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STABILITY OF ALMOST PERIODIC SOLUTIONS OF 
AN AUTONOMOUS EQUATION 

BY 

K. W. CHANG* 

The purpose of this paper is to extend to almost periodic (a.p.) solutions a 
stability result on the periodic solutions of the autonomous equation 

x' = F(x), 

(cf. Coppel [1], p. 82 or Coddington and Levinson [2], p. 323.) 

THEOREM. Let u{t) be a non-constant a.p. solution of 

(1) x' = F(x) 

and let F{x) be continuously differentiable at all points of the closure of the path 

x = u(t). 

Suppose that there exist two supplementary projections Pl9 P2(^2 & l-dimen-
sional) such that the variational equation 

(2) / = FMt)]y 

has a fundamental matrix Y(t), 7(0)=/ , satisfying 

|y (0Pir - 1 (s ) | <, L exp(-a(f-s)) for t ^ s, 

( 3 ) lYWtY-Xs)] ^ L for t£s, 

where L, OL are positive constants. 

Then there exist positive constants 8,6 such that if a solution <p(t) of (I) satisfies 

\<p(ti)—(tè\<s for some h and h> then 

\<p(t-h)-u(t)\ < à exp(-af/2) for t > 0, 

where h is some real constant, depending on <p. 

Proof. Setting x=z+u(t) in (1) we obtain 

(4) z' = F[z+u(f)]-F[u(t)] = F9[u(t)]z+f(t, *) 
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where f(t9 0)=0 and for each y>0, there exists a <5>0 such that 

(5) \f(t, zj-f(t9 z2)| < y \Zl-z2\ 

uniformly in /, if \zx\, \z2\<.ô. 
From u'(t)=F[u(t)] it follows by differentiation that u'(t) is a solution of (2). 

We can write 
u\t) = Y(*)| for some | ^ 0. 

Choose y in (5) so that 0=4Lyor"1<l. Let Tbe the transformation of the space 
Z of continuous functions z(t) with ||z(f)||=sup,>0 exp(oa/2)|z(*)|<<5 defined by 

Tz(t) = r(0fi+ fyWPi^W/fc z(5)) * - f" y(0P2^-1(5)/(5, z(s)) ds, 
Jo Jt 

where f2 eP±X and I f iKI r^ l - f l )^ Then Tz(0 is a solution of 

2' = FMt)]z+f[t, z(t)]. 
Tz(t) is continuous and 

|Tz(0l < L exp(-a0 \^\+Ly jexp(-a(f-s)) ||z|| exp(-as/2) ds 

/•oo 

+Ly ||z|| exp(-as/2) ds. 

Therefore 
|Tz(*)| < Lexp(-af/2) ||1|+4Lya-1 exp(-af/2) ||z||, 

or 

(6) \\Tz(t)\\ <Ç L I&I + 0 ||z|| < (1-0) Ô+6Ô = 5. 

Similarly for any two functions zx(t), z2(t) in Z we find 

BiixW-^OII^eiki-^ll 
It follows from the contraction mapping principle that the equation z=Tz 

has a unique solution z=z(t9 |x) and hence the equation (1) has a unique solution 

x(t9 li) = z(t, Sù+u(t). 
For /=0 we have 

x(0, fO-KO) = z(0, £) = &- rP2Y-\s)f(s, z(s)) ds = &+*(£,), 

since |/*(f, z)|=0(|z|) uniformly in t for |z|->0 and, by (6), 

Let x(f, 77) denote the solution of (1) with x(0, 77)=rç. 
Then 

x'[0, ii(0)] = ii'(0) = f. 
For rj=u(0) the equation 

(7) * M ) - z ( 0 , £)-«(<>) = 0 

https://doi.org/10.4153/CMB-1975-112-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1975-112-9


1975] ALMOST PERIODIC SOLUTIONS 641 

has the solution 7=0, f x=0. It follows by one form of the implicit function theorem 
that if Irç—w(0)|<cr for some er>0, then (7) admits a solution t=t', £i=£i where 

(8) \t'\<l and m<L-\l-6)ô 

By the theorem on continuous dependence of solutions on initial values, there 
exists a constant e > 0 such that if a solution ip(t) of (1) satisfies 

\y>(t0)-u(tQ)\ < 3e 

for some t0(0<t0<l), then ip{t) is defined for all \t\<l and 

|y(0)-u(0)| < a. 

Hence for some t\ f ' satisfying (8) we can write \p(t') in the form 

W(t') = z(0, fi)+K(0). 

Now let cp(t) be any solution of (1) such that 

l<K'i)-wfe)l<£, 
for some tl9 t2. 

Since u(t) is a.p., it is vniformly continuous, and so 

\u(s)-u(Sl)\<e for |s—^| < fi = flc). 

Let t0 e [0, /]. For any f2, we can define a translation number r such that \t2+ 
r-t0\<p. Then 

Kh+T)-u(t0)\ < e. 
It follows that 

\<p(h)-u(t0)\ < | ^ i ) - w ( r 2 ) | + |Wfe)~w(f2+T)| + |Mfe+r)~w(g| < e+e+s = 3c. 

Then ip(t)=(p(t—t0+t1) is also a solution of (1) and 

\ip(t0)-u(t0)\ < 3s 

Since the solution ip(t+t') of (1) takes the same value at 7=0 as the solution 

z(t, !i)+M(0> we have 

tff+t') = z(t, ID+w(0 
for all t>0. Set h=t0—t1—t' and we obtain for f > 0 , 

\<p(t-h)-u(t)\ = |z(f, 101 < <5exp(-a*/2). 

This completes the proof. 
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