ACTIONS OF LIE SUPERALGEBRAS ON SEMIPRIME ALGEBRAS WITH CENTRAL INVARIANTS

PIOTR GRZESZCZUK
Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland e-mail: piotrgr@pb.edu.pl

and MAŁGORZATA HRYNIEWICKA
Institute of Mathematics, University of Bialystok, Akademicka 2, 15-267 Bialystok, Poland e-mail: margitt@math.uwb.edu.pl

Abstract

Let R be a semiprime algebra over a field \mathbb{K} of characteristic zero acted finitely on by a finite-dimensional Lie superalgebra $L=L_{0} \oplus L_{1}$. It is shown that if L is nilpotent, $\left[L_{0}, L_{1}\right]=0$ and the subalgebra of invariants R^{L} is central, then the action of L_{0} on R is trivial and R satisfies the standard polynomial identity of degree $2 \cdot\left[\sqrt{2^{\operatorname{dim}_{K} L_{1}}}\right]$. Examples of actions of nilpotent Lie superalgebras, with central invariants and with $\left[L_{0}, L_{1}\right] \neq 0$, are constructed.

1. Preliminaries. If R is an algebra over a field \mathbb{K} of characteristic $\neq 2$ and σ is a \mathbb{K}-linear automorphism of R such that $\sigma^{2}=1$, let $D_{0}=$ $\left\{\delta \in \operatorname{End}_{\mathbb{K}}(R) \mid \delta(r s)=\delta(r) s+r \delta(s)\right.$ and $\delta \sigma(r)=\sigma \delta(r)$ for all $\left.r, s \in R\right\}$ and $D_{1}=\{\delta \in$ $\operatorname{End}_{\mathbb{K}}(R) \mid \delta(r s)=\delta(r) s+\sigma(r) \delta(s)$ and $\delta \sigma(r)=-\sigma \delta(r)$ for all $\left.r, s \in R\right\}$. Then $D_{0} \oplus D_{1}$ is a Lie superalgebra and the elements of D_{0} and D_{1} are respectively, derivations and skew derivations of R. The superbracket on $D_{0} \oplus D_{1}$ is defined as $\left[\delta_{1}, \delta_{2}\right]=\delta_{1} \delta_{2}-$ $(-1)^{j j} \delta_{2} \delta_{1}$, where $\delta_{1} \in D_{i}, \delta_{2} \in D_{j}$ and $i, j \in\{0,1\}$. If $L=L_{0} \oplus L_{1}$ is a Lie superalgebra, we say that L acts on R if there is a homomorphism of Lie superalgebras $\psi: L \rightarrow$ $D_{0} \oplus D_{1}$, where $\psi\left(L_{i}\right) \subseteq D_{i}$, for $i=0$, 1 . Throughout the paper we will simply assume that $L \subseteq D_{0} \oplus D_{1}$ identifying the elements of L_{0} and L_{1} with their images under ψ. It is well known that the homomorphism ψ induces an associative homomorphism from the universal enveloping algebra $U(L)$ to $\operatorname{End}_{\mathbb{K}}(R)$ and its image is finite dimensional if and only if the derivations and skew derivations from L_{0} and L_{1} are algebraic. In this case we will say that L acts finitely on R. Letting G be the group $\{1, \sigma\}$, we can form the skew group ring $H=U(L) * G$ and H is now a Hopf algebra acting on R. When L acts on R, we define the subalgebra of invariants R^{L} to be the set $\{r \in R \mid \delta(r)=0$, for all $\delta \in L\}$. Depending upon the context, the symbol [,] may represent either the superbracket on L, or the commutator map $[r, s]=r s-s r$, where r, s belong to an associative algebra. Inductively, we let $L^{1}=L$ and $L^{n+1}=\left[L^{n}, L\right]$ and we say that L is nilpotent if there exists a positive integer N such that $L^{N}=0$. If R (resp. L) is an associative algebra (resp. Lie superalgebra) we will let $\mathcal{Z}(R)$ (resp. $\mathcal{Z}(L)$) denote its centre. For an element $a \in R$, and automorphism σ of $R, \operatorname{ad}_{a}\left(\right.$ resp. ∂_{a}) stands for the inner derivation (inner σ-derivation) adjoint to a, i.e. $\operatorname{ad}_{a}(x)=a x-x a\left(\partial_{a}(x)=a x-\sigma(x) a\right)$.
2. Main result. The main aim of this paper is to prove the following theorem.

Theorem 1. Let a finite-dimensional nilpotent Lie superalgebra $L=L_{0} \oplus L_{1}$ acts finitely on a semiprime \mathbb{K}-algebra R, where \mathbb{K} is a field of characteristic zero. If R^{L} is central and $\left[L_{1}, L_{0}\right]=0$, then R satisfies the standard polynomial identity of degree $2 \cdot\left[\sqrt{2^{\operatorname{dim}_{K} L_{1}}}\right]$.

It generalizes a result from [1] concerning the actions of nilpotent Lie algebras of characteristic zero on semiprime algebras. On the other hand, in [4] it is proved that if a pointed Hopf algebra H acts finitely of dimension N on a semiprime algebra R and the action is such that $L^{H} \neq 0$ for any non-zero H-stable left ideal L of R and $R^{H} \subseteq \mathcal{Z}(R)$, then R satisfies PI of degree $2[\sqrt{N}]$. In Theorem 1 we prove for nilpotent Lie superalgebras with $\left[L_{0}, L_{1}\right]=0$, that the dimension of the action of $U(L) * G$ depends only on the dimension of L_{1}. The key role will be played by the following easy observation: In characteristic zero the invariants of nilpotent Lie algebras acting on central simple algebras are never proper simple central subalgebras.

Lemma 2. Let R be a finite-dimensional central simple \mathbb{F}-algebra acted on by a nilpotent Lie \mathbb{F}-algebra L, where \mathbb{F} is a field of characteristic zero. If R^{L} is a central simple \mathbb{F}-algebra, then $R=R^{L}$. In this case the action of L on R must be trivial.

Proof. Since L acts by \mathbb{F}-linear transformations, any derivation from L is inner. Suppose that the action of L on R is not trivial. Then we can take a non-zero derivation $\delta=\operatorname{ad}_{a} \in \mathcal{Z}(L)$, where $a \in R$. For any $\operatorname{ad}_{b} \in L$ we have $\operatorname{ad}_{[a, b]}=\left[\operatorname{ad}_{a}, \operatorname{ad}_{b}\right]=0$, so $[a, b] \in \mathcal{Z}(R)=\mathbb{F}$. If $[a, b]=\lambda \neq 0$, then $\left[a, \lambda^{-1} b\right]=1$. Note that the elements a and $\lambda^{-1} b$ generate in R a subalgebra isomorphic to the Weyl algebra $\mathbb{A}_{1}(\mathbb{F})$, but it is impossible since R is finite dimensional. Consequently, $[a, b]=0$ for any $\operatorname{ad}_{b} \in L$ and hence $a \in R^{L}$. In particular, ad_{a} acts trivially on $C_{R}\left(R^{L}\right)$, the centralizer of R^{L} in R. On the other hand the subalgebra R^{L} is simple and $\mathcal{Z}\left(R^{L}\right)=\mathbb{F}$, so by Theorem 2 (p. 118) in [5] $R \simeq R^{L} \otimes_{\mathbb{F}} C_{R}\left(R^{L}\right) \simeq R^{L} \cdot C_{R}\left(R^{L}\right)$. Consequently, $R=R^{L} \cdot C_{R}\left(R^{L}\right)$. It implies that ad_{a} acts trivially on R, a contradiction. Therefore the action of L on R is trivial.

Suppose that a finite-dimensional nilpotent Lie superalgebra $L=L_{0} \oplus L_{1}$ acts finitely of dimension N on an algebra R. Then by $R_{L_{0}}$ we denote the largest subspace of R on which any derivation from L_{0} acts nilpotently, that is

$$
R_{L_{0}}=\left\{r \in R \mid \delta^{N}(r)=0, \quad \forall \delta \in L_{0}\right\} .
$$

It is clear that $R_{L_{0}}$ is a subalgebra of R and $R_{L_{0}}$ is stable under the automorphism σ. Furthermore, it is well known that (after eventual extension of the field of scalars) the algebra R is graded (with finite support) by the dual of the Lie algebra L_{0} with $R_{L_{0}}$ as the identity component of the grading. Therefore, if the algebra R is semiprime (semisimple), then $R_{L_{0}}$ is also semiprime (resp. semisimple). In [3] (Lemma 12) it is proved that

Lemma 3. The subalgebra $R_{L_{0}}$ is L-stable. In particular, L acts on $R_{L_{0}}$ by nilpotent transformations.

In the next Proposition we consider the case of action of a nilpotent Lie superalgebra on a finite-dimensional G-simple algebra.

Proposition 4. Let a nilpotent Lie superalgebra $L=L_{0} \oplus L_{1}$ acts on a G-simple finite-dimensional \mathbb{K}-algebra R, where \mathbb{K} is a field of characteristic zero. If R^{L} is central and $\left[L_{0}, L_{1}\right]=0$, then $L_{0}=0$.

Proof. First, we will consider the case when L acts on R by nilpotent transformations, that is, $R=R_{L_{0}}$. Suppose that $L_{0} \neq 0$ and take a non-zero derivation δ from the centre of L_{0}. Since $\left[L_{0}, L_{1}\right]=0$, it is clear that δ is in the centre of L. Let $k>1$ be such that $\delta^{k}(R)=0$ and $V=\delta^{k-1}(R) \neq 0$. Then V is invariant under the action of L, and since L acts via nilpotent transformations it is clear that $V^{L}=V \cap R^{L} \subseteq \mathcal{Z}(R)$. On the other hand if $r, s \in R$, then the Leibniz rule gives

$$
0=\delta^{k}\left(\delta^{k-2}(r) s\right)=k \delta^{k-1}(r) \delta^{k-1}(s)
$$

It means that $\left(V^{L}\right)^{2}=0$, so the centre of R contains nilpotent elements. This is impossible since R is semisimple. The obtained contradiction shows that $L_{0}=0$.

Consider the general case. The above gives us immediately that $R^{L_{0}}=R_{L_{0}}$ and consequently the algebra $R^{L_{0}}$ is semisimple. Thus, any its ideal I is idempotent, i.e. $I^{2}=I$. Note that if I is G-stable, then the Leibniz rule, applied to any $\partial \in L_{1}$, gives $\partial(I)=\partial\left(I^{2}\right) \subseteq \partial(I) I+\sigma(I) \partial(I) \subseteq I$. Hence any G-stable ideal I of $R^{L_{0}}$ is also L-stable and $0 \neq I^{L} \subseteq \mathcal{Z}(R)$. Thus I contains invertible elements. Consequently, $R^{L_{0}}$ is also G-simple.

We will split considerations into two cases. First, suppose that the automorphism σ is inner, and let $q \in R$ be such that $\sigma(x)=q^{-1} x q$, for $x \in R$. In this case any ideal of R is σ-stable, so R must be a simple algebra. Moreover it is easy to see that any skew derivation ∂ from L_{1} must be inner. Indeed, since $\partial \sigma=-\sigma \partial$, we obtain that

$$
\begin{aligned}
q^{-1} \partial(x) q & =\sigma(\partial(x))=-\partial(\sigma(x))=-\partial\left(q^{-1} x q\right) \\
& =-\partial\left(q^{-1}\right) x q-q^{-1} \partial(x) q-q^{-1} \sigma(x) \partial(q)
\end{aligned}
$$

Since $q \partial\left(q^{-1}\right)=-\partial(q) q^{-1}$,

$$
\partial(x)=-\frac{1}{2} q \partial\left(q^{-1}\right) x-\frac{1}{2} \sigma(x) \partial(q) q^{-1}=\frac{1}{2} \partial(q) q^{-1} x-\sigma(x) \frac{1}{2} \partial(q) q^{-1} .
$$

This immediately gives, that $\partial(x)=b x-\sigma(x) b$, where $b=\frac{1}{2} \partial(q) q^{-1}$. Consequently, any mapping from $L_{0} \cup L_{1}$ is $\mathcal{Z}(R)$-linear. We will show that the algebra $R^{L_{0}}$ is simple and the centres of $R^{L_{0}}$ and R coincide. Since the automorphism σ has order $2, q^{2} \in$ $\mathcal{Z}(R)$. Thus for any $\delta=\operatorname{ad}_{a} \in L_{0}$,

$$
\delta(q)=\delta(\sigma(q))=\sigma(\delta(q))=q^{-1}(a q-q a) q=q a-a q=-\delta(q),
$$

so $\delta(q)=0$. This implies that $q \in R^{L_{0}}$, the restriction of σ to $R^{L_{0}}$ is inner and hence the algebra $R^{L_{0}}$ is simple. Since the action of L on R is inner, $\mathcal{Z}(R)=\mathcal{Z}(R) \cap R^{L_{0}} \subseteq \mathcal{Z}\left(R^{L_{0}}\right)$. We will show that $\mathcal{Z}\left(R^{L_{0}}\right) \subseteq \mathcal{Z}(R)$. To this end, since $R^{L} \subseteq \mathcal{Z}(R)$, it suffices to show that $\mathcal{Z}\left(R^{L_{0}}\right) \subseteq R^{L_{1}}$. Take any $z \in \mathcal{Z}\left(R^{L_{0}}\right)$, and $\partial=\partial_{b} \in L_{1}$, where $b=\frac{1}{2} \partial(q) q^{-1}$. Notice that $b \in R^{L_{0}}$. Indeed, by assumption $[\delta, \partial]=0$ for any $\delta \in L_{0}$ and by the above $q \in R^{L_{0}}$, so

$$
\delta(b)=\frac{1}{2} \delta\left(\partial(q) q^{-1}\right)=\frac{1}{2} \delta(\partial(q)) q^{-1}+\frac{1}{2} \partial(q) \delta\left(q^{-1}\right)=\frac{1}{2} \partial(\delta(q)) q^{-1}=0 .
$$

It means that $b \in R^{L_{0}}$ and

$$
\partial(z)=b z-\sigma(z) b=b z-z b=0,
$$

so $z \in R^{L_{1}}$. It proves that $\mathcal{Z}\left(R^{L_{0}}\right)=\mathcal{Z}(R)$. By Lemma 2 the action of L_{0} on R must be trivial.

Finally, suppose that the automorphism σ is outer. Since R is G-simple, the algebra R must be either simple or $R=I \oplus \sigma(I)$ for some minimal ideal I. In the first case, by the Skolem-Noether theorem, σ is not an identity map on $\mathcal{Z}(R)$. In the second case $\mathcal{Z}(R)=\mathcal{Z}(I) \oplus \sigma(\mathcal{Z}(I))$. Thus in both cases σ acts non identically on $\mathcal{Z}(R)$. Now since the centre of $R^{L_{0}}$ contains $\mathcal{Z}(R)$, the restriction of σ to $R^{L_{0}}$ is also outer. Consequently, one can choose a non-zero element $c \in \mathcal{Z}(R)$ such that $\sigma(c) \neq c$. Then $(c-\sigma(c))^{2}$ is non-zero and belongs to the field $\mathcal{Z}(R)^{\sigma}$. Thus $c-\sigma(c)$ is invertible. Now let $\partial \in L_{1}$ and $x \in R$. Notice that

$$
\partial(x) c+\sigma(x) \partial(c)=\partial(x c)=\partial(c x)=\partial(c) x+\sigma(c) \partial(x)
$$

In particular, we have

$$
\partial(x)=(c-\sigma(c))^{-1} \partial(c) x-\sigma(x)(c-\sigma(c))^{-1} \partial(c)=\partial_{b}(x)
$$

where $b=(c-\sigma(c))^{-1} \partial(c)$. Thus L_{1} acts on R via inner σ-derivations and in, particular, every mapping from L is $\mathcal{Z}(R)^{\sigma}$-linear. We will prove that $\mathcal{Z}\left(R^{L_{0}}\right)^{\sigma}=\mathcal{Z}(R)^{\sigma}$. Similarly as above, it suffices to show that $\mathcal{Z}\left(R^{L_{0}}\right)^{\sigma} \subseteq R^{L_{1}}$. Take any $\partial=\partial_{b} \in L_{1}$, where $b=$ $(c-\sigma(c))^{-1} \partial(c)$ for some $c \in \mathcal{Z}(R)$. Since L_{0} acts trivially on the centre of R, one obtains that $b \in R^{L_{0}}$. Now it is clear that ∂_{b} acts trivially on $\mathcal{Z}\left(R^{L_{0}}\right)^{\sigma}$, and consequently $\mathcal{Z}\left(R^{L_{0}}\right)^{\sigma} \subseteq R^{L_{1}}$.

Consider skew group rings $R * G$ and $R^{L_{0}} * G$. Since both of R and $R^{L_{0}}$ are G simple, and σ is outer on R and $R^{L_{0}}$, the rings $R * G$ and $R^{L_{0}} * G$ are simple. Moreover it is clear that $\mathcal{Z}(R * G)=\mathcal{Z}(R)^{\sigma}$ and $\mathcal{Z}\left(R^{L_{0}} * G\right)=\mathcal{Z}\left(R^{L_{0}}\right)^{\sigma}$. Thus $R * G$ and $R^{L_{0}} * G$ are central simple $\mathcal{Z}(R)^{\sigma}$-algebras. Notice that the action of L_{0} on R can be extended to an action on $R * G$, via the formula $\delta(a+b \sigma)=\delta(a)+\delta(b) \sigma$. In that case $(R * G)^{L_{0}}=$ $R^{L_{0}} * G$ Again applying Lemma 2 we obtain that L_{0} must act trivially on R and the proof is complete.

Corollary 5. Let a nilpotent Lie superalgebra $L=L_{0} \oplus L_{1}$ acts on a G-simple finite-dimensional \mathbb{K}-algebra R with centre \mathcal{Z}, where char $\mathbb{K}=0$. If $R^{L} \subseteq \mathcal{Z}$ and $\left[L_{0}, L_{1}\right]=0$, then $\operatorname{dim}_{\mathcal{Z}^{G}} R \leq\left[\mathcal{Z}: \mathcal{Z}^{G}\right] \cdot 2^{\operatorname{dim}_{\kappa} L_{1}}$. Moreover, in this case R satisfies the standard polynomial identity of degree $2 \cdot\left[\sqrt{2^{\text {dim }_{\kappa} L_{1}}}\right]$.

Proof. By Proposition 4, $L_{0}=0$. Thus L is spanned by a family $\left\{\partial_{1}, \ldots, \partial_{n}\right\}$ of inner skew derivations such that $\partial_{j}^{2}=0$ and $\partial_{i} \partial_{j}+\partial_{j} \partial_{i}=0$. It is clear that every ∂_{j} is \mathcal{Z}^{G}-linear. Let us consider a chain

$$
V_{0}=R \supseteq V_{1} \supseteq \cdots \supseteq V_{n}
$$

of subspaces of R, where $V_{j}=\operatorname{ker} \partial_{1} \cap \cdots \cap \operatorname{ker} \partial_{j}$ for $j=1, \ldots, n$. Then $V_{n} \subseteq R^{L} \subseteq \mathcal{Z}$ and ∂_{j} maps V_{j-1} into V_{j}. Moreover, it is clear that $\operatorname{dim}_{\mathcal{Z}^{G}} V_{j-1}=\operatorname{dim}_{\mathcal{Z}^{G}}\left(\operatorname{ker} \partial_{j} \cap V_{j-1}\right)+$ $\operatorname{dim}_{\mathcal{Z}^{G}} \partial_{j}\left(V_{j-1}\right) \leq 2 \cdot \operatorname{dim}_{\mathcal{Z}^{G}} V_{j}$. Thus

$$
\operatorname{dim}_{\mathcal{Z}^{G}} R \leq 2^{n} \cdot \operatorname{dim}_{\mathcal{Z}^{G}} V_{n} \leq\left[\mathcal{Z}: \mathcal{Z}^{G}\right] \cdot 2^{\operatorname{dim}_{\kappa} L_{1}}
$$

Since R is G-simple, the algebra R must be either simple or $R=I \oplus \sigma(I)$ for a minimal ideal I of R. Then I is certainly a simple algebra. The above inequality implies that
$\operatorname{dim}_{\mathcal{Z}} R \leq 2^{\operatorname{dim}_{\kappa} L_{1}}$ in the first case, and $\operatorname{dim}_{\mathcal{Z}(I)} I \leq 2^{\operatorname{dim}_{\mathbb{K}} L_{1}}$ in the second case. The result follows now by the Amitsur-Levitzki theorem.

If R is semiprime we let $Q=Q(R)$ to denote the symmetric Martindale quotient ring. Its centre, known as the extended centroid of R, we denote by C. The following properties of Q in the case when R is acted on by a Hopf algebra are proved in [3].

Lemma 6. Let R be a semiprime H-module algebra such that the H-action on R extends to an H-action on Q and any non-zero H-stable ideal of R contains non-trivial invariants. Then
(1) the ring $C^{H}=C \cap Q^{H}$ is von Neumann regular and selfinjective.
(2) If a non-empty subset $S \subseteq C^{H} \backslash\{0\}$ is closed under a multiplication, then the localization Q_{S} of Q at S is semiprime and $\mathcal{Z}\left(Q_{S}\right)=C_{S}$.
(3) If H acts finitely on Q and $S=C^{H} \backslash M$, where M is a maximal ideal of C^{H}, then the H-action on Q extends to an H-action on Q_{S} and $\left(Q^{H}\right)_{S}=\left(Q_{S}\right)^{H}$, $\left(C^{H}\right)_{S}=\left(C_{S}\right)^{H}=C_{S} \cap\left(Q_{S}\right)^{H}$ is a field contained in the centre of Q_{S}.

We can now prove the main result of the paper.
Proof of Theorem 1. Let $H=U(L) * G$. By ([2], Corollary 6) every H-invariant non-nilpotent subalgebra of R contains non-zero invariants. Thus we can apply the results from [4]. Let M be a maximal ideal of $C^{H}=C \cap Q^{H}$ and put $S=C^{H} \backslash M$. By the above lemma and [4] it follows that $\left(C_{S}\right)^{H}$ is a field and Q_{S} is a finite dimensional, G-simple $\left(C_{S}\right)^{H}$-algebra. Using Corollary 5 we obtain that Q_{M} satisfies the standard polynomial identity of degree $2 \cdot\left[\sqrt{2^{\operatorname{dim}_{K} L_{1}}}\right]$. Since it holds for any maximal ideal M of C^{H}, the ring Q, and consequently R, satisfies the standard polynomial identity of degree $2 \cdot\left[\sqrt{2^{\operatorname{dim}_{K} L_{1}}}\right]$.
3. Examples. In this section, we construct examples of actions of nilpotent Lie superalgebras with central invariants and with $\left[L_{0}, L_{1}\right] \neq 0$. We start with general properties of inner derivations and skew derivations of an algebra R with an automorphism σ of order 2. Then $R=R_{0} \oplus R_{1}$ is \mathbb{Z}_{2}-graded, where $R_{0}=\{x \in$ $R \mid \sigma(x)=x\}$ and $R_{1}=\{x \in R \mid \sigma(x)=-x\}$. For any inner derivation δ of R, the condition $\delta \sigma=\sigma \delta$ is equivalent to that δ is induced by some $a \in R_{0}$. To see that, we let δ be induced by $a=a_{0}+a_{1} \in R$. Then

$$
\begin{equation*}
\delta(x)=a x-x a=\left(a_{0} x-x a_{0}\right)+\left(a_{1} x-x a_{1}\right) \tag{1}
\end{equation*}
$$

This immediately implies that

$$
\delta(\sigma(x))=\left(a_{0} \sigma(x)-\sigma(x) a_{0}\right)+\left(a_{1} \sigma(x)-\sigma(x) a_{1}\right)
$$

and

$$
\sigma(\delta(x))=\left(a_{0} \sigma(x)-\sigma(x) a_{0}\right)-\left(a_{1} \sigma(x)-\sigma(x) a_{1}\right)
$$

Since δ and σ commute, the previous equations imply that $a_{1} \sigma(x)-\sigma(x) a_{1}=0$. Replacing x by $\sigma(x)$ yields $a_{1} x-x a_{1}=0$. Equation (1) now becomes

$$
\delta(x)=a_{0} x-x a_{0}=\operatorname{ad}_{a_{0}}(x)
$$

In the same manner we can show that for any inner skew derivation ∂ of R, the condition $\partial \sigma=-\sigma \partial$ is equivalent to that $\partial=\partial_{b}$ for some $b \in R_{1}$.

Lemma 7. Let R be an algebra over a field \mathbb{K} of characteristic $\neq 2$ and σ be a \mathbb{K}-linear automorphism of R of order 2 . Let $u \in R$ be invertible and $\sigma(u)=-u$. Let \widetilde{R} be the \mathbb{K}-algebra $M_{2}(R)$, the 2×2 matrices over R. Then the map $\varphi: R \rightarrow \widetilde{R}$ given by

$$
\varphi(x)=\left(\begin{array}{cc}
x & 0 \\
0 & u^{-1} \sigma(x) u
\end{array}\right)
$$

is an injective homomorphism of algebras, satisfying $\tilde{\sigma} \varphi=\varphi \sigma$ (where $\tilde{\sigma}$ is a componentwise extension of σ to \widetilde{R}).

If a Lie superalgebra $L=L_{0} \oplus L_{1}$ acts on R by inner derivations and inner σ derivations with $R^{L}=\mathbb{K}$, then L acts on \widetilde{R} by inner derivations and inner $\widetilde{\sigma}$-derivations with

$$
\widetilde{R}^{L}=\left\{\left.\left(\begin{array}{cc}
\alpha & \beta u \\
\gamma u^{-1} & \lambda
\end{array}\right) \in \widetilde{R} \right\rvert\, \alpha, \beta, \gamma, \lambda \in \mathbb{K}\right\} .
$$

Proof. Notice that

$$
(\widetilde{\sigma} \varphi)(x)=\widetilde{\sigma}\left(\left(\begin{array}{cc}
x & 0 \\
0 & u^{-1} \sigma(x) u
\end{array}\right)\right)=\left(\begin{array}{cc}
\sigma(x) & 0 \\
0 & u^{-1} x u
\end{array}\right)=(\varphi \sigma)(x) .
$$

In order to prove the second part, observe that for all inner derivation $\mathrm{ad}_{a} \in L_{0}$ and the inner skew derivation $\partial_{b} \in L_{1}$ of R and for every matrix $\widetilde{x}=\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right) \in \widetilde{R}$ the following equations hold

$$
\operatorname{ad}_{\varphi(a)}(\tilde{x})=\left(\begin{array}{cc}
a & 0 \\
0 & u^{-1} a u
\end{array}\right) \cdot \tilde{x}-\tilde{x} \cdot\left(\begin{array}{cc}
a & 0 \\
0 & u^{-1} a u
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{ad}_{a}\left(x_{11}\right) & \operatorname{ad}_{a}\left(x_{12} u^{-1}\right) u \\
u^{-1} \operatorname{ad}_{a}\left(u x_{21}\right) & u^{-1} \operatorname{ad}_{a}\left(u x_{22} u^{-1}\right) u
\end{array}\right)
$$

and

$$
\begin{aligned}
\partial_{\varphi(b)}(\widetilde{x}) & =\left(\begin{array}{cc}
b & 0 \\
0 & -u^{-1} b u
\end{array}\right) \cdot \tilde{x}-\widetilde{\sigma}(\widetilde{x}) \cdot\left(\begin{array}{cc}
b & 0 \\
0 & -u^{-1} b u
\end{array}\right) \\
& =\left(\begin{array}{cc}
\partial_{b}\left(x_{11}\right) & \partial_{b}\left(x_{12} u^{-1}\right) u \\
\sigma\left(u^{-1}\right) \partial_{b}\left(u x_{21}\right) & \sigma\left(u^{-1}\right) \partial_{b}\left(u x_{22} u^{-1}\right) u
\end{array}\right) .
\end{aligned}
$$

From the above equations it follows that $\widetilde{x} \in \widetilde{R}^{L}$ if and only if the elements $x_{11}, x_{12} u^{-1}$, $u x_{21}$ and $u x_{22} u^{-1}$ belong to R^{L}. Under the assumption that $R^{L}=\mathbb{K}$, we now easily obtain the assertion of the lemma.

We start our construction from the algebra $R=M_{2}(\mathbb{K})$ of 2×2 matrices over a field \mathbb{K} of characteristic 0 . Let σ be the inner automorphism of order 2 of R induced
by the diagonal matrix $\operatorname{diag}(1,-1)$ and let $\partial_{b_{1}}$ and $\partial_{b_{2}}$ be the inner σ-derivations of R induced by

$$
b_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \in R_{1} \text { and } b_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \in R_{1}
$$

respectively. It can be easily checked that

$$
b_{1}^{2}=-b_{2}^{2}=1 \text { and } b_{1} b_{2}+b_{2} b_{1}=0
$$

As a result, the skew derivations $\partial_{b_{1}}$ and $\partial_{b_{2}}$ span an Abelian Lie superalgebra $L=$ $L_{0} \oplus L_{1}$ where $L_{0}=0$ and $L_{1}=\operatorname{Span}_{ங}\left\{\partial_{b_{1}}, \partial_{b_{2}}\right\}$. From the explicit formulas for $\partial_{b_{1}}$ and $\partial_{b_{2}}$

$$
\partial_{b_{1}}\left(\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)\right)=\left(\begin{array}{ll}
x_{21}+x_{12} & x_{22}-x_{11} \\
x_{11}-x_{22} & x_{21}+x_{12}
\end{array}\right)
$$

and

$$
\partial_{b_{2}}\left(\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)\right)=\left(\begin{array}{ll}
x_{21}-x_{12} & x_{22}-x_{11} \\
x_{22}-x_{11} & x_{21}-x_{12}
\end{array}\right)
$$

it follows immediately that $R^{L}=\mathbb{K}$.
Using Lemma 7, applied to the invertible element $u=b_{2}$, we have an embedding of R into $\widetilde{R}=M_{2}(R)$, according to the formula

$$
\varphi(x)=\left(\begin{array}{cc}
x & 0 \\
0 & b_{2}^{-1} \sigma(x) b_{2}
\end{array}\right) .
$$

Put

$$
\widetilde{b_{1}}=\varphi\left(b_{1}\right)=\left(\begin{array}{cc}
b_{1} & 0 \\
0 & b_{1}
\end{array}\right) \in \widetilde{R}_{1} \text { and } \widetilde{b_{2}}=\varphi\left(b_{2}\right)=\left(\begin{array}{cc}
b_{2} & 0 \\
0 & -b_{2}
\end{array}\right) \in \widetilde{R}_{1}
$$

and consider the additional matrices

$$
\widetilde{b_{3}}=\left(\begin{array}{cc}
0 & b_{2} \\
-b_{2} & 0
\end{array}\right) \in \widetilde{R}_{1} \text { and } \widetilde{b}_{4}=\left(\begin{array}{cc}
0 & b_{2} \\
b_{2} & 0
\end{array}\right) \in \widetilde{R}_{1} .
$$

It is not hard to check that

$$
{\widetilde{b_{1}}}^{2}=-{\widetilde{b_{2}}}^{2}={\widetilde{b_{3}}}^{2}=-{\widetilde{b_{4}}}^{2}=1 \text { and } \widetilde{b}_{i} \widetilde{b}_{j}+\widetilde{b}_{j} \widetilde{b}_{i}=0
$$

for all $i \neq j$. As before, the inner skew derivations $\partial_{\widetilde{\sim}}^{\tilde{b_{1}}}, \partial_{\widetilde{b_{2}}}, \partial_{\widetilde{b_{3}}}$ and $\partial_{\widetilde{b_{4}}}$ span an Abelian Lie superalgebra $\widetilde{L}=\widetilde{L}_{0} \oplus \widetilde{L}_{1}$, where $\widetilde{L}_{0}=0$ and $\widetilde{L}_{1}=\operatorname{span}_{\mathbb{K}}\left\{\partial_{\tilde{b}_{1}}, \partial_{\widetilde{b}_{2}}, \partial_{\tilde{b}_{3}}, \partial_{\tilde{b}_{4}}\right\}$. Lemma 7 says that the subalgebra of invariants \widetilde{R}^{L} under the action of L consists of all matrices of the form $\left(\begin{array}{cc}\alpha & \beta b_{2} \\ \gamma b_{2} & \lambda\end{array}\right)$ where $\alpha, \beta, \gamma, \lambda \in \mathbb{K}$. Furthermore, a simple calculation shows that

$$
\partial_{\widetilde{b_{3}}}\left(\left(\begin{array}{cc}
\alpha & \beta b_{2} \\
\gamma b_{2} & \lambda
\end{array}\right)\right)=\left(\begin{array}{cc}
\beta-\gamma & (\lambda-\alpha) b_{2} \\
(\lambda-\alpha) b_{2} & \beta-\gamma
\end{array}\right)
$$

and

$$
\partial_{\widetilde{b_{4}}}\left(\left(\begin{array}{cc}
\alpha & \beta b_{2} \\
\gamma b_{2} & \lambda
\end{array}\right)\right)=\left(\begin{array}{cc}
-\beta-\gamma & (\lambda-\alpha) b_{2} \\
(\alpha-\lambda) b_{2} & -\beta-\gamma
\end{array}\right) .
$$

This immediately implies that $\widetilde{R^{L}}=\mathbb{K}$.
Applying Lemma 7 for the invertible element $u=\widetilde{b_{4}}$ we have the next embedding of \widetilde{R} into the algebra $R=M_{2}(\widetilde{R})$, the 2×2 matrices over \widetilde{R} according to the formula

$$
\varphi(\widetilde{x})=\left(\begin{array}{cc}
\tilde{x} & 0 \\
0 & \widetilde{b}_{4}^{-1} \tilde{\sigma}(\widetilde{x}) \widetilde{b}_{4}
\end{array}\right)
$$

Put

$$
B_{i}=\varphi\left(\widetilde{b_{i}}\right)=\left(\begin{array}{cc}
\widetilde{b_{i}} & 0 \\
0 & \widetilde{b}_{i}
\end{array}\right) \in \boldsymbol{R}_{1} \text { and } B_{4}=\varphi\left(\widetilde{b_{4}}\right)=\left(\begin{array}{cc}
\widetilde{b_{4}} & 0 \\
0 & -\widetilde{b_{4}}
\end{array}\right) \in \boldsymbol{R}_{1}
$$

for $i=1,2,3$ and consider the additional matrices

- $A_{1}=\left(\begin{array}{cc}0 & \widetilde{a_{1}} \\ -\widetilde{a}_{1} & 0\end{array}\right) \in \boldsymbol{R}_{0}$ and $C_{1}=\left(\begin{array}{cc}0 & \widetilde{a_{1}} \\ 0 & 0\end{array}\right) \in \boldsymbol{R}_{0}$, where $\widetilde{a_{1}}=\left(\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right) \in \widetilde{R}_{0}$,
- $A_{2}=\left(\begin{array}{cc}0 & \widetilde{a_{2}}+1 \\ -\widetilde{a_{2}}+1 & 0\end{array}\right) \in \boldsymbol{R}_{0}$ and $C_{2}=\left(\begin{array}{cc}0 & \widetilde{a_{2}}+1 \\ 0 & 0\end{array}\right) \in \boldsymbol{R}_{0}$, where $\widetilde{a_{2}}=\left(\begin{array}{cc}0 & b_{1} b_{2} \\ b_{1} b_{2} & 0\end{array}\right) \in \widetilde{R}_{0}$,
- $A_{3}=\left(\begin{array}{cc}\widetilde{\boldsymbol{a}_{3}}-\widetilde{a_{1}} & 0 \\ 0 & \widetilde{a_{3}}+\widetilde{a_{1}}\end{array}\right) \in \boldsymbol{R}_{0}$, where $\widetilde{a_{3}}=\left(\begin{array}{cc}b_{1} b_{2} & b_{1} b_{2} \\ -b_{1} b_{2} & -b_{1} b_{2}\end{array}\right) \in \widetilde{R_{0}}$,
- $B_{5}=\left(\begin{array}{cc}0 & \widetilde{b}_{5} \\ \tilde{b}_{5} & 0\end{array}\right) \in \boldsymbol{R}_{1}, B_{6}=\left(\begin{array}{cc}0 & \tilde{b}_{4} \\ \tilde{b}_{4} & 0\end{array}\right) \in \boldsymbol{R}_{1}$ and $B_{7}=\left(\begin{array}{cc}0 & \widetilde{b_{4}}\end{array}\right) \in \boldsymbol{R}_{1}$, where

$$
\tilde{d}_{5}=\left(\begin{array}{cc}
b_{1}+b_{2} & b_{1}+b_{2} \\
-b_{1}-b_{2} & -b_{1}-b_{2}
\end{array}\right), \tilde{b}_{5}=\left(\begin{array}{cc}
-b_{1}+b_{2} & -b_{1}+b_{2} \\
b_{1}-b_{2} & b_{1}-b_{2}
\end{array}\right) \in \widetilde{R}_{1}
$$

- $D_{5}=\left(\begin{array}{cc}0 & \tilde{d}_{5} \\ 0 & 0\end{array}\right)+B_{7} \in \boldsymbol{R}_{1}$ and $D_{6}=\left(\begin{array}{cc}0 & \tilde{b_{4}} \\ 0 & 0\end{array}\right) \in \boldsymbol{R}_{1}$.
 $\left.\partial_{D_{5}}, \partial_{D_{6}}\right\}$, then $\boldsymbol{N}=\boldsymbol{N}_{0} \oplus \boldsymbol{N}_{1}$ is a nine-dimensional Lie superalgebra of nilpotency class 4 (see Table 1). Lemma 7 asserts that the subalgebra of invariants $\boldsymbol{R}^{\widetilde{L}}$ under the action of \widetilde{L} consists of all matrices of the form $\left(\underset{\gamma b_{4}}{\alpha} \underset{\lambda}{\beta \widetilde{\delta_{4}}}\right)^{2}$, where $\alpha, \beta, \gamma, \lambda \in \mathbb{K}$. Moreover,

$$
\begin{aligned}
\partial_{D_{5}}\left(\left(\begin{array}{cc}
\alpha & \beta \widetilde{b}_{4} \\
\gamma \widetilde{b}_{4} & \lambda
\end{array}\right)\right) & =\left(\begin{array}{cc}
\gamma \widetilde{d}_{5} \tilde{b}_{4}-\beta-\gamma & (\lambda-\alpha)\left(\widetilde{b_{4}}+\widetilde{d}_{5}\right) \\
(\alpha-\lambda) \widetilde{b}_{4} & \gamma \widetilde{b_{4}} \widetilde{d}_{5}-\beta-\gamma
\end{array}\right) \\
& =\left(\begin{array}{cc}
\gamma\left(\widetilde{a_{3}}-\widetilde{a_{1}}\right)-\beta-\gamma & (\lambda-\alpha)\left(\widetilde{b}_{4}+\widetilde{d}_{5}\right) \\
(\alpha-\lambda) \widetilde{b_{4}} & \gamma\left(\widetilde{a_{3}}+\widetilde{a_{1}}\right)-\beta-\gamma
\end{array}\right) .
\end{aligned}
$$

As a result we obtain that $\boldsymbol{R}^{N}=\mathbb{K}$.

Table 1. Operation table of N

$[\cdot, \cdot]$	$\operatorname{ad}_{C_{1}}$	$\operatorname{ad}_{C_{2}}$	$\operatorname{ad}_{A_{3}}$	$\partial_{B_{1}}$	$\partial_{B_{2}}$	$\partial_{B_{3}}$	$\partial_{B_{4}}$	$\partial_{D_{5}}$	$\partial_{D_{6}}$
$\operatorname{ad}_{C_{1}}$	0	0	0	0	$-2 \partial_{D_{6}}$	$2 \partial_{D_{6}}$	0	$\partial_{B_{2}+B_{3}}$	0
$\operatorname{ad}_{C_{2}}$	0	0	0	$2 \partial_{D_{6}}$	0	0	$2 \partial_{D_{6}}$	$-\partial_{B_{1}-B_{4}}$	0
$\operatorname{ad}_{A_{3}}$	0	0	0	$-2 \partial_{B_{2}+B_{3}}$	$-2 \partial_{B_{1}-B_{4}}$	$2 \partial_{B_{1}-B_{4}}$	$-2 \partial_{B_{2}+B_{3}}$	0	0
$\partial_{B_{1}}$	0	$-2 \partial_{D_{6}}$	$2 \partial_{B_{2}+B_{3}}$	0	0	0	0	$2 \operatorname{ad}_{C_{1}}$	0
$\partial_{B_{2}}$	$2 \partial_{D_{6}}$	0	$2 \partial_{B_{1}-B_{4}}$	0	0	0	0	$-2 \operatorname{ad}_{C_{2}}$	0
$\partial_{B_{3}}$	$-2 \partial_{D_{6}}$	0	$-2 \partial_{B_{1}-B_{4}}$	0	0	0	0	$2 \operatorname{ad}_{C_{2}}$	0
$\partial_{B_{4}}$	0	$-2 \partial_{D_{6}}$	$2 \partial_{B_{2}+B_{3}}$	0	0	0	0	$2 \operatorname{ad}_{C_{1}}$	0
$\partial_{D_{5}}$	$-\partial_{B_{2}+B_{3}}$	$\partial_{B_{1}-B_{4}}$	0	$2 \operatorname{ad}_{C_{1}}$	$-2 \operatorname{ad}_{C_{2}}$	$2 \operatorname{ad}_{C_{2}}$	$2 \operatorname{ad}_{C_{1}}$	$2 \operatorname{ad}_{A_{3}}$	0
$\partial_{D_{6}}$	0	0	0	0	0	0	0	0	0

Table 2. Operation table of \boldsymbol{L}

$[\cdot, \cdot]$	$\operatorname{ad}_{A_{1}}$	$\operatorname{ad}_{A_{2}}$	$\operatorname{ad}_{A_{3}}$	$\partial_{B_{1}}$	$\partial_{B_{2}}$	$\partial_{B_{3}}$	$\partial_{B_{4}}$	$\partial_{B_{5}}$	$\partial_{B_{6}}$	$\partial_{B_{7}}$
$\mathrm{ad}_{A_{1}}$	0	$-2 \mathrm{ad}_{A_{3}}$	0	0	$-2 \partial_{B_{6}}$	$2 \partial_{B_{6}}$	0	0	$-2 \partial_{B_{2}+B_{3}}$	0
$\operatorname{ad}_{A_{2}}$	$2 \mathrm{ad}_{A_{3}}$	0	0	$2 \partial_{B_{6}}$	0	0	$2 \partial_{B_{6}}$	0	$2 \partial_{B_{1}-B_{4}}$	0
$\mathrm{ad}_{A_{3}}$	0	0	0	$-2 \partial_{B_{2}+B_{3}}$	$-2 \partial_{B_{B_{1}-B_{4}}}$	$2 \partial_{B_{1}-B_{4}}$	$-2 \partial_{B_{2}+B_{3}}$	0	0	0
$\partial_{B_{1}}$	0	$-2 \partial_{B_{6}}$	$2 \partial_{B_{2}+B_{3}}$	0	0	0	0	$2 \operatorname{ad}_{A_{1}}$	0	0
$\partial_{B_{2}}$	$2 \partial_{B_{6}}$	0	$2 \partial_{B_{1}-B_{4}}$	0	0	0	0	$-2 \operatorname{ad}_{A_{2}}$	0	0
$\partial_{B_{3}}$	$-2 \partial_{B_{6}}$	0	$-2 \partial_{B_{1}-B_{4}}$	0	0	0	0	$2 \operatorname{ad}_{A_{2}}$	0	0
$\partial_{B_{4}}$	0	$-2 \partial_{B_{6}}$	$2 \partial_{B_{2}+B_{3}}$	0	0	0	0	$2 \operatorname{ad}_{A_{1}}$	0	0
$\partial_{B_{5}}$	0	0	0	$2 \mathrm{ad}_{A_{1}}$	$-2 \operatorname{ad}_{A_{2}}$	$2 \operatorname{ad}_{A_{2}}$	$2 \operatorname{ad}_{A_{1}}$	0	$-2 \operatorname{ad}_{A_{3}}$	0
$\partial_{B_{6}}$	$2 \partial_{B_{2}+B_{3}}$	$-2 \partial_{B_{1}-B_{4}}$	0	0	0	0	0	$-2 \operatorname{ad}_{A_{3}}$	0	0
$\partial_{B_{7}}$	0	0	0	0	0	0	0	0	0	0

Notice also that if $\boldsymbol{M}_{0}=\operatorname{span}_{\llbracket}\left\{\operatorname{ad}_{A_{1}}, \operatorname{ad}_{A_{2}}, \operatorname{ad}_{A_{3}}\right\}$ and $\boldsymbol{M}_{1}=\operatorname{span}_{\Downarrow}\left\{\partial_{B_{1}}, \partial_{B_{2}}, \partial_{B_{3}}\right.$, $\left.\partial_{B_{4}}, \partial_{B_{5}+B_{7}}, \partial_{B_{6}}\right\}$, then $\boldsymbol{M}=\boldsymbol{M}_{0} \oplus \boldsymbol{M}_{1}$ is a nilpotent Lie superalgebra of nilpotency class 6 (see Table 2). We have

$$
\begin{aligned}
\partial_{B_{5}+B_{7}}\left(\left(\begin{array}{cc}
\alpha & \beta \widetilde{b}_{4} \\
\gamma \widetilde{b_{4}} & \lambda
\end{array}\right)\right) & =\left(\begin{array}{cc}
\gamma \widetilde{d}_{5} \widetilde{b}_{4}+\beta \widetilde{b_{4}} \widetilde{b}_{5}-\beta-\gamma & (\lambda-\alpha)\left(\widetilde{b}_{4}+\widetilde{d}_{5}\right) \\
(\alpha-\lambda)\left(\widetilde{b_{4}}+\widetilde{b}_{5}\right) & \beta \widetilde{b}_{5} \widetilde{b}_{4}+\gamma \widetilde{b}_{4} \widetilde{d}_{5}-\beta-\gamma
\end{array}\right) \\
& =\left(\begin{array}{cc}
(\gamma-\beta)\left(\widetilde{a_{3}}-\widetilde{a_{1}}\right)-\beta-\gamma & (\lambda-\alpha)\left(\widetilde{b_{4}}+\widetilde{d}_{5}\right) \\
(\alpha-\lambda)\left(\widetilde{b_{4}}+\widetilde{b_{5}}\right) & (\gamma-\beta)\left(\widetilde{a_{3}}+\widetilde{a_{1}}\right)-\beta-\gamma
\end{array}\right) .
\end{aligned}
$$

This implies immediately that $\boldsymbol{R}^{\boldsymbol{M}}=\mathbb{K}$.
Finally, observe also that \boldsymbol{M} is an subalgebra of a nilpotent Lie superalgebra $\boldsymbol{L}=\boldsymbol{L}_{0} \oplus \boldsymbol{L}_{1}$ of nilpotency class 6 , where $\boldsymbol{L}_{0}=\left[\boldsymbol{L}_{1}, \boldsymbol{L}_{1}\right]=\operatorname{span}_{\Downarrow}\left\{\operatorname{ad}_{A_{1}}, \operatorname{ad}_{A_{2}}, \operatorname{ad}_{A_{3}}\right\}$ and $\boldsymbol{L}_{1}=\operatorname{span}_{\mathbb{k}}\left\{\partial_{B_{1}}, \partial_{B_{2}}, \partial_{B_{3}}, \partial_{B_{4}}, \partial_{B_{5}}, \partial_{B_{6}}, \partial_{B_{7}}\right\}$ (see Table 2). Obviously, $\boldsymbol{R}^{L}=\mathbb{K}$. Starting with the algebra \boldsymbol{R}, the invertible element $u=B_{7}$ and the Lie superalgebra \boldsymbol{L}, and again applying the above procedure, we can produce successive examples.

Acknowledgements. The first author's research was supported in part by KBN Grant No. 1 P03A 03227 and by the grant S/WI/3/2009 of Bialystok University of Technology.

REFERENCES

1. J. Bergen and P. Grzeszczuk, Invariants of Lie superalgebras acting on associative rings, Israel J. Math. 94 (1996), 403-428.
2. J. Bergen and P. Grzeszczuk, Invariants of Lie color algebras acting on graded algebras, Colloq. Math. 83 (2000), 107-124.
3. P. Grzeszczuk and M. Hryniewicka, Polynomial identities of algebras with actions of pointed Hopf algebras, J. Algebra 278 (2004), 684-703.
4. P. Grzeszczuk and M. Hryniewicka, Actions of pointed Hopf algebras with reduced invariants, Proc. Amer. Math. Soc. 135 (2007), 2381-2389.
5. N. Jacobson, Structure of rings, vol. 37 (American Mathematical Society Colloquium Publications, Providence, RI, 1964).
