STABILITY OF ALMOST PERIODIC SOLUTIONS OF AN AUTONOMOUS EQUATION

BY
K. W. CHANG*

The purpose of this paper is to extend to almost periodic (a.p.) solutions a stability result on the periodic solutions of the autonomous equation

$$
x^{\prime}=F(x)
$$

(cf. Coppel [1], p. 82 or Coddington and Levinson [2], p. 323.)
Theorem. Let $u(t)$ be a non-constant a.p. solution of

$$
\begin{equation*}
x^{\prime}=F(x) \tag{1}
\end{equation*}
$$

and let $F(x)$ be continuously differentiable at all points of the closure of the path

$$
x=u(t) .
$$

Suppose that there exist two supplementary projections $P_{1}, P_{2}\left(P_{2}\right.$ is 1-dimensional) such that the variational equation

$$
\begin{equation*}
y^{\prime}=F_{x}[u(t)] y \tag{2}
\end{equation*}
$$

has a fundamental matrix $Y(t), Y(0)=I$, satisfying

$$
\begin{array}{ll}
\left|Y(t) P_{1} Y^{-1}(s)\right| \leq L \exp (-\alpha(t-s)) & \text { for } t \geq s, \\
\left|Y(t) P_{2} Y^{-1}(s)\right| \leq L & \text { for } t \leq s, \tag{3}
\end{array}
$$

where L, α are positive constants.
Then there exist positive constants ε, δ such that if a solution $\varphi(t)$ of (1) satisfies $\left|\varphi\left(t_{1}\right)-\left(t_{2}\right)\right|<\varepsilon$ for some t_{1} and t_{2}, then

$$
|\varphi(t-h)-u(t)| \leq \delta \exp (-\alpha t / 2) \quad \text { for } \quad t \geq 0
$$

where h is some real constant, depending on φ.
Proof. Setting $x=z+u(t)$ in (1) we obtain

$$
\begin{equation*}
z^{\prime}=F[z+u(t)]-F[u(t)]=F_{x}[u(t)] z+f(t, z) \tag{4}
\end{equation*}
$$

[^0]where $f(t, 0) \equiv 0$ and for each $\gamma>0$, there exists a $\delta>0$ such that
\[

$$
\begin{equation*}
\left|f\left(t, z_{1}\right)-f\left(t, z_{2}\right)\right| \leq \gamma\left|z_{1}-z_{2}\right| \tag{5}
\end{equation*}
$$

\]

uniformly in t, if $\left|z_{1}\right|,\left|z_{2}\right| \leq \delta$.
From $u^{\prime}(t)=F[u(t)]$ it follows by differentiation that $u^{\prime}(t)$ is a solution of (2). We can write

$$
u^{\prime}(t)=Y(t) \xi \quad \text { for some } \quad \xi \neq 0
$$

Choose γ in (5) so that $\theta=4 L \gamma \alpha^{-1}<1$. Let T be the transformation of the space Z of continuous functions $z(t)$ with $\|z(t)\|=\sup _{t \geq 0} \exp (\alpha t / 2)|z(t)| \leq \delta$ defined by

$$
T z(t)=Y(t) \xi_{1}+\int_{0}^{t} Y(t) P_{1} Y^{-1}(s) f(s, z(s)) d s-\int_{t}^{\infty} Y(t) P_{2} Y^{-1}(s) f(s, z(s)) d s
$$

where $\xi_{1} \in P_{1} X$ and $\left|\xi_{1}\right|<L^{-1}(1-\theta) \delta$, Then $T z(t)$ is a solution of

$$
z^{\prime}=F_{x}[u(t)] z+f[t, z(t)] .
$$

$T z(t)$ is continuous and

$$
\begin{aligned}
|T z(t)| \leq L \exp (-\alpha t)\left|\xi_{1}\right|+L \gamma \int_{0}^{t} \exp (-\alpha(t-s))\|z\| \exp (-\alpha s / 2) d s & \\
& +L \gamma \int_{t}^{\infty}\|z\| \exp (-\alpha s / 2) d s
\end{aligned}
$$

Therefore

$$
|T z(t)| \leq L \exp (-\alpha t / 2)\left|\xi_{1}\right|+4 L \gamma \alpha^{-1} \exp (-\alpha t / 2)\|z\|
$$

or

$$
\begin{equation*}
\|T z(t)\| \leq L\left|\xi_{1}\right|+\theta\|z\|<(1-\theta) \delta+\theta \delta=\delta . \tag{6}
\end{equation*}
$$

Similarly for any two functions $z_{1}(t), z_{2}(t)$ in Z we find

$$
\left\|T z_{1}(t)-T z_{2}(t)\right\| \leq \theta\left\|z_{1}-z_{2}\right\|
$$

It follows from the contraction mapping principle that the equation $z=T z$ has a unique solution $z=z\left(t, \xi_{1}\right)$ and hence the equation (1) has a unique solution

$$
x\left(t, \xi_{1}\right)=z\left(t, \xi_{1}\right)+u(t) .
$$

For $t=0$ we have

$$
x\left(0, \xi_{1}\right)-u(0)=z\left(0, \xi_{1}\right)=\xi_{1}-\int_{0}^{\infty} P_{2} Y^{-1}(s) f(s, z(s)) d s=\xi_{1}+o\left(\xi_{1}\right),
$$

since $|f(t, z)|=o(|z|)$ uniformly in t for $|z| \rightarrow 0$ and, by (6),

$$
\|z\| \leq(1-\theta)^{-1} L\left|\xi_{1}\right| .
$$

Let $x(t, \eta)$ denote the solution of (1) with $x(0, \eta)=\eta$. Then

$$
x^{\prime}[0, u(0)]=u^{\prime}(0)=\xi
$$

For $\eta=u(0)$ the equation

$$
\begin{equation*}
x(t, \eta)-z\left(0, \xi_{1}\right)-u(0)=0 \tag{7}
\end{equation*}
$$

has the solution $t=0, \xi_{1}=0$. It follows by one form of the implicit function theorem that if $|\eta-u(0)|<\sigma$ for some $\sigma>0$, then (7) admits a solution $t=t^{\prime}, \xi_{1}=\xi_{1}^{\prime}$ where

$$
\begin{equation*}
\left|t^{\prime}\right|<l \text { and }\left|\xi_{1}^{\prime}\right|<L^{-1}(1-\theta) \delta \tag{8}
\end{equation*}
$$

By the theorem on continuous dependence of solutions on initial values, there exists a constant $\varepsilon>0$ such that if a solution $\psi(t)$ of (1) satisfies

$$
\left|\psi\left(t_{0}\right)-u\left(t_{0}\right)\right|<3 \varepsilon
$$

for some $t_{0}\left(0 \leq t_{0} \leq l\right)$, then $\psi(t)$ is defined for all $|t| \leq l$ and

$$
|\psi(0)-u(0)|<\sigma .
$$

Hence for some t^{\prime}, ξ^{\prime} satisfying (8) we can write $\psi\left(t^{\prime}\right)$ in the form

$$
\psi\left(t^{\prime}\right)=z\left(0, \xi_{1}^{\prime}\right)+u(0)
$$

Now let $\varphi(t)$ be any solution of (1) such that

$$
\left|\varphi\left(t_{1}\right)-u\left(t_{2}\right)\right|<\varepsilon
$$

for some t_{1}, t_{2}.
Since $u(t)$ is a.p., it is vniformly continuous, and so

$$
\left|u(s)-u\left(s_{1}\right)\right| \leq \varepsilon \quad \text { for } \quad\left|s-s_{1}\right| \leq \beta=\beta(\varepsilon) .
$$

Let $t_{0} \in[0, l]$. For any t_{2}, we can define a translation number τ such that $\mid t_{2}+$ $\tau-t_{0} \mid \leq \beta$. Then

$$
\left|u\left(t_{2}+\tau\right)-u\left(t_{0}\right)\right| \leq \varepsilon
$$

It follows that
$\left|\varphi\left(t_{1}\right)-u\left(t_{0}\right)\right| \leq\left|\varphi\left(t_{1}\right)-u\left(t_{2}\right)\right|+\left|u\left(t_{2}\right)-u\left(t_{2}+\tau\right)\right|+\left|u\left(t_{2}+\tau\right)-u\left(t_{0}\right)\right|<\varepsilon+\varepsilon+\varepsilon=3 \varepsilon$. Then $\psi(t)=\varphi\left(t-t_{0}+t_{1}\right)$ is also a solution of (1) and

$$
\left|\psi\left(t_{0}\right)-u\left(t_{0}\right)\right|<3 \varepsilon
$$

Since the solution $\psi\left(t+t^{\prime}\right)$ of (1) takes the same value at $t=0$ as the solution $z\left(t, \xi_{1}^{\prime}\right)+u(t)$, we have

$$
\psi\left(t+t^{\prime}\right)=z\left(t, \xi_{1}^{\prime}\right)+u(t)
$$

for all $t \geq 0$. Set $h=t_{0}-t_{1}-t^{\prime}$ and we obtain for $t \geq 0$,

$$
|\varphi(t-h)-u(t)|=\left|z\left(t, \xi_{1}^{\prime}\right)\right| \leq \delta \exp (-\alpha t / 2)
$$

This completes the proof.

References

[^1]
[^0]: Received by the editors February 17, 1975 and, in revised form, April 2, 1975.

 * This work was supported by the National Research Council of Canada under grant A5593.

 AMS(MOS) subject classifications (1970), Primary 34C25. Key words and phrases, almost periodic solutions, autonomous equation, stability.

[^1]: 1. W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath and Company, Boston, 1965.
 2. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955.
 3. L. Amerio and G. Prouse, Almost-periodic functions and functional equations, Van Nostrand Reinhold Co., New York, 1971.

 Dept. of Mathematics, University of Calgary, Calgary, Alberta, CANADA

