ACTIONS OF LIE SUPERALGEBRAS ON SEMIPRIME ALGEBRAS WITH CENTRAL INVARIANTS

PIOTR GRZESZCZUK

Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland e-mail: piotrgr@pb.edu.pl

and MAŁGORZATA HRYNIEWICKA

Institute of Mathematics, University of Białystok, Akademicka 2, 15-267 Białystok, Poland e-mail: margitt@math.uwb.edu.pl

Abstract. Let *R* be a semiprime algebra over a field \mathbb{K} of characteristic zero acted finitely on by a finite-dimensional Lie superalgebra $L = L_0 \oplus L_1$. It is shown that if *L* is nilpotent, $[L_0, L_1] = 0$ and the subalgebra of invariants R^L is central, then the action of L_0 on *R* is trivial and *R* satisfies the standard polynomial identity of degree $2 \cdot [\sqrt{2^{\dim_{\mathbb{K}} L_1}}]$. Examples of actions of nilpotent Lie superalgebras, with central invariants and with $[L_0, L_1] \neq 0$, are constructed.

1. Preliminaries. If R is an algebra over a field K of characteristic $\neq 2$ and σ is a K-linear automorphism of R such that $\sigma^2 = 1$, let $D_0 =$ $\{\delta \in \operatorname{End}_{\mathbb{K}}(R) \mid \delta(rs) = \delta(r)s + r\delta(s) \text{ and } \delta\sigma(r) = \sigma\delta(r) \text{ for all } r, s \in R\}$ and $D_1 = \{\delta \in \mathcal{S} \mid s \in R\}$ $\operatorname{End}_{\mathbb{K}}(R) \mid \delta(rs) = \delta(r)s + \sigma(r)\delta(s)$ and $\delta\sigma(r) = -\sigma\delta(r)$ for all $r, s \in R$. Then $D_0 \oplus D_1$ is a Lie superalgebra and the elements of D_0 and D_1 are respectively, derivations and skew derivations of R. The superbracket on $D_0 \oplus D_1$ is defined as $[\delta_1, \delta_2] = \delta_1 \delta_2 - \delta_2 \delta_2$ $(-1)^{ij}\delta_2\delta_1$, where $\delta_1 \in D_i$, $\delta_2 \in D_i$ and $i, j \in \{0, 1\}$. If $L = L_0 \oplus L_1$ is a Lie superalgebra, we say that L acts on R if there is a homomorphism of Lie superalgebras $\psi: L \rightarrow \psi$ $D_0 \oplus D_1$, where $\psi(L_i) \subseteq D_i$, for i = 0, 1. Throughout the paper we will simply assume that $L \subseteq D_0 \oplus D_1$ identifying the elements of L_0 and L_1 with their images under ψ . It is well known that the homomorphism ψ induces an associative homomorphism from the universal enveloping algebra U(L) to End_K(R) and its image is finite dimensional if and only if the derivations and skew derivations from L_0 and L_1 are algebraic. In this case we will say that L acts **finitely** on R. Letting G be the group $\{1, \sigma\}$, we can form the skew group ring H = U(L) * G and H is now a Hopf algebra acting on R. When L acts on R, we define the subalgebra of invariants R^L to be the set $\{r \in R \mid \delta(r) = 0, \text{ for all } \delta \in L\}$. Depending upon the context, the symbol [,] may represent either the superbracket on L, or the commutator map [r, s] = rs - sr, where r, s belong to an associative algebra. Inductively, we let $L^1 = L$ and $L^{n+1} = [L^n, L]$ and we say that L is nilpotent if there exists a positive integer N such that $L^N = 0$. If R (resp. L) is an associative algebra (resp. Lie superalgebra) we will let $\mathcal{Z}(R)$ (resp. $\mathcal{Z}(L)$) denote its centre. For an element $a \in R$, and automorphism σ of R, ad_a (resp. ∂_a) stands for the inner derivation (inner σ -derivation) adjoint to a, i.e. $\operatorname{ad}_a(x) = ax - xa (\partial_a(x) = ax - \sigma(x)a)$.

2. Main result. The main aim of this paper is to prove the following theorem.

THEOREM 1. Let a finite-dimensional nilpotent Lie superalgebra $L = L_0 \oplus L_1$ acts finitely on a semiprime \mathbb{K} -algebra R, where \mathbb{K} is a field of characteristic zero. If R^L is central and $[L_1, L_0] = 0$, then R satisfies the standard polynomial identity of degree $2 \cdot [\sqrt{2^{\dim_{\mathbb{K}} L_1}}]$.

It generalizes a result from [1] concerning the actions of nilpotent Lie algebras of characteristic zero on semiprime algebras. On the other hand, in [4] it is proved that if a pointed Hopf algebra H acts finitely of dimension N on a semiprime algebra R and the action is such that $L^H \neq 0$ for any non-zero H-stable left ideal L of R and $R^H \subseteq \mathcal{Z}(R)$, then R satisfies PI of degree $2[\sqrt{N}]$. In Theorem 1 we prove for nilpotent Lie superalgebras with $[L_0, L_1] = 0$, that the dimension of the action of U(L) * G depends only on the dimension of L_1 . The key role will be played by the following easy observation: In characteristic zero the invariants of nilpotent Lie algebras acting on central simple algebras are never proper simple central subalgebras.

LEMMA 2. Let R be a finite-dimensional central simple \mathbb{F} -algebra acted on by a nilpotent Lie \mathbb{F} -algebra L, where \mathbb{F} is a field of characteristic zero. If R^L is a central simple \mathbb{F} -algebra, then $R = R^L$. In this case the action of L on R must be trivial.

Proof. Since *L* acts by \mathbb{F} -linear transformations, any derivation from *L* is inner. Suppose that the action of *L* on *R* is not trivial. Then we can take a non-zero derivation $\delta = \operatorname{ad}_a \in \mathcal{Z}(L)$, where $a \in R$. For any $\operatorname{ad}_b \in L$ we have $\operatorname{ad}_{[a,b]} = [\operatorname{ad}_a, \operatorname{ad}_b] = 0$, so $[a,b] \in \mathcal{Z}(R) = \mathbb{F}$. If $[a,b] = \lambda \neq 0$, then $[a,\lambda^{-1}b] = 1$. Note that the elements *a* and $\lambda^{-1}b$ generate in *R* a subalgebra isomorphic to the Weyl algebra $A_1(\mathbb{F})$, but it is impossible since *R* is finite dimensional. Consequently, [a,b] = 0 for any $\operatorname{ad}_b \in L$ and hence $a \in R^L$. In particular, ad_a acts trivially on $C_R(R^L)$, the centralizer of R^L in *R*. On the other hand the subalgebra R^L is simple and $\mathcal{Z}(R^L) = \mathbb{F}$, so by Theorem 2 (p. 118) in [**5**] $R \simeq R^L \otimes_{\mathbb{F}} C_R(R^L) \simeq R^L \cdot C_R(R^L)$. Consequently, $R = R^L \cdot C_R(R^L)$. It implies that ad_a acts trivially on *R*, a contradiction. Therefore the action of *L* on *R* is trivial.

Suppose that a finite-dimensional nilpotent Lie superalgebra $L = L_0 \oplus L_1$ acts finitely of dimension N on an algebra R. Then by R_{L_0} we denote the largest subspace of R on which any derivation from L_0 acts nilpotently, that is

$$R_{L_0} = \{ r \in R \mid \delta^N(r) = 0, \ \forall \delta \in L_0 \}.$$

It is clear that R_{L_0} is a subalgebra of R and R_{L_0} is stable under the automorphism σ . Furthermore, it is well known that (after eventual extension of the field of scalars) the algebra R is graded (with finite support) by the dual of the Lie algebra L_0 with R_{L_0} as the identity component of the grading. Therefore, if the algebra R is semiprime (semisimple), then R_{L_0} is also semiprime (resp. semisimple). In [3] (Lemma 12) it is proved that

LEMMA 3. The subalgebra R_{L_0} is L-stable. In particular, L acts on R_{L_0} by nilpotent transformations.

In the next Proposition we consider the case of action of a nilpotent Lie superalgebra on a finite-dimensional G-simple algebra.

PROPOSITION 4. Let a nilpotent Lie superalgebra $L = L_0 \oplus L_1$ acts on a G-simple finite-dimensional K-algebra R, where K is a field of characteristic zero. If R^L is central and $[L_0, L_1] = 0$, then $L_0 = 0$.

Proof. First, we will consider the case when L acts on R by nilpotent transformations, that is, $R = R_{L_0}$. Suppose that $L_0 \neq 0$ and take a non-zero derivation δ from the centre of L_0 . Since $[L_0, L_1] = 0$, it is clear that δ is in the centre of L. Let k > 1 be such that $\delta^k(R) = 0$ and $V = \delta^{k-1}(R) \neq 0$. Then V is invariant under the action of L, and since L acts via nilpotent transformations it is clear that $V^L = V \cap R^L \subseteq \mathcal{Z}(R)$. On the other hand if $r, s \in R$, then the Leibniz rule gives

$$0 = \delta^{k}(\delta^{k-2}(r)s) = k\delta^{k-1}(r)\delta^{k-1}(s).$$

It means that $(V^L)^2 = 0$, so the centre of *R* contains nilpotent elements. This is impossible since *R* is semisimple. The obtained contradiction shows that $L_0 = 0$.

Consider the general case. The above gives us immediately that $R^{L_0} = R_{L_0}$ and consequently the algebra R^{L_0} is semisimple. Thus, any its ideal I is idempotent, i.e. $I^2 = I$. Note that if I is G-stable, then the Leibniz rule, applied to any $\partial \in L_1$, gives $\partial(I) = \partial(I^2) \subseteq \partial(I)I + \sigma(I)\partial(I) \subseteq I$. Hence any G-stable ideal I of R^{L_0} is also L-stable and $0 \neq I^L \subseteq \mathcal{Z}(R)$. Thus I contains invertible elements. Consequently, R^{L_0} is also G-simple.

We will split considerations into two cases. First, suppose that the automorphism σ is inner, and let $q \in R$ be such that $\sigma(x) = q^{-1}xq$, for $x \in R$. In this case any ideal of R is σ -stable, so R must be a simple algebra. Moreover it is easy to see that any skew derivation ∂ from L_1 must be inner. Indeed, since $\partial \sigma = -\sigma \partial$, we obtain that

$$q^{-1}\partial(x)q = \sigma(\partial(x)) = -\partial(\sigma(x)) = -\partial(q^{-1}xq)$$
$$= -\partial(q^{-1})xq - q^{-1}\partial(x)q - q^{-1}\sigma(x)\partial(q).$$

Since $q\partial(q^{-1}) = -\partial(q)q^{-1}$,

$$\partial(x) = -\frac{1}{2}q\partial(q^{-1})x - \frac{1}{2}\sigma(x)\partial(q)q^{-1} = \frac{1}{2}\partial(q)q^{-1}x - \sigma(x)\frac{1}{2}\partial(q)q^{-1}.$$

This immediately gives, that $\partial(x) = bx - \sigma(x)b$, where $b = \frac{1}{2}\partial(q)q^{-1}$. Consequently, any mapping from $L_0 \cup L_1$ is $\mathcal{Z}(R)$ -linear. We will show that the algebra R^{L_0} is simple and the centres of R^{L_0} and R coincide. Since the automorphism σ has order 2, $q^2 \in \mathcal{Z}(R)$. Thus for any $\delta = ad_a \in L_0$,

$$\delta(q) = \delta(\sigma(q)) = \sigma(\delta(q)) = q^{-1}(aq - qa)q = qa - aq = -\delta(q),$$

so $\delta(q) = 0$. This implies that $q \in R^{L_0}$, the restriction of σ to R^{L_0} is inner and hence the algebra R^{L_0} is simple. Since the action of L on R is inner, $\mathcal{Z}(R) = \mathcal{Z}(R) \cap R^{L_0} \subseteq \mathcal{Z}(R^{L_0})$. We will show that $\mathcal{Z}(R^{L_0}) \subseteq \mathcal{Z}(R)$. To this end, since $R^L \subseteq \mathcal{Z}(R)$, it suffices to show that $\mathcal{Z}(R^{L_0}) \subseteq R^{L_1}$. Take any $z \in \mathcal{Z}(R^{L_0})$, and $\partial = \partial_b \in L_1$, where $b = \frac{1}{2}\partial(q)q^{-1}$. Notice that $b \in R^{L_0}$. Indeed, by assumption $[\delta, \partial] = 0$ for any $\delta \in L_0$ and by the above $q \in R^{L_0}$, so

$$\delta(b) = \frac{1}{2}\delta(\partial(q)q^{-1}) = \frac{1}{2}\delta(\partial(q))q^{-1} + \frac{1}{2}\partial(q)\delta(q^{-1}) = \frac{1}{2}\partial(\delta(q))q^{-1} = 0.$$

It means that $b \in R^{L_0}$ and

$$\partial(z) = bz - \sigma(z)b = bz - zb = 0,$$

so $z \in \mathbb{R}^{L_1}$. It proves that $\mathcal{Z}(\mathbb{R}^{L_0}) = \mathcal{Z}(\mathbb{R})$. By Lemma 2 the action of L_0 on \mathbb{R} must be trivial.

Finally, suppose that the automorphism σ is outer. Since *R* is *G*-simple, the algebra *R* must be either simple or $R = I \oplus \sigma(I)$ for some minimal ideal *I*. In the first case, by the Skolem–Noether theorem, σ is not an identity map on $\mathcal{Z}(R)$. In the second case $\mathcal{Z}(R) = \mathcal{Z}(I) \oplus \sigma(\mathcal{Z}(I))$. Thus in both cases σ acts non identically on $\mathcal{Z}(R)$. Now since the centre of R^{L_0} contains $\mathcal{Z}(R)$, the restriction of σ to R^{L_0} is also outer. Consequently, one can choose a non-zero element $c \in \mathcal{Z}(R)$ such that $\sigma(c) \neq c$. Then $(c - \sigma(c))^2$ is non-zero and belongs to the field $\mathcal{Z}(R)^{\sigma}$. Thus $c - \sigma(c)$ is invertible. Now let $\partial \in L_1$ and $x \in R$. Notice that

$$\partial(x)c + \sigma(x)\partial(c) = \partial(xc) = \partial(cx) = \partial(c)x + \sigma(c)\partial(x).$$

In particular, we have

96

$$\partial(x) = (c - \sigma(c))^{-1} \partial(c) x - \sigma(x)(c - \sigma(c))^{-1} \partial(c) = \partial_b(x),$$

where $b = (c - \sigma(c))^{-1} \partial(c)$. Thus L_1 acts on R via inner σ -derivations and in, particular, every mapping from L is $\mathcal{Z}(R)^{\sigma}$ -linear. We will prove that $\mathcal{Z}(R^{L_0})^{\sigma} = \mathcal{Z}(R)^{\sigma}$. Similarly as above, it suffices to show that $\mathcal{Z}(R^{L_0})^{\sigma} \subseteq R^{L_1}$. Take any $\partial = \partial_b \in L_1$, where $b = (c - \sigma(c))^{-1} \partial(c)$ for some $c \in \mathcal{Z}(R)$. Since L_0 acts trivially on the centre of R, one obtains that $b \in R^{L_0}$. Now it is clear that ∂_b acts trivially on $\mathcal{Z}(R^{L_0})^{\sigma}$, and consequently $\mathcal{Z}(R^{L_0})^{\sigma} \subset R^{L_1}$.

Consider skew group rings R * G and $R^{L_0} * G$. Since both of R and R^{L_0} are Gsimple, and σ is outer on R and R^{L_0} , the rings R * G and $R^{L_0} * G$ are simple. Moreover it is clear that $\mathcal{Z}(R * G) = \mathcal{Z}(R)^{\sigma}$ and $\mathcal{Z}(R^{L_0} * G) = \mathcal{Z}(R^{L_0})^{\sigma}$. Thus R * G and $R^{L_0} * G$ are central simple $\mathcal{Z}(R)^{\sigma}$ -algebras. Notice that the action of L_0 on R can be extended to an action on R * G, via the formula $\delta(a + b\sigma) = \delta(a) + \delta(b)\sigma$. In that case $(R * G)^{L_0} = R^{L_0} * G$ Again applying Lemma 2 we obtain that L_0 must act trivially on R and the proof is complete.

COROLLARY 5. Let a nilpotent Lie superalgebra $L = L_0 \oplus L_1$ acts on a G-simple finite-dimensional \mathbb{K} -algebra R with centre \mathcal{Z} , where char $\mathbb{K} = 0$. If $R^L \subseteq \mathcal{Z}$ and $[L_0, L_1] = 0$, then $\dim_{\mathcal{Z}^G} R \leq [\mathcal{Z} : \mathcal{Z}^G] \cdot 2^{\dim_{\mathbb{K}} L_1}$. Moreover, in this case R satisfies the standard polynomial identity of degree $2 \cdot [\sqrt{2^{\dim_{\mathbb{K}} L_1}}]$.

Proof. By Proposition 4, $L_0 = 0$. Thus L is spanned by a family $\{\partial_1, \ldots, \partial_n\}$ of inner skew derivations such that $\partial_j^2 = 0$ and $\partial_i \partial_j + \partial_j \partial_i = 0$. It is clear that every ∂_j is \mathcal{Z}^G -linear. Let us consider a chain

$$V_0 = R \supseteq V_1 \supseteq \cdots \supseteq V_n$$

of subspaces of R, where $V_j = \ker \partial_1 \cap \cdots \cap \ker \partial_j$ for $j = 1, \ldots, n$. Then $V_n \subseteq R^L \subseteq \mathbb{Z}$ and $\partial_j \max V_{j-1}$ into V_j . Moreover, it is clear that $\dim_{\mathbb{Z}^G} V_{j-1} = \dim_{\mathbb{Z}^G} (\ker \partial_j \cap V_{j-1}) + \dim_{\mathbb{Z}^G} \partial_j (V_{j-1}) \leq 2 \cdot \dim_{\mathbb{Z}^G} V_j$. Thus

$$\dim_{\mathcal{Z}^G} R \leq 2^n \cdot \dim_{\mathcal{Z}^G} V_n \leq [\mathcal{Z}:\mathcal{Z}^G] \cdot 2^{\dim_{\mathbb{K}} L_1}.$$

Since *R* is *G*-simple, the algebra *R* must be either simple or $R = I \oplus \sigma(I)$ for a minimal ideal *I* of *R*. Then *I* is certainly a simple algebra. The above inequality implies that

 $\dim_{\mathbb{Z}} R \leq 2^{\dim_{\mathbb{K}} L_1}$ in the first case, and $\dim_{\mathbb{Z}(I)} I \leq 2^{\dim_{\mathbb{K}} L_1}$ in the second case. The result follows now by the Amitsur–Levitzki theorem.

If R is semiprime we let Q = Q(R) to denote the symmetric Martindale quotient ring. Its centre, known as the extended centroid of R, we denote by C. The following properties of Q in the case when R is acted on by a Hopf algebra are proved in [3].

LEMMA 6. Let R be a semiprime H-module algebra such that the H-action on R extends to an H-action on Q and any non-zero H-stable ideal of R contains non-trivial invariants. Then

- (1) the ring $C^H = C \cap Q^H$ is von Neumann regular and selfinjective.
- (2) If a non-empty subset $S \subseteq C^H \setminus \{0\}$ is closed under a multiplication, then the localization Q_S of Q at S is semiprime and $\mathcal{Z}(Q_S) = C_S$.
- (3) If H acts finitely on Q and $S = C^H \setminus M$, where M is a maximal ideal of C^H , then the H-action on Q extends to an H-action on Q_S and $(Q^H)_S = (Q_S)^H$, $(C^H)_S = (C_S)^H = C_S \cap (Q_S)^H$ is a field contained in the centre of Q_S .

We can now prove the main result of the paper.

Proof of Theorem 1. Let H = U(L) * G. By ([2], Corollary 6) every *H*-invariant non-nilpotent subalgebra of *R* contains non-zero invariants. Thus we can apply the results from [4]. Let *M* be a maximal ideal of $C^H = C \cap Q^H$ and put $S = C^H \setminus M$. By the above lemma and [4] it follows that $(C_S)^H$ is a field and Q_S is a finite dimensional, *G*-simple $(C_S)^H$ -algebra. Using Corollary 5 we obtain that Q_M satisfies the standard polynomial identity of degree $2 \cdot [\sqrt{2^{\dim_{\mathbb{K}} L_1}}]$. Since it holds for any maximal ideal *M* of C^H , the ring *Q*, and consequently *R*, satisfies the standard polynomial identity of degree $2 \cdot [\sqrt{2^{\dim_{\mathbb{K}} L_1}}]$.

3. Examples. In this section, we construct examples of actions of nilpotent Lie superalgebras with central invariants and with $[L_0, L_1] \neq 0$. We start with general properties of inner derivations and skew derivations of an algebra R with an automorphism σ of order 2. Then $R = R_0 \oplus R_1$ is \mathbb{Z}_2 -graded, where $R_0 = \{x \in R \mid \sigma(x) = x\}$ and $R_1 = \{x \in R \mid \sigma(x) = -x\}$. For any inner derivation δ of R, the condition $\delta\sigma = \sigma\delta$ is equivalent to that δ is induced by some $a \in R_0$. To see that, we let δ be induced by $a = a_0 + a_1 \in R$. Then

$$\delta(x) = ax - xa = (a_0x - xa_0) + (a_1x - xa_1).$$
(1)

This immediately implies that

$$\delta(\sigma(x)) = (a_0\sigma(x) - \sigma(x)a_0) + (a_1\sigma(x) - \sigma(x)a_1)$$

and

$$\sigma(\delta(x)) = (a_0\sigma(x) - \sigma(x)a_0) - (a_1\sigma(x) - \sigma(x)a_1)$$

Since δ and σ commute, the previous equations imply that $a_1\sigma(x) - \sigma(x)a_1 = 0$. Replacing x by $\sigma(x)$ yields $a_1x - xa_1 = 0$. Equation (1) now becomes

$$\delta(x) = a_0 x - x a_0 = a d_{a_0}(x)$$

In the same manner we can show that for any inner skew derivation ∂ of R, the condition $\partial \sigma = -\sigma \partial$ is equivalent to that $\partial = \partial_b$ for some $b \in R_1$.

LEMMA 7. Let R be an algebra over a field K of characteristic $\neq 2$ and σ be a K-linear automorphism of R of order 2. Let $u \in R$ be invertible and $\sigma(u) = -u$. Let \widetilde{R} be the K-algebra $M_2(R)$, the 2 × 2 matrices over R. Then the map $\varphi \colon R \to \widetilde{R}$ given by

$$\varphi(x) = \begin{pmatrix} x & 0 \\ 0 & u^{-1}\sigma(x)u \end{pmatrix}$$

is an injective homomorphism of algebras, satisfying $\tilde{\sigma}\varphi = \varphi\sigma$ (where $\tilde{\sigma}$ is a componentwise extension of σ to \tilde{R}).

If a Lie superalgebra $L = L_0 \oplus L_1$ acts on R by inner derivations and inner σ -derivations with $R^L = \mathbb{K}$, then L acts on \widetilde{R} by inner derivations and inner $\widetilde{\sigma}$ -derivations with

$$\widetilde{R}^{L} = \left\{ \begin{pmatrix} \alpha & \beta u \\ \gamma u^{-1} & \lambda \end{pmatrix} \in \widetilde{R} \mid \alpha, \beta, \gamma, \lambda \in \mathbb{K} \right\}.$$

Proof. Notice that

$$(\widetilde{\sigma}\varphi)(x) = \widetilde{\sigma}\left(\begin{pmatrix} x & 0\\ 0 & u^{-1}\sigma(x)u \end{pmatrix}\right) = \begin{pmatrix} \sigma(x) & 0\\ 0 & u^{-1}xu \end{pmatrix} = (\varphi\sigma)(x)$$

In order to prove the second part, observe that for all inner derivation $ad_a \in L_0$ and the inner skew derivation $\partial_b \in L_1$ of R and for every matrix $\tilde{x} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \in \tilde{R}$ the following equations hold

$$\mathrm{ad}_{\varphi(a)}(\widetilde{x}) = \begin{pmatrix} a & 0\\ 0 & u^{-1}au \end{pmatrix} \cdot \widetilde{x} - \widetilde{x} \cdot \begin{pmatrix} a & 0\\ 0 & u^{-1}au \end{pmatrix} = \begin{pmatrix} \mathrm{ad}_a(x_{11}) & \mathrm{ad}_a(x_{12}u^{-1})u\\ u^{-1}\,\mathrm{ad}_a(ux_{21}) & u^{-1}\,\mathrm{ad}_a(ux_{22}u^{-1})u \end{pmatrix}$$

and

$$\begin{aligned} \partial_{\varphi(b)}(\widetilde{x}) &= \begin{pmatrix} b & 0 \\ 0 & -u^{-1}bu \end{pmatrix} \cdot \widetilde{x} - \widetilde{\sigma}(\widetilde{x}) \cdot \begin{pmatrix} b & 0 \\ 0 & -u^{-1}bu \end{pmatrix} \\ &= \begin{pmatrix} \partial_b(x_{11}) & \partial_b(x_{12}u^{-1})u \\ \sigma(u^{-1})\partial_b(ux_{21}) & \sigma(u^{-1})\partial_b(ux_{22}u^{-1})u \end{pmatrix}. \end{aligned}$$

From the above equations it follows that $\tilde{x} \in \tilde{R}^L$ if and only if the elements $x_{11}, x_{12}u^{-1}$, ux_{21} and $ux_{22}u^{-1}$ belong to R^L . Under the assumption that $R^L = \mathbb{K}$, we now easily obtain the assertion of the lemma.

We start our construction from the algebra $R = M_2(\mathbb{K})$ of 2×2 matrices over a field \mathbb{K} of characteristic 0. Let σ be the inner automorphism of order 2 of R induced

by the diagonal matrix diag(1, -1) and let ∂_{b_1} and ∂_{b_2} be the inner σ -derivations of R induced by

$$b_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in R_1 \text{ and } b_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in R_1,$$

respectively. It can be easily checked that

$$b_1^2 = -b_2^2 = 1$$
 and $b_1b_2 + b_2b_1 = 0$.

As a result, the skew derivations ∂_{b_1} and ∂_{b_2} span an Abelian Lie superalgebra $L = L_0 \oplus L_1$ where $L_0 = 0$ and $L_1 = \text{Span}_{\mathbb{K}} \{\partial_{b_1}, \partial_{b_2}\}$. From the explicit formulas for ∂_{b_1} and ∂_{b_2}

$$\partial_{b_1} \left(\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \right) = \begin{pmatrix} x_{21} + x_{12} & x_{22} - x_{11} \\ x_{11} - x_{22} & x_{21} + x_{12} \end{pmatrix}$$

and

$$\partial_{b_2} \left(\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \right) = \begin{pmatrix} x_{21} - x_{12} & x_{22} - x_{11} \\ x_{22} - x_{11} & x_{21} - x_{12} \end{pmatrix}$$

it follows immediately that $R^L = \mathbb{K}$.

Using Lemma 7, applied to the invertible element $u = b_2$, we have an embedding of *R* into $\tilde{R} = M_2(R)$, according to the formula

$$\varphi(x) = \begin{pmatrix} x & 0 \\ 0 & b_2^{-1}\sigma(x)b_2 \end{pmatrix}.$$

Put

$$\widetilde{b_1} = \varphi(b_1) = \begin{pmatrix} b_1 & 0\\ 0 & b_1 \end{pmatrix} \in \widetilde{R}_1 \text{ and } \widetilde{b_2} = \varphi(b_2) = \begin{pmatrix} b_2 & 0\\ 0 & -b_2 \end{pmatrix} \in \widetilde{R}_1,$$

and consider the additional matrices

$$\widetilde{b}_3 = \begin{pmatrix} 0 & b_2 \\ -b_2 & 0 \end{pmatrix} \in \widetilde{R}_1 \text{ and } \widetilde{b}_4 = \begin{pmatrix} 0 & b_2 \\ b_2 & 0 \end{pmatrix} \in \widetilde{R}_1.$$

It is not hard to check that

$$\widetilde{b_1}^2 = -\widetilde{b_2}^2 = \widetilde{b_3}^2 = -\widetilde{b_4}^2 = 1 \text{ and } \widetilde{b_i}\widetilde{b_j} + \widetilde{b_j}\widetilde{b_i} = 0$$

for all $i \neq j$. As before, the inner skew derivations $\partial_{\tilde{b}_1}$, $\partial_{\tilde{b}_2}$, $\partial_{\tilde{b}_3}$ and $\partial_{\tilde{b}_4}$ span an Abelian Lie superalgebra $\tilde{L} = \tilde{L}_0 \oplus \tilde{L}_1$, where $\tilde{L}_0 = 0$ and $\tilde{L}_1 = \operatorname{span}_{\mathbb{K}} \{\partial_{\tilde{b}_1}, \partial_{\tilde{b}_2}, \partial_{\tilde{b}_3}, \partial_{\tilde{b}_4}\}$. Lemma 7 says that the subalgebra of invariants \tilde{R}^L under the action of L consists of all matrices of the form $\begin{pmatrix} \alpha & \beta b_2 \\ \gamma b_2 & \lambda \end{pmatrix}$ where $\alpha, \beta, \gamma, \lambda \in \mathbb{K}$. Furthermore, a simple calculation shows that

$$\partial_{\widetilde{b_3}} \left(\begin{pmatrix} \alpha & \beta b_2 \\ \gamma b_2 & \lambda \end{pmatrix} \right) = \begin{pmatrix} \beta - \gamma & (\lambda - \alpha)b_2 \\ (\lambda - \alpha)b_2 & \beta - \gamma \end{pmatrix}$$

and

$$\partial_{\widetilde{b_4}}\left(\begin{pmatrix} lpha & eta b_2 \\ \gamma b_2 & \lambda \end{pmatrix}
ight) = \begin{pmatrix} -eta - \gamma & (\lambda - lpha)b_2 \\ (lpha - \lambda)b_2 & -eta - \gamma \end{pmatrix}.$$

This immediately implies that $\widetilde{R}^{\widetilde{L}} = \mathbb{K}$.

Applying Lemma 7 for the invertible element $u = \tilde{b_4}$ we have the next embedding of \tilde{R} into the algebra $\boldsymbol{R} = M_2(\tilde{R})$, the 2 × 2 matrices over \tilde{R} according to the formula

$$\varphi(\widetilde{x}) = \begin{pmatrix} \widetilde{x} & 0 \\ 0 & \widetilde{b_4}^{-1} \widetilde{\sigma}(\widetilde{x}) \widetilde{b_4} \end{pmatrix}.$$

Put

$$B_i = \varphi(\widetilde{b}_i) = \begin{pmatrix} \widetilde{b}_i & 0\\ 0 & \widetilde{b}_i \end{pmatrix} \in \mathbf{R}_1 \text{ and } B_4 = \varphi(\widetilde{b}_4) = \begin{pmatrix} \widetilde{b}_4 & 0\\ 0 & -\widetilde{b}_4 \end{pmatrix} \in \mathbf{R}_1$$

for i = 1, 2, 3 and consider the additional matrices

- $A_1 = \begin{pmatrix} 0 & \widetilde{a_1} \\ -\widetilde{a_1} & 0 \end{pmatrix} \in \mathbf{R}_0$ and $C_1 = \begin{pmatrix} 0 & \widetilde{a_1} \\ 0 & 0 \end{pmatrix} \in \mathbf{R}_0$, where $\widetilde{a_1} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \in \widetilde{\mathbf{R}}_0$,
- $A_2 = \begin{pmatrix} 0 & \widetilde{a}_2 + 1 \\ -\widetilde{a}_2 + 1 & 0 \end{pmatrix} \in \mathbf{R}_0 \text{ and } C_2 = \begin{pmatrix} 0 & \widetilde{a}_2 + 1 \\ 0 & 0 \end{pmatrix} \in \mathbf{R}_0, \text{ where } \widetilde{a}_2 = \begin{pmatrix} 0 & b_1 b_2 \\ b_1 b_2 & 0 \end{pmatrix} \in \widetilde{\mathbf{R}}_0,$

•
$$A_3 = \begin{pmatrix} \widetilde{a}_3 - \widetilde{a}_1 & 0\\ 0 & \widetilde{a}_3 + \widetilde{a}_1 \end{pmatrix} \in \mathbf{R}_0$$
, where $\widetilde{a}_3 = \begin{pmatrix} b_1 b_2 & b_1 b_2\\ -b_1 b_2 & -b_1 b_2 \end{pmatrix} \in \widetilde{\mathbf{R}}_0$,

• $B_5 = \begin{pmatrix} 0 & \tilde{d}_5 \\ \tilde{b}_5 & 0 \end{pmatrix} \in \mathbf{R}_1, \ B_6 = \begin{pmatrix} 0 & \tilde{b}_4 \\ -\tilde{b}_4 & 0 \end{pmatrix} \in \mathbf{R}_1 \text{ and } B_7 = \begin{pmatrix} 0 & \tilde{b}_4 \\ \tilde{b}_4 & 0 \end{pmatrix} \in \mathbf{R}_1, \text{ where}$ $\widetilde{d}_5 = \begin{pmatrix} b_1 + b_2 & b_1 + b_2 \\ -b_1 - b_2 & -b_1 - b_2 \end{pmatrix}, \ \widetilde{b}_5 = \begin{pmatrix} -b_1 + b_2 & -b_1 + b_2 \\ b_1 - b_2 & b_1 - b_2 \end{pmatrix} \in \widetilde{\mathbf{R}}_1,$ • $D_5 = \begin{pmatrix} 0 & \tilde{d}_5 \\ 0 & 0 \end{pmatrix} + B_7 \in \mathbf{R}_1 \text{ and } D_6 = \begin{pmatrix} 0 & \tilde{b}_4 \\ 0 & 0 \end{pmatrix} \in \mathbf{R}_1.$

Notice that if $N_0 = \operatorname{span}_{\mathbb{K}} \{ \operatorname{ad}_{C_1}, \operatorname{ad}_{C_2}, \operatorname{ad}_{A_3} \}$ and $N_1 = \operatorname{span}_{\mathbb{K}} \{ \partial_{B_1}, \partial_{B_2}, \partial_{B_3}, \partial_{B_4}, \partial_{D_5}, \partial_{D_6} \}$, then $N = N_0 \oplus N_1$ is a nine-dimensional Lie superalgebra of nilpotency class 4 (see Table 1). Lemma 7 asserts that the subalgebra of invariants $R^{\widetilde{L}}$ under the action of \widetilde{L} consists of all matrices of the form $\begin{pmatrix} \alpha & \beta \widetilde{b_4} \\ \gamma b_4 & \lambda \end{pmatrix}$, where $\alpha, \beta, \gamma, \lambda \in \mathbb{K}$. Moreover,

$$\partial_{D_5} \left(\begin{pmatrix} \alpha & \beta \widetilde{b_4} \\ \gamma \widetilde{b_4} & \lambda \end{pmatrix} \right) = \begin{pmatrix} \gamma \widetilde{d_5} \widetilde{b_4} - \beta - \gamma & (\lambda - \alpha)(\widetilde{b_4} + \widetilde{d_5}) \\ (\alpha - \lambda) \widetilde{b_4} & \gamma \widetilde{b_4} \widetilde{d_5} - \beta - \gamma \end{pmatrix}$$
$$= \begin{pmatrix} \gamma (\widetilde{a_3} - \widetilde{a_1}) - \beta - \gamma & (\lambda - \alpha)(\widetilde{b_4} + \widetilde{d_5}) \\ (\alpha - \lambda) \widetilde{b_4} & \gamma (\widetilde{a_3} + \widetilde{a_1}) - \beta - \gamma \end{pmatrix}.$$

As a result we obtain that $\mathbf{R}^{N} = \mathbb{K}$.

100

$[\cdot, \cdot]$	ad_{C_1}	ad_{C_2}	ad_{A_3}	∂_{B_1}	∂_{B_2}	∂_{B_3}	∂_{B_4}	∂_{D_5}	∂_{D_6}
ad_{C_1}	0	0	0	0	$-2\partial_{D_6}$	$2\partial_{D_6}$	0	$\partial_{B_2+B_3}$	0
ad_{C_2}	0	0	0	$2\partial_{D_6}$	0	0	$2\partial_{D_6}$	$-\partial_{B_1-B_4}$	0
ad_{A_3}	0	0	0	$-2\partial_{B_2+B_3}$	$-2\partial_{B_1-B_4}$	$2\partial_{B_1-B_4}$	$-2\partial_{B_2+B_3}$	0	0
∂_{B_1}	0	$-2\partial_{D_6}$	$2\partial_{B_2+B_3}$	0	0	0	0	$2 \operatorname{ad}_{C_1}$	0
∂_{B_2}	$2\partial_{D_6}$	0	$2\partial_{B_1-B_4}$	0	0	0	0	-2ad_{C_2}	0
∂_{B_3}	$-2\partial_{D_6}$	0	$-2\partial_{B_1-B_4}$	0	0	0	0	$2 \operatorname{ad}_{C_2}$	0
∂_{B_4}	0	$-2\partial_{D_6}$	$2\partial_{B_2+B_3}$	0	0	0	0	$2 \operatorname{ad}_{C_1}$	0
∂_{D_5}	$-\partial_{B_2+B_3}$	$\partial_{B_1-B_4}$	0	$2 \operatorname{ad}_{C_1}$	$-2 \operatorname{ad}_{C_2}$	$2 \operatorname{ad}_{C_2}$	$2 \operatorname{ad}_{C_1}$	$2 \operatorname{ad}_{A_3}$	0
∂_{D_6}	0	0	0	0	0	0	0	0	0

Table 1. Operation table of N

Table 2.Operation table of L

$[\cdot, \cdot]$	ad_{A_1}	ad_{A_2}	ad_{A_3}	∂_{B_1}	∂_{B_2}	∂_{B_3}	∂_{B_4}	∂_{B_5}	∂_{B_6}	∂_{B_7}			
ad_{A_1}	0	$-2 \operatorname{ad}_{A_3}$	0	0	$-2\partial_{B_6}$	$2\partial_{B_6}$	0	0	$-2\partial_{B_2+B_3}$	0			
ad_{A_2}	$2 \operatorname{ad}_{A_3}$	0	0	$2\partial_{B_6}$	0	0	$2\partial_{B_6}$	0	$2\partial_{B_1-B_4}$	0			
ad_{A_3}	0	0	0	$-2\partial_{B_2+B_3}$	$-2\partial_{B_1-B_4}$	$2\partial_{B_1-B_4}$	$-2\partial_{B_2+B_3}$	0	0	0			
∂_{B_1}	0	$-2\partial_{B_6}$	$2\partial_{B_2+B_3}$	0	0	0	0	$2 \operatorname{ad}_{A_1}$	0	0			
∂_{B_2}	$2\partial_{B_6}$	0	$2\partial_{B_1-B_4}$	0	0	0	0	$-2 \operatorname{ad}_{A_2}$	0	0			
∂_{B_3}	$-2\partial_{B_6}$	0	$-2\partial_{B_1-B_4}$	0	0	0	0	$2 \operatorname{ad}_{A_2}$	0	0			
∂_{B_4}	0	$-2\partial_{B_6}$	$2\partial_{B_2+B_3}$	0	0	0	0	$2 \operatorname{ad}_{A_1}$	0	0			
∂_{B_5}	0	0	0	$2 \operatorname{ad}_{A_1}$	$-2 \operatorname{ad}_{A_2}$	$2 \operatorname{ad}_{A_2}$	$2 \operatorname{ad}_{A_1}$	0	$-2 \operatorname{ad}_{A_3}$	0			
∂_{B_6}	$2\partial_{B_2+B_3}$	$-2\partial_{B_1-B_4}$	0	0	0	0	0	$-2 \operatorname{ad}_{A_3}$	0	0			
∂_{B_7}	0	0	0	0	0	0	0	0	0	0			

Notice also that if $\boldsymbol{M}_0 = \operatorname{span}_{\mathbb{K}} \{ \operatorname{ad}_{A_1}, \operatorname{ad}_{A_2}, \operatorname{ad}_{A_3} \}$ and $\boldsymbol{M}_1 = \operatorname{span}_{\mathbb{K}} \{ \partial_{B_1}, \partial_{B_2}, \partial_{B_3}, \partial_{B_4}, \partial_{B_5+B_7}, \partial_{B_6} \}$, then $\boldsymbol{M} = \boldsymbol{M}_0 \oplus \boldsymbol{M}_1$ is a nilpotent Lie superalgebra of nilpotency class 6 (see Table 2). We have

$$\partial_{B_5+B_7} \left(\begin{pmatrix} \alpha & \beta \widetilde{b_4} \\ \gamma \widetilde{b_4} & \lambda \end{pmatrix} \right) = \begin{pmatrix} \gamma \widetilde{d_5} \widetilde{b_4} + \beta \widetilde{b_4} \widetilde{b_5} - \beta - \gamma & (\lambda - \alpha)(\widetilde{b_4} + \widetilde{d_5}) \\ (\alpha - \lambda)(\widetilde{b_4} + \widetilde{b_5}) & \beta \widetilde{b_5} \widetilde{b_4} + \gamma \widetilde{b_4} \widetilde{d_5} - \beta - \gamma \end{pmatrix}$$
$$= \begin{pmatrix} (\gamma - \beta)(\widetilde{a_3} - \widetilde{a_1}) - \beta - \gamma & (\lambda - \alpha)(\widetilde{b_4} + \widetilde{d_5}) \\ (\alpha - \lambda)(\widetilde{b_4} + \widetilde{b_5}) & (\gamma - \beta)(\widetilde{a_3} + \widetilde{a_1}) - \beta - \gamma \end{pmatrix}.$$

This implies immediately that $\mathbf{R}^{\mathbf{M}} = \mathbb{K}$.

Finally, observe also that \boldsymbol{M} is an subalgebra of a nilpotent Lie superalgebra $\boldsymbol{L} = \boldsymbol{L}_0 \oplus \boldsymbol{L}_1$ of nilpotency class 6, where $\boldsymbol{L}_0 = [\boldsymbol{L}_1, \boldsymbol{L}_1] = \operatorname{span}_{\mathbb{K}} \{ \operatorname{ad}_{A_1}, \operatorname{ad}_{A_2}, \operatorname{ad}_{A_3} \}$ and $\boldsymbol{L}_1 = \operatorname{span}_{\mathbb{K}} \{ \partial_{B_1}, \partial_{B_2}, \partial_{B_3}, \partial_{B_4}, \partial_{B_5}, \partial_{B_6}, \partial_{B_7} \}$ (see Table 2). Obviously, $\boldsymbol{R}^L = \mathbb{K}$. Starting with the algebra \boldsymbol{R} , the invertible element $u = B_7$ and the Lie superalgebra \boldsymbol{L} , and again applying the above procedure, we can produce successive examples.

ACKNOWLEDGEMENTS. The first author's research was supported in part by KBN Grant No. 1 P03A 032 27 and by the grant S/WI/3/2009 of Bialystok University of Technology.

REFERENCES

1. J. Bergen and P. Grzeszczuk, Invariants of Lie superalgebras acting on associative rings, *Israel J. Math.* **94** (1996), 403–428.

102 PIOTR GRZESZCZUK AND MAŁGORZATA HRYNIEWICKA

2. J. Bergen and P. Grzeszczuk, Invariants of Lie color algebras acting on graded algebras, *Colloq. Math.* **83** (2000), 107–124.

3. P. Grzeszczuk and M. Hryniewicka, Polynomial identities of algebras with actions of pointed Hopf algebras, J. Algebra **278** (2004), 684–703.

4. P. Grzeszczuk and M. Hryniewicka, Actions of pointed Hopf algebras with reduced invariants, *Proc. Amer. Math. Soc.* 135 (2007), 2381–2389.

5. N. Jacobson, *Structure of rings*, vol. 37 (American Mathematical Society Colloquium Publications, Providence, RI, 1964).