterion for normalcy, Nagoya Math. J. 32 (1968), 277-282.
4. - The non-Plessner poinis for the Schwarz triangle functions, Anı. Acad. Sci. Fenn. A I 422 (1968), 1-6.
5. P. Lappan, Some sequential properties of normal and non-normal functions with applications to automorphic functions, Comm. Math. Univ. Sancti Pauli 12 (1964), 41-57.
6. K. Meier, Über die Randwerte der meromorphen Funktionen, Math. Ann. 142 (1961), 328-344.
7. A. I. Plessner, Über das Verhalten analytischer Funktionen am Rande ihres Definitionsbereichs, J. Reine Angew. Math. 158 (1927), 219-227.

Iowa State University, Ames, Iowa

[^0]: Received September 19, 1972.

