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Abstract
Free-floating planets (FFPs) can result from dynamical scattering processes happening in the first few million years
of a planetary system’s life. Several models predict the possibility, for these isolated planetary-mass objects, to
retain exomoons after their ejection. The tidal heating mechanism and the presence of an atmosphere with a rela-
tively high optical thickness may support the formation and maintenance of oceans of liquid water on the surface of
these satellites. In order to study the timescales over which liquid water can be maintained, we perform dynamical
simulations of the ejection process and infer the resulting statistics of the population of surviving exomoons around
FFPs. The subsequent tidal evolution of the moons’ orbital parameters is a pivotal step to determine when the
orbits will circularize, with a consequential decay of the tidal heating. We find that close-in (a & 25 RJ)
Earth-mass moons with carbon dioxide-dominated atmospheres could retain liquid water on their surfaces for
long timescales, depending on the mass of the atmospheric envelope and the surface pressure assumed.
Massive atmospheres are needed to trap the heat produced by tidal friction that makes these moons habitable.
For Earth-like pressure conditions (p0 = 1 bar), satellites could sustain liquid water on their surfaces up to
52Myr. For higher surface pressures (10 and 100 bar), moons could be habitable up to 276Myr and 1.6 Gyr,
respectively. Close-in satellites experience habitable conditions for long timescales, and during the ejection of
the FFP remain bound with the escaping planet, being less affected by the close encounter.
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Introduction

The discovery of multiple free-floating planets (FFPs) (e.g. Zapatero Osorio et al., 2000; Liu et al.,
2013, 2016; Luhman 2014) and FFP candidates (e.g. Sumi et al., 2011; Bennett et al., 2014;
Henderson 2016; Mróz et al., 2020) is changing our understanding of the early evolution of planetary
systems and planet formation theories. The largest population of FFPs discovered so far was found in
the Upper Scorpius and Ophiuchus star-forming region by Miret-Roig et al. (2022), containing
between 70 and 170 FFPs, depending on the age assumed for the region. Those isolated planetary-mass
objects can form in isolation, from a scaled-down version of a star formation process, through OB stars’
wind erosion of a prestellar core, as aborted stellar embryos ejected from a stellar nursery, or from the
ejection of a planet in a young planetary system due to close encounters between other giant planets,
fly-by stars or FFPs. The latter seems more common than previously thought: the number of FFPs
found in the Upper Scorpius and Ophiuchus star-forming region is up to seven times larger than the
number of expected FFPs based only on core-collapse models. Miret-Roig et al. (2022) suggest that
ejection due to dynamical instabilities could be very common during the first 10 Myr of a system’s
life (i.e. the upper limit of the age of their sample).

Close encounters between young giant planets are considered important to explain the high eccen-
tricities and inclinations found in the populations of hot Jupiters (Beaugé and Nesvorný 2012). Rasio
and Ford (1996) and Chatterjee et al. (2008) proposed a possible link between planetary systems host-
ing hot Jupiters and the formation of FFPs. During a close encounter, the dynamical scattering events
can lead to the ejection of one or more giant planets from the planetary system, while the perturber can
be excited from its initial orbit, reaching a hot Jupiters configuration after tidal flexing. This class of
theoretical models predicts two FFPs per main sequence star in our Galaxy (Sumi et al., 2011), i.e.
around 2MJ per star (Clanton and Gaudi 2016). Barclay et al. (2017) show that also rocky planets
are potentially ejected from planetary systems due to scattering events with other giant planets, forming
a population of rocky FFPs.

FFPs orbit around the Galactic centre and in star-forming regions, and although they are believed to
be weakly radiated by nearby stars, they may present conditions favourable to sustain life. Such con-
ditions could be met, for instance, by having an atmosphere rich in molecular hydrogen (Stevenson
1999), where the collision-induced absorption mechanism of molecular hydrogen (Frommhold
1994; Borysow 2002) could allow supporting liquid water on their surfaces. This condition could
be maintained over 50 Gyr, depending on the core mass and the mass of the atmospheric envelope
of the FFP (Mol Lous et al., 2022).

As was already shown by Rabago and Steffen (2019) and Hong et al. (2018), in the ejection scen-
ario, a forming FFP can escape its planetary system retaining some of the moons formed in its circum-
planetary disc. These dynamical scattering events strongly affect the orbital parameters of the surviving
moons.

As shown for example by Heller and others (2014), the orbital parameters of the moons, together
with the masses of the planet–moon system and the characteristics of the hosting star, are crucial for the
maintenance of an atmosphere capable of retaining liquid water on the surface, even when these objects
are outside the canonical stellar habitable zone (HZ).

In the Solar System, Europa and Ganymede probably retain an ocean of liquid water beneath their
surface (Spohn and Schubert 2002), while for Callisto the results are less clear. The moon Io represents
the most volcanically active object of our planetary system, as it is squeezed by the tidal torque of
Jupiter acting on its interior. For Io and Europa the tidal heating mechanism represents the major energy
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source, while for Ganymede and Callisto, which reside on larger orbital configurations, radiogenic
heating provides the largest fraction of the total energy budget (Spohn and Schubert 2002). On the
other hand, Saturn’s moon Titan is the only satellite in the Solar System with a substantial atmosphere
(Hörst 2017). Although its formation history is still not fully understood, its dense atmosphere of nitro-
gen (94.2%) and methane (5.7%) (Catling and Kasting 2017) enables the moon to maintain liquid
methane at its surface, which undergoes a methane cycle very similar to Earth’s water cycle (Lunine
and Atreya 2008).

Even though moons orbiting exoplanets have yet to be detected, given the diversity of moons in the
Solar System, we expect them to be interesting objects both for benchmarking planet formation theor-
ies and for the search for biosignatures. Heller (2018) collected the proposed several candidates, based
on the transit time variation technique (Teachey et al., 2017; Teachey and Kipping 2018), gravitational
microlensing (Bennett et al., 2014; Miyazaki et al., 2018) and direct imaging (Lazzoni et al., 2022;
Ruffio et al., 2023). As discussed by Limbach et al. (2021), FFPs are good candidates for the detection
of exomoons. Without the glare produced by a nearby star, high-contrast imaging is not necessary to
detect the photometric transit signal of a potential satellite and the detection of massive moons should
be already possible with existing instrumentation. In particular, Bachelet et al. (2022) propose a joint
microlensing survey, using both ESA EUCLID and NASA ROMAN missions, to detect and characterize
FFPs and potentially discover the first exomoon orbiting around them.

These environments have been modelled by Ávila et al. (2021), reproducing the chemical evolution
of the atmosphere of an exomoon orbiting an FFP. They demonstrated the sustainability of liquid water
on the exomoon’s surfaces, by assuming a carbon dioxide (CO2)-dominated atmosphere, and tidal and
radiogenic heating mechanisms as the main energy sources. Such a water reservoir could, in principle,
assist the emergence of life.

Despite disagreements on the definition of habitability (Lammer et al., 2009), and specific condi-
tions needed for life to emerge (Jortner 2006), the presence of liquid water remains an essential criter-
ion for an Earth-like habitable condition, thanks to water being an excellent solvent (Lubineau and
Augé 1999). To this aim, in the Solar System, the oceans underneath the icy surfaces of Jupiter’s
and Saturn’s moons are studied in search of habitable conditions (Hussmann et al., 2006). Even on
Earth, life can be found in very extreme environments dominated by liquid water, at temperature
and pressure conditions very different from the Earth’s surface (i.e. the depth of the oceans). Life
adapted to live under these extreme conditions has developed different metabolisms, which are not
based on photosynthesis (Irwin and Schulze-Makuch 2020).

Life, at least as we know it, depends on informational polymers, either in the form of oligonucleo-
tides or polymers of amino acids. While their formation and synthesis nowadays are driven by proteins
in water, for its polymerization and especially for the phosphorylation of nucleotides, at least a partial
dry state seems to be necessary (Powner et al., 2009; Toner and Catling 2020). This means that moons
of FFP scenarios are especially interesting where surface water is in contact with the atmosphere or
where hydrothermal systems occur near the surfaces of the moon. Here the estimation that initial waters
are about four orders of magnitude less abundant than on Earth is encouraging (Ávila et al., 2021),
since early Earth was likely a rather water-dominated setting. Non-equilibrium drivings such as thermal
gradients (Ianeselli et al.,, 2022a, 2022b) from volcanic drivings such as on Io are interesting, not only
to drive microscale water cycles in pores partially filled with water, but also for driving active systems
such as heated surface ponds or geysers. All these settings could have provided an oscillatory system
where molecules accumulate in the dry state and create polymers while they are from time to time
exposed to water to perform the replication cycles for Darwinian evolution.

Hereinafter, for the purpose of this study, we will define habitable conditions referring only to the
presence of liquid water on the surface of the moons, aware of the complex debate around this specific
topic (e.g. Cockell et al., 2016). Since the maintenance of liquid water is controlled by the evolution of
the orbital parameters (Reynolds and Cassen 1978; Scharf 2006; Henning et al., 2009; Heller 2012;
Heller and Barnes 2013), a relatively rapid circularization of a moon’s orbit will prevent long-term
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stability of tidal heating and hence reduce the timescale necessary for life to potentially emerge, assum-
ing biological timescales comparable to what we measure on Earth (Pearce et al., 2018).

Here, we present a detailed study of the orbital parameters’ evolution of the FFP–moon system and
its influence on the production and maintenance of liquid water, starting from dynamical simulations.
We assume a Jupiter-like planet to be ejected from its planetary system due to close encounters with
other giant planets. An initial population of moons is placed around the escaping planet to study the
survival rate of the moons after the ejection process, and how the orbital parameters of the surviving
moons are affected by the dynamical scattering event.

The evolution of the orbital parameters of the surviving moons is obtained by integrating the dif-
ferential equations from standard tidal models (Hut 1981; Bolmont et al., 2011), where tides are gen-
erated both by the planet on the moon and vice versa. This temporal evolution, coupled with the
modelling of the thermal properties of the optically thick atmosphere, allows us to calculate the surface
temperature as a function of time, and therefore to determine the best moon candidates to support the
formation of liquid water, for a timescale compatible with the habitable conditions of the surface of the
exomoons.

The paper is organized as follows: in the second section, the numerical methods and modelling are
described, in the third section we present the results, in the fourth section we discuss the limitations of
our models and results and in the last section the broader implications and the conclusions are
discussed.

Methods

Formation of moons around a Jupiter-like planet

Circumplanetary discs are thought to be the birthplaces of moons around gas giant planets, both con-
sidering the core accretion and the gravitational instability formation theories (e.g. Canup and Ward
2002; Shabram and Boley 2013; Szulágyi 2017). Cilibrasi et al. (2018) and Cilibrasi et al. (2021)
presented population synthesis works for the formation of satellites around a Jupiter-like planet.
In their models, seeds can grow by accreting dust via streaming instability, and due to the influx of
material from the protoplanetary disc, satellites can reach masses comparable to the Galilean system
ones. However, some features of Saturn’s moon system (i.e. the mass–distance relation of the regular
moons, and the variation of the bulk composition of the satellites) cannot be explained by this forma-
tion mechanism. Charnoz et al. (2011) have shown that Saturn’s moons can rather originate from
Saturn’s rings, where solid particles can aggregate beyond the Roche radius of the planet, as self-
gravity becomes stronger than tidal forces. Crida and Charnoz (2012) and Crida and Charnoz
(2014) generalized this satellite formation mechanism to most planets in the Solar System (and thus
probably to other stellar systems). However, this process takes place after the planets are formed
(and ejected), so that the satellites would not be affected by the dynamical history, in contrast to satel-
lites formed inside the circumplanetary disc.

For the purpose of this study, we use the statistics of the formation of moons around a Jupiter-like
planet in a circumplanetary disc from Cilibrasi et al. (2021). They performed N-body simulations of the
planet–moons systems, taking into account the interaction between the satellites, which can migrate
inwards into the planet, be engulfed by the planet itself, collide with each other and be ejected by
the system. The final mass distribution of the formed satellites’ systems shows that systems less massive
than the Galilean one are more frequent, representing 85% of their population, although previously
Cilibrasi et al. (2018) found the opposite result. Since satellite seeds (with an initial mass of 10−7 MJ)
are continuously added to their simulations to replace lost satellites, the ones added near the end of
the simulations had sensibly less time to interact, grow and evolve and will bias the distribution towards
low masses. This is not relevant in our dynamical simulations, where the satellites will be considered
test particles. The mass of the moons becomes relevant only in the subsequent tidal evolution and in
determining the surface temperature. For this reason, it is possible to limit our analysis to the
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Earth-mass satellites, that are capable of trapping the heat generated by tidal friction, given their mas-
sive atmospheres. For completeness, the results obtained using the mass distribution from Cilibrasi
et al. (2021) are also shown. Given our set-up, this represents a scenario with an increased probability
of having relatively massive atmospheres around satellites lighter than the Galilean moons, as it will be
discussed later.

Circumplanetary discs cannot be considered isolated objects, since they are continuously accreting
material from the hosting protoplanetary disc. The population synthesis approach is very dependent,
among other things, on the protoplanetary disc’s temperature profile, which greatly varies with the dis-
tance from the star, and influences the dynamics of protosatellites (e.g. Cilibrasi et al., 2021). For that
reason, the statistics of the formation of moons around a Jupiter-like planet cannot be used for other
planets’ mass and location in the protoplanetary disc.

Despite these limitations, we employ their final moons orbital parameters population (which is
almost uniform in the logarithmic semi-major axis space up to ∼300 RJ) as the input of our dynamical
model, to analyse the effect of the interaction of giant planets and their ejection, on the distribution of
the initial moons.

Dynamical simulations

In this work, dynamical simulations are performed to study the ejection process of a gas giant planet
from a planetary system and to understand the influence of close-encounter events on the survivability
of the moons. The impact of the dynamical scattering events on the orbital parameters of the moons is
also investigated.

We consider a planetary system with a Sun-like star (1 M⊙) and three Jupiter-mass (1 MJ) planets.
This specific initial set-up and the planets’ initial conditions are taken from Rabago and Steffen (2019),
being their set of initial configurations proven to be capable of producing close encounters and be a
reliable benchmark. To perform the simulations, we use the N-body code REBOUND (Rein and
Liu 2012) with the IAS15 integrator (Everhart 1985; Rein and Spiegel 2015), which is an adaptive
non-symplectic time step integrator up to the 15th order able to integrate planetary close-encounters
for billions of orbits.

The innermost planet is always placed at 5 AU (i.e. present-day Jupiter, conversely to Rabago and
Steffen (2019) which used 3 AU), and the other two planets are randomly uniformly placed between
1.2 and 1.4 times the period of the previous one, reaching a maximum orbital distance for the third
planet of less than 10 AU. Initial orbital eccentricities and inclinations of the planets are randomly gen-
erated from a Rayleigh distribution with a Rayleigh parameter of 0.01, while the mean anomaly, the
longitude of ascending node, and the argument of pericentre, are randomly uniformly generated
between 0 and 2π. In total, we end up with 17 free initial parameters for the planets, but, applying dif-
ferent machine learning classification algorithms such as principal component analysis (PCA, to find
dominant modes), t-distributed stochastic neighbourhood embedding (t-SNE, which allows to include
also non-linear relations) and random forests from SCIKIT-LEARN Pedregosa et al., 2011), we do not find
any correlation between the initial conditions and the outcome of the simulations. This confirms that
the subsequent dynamical evolution is chaotic.

To avoid collisions that could result in the subsequent merging of the planets, we select a minimum
distance between the bodies during the encounters. As shown by Li et al. (2020), in hydrodynamical
simulations of giant planet collisions, mass exchange and merging between the two planets strongly
diminishes for an impact parameter larger than twice the diameter of the bodies. Therefore, we set
5 RJ as the minimum distance. If this distance is reached during the evolution, the simulation is
stopped, and a new one is started.

Dynamical simulations are evolved for a maximum of 10Myr, following the observational con-
straint in Miret-Roig et al. (2022). In our model, a planet is considered ejected from the system
when it has (i) an orbital distance greater than 100 AU, and (ii) an orbital eccentricity larger than
1. The first condition ensures that the planet is truly ejected far away from the system, i.e. where the
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interaction with the star is relatively weaker and allows the study of the planet–moons system as iso-
lated. The second condition prevents a secular evolution of the ejected planet, as we are only interested
in ejections due to a last strong close encounter event. Secular ejection of a giant planet can result in
even more favourable conditions for the survivability of the moons (Hong et al., 2018), but it would
have required more computational time for the moon’s evolution, making these calculations technically
impractical. In this way, we obtain a lower bound to the estimation of the survivability rate of the
satellites.

From all the simulations between the planets and the central star, we select some simulations with
the ejection of the innermost planet as the final outcome. Since in Cilibrasi et al. (2021) the initial dis-
tributions of the orbital parameters of the moons are calculated only for a Jupiter-mass planet located at
5 AU, we assume the moons to orbit around the initially innermost planet. In this way, we are implicitly
assuming that other moons cannot be captured from the populations orbiting around the other two giant
planets during close encounters. Our initial set consists of 26 293 moons that are massless particles
with initial semi-major axes, eccentricities and inclinations with respect to the host planet as in
Cilibrasi et al. (2021). To ensure the validity of the massless moons assumption, we calculated the
Safronov number (Morbidelli, 2018) for an average moon as

Q = v2esc
2 v2orb

� 10−1, (1)

where vesc is the escape velocity of the moon with respect to another moon, and vorb is the orbital vel-
ocity of the moon. A Safronov number smaller than 1 indicates that the velocity acquired after the
dynamical scattering between two moons is not sufficient for a moon to escape the potential well of
the planet, and thus, a typical value of the order of 10−1 confirms a weak gravitational interaction
among the moons themselves.

The evolution of the moons is relatively computationally expensive, and therefore, to reduce the cal-
culation time, we avoid placing the moons around the Jupiter-like planet from the very beginning of the
simulation. In fact, given a simulation where the first planet is ejected, the moons are placed 20 years
before the last dynamical scattering event, to let every moon to complete at least half an orbit before the
close encounter. To do so, we first select the simulations with the ejection of the innermost planet, and
we store the time of the last close encounter. Then, we rerun these simulations starting from 20 years
before the last close encounter, but this time including the moons, that are now evolved until the planet
reaches 100 AU from the host star. Earlier close encounters between the planets are likely to happen in
the simulations, and they will probably affect the initial distributions of semi-major axes, eccentricities
and inclinations of the moons, while also leading to the escape of some outer moons. However, the
outcome of the simulations is mainly affected by the impact parameter of the last close encounter
(i.e. the minimum distance between the two planets during the close encounter event), as shown by
Hong et al. (2018). Hence, we only consider the last close encounter in our simulations.

Tidal model

The tidal evolution of the orbital parameters (i.e. semi-major axis and eccentricity) of the moons is
important for determining the timescale in which habitable conditions can be found on the surface
of the moons. To this aim, we solve the time-dependent tidal heating differential equations to study
the evolution of the orbital parameters. Hut (1981) proposed the first comprehensive set of coupled
differential equations for a constant time lag model, which takes into account the spin evolution of
both the primary and secondary bodies, while only tides generated on the primary body from the sec-
ondary are considered. Since we are interested in the tides generated on the moon (secondary body), we
use an updated version developed by Bolmont et al. (2011) that includes spin evolution, and tides gen-
erated on both bodies. The model is built to study the evolution of the tidal interaction between brown
dwarfs (BDs) and planets orbiting around them, and given the similarity of the system (i.e. absence of a
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central star) it is suitable to be employed for our case study, where the primary body is the Jupiter-mass
FFP.

The coupled differential equations, which consider the secular evolution of the semi-major axis a,
the eccentricity of the orbit e, the spin frequency of the planet Ωp and of the moon Ωm, are

1

a

da

dt
= − 1

Tm
Na1(e) −Vm

n
Na2(e)

[ ]

− 1

Tp
Na1(e) −Vp

n
Na2(e)

[ ] (2)

1

e

de

dt
= − 9

2Tm
Ne1(e) − 11Vm

18n
Ne2(e)

[ ]

− 9

2Tp
Ne1(e) − 11Vp

18n
Ne2(e)

[ ] (3)

1

Vm

dVm

dt
= − gm

2Tm
No1(e) −Vm

n
No2(e)

[ ]
(4)

1

Vp

dVp

dt
= − gp

2Tp
No1(e) −Vp

n
No2(e)

[ ]

− 2

Rp

dRp

dt
− 1

rg

drg
dt

(5)

where n is the mean motion, γ = h/IΩ is the ratio between the orbital angular momentum (h) and the
spin angular momentum (IΩ), rg is the radius of gyration of the planet from Ip =Mp(rgRp)

2, and Na,
Ne and No are polynomial functions of the eccentricity (see Appendix A). The dissipation timescale
of the planet is calculated as

Tp = 1

9

Mp

Mm(Mp +Mm)

a8

R10
p

1

sp
, (6)

where Tm is the dissipation timescale of the moon (obtained by swapping the p and m subscripts in the
previous equation). The internal dissipation factor of the FFP σp is 2.006 × 10−60 g−1 cm−2 s−1 from
Bolmont et al. (2011), while the moon has

sm = 2

3

Gk2Dtℓ
R5
m

, (7)

where G is the gravitational constant, k2 is the Love number characteristic of the moon and Δtℓ is the
constant time lag. In a constant time lag model, the tidal bulge lags behind or ahead of the moon with a
fixed time difference. Efroimsky and Lainey (2007) define the relation between the quality factor of the
moon Q and the angular distance δ as

Q−1 � 2d = 2Vrev
m Dtℓ, (8)
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where Vrev
m is the Keplerian velocity of the moon around the FFP, which depends on the orbital para-

meters of the FFP–moon system. It follows that

sm = k2
Q

G

3R5
mV

rev
m

, (9)

with the factor k2/Q playing a crucial role in determining the dissipation timescale of the moons. The
tidal evolution is discussed hereinafter both for Earth-mass satellites, as well as for moons following
the mass distribution of Cilibrasi et al. (2021). This is possible because moons are assumed to be mass-
less particles in the dynamical simulations, and thus the orbital parameters at this stage are not affected
by the mass.

For Earth-mass satellites, we assume k2 = 0.302 and Q = 280 from Lainey (2016). In the case of
moons with the mass distribution of Cilibrasi et al. (2021), following Henning et al. (2009), we use
Q = 100 and

k2 = 3

2

1

1+ �m
, (10)

where the effective rigidity of the body is

�m = 19

2

m

rmgRm
, (11)

with g the surface gravity of the satellite, μ the material rigidity and ρm the mass density of the satellite,
which we assume to be the average mass density of the four moons of the Galilean system (ρm = 2.58 g
cm−3). Yoder and Peale (1981) estimated a value of μ = 5 × 1011 dyne cm−2 for a common rocky body.

The integration of the equations is performed using SOLVE_IVP from the PYTHON library SCIPY

(Virtanen et al., 2020), using the Backward Differentiation Formula (BDF) solver with adaptive
time step, and absolute and relative tolerances of 10−40 and 10−12, respectively. For each planet–
moon system, the initial conditions of a0 and e0, with t0 = 1Myr, are taken by the final semi-major
axes and eccentricities from the dynamical simulations, while the initial angular frequencies of the pla-
net and the moon require a more detailed discussion. Since from our tests we noticed that the initial Ωm,
0 does not noticeably affect the results of the evolution, we assume that all the moons at the beginning
are tidally locked with the planet, allowing us to calculate an initial spin frequency of the moon that
depends on its orbital distance. Regarding the Jupiter-like planet, as an initial condition, we assume
the same spin frequency as Jupiter’s current one

V p,0 = 2p

PJ
= 1.78× 10−4 rad s−1, (12)

where PJ is the rotational period of Jupiter.
For the evolution of the angular frequency of the planet, we find that the evolution of the radius as a

function of time plays the dominant role. Since an FFP does not experience stellar irradiation, we can-
not use radius evolution models for gas giant planets around a star. Leconte (2011) developed a model
for determining the radius and other properties of isolated objects (i.e. brown dwarfs, FFPs) from their
masses and ages. The main difference between FFPs and irradiated objects resides in the direct bloating
of the outer atmospheric layers of the latter, which slows down the gravitational and thermal evolution
of the planet itself. When using this model for the evolution of the planetary radius, we need to set-up
our time integration extremes between 1Myr and 10 Gyr. Following our assumption of an escaping
FFP with a Jupiter mass, the initial radius of the FFP is set at 1.6 RJ at 1 Myr, and it shrinks to 1 RJ

at 10 Gyr (see Appendix B for the planetary radius evolution profile).
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Lastly, moons that enter the Roche radius of their host planet are removed from our sample as tidal
forces disrupt them. The Roche radius for a rocky satellite can be calculated as

dRoche = 2.44× Rp
rp
rm

( )1/3

= 2.43 RJ if Rp = 1.6 RJ

1.52 RJ if Rp = 1.0 RJ,

{
(13)

from Roche (1849), where ρp is the mass density of Jupiter, Rp is the giant planet radius and ρm is
the mass density of the satellites. The values in equation (13) are calculated for Earth-mass satellites
(using the Earth mass density ρm = 5.51 g cm−3), and for the Cilibrasi et al. (2021)’s mass distribution
(with ρm = 2.58 g cm−3, as previously discussed). Since the mass density of the satellites is constant, the
Roche radius is the same for all the moons, and is compared with their perihelion distance dper = a (1− e),
to check whether the moons, at their closest distances to the planet, are inside the Roche radius.

Atmospheric modelling

Without considering the irradiation from the star, in our model we only have one possible energy source,
i.e. the tidal heating mechanism. Other energy sources can also play important roles under specific con-
ditions, which usually depend on the formation history of the moon. Incident planetary radiation (Dobos
et al., 2017; Haqq-Misra and Heller 2018), secular cooling after the moon’s formation, radiogenic heat-
ing due to the decay of active radionuclides (Nimmo et al., 2020) and runaway greenhouse effect (Heller
and Barnes 2015) are other possible heating mechanisms. In addition to the thermal budget, the optical
depth of a potential atmosphere could trap part of the emitting radiation producing a considerable
increase in the temperature of the planet, allowing the possible formation and maintenance of liquid
water (Ávila et al., 2021). In addition to this, without the stellar heliosphere, an FFP and its moons
are considerably less shielded from galactic cosmic rays, which represent the main chemical driver
for the formation of water. Given the fact that the link between the composition and density of Solar
System moons’ atmospheres and their formation histories is still not well understood (e.g. Lammer
et al., 2018), we study a suit of atmospheric conditions by setting different surface pressures on each
surviving moon. Considering only tidal heating, we are calculating a lower estimate of the possible
moons with habitable conditions at their surfaces, since other energy sources (which are highly sensitive
to the planet–moons’ initial conditions and formation history) could also play major roles.

The effective temperature of the moon is

T4
eff =

Ėtidal

4pssberR2
m

, (14)

where σsb is the Stefan–Boltzmann constant, er = 0.9 is the infrared emissivity factor (Henning et al.,
2009), Rm is the radius of the moon and the tidal heating energy flux is

Ėtidal = 21

2

Gk2M2
pR

5
mne

2

Qa6
, (15)

where G is the gravitational constant, n the mean motion of the orbit, a the semi-major axis, e the
eccentricity and Mp = 1MJ the mass of the FFP. The second-order Love number k2 and the quality fac-
tor Q of the moons depend on the internal structure and composition of the satellites, and they were
introduced in the previous section. We note that the tidal heating energy flux follows a power-law rela-
tion between a, e and Mm. In particular, in equation (15), expanding the mean motion n in terms of the
semi-major axis and the radius of the satellite Rm in terms of the mass, we obtain

Ėtidal / a−15/2e2M5/3
m , (16)

which shows that the semi-major axis plays the dominant role in the tidal heating mechanism, followed
by eccentricity.
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Considering the possible presence of an atmosphere, different atmospheric escape processes can pre-
vent the atmosphere from remaining stable. Many features of the system, including the mass and the
exospheric temperature of the moon, the magnetic field of the planet, the incident flux of cosmic
rays and the outgassing processes of the mantle, determine the mass and the composition of the atmos-
pheric envelope and their evolution in time. Without modelling the interior of the moon and the other
mentioned processes, we assume a CO2-dominated atmosphere, and we only consider thermal (hydro-
static) escape as a criterion to assign an atmospheric envelope to the different moons. Following Seager
(2010), therein equation (4.50), we compare the molecular thermal velocity with the gravitational
escape velocity

M2/3
m

T (t = 0)
.

36kB
GmmmH

3

4prm

( )1/3

, (17)

where Mm is the mass of the satellite, kB is the Boltzmann constant, μm = 44.01 is the mean
molecular weight of a CO2 molecule, mH is the mass of a hydrogen particle and the exospheric
temperature, T(τ = 0), is calculated as the temperature at the top of the atmosphere, where the optical
depth τ is equal to zero, i.e.

T (t = 0) = 2−(1/4)Teff . (18)

The maximum altitude of the atmosphere for each moon is calculated fixing the pressure at the top
of the atmosphere to p (τ = 0) = 10−5 bar, and taking into account the difference in the effective tem-
perature. Combining the definition of scale height H = kBT (μmmHg)

−1 (with g the surface gravity of
the moon) and the hydrostatic equilibrium, we obtain the maximum altitude

zmax = −H [T (t = 0)] ln
p(t = 0)

p0

[ ]
, (19)

where p0 is the surface pressure, which in our study is a parameter varied between 0.1 and 100 bar.
Note that, in the case of varying masses of the moons (following Cilibrasi et al., 2021), the surface
gravity of the satellites will also affect the scale height and thus the maximum altitude of the
atmosphere.

Different atmospheric configurations are determined by the formation history and the evolution of
the moons. For this reason, the mass is not the only parameter to have a direct influence on the atmos-
pheric surface pressure (Lammer et al., 2018), as shown for example by comparing the Earth (p = 1 p⊕,
m = 1M⊕), Venus (91 p⊕, 0.82M⊕) and Titan (1.5 p⊕, 0.02M⊕). Therefore, we decided to investigate
also various surface pressure values in the Solar System, assuming Venus as the upper limit. However,
for the moons in Cilibrasi et al. (2021)’s sample that are smaller than the ones in the Galilean system,
p0 = 100 bar might be considered unphysical, according to what we observe in the Solar System.

To calculate the surface temperature, we assume the atmosphere to have both a radiative and a con-
vective regime. We consider a one-dimensional vertical model in which the pressure is always calcu-
lated assuming hydrostatic equilibrium, while the temperature at each layer is derived depending on the
atmospheric heat transport regime

T =
Teff 1

2 (1+ Dt)
[ ]1/4

if d logT
d log p , ∇ad

Tb
p
pb

( )∇ad

if d logT
d log p . ∇ad ,

⎧⎨
⎩ (20)

where D = 1.5 (Marley and Robinson, 2015) is the diffusivity factor, Tb and pb are the temperature and
pressure estimated at the boundary between the radiative and the convective regimes, while ∇ad is the
adiabatic lapse rate of the atmosphere, which depends on the adiabatic index Γ (∇ad = G− 1/G).
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The surface temperature of the moon is determined by the optical depth

t(p) = −
∫zmax

z|p
kr(z)radz =

∫ p(t=0)

p
kr(p)g

−1dp, (21)

where ρa is the mass density of the atmosphere, p(τ = 0) = 10−5 bar is the pressure at the top of the
atmosphere and kr is Rosseland mean opacity at each layer. The Rosseland mean opacities for a
CO2-dominated atmosphere are taken from the tables in Badescu (2010), specifically computed for
an FFP case.

Results

Dynamical simulations

We perform 8000 simulations, including only the star with its planetary system. After 10Myr, only a
few planetary systems remain stable, while the majority become dynamically unstable, causing one pla-
net to be ejected from the planetary system or a collision among two of the giant planets. The three
giant planets in the simulations are observed to often exchange their relative positions. As a result,
we find a comparable rate of ejection among the three planets. The outcomes are shown in Table 1,
where we note that the distribution of the ejections between the three planets is roughly the same,
and it is relatively common. Such a high rate of ejections is expected since we adopted Rabago and
Steffen (2019) model, which is designed to produce ejections among giant planets.

The 26 293 moons from Cilibrasi et al. (2021) are placed around the ejected planet in the simula-
tions where the ejection of planet #1 is the final outcome. Hong et al. (2018) found that the impact
parameter of the close encounter event plays a major role in determining the survivability of the
moons. To this aim, we present the results of two simulations with different impact parameters.
Sim1 and Sim2 are two simulations with respectively smaller (b1 = 15.36 RJ) and much larger
(b2 = 88.61 RJ) impact parameters than the median of the distribution (bmed = 21.02 RJ), as shown in
Fig. 1. Sim1 is in the second quartile of the distribution, while Sim2 is in the last one.

Moons are considered to have survived if they remain inside the Hill radius of the host planet at the
end of the simulation. Since the Hill radius depends on the orbital distance of the planet from the cen-
tral star, at 100 AU the Hill radius for a Jupiter-mass planet is 6.83 AU (cf. 0.34 AU of Jupiter at 5 AU),
allowing the ejected planet to retain also relatively eccentric and distant moons. We find that moons
initially closer to the planet have a higher probability of remaining bound. The initial spatial configur-
ation of the planets (i.e. their eccentricity, inclination, mean anomaly, longitude of ascending node and
argument of pericentre) does not influence the statistics of the planet’s simulations, as tested by PCA
and t-SNE algorithms. Also, only the initial semi-major axis of the moons plays a role in the final dis-
tribution of the surviving ones, not their exact position on the orbit.

In Figs. 2 and 3 we show the moons’ orbital parameters evolution due to the last close encounter
events happening in Sim1 and Sim2. In blue, the semi-major axis and eccentricity’s distributions of the
initial population of moons from Cilibrasi et al. (2021) are shown. In green, the initial orbital

Table 1. Outcomes of the dynamical simulations

Outcome Occurrences Percentage

No ejection 43 0.54
Planet #1 ejected 1402 17.53
Planet #2 ejected 1508 18.85
Planet #3 ejected 1438 17.97
Collision 3609 45.11
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Fig. 1. Minimum close encounter distance among all the dynamical scattering events for all the 1402
simulations with the ejection of planet #1 as the outcome. The simulations are performed between three
Jupiter-mass planets and a Sun-like star. For impact parameters smaller than 5 RJ, we consider that
the two planets collided with each other, representing a different outcome of the simulations. The plot is
cut at 100 RJ, while there is still a very long tail of simulations with larger impact parameters. In red
and blue, we show the impact parameters of the last close encounter of Sim1 and Sim2, which will be
analysed in more detail during this work. We note that b1 = 15.36 RJ for Sim1 is below the median of
the distribution (bmed = 21.02 RJ), while b2 = 88.61 RJ is well above the median. Note that while we
show the impact parameters of the closest dynamical scattering event for all the 1402 simulations,
for Sim1 and Sim2 we show the impact parameter of only the last close encounter, when the moons
are placed around the planet.

Fig. 2. Dynamical evolution and survivability of the moons in Sim1 (impact parameter b1 = 15.36 RJ).
We compare the distributions of semi-major axes (left panel) and eccentricities (right panel) between
the initial statistics of the total 26 293 moons from Cilibrasi et al. (2021) (in blue), the initial distribu-
tions of the surviving moons (in green) and the final distributions of the surviving moons after the close
encounter event (in red). Note that the green distribution is a subset of the total initial distribution in
blue. In Sim1, 7570 moons remained bound with the planet after the close encounter, corresponding to
a 28.79% of survivability rate. The final distribution of the semi-major axis of the surviving moons is
much more spread out, while the final eccentricities substantially increase due to the dynamical scat-
tering event. Grey-dashed lines represent the Galilean moons orbital parameters, while the solid black
line is placed at the last close encounter impact parameter.
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parameters of the fraction of moons which survived the ejection process are represented, i.e. they are a
subset of the initial populations in blue. Lastly, in red, we show the final semi-major axes and eccen-
tricities of the surviving moons, after they evolved in time until the planet is considered ejected. We
notice that moons with relatively small initial semi-major axes have higher chances of surviving the
close encounter event, as described by the difference between the blue and green populations. This
is in accordance with the findings of Rabago and Steffen (2019). Regarding the initial eccentricities,
they do not play a role in selecting the final surviving moons.

After the close encounter event, the final orbital parameters distributions (in red) are substantially
affected by the gravitational interaction with the perturber. This translates to a wider distribution of
the final semi-major axes of the surviving moons and a steep increase in the final distribution of the
eccentricities.

Comparing Figs. 2 and 3, we notice that the moons’ survival rate greatly varies with the impact par-
ameter of the simulation; in Sim1 28.79% of the moons survived the close encounter event, while
75.87% of moons survived in Sim2.

In the simulation with the lower impact parameter (Sim1), most of the moons with semi-major axis
smaller than Ganymede’s (14.97 RJ) remain bound to the planet, while in Sim2 this boundary is at a
larger orbital distance, larger than, e.g. Callisto’s (26.33 RJ). In particular, the semi-major axis of the
innermost moons in Sim2 is not affected by the dynamical event. Regarding the increase in the orbital
eccentricities, in Sim1 they usually reach values larger than 0.1, whereas in Sim2 the limit is much
lower, at around 0.01. This again suggests that the innermost moons are less gravitationally affected
by the perturber, and so their orbits remain more stable.

The final distributions of the semi-major axis and eccentricity of Sim1 are the starting point for the
orbital parameters’ evolution, as described in the Methods. Hereinafter, we only use the results of
Sim1, being the lower estimate on the number of surviving moons. In our analysis, the moons will
be considered Earth-mass during the tidal evolution stage, but we will compare the results using the
mass distribution of Cilibrasi et al. (2021).

Fig. 3. Dynamical evolution and survivability of the moons in Sim2 (impact parameter b2 = 88.61 RJ).
We compare the distributions of semi-major axes (left panel) and eccentricities (right panel) between
the initial statistics of the total 26 293 moons from Cilibrasi et al. (2021) (in blue), the initial distribu-
tions of the surviving moons (in green) and the final distributions of the surviving moons after the close
encounter event (in red). Note that the green distribution is a subset of the total initial distribution in
blue. In Sim2, 19 945 moons remained bound with the planet after the close encounter, corresponding
to a 75.87% of survivability rate. Having a larger impact parameter, moons in close-in orbits (i.e. with
semi-major axes compared to the Galilean system ones) are less affected by the dynamical scattering
event and less perturbed. Outer moons experience again an increase in eccentricity and semi-major
axis. Grey-dashed lines represent the Galilean moons orbital parameters, while the solid black line
is placed at the last close encounter impact parameter.
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In the latter case, the final distribution of the masses of the surviving moons is a subset of the initial
distribution. The mass of the moons does not affect the ejection process, with the survival rate only
depending on the initial semi-major axis. Since the mass distribution weakly correlates with the semi-
major axis in Cilibrasi et al. (2021, fig. 10), the final mass distribution resembles the initial one.
However, the ejection process favours moons with a & 50 RJ (see Fig 2), which tend to have lower
masses. In particular, we find that around 8% of the surviving moons are more massive than
Europa, with the most massive moon of the sample being slightly less massive than the Earth.

Tidal evolution

The surviving moons in Sim1 are evolved with the tidal model (equations (2)–(5)). First, we notice that
625 moons reached, during the tidal evolution, orbital distances smaller than the Roche radius of the
Jupiter-like planet, which is 2.43 RJ for a planetary radius of 1.60 RJ (equation (13)). Removing them,
we end up with a final population of 6945 surviving moons. Moons disrupted by tidal friction form
debris material, which accumulates in rings. We expect that FFPs can retain rings of debris material
around them, like Saturn and Jupiter’s ones, and following the mechanism proposed by Crida and
Charnoz (2012, 2014) new satellites can also generate around FFPs forming from their rings, in a simi-
lar way as van Lieshout et al. (2018) showed that this mechanism might form second-generation pla-
nets around white dwarves. We do not study these second-generation moons here.

In Fig. 4 we show the correlations as the kernel density estimation (KDE) (i.e. a
Gaussian-kernel-based probability density, Scott 1992) between the eccentricity and semi-major axis
for (a) initial orbital elements of the moons that survived the last close encounter (green distribution
in Fig. 2), (b) after the ejection process (red distribution in Fig. 2, removing the moons inside the
Roche radius) and (c) after their orbital parameters’ evolution at 10 Gyr (considering Earth-mass
moons). Between panels (a) and (b), the general trend observed is the same as in Fig. 2, with a
steep increase in the eccentricities. In panel (b), the new orbital parameters show some degree of
power-law correlation, absent in panel (a), which is a result of the dynamical scattering event. In
panel (c), this correlation vanishes due to the tidal evolution of the eccentricities and semi-major
axes of the satellites, as the orbits circularize due to tidal dissipation. In other words, it is possible
to interpret each event as a filtering operator that shapes the probability density function in two opposite
directions; while the first operator (a)�(b) considerably reduces the dispersion in the (a, e) parameter
space (mainly in the e component), the second (b)�(c) broadens the probability density function
(PDF) in the eccentricity variable. As expected, both processes play a crucial role in shaping the prob-
ability of finding a moon with given orbital characteristics.

We also note that the tidal evolution of the moons (b)�(c) strongly depends on its initial semi-
major axis and eccentricity. Moons tend to migrate inwards, reaching orbital configurations closer to
the FFP. For these satellites, which experience more tidal heating, a more marked decay of the orbital
eccentricity is observed. Conversely, more distant satellites have a weaker interaction with the planet,
making their eccentricities more stable. The timescale for the circularization of the orbit depends
mostly on the dissipation factor of the moon (σm), as shown in Bolmont et al. (2011).

Surface temperature

The surface temperature of all the 6945 moons is calculated assuming different surface pressure values
(p0 = 0.1, 1, 10 and 100 bar) for a CO2-dominated atmosphere. Considering hydrostatic atmospheric
escape, over the entire surface temperature evolution, moons which get particularly close to the FFP
are not considered capable of retaining an atmosphere, in accordance with equation (17), and their
number varies according to the different surface pressure conditions. After this last stage, the remaining
moons constitute the final investigated population.

The thermal profile of all the moons at every time step is computed using equation (20), between
1Myr and 10 Gyr. During the evolution, the orbital parameters of the moons change due to tidal
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Fig. 4. KDE of the correlation between the semi-major axes and eccentricities of the surviving moons. In panel (a), we note a flat distribution of the initial
shape of the KDE. In panel (b) the correlation after the ejection process happened in Sim1 between the semi-major axis and eccentricity appears, and the
entire population of surviving moons is shifted at higher eccentricities, as already observed in Fig. 2. In panel (c), the final correlation after 10 Gyr of tidal
evolution for the Earth-mass surviving moons becomes much more dispersed than the previous distribution (panel b). The red contour lines show the 5th,
50th and 95th percentiles of the distributions. The normalization in each panel is constrained as

� �
KDE( u, v) du dv = 1, where u= log(a) and v= log(e).
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dissipation, and Teff changes consequently. The surface temperature of the moons is influenced not only
by the evolution of the effective temperature, but also by the surface pressure, and hence, by the total
mass of the atmosphere. In particular, the total mass of the atmospheric envelope of each satellite varies
as its maximum altitude changes as a function of the effective temperature (equation (19)).

In Fig. 5 we show one example of a Earth-mass moon with Teff = 183.9K, a surface gravity of 981 cm s−2,
a scale height of H = 2.96 km and a maximum height of the atmosphere of zmax = 34.1 km.
The boundary between the radiative and the convective regime (red horizontal line) is at ∼10−1 bar,
followed by an increase of temperature in the convective domain, which, in this particular case, results
in a temperature at the surface compatible with the presence of liquid water.

The evolution of the surface temperature of the moons greatly varies with different surface pressure
conditions (from p0 = 0.1 to p0 = 100 bar), as shown in Fig. 6. Instead of representing each moon, we
compute the PDF, calculated with a KDE, of finding one moon in a certain time (t) and temperature
(Tsurf ) interval, indicated by the colour bar. For the sake of clarity, the plot is limited to Tsurf > 10 K,
i.e. moons colder than this limit are not shown, and the KDE is calculated without considering
them. Colder moons are removed because their surface temperature could be dominated by other heat-
ing mechanisms (e.g. radiogenic heating). We note that by increasing the surface pressure (p0) and thus
the mass of the atmospheric envelope, satellites reach higher surface temperatures and increasingly
populate the HZ (i.e. the region in the parameter space where moons get surface temperatures compat-
ible with the presence of liquid water), as reported by the number in each panel that indicates the frac-
tion of the moons in the HZ. The temperature boundaries of the HZ get wider increasing p0, resulting in
a larger range of Tsurf capable of hosting liquid water. Some satellites could even become hotter than
the boiling temperature of water. With increasing p0, we also notice a clear trend of increasing time
spent in the HZ, as it is also observed in Fig. 7.

In Fig. 6 we report, above the hatched area, the probability for a moon to lie in the HZ during the
entire temporal evolution, calculated as the integral over the bins in the HZ. However, to observe such
an object, we should determine the timeframe in which liquid water is present. Liquid water conditions
could be reached by the satellites also during their temporal evolution, and not necessarily from the

Fig. 5. Earth-mass moon’s atmosphere temperature profile, indicating the boundary between the
radiative and convective regimes (red line). Above the boundary, the atmosphere is in the radiative
regime, while below the boundary, the heat transport is dominated by the convective motion of the
air. Habitable conditions (Tsurf = 305 K) are reached for this particular moon: as initial conditions
we consider the p0 = 1 bar pressure case, Teff = 183.9 K and surface gravity g = 981 cm s−2 which
lead to an atmosphere scale height of 2.96 km and air density at the top of the atmosphere of 10−8

g cm−3.
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Fig. 6. PDF, calculated as the KDE, to find a moon at a certain surface temperature as a function of
time. Different panels show increasing surface pressures. The hatched area represents the HZ, and the
contour lines show the 5th, 50th and 95th percentiles of the distributions. We note that the presence of
more massive and substantial atmospheres increases the surface temperature of the moons and the
number of moons inside the HZ. Increasing p0 also increases the timescale spent in the HZ. Above
the HZ areas, we report the probability for a moon orbiting an FFP to lie in the HZ during its lifetime.
The normalization of the KDE is analogous to Fig. 4.

Fig. 7. Time spent in the HZ for the moons which survived the close-encounter event of Sim1. Note
that moons with a more substantial atmosphere (p0 = 100 bar) can retain liquid water on their surface
up to 1.6 Gyr. For p0 = 0.1 bar, moons could be habitable up to 7.3 Myr, while for an Earth-like surface
pressure (p0 = 1 bar) liquid water could be retained up to 52 Myr on the surface, and for p0 = 10 bar
liquid water could be retained up to 276 Myr.
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beginning of their tidal evolution. In addition to this, if we assume that liquid water is a crucial ingre-
dient for the emergence of life, this timeframe should be compatible with the timescale of producing
basic life forms (Cavalazzi et al., 2021).

In Fig. 7 we report the distribution of the time spent in the HZ by our set of moons. We note that as
the surface pressure and the total mass of the atmospheric envelope increase, also the number of moons
in the HZ increases. For p0 = 0.1 bar, moons could be habitable up to 7.3 Myr, while for p0 = 1 bar a
maximum time of 52Myr is reached and the peak of the distribution is at 45 Myr. Going to more mas-
sive atmospheres (p0 = 10 bar) the maximum and the peak are found at 276 and 180Myr, respectively.
In the p0 = 100 bar case, we notice that an increasing number of moons meets the habitable conditions
up to 1.6 Gyr, with a peak at 750Myr.

We note that given the assumptions and the limitations of our model, the probability of developing
habitable conditions on the surface is proportional to the atmosphere’s surface pressure. However, this
parameter alone is not sufficient to determine the presence of liquid water. From now on, we will focus
only on the p0 = 1, 10 and 100 bar cases, where we have a larger number of moons experiencing hab-
itable conditions. For the lower p0, the small number of habitable moons implies a stronger dependence
on the initial sample from Cilibrasi et al. (2021), and, for the sake of clarity, the few HZ moons are only
reported in Fig. 12 in Appendix C.

In Fig. 8 we show the dependence of reaching the HZ on the orbital parameters of the moons. The
temporal evolution of the different pressure cases is shown. In grey, we represent the sub-HZ satellites
(i.e. colder than the HZ conditions), in orange the super-HZ ones (i.e. hotter than the HZ conditions),
while the blue satellites lie in the HZ. We note that the number of moons in the HZ increases when
increasing the surface pressure, as already observed in Fig. 7. The super-HZ satellites are usually
the ones closer to the FFP, and they travel over the HZ, during the orbital circularization, before getting
colder than the freezing temperature of water. In Fig. 8, we also observe the temporal evolution of the
orbital parameters, in particular the decay of the eccentricities due to tidal dissipation. It also shows that
only the moons with a relatively high eccentricity could reach habitable conditions. This effect is
reduced by increasing the surface pressure, where moons with smaller eccentricities could still be
found in the HZ. All the HZ and super-HZ moons reside in a cluster found for close-in and eccentric
satellites. In particular, the moons initially closer to the planet and that migrate less, spend a large frac-
tion of their evolution in the HZ. This is shown in Fig. 8, where these moons populate the HZ cluster as
it shrinks in time.

While in Fig. 7 we show how long moons lie in the HZ, in Fig. 8 we focus on when the habitable
conditions are met during the tidal evolution. For p0 = 1 bar, habitable moons disappear after 10Myr
(note the logarithmic scale of the times), and their number remains relatively stable before that
(approximately 400). For p0 = 10 bar, moons stay in the HZ up to 100Myr, and super-HZ moons
disappear after 10Myr, partially populating the remaining HZ moons in the next timeframe. Lastly,
for p0 = 100 bar, HZ moons are still present at 1 Gyr, while super-HZ moons disappear only
after 100Myr. As a general trend, the number of HZ moons increases with increasing p0. In
Appendix C, the temperature of the moons in the HZ is reported with an additional figure.

From equation (16), we observe that the semi-major axis plays the most important role in determin-
ing which moons are habitable. Due to the tidal interaction between the moon and the FFP, the energy
lost heating up the surface of the moon determines its orbital decay. In this way, some eccentric satel-
lites, which have an initial semi-major axis larger than 10–20 RJ (depending on p0), migrate to closer
orbits, reaching habitable conditions at a later time. However, these migrating satellites quickly circu-
larize their orbits, leaving the HZ at a relatively early timescale. On the other hand, the more distant,
less eccentric satellites are colder and experience less energy loss from the tidal heating mechanism,
making their orbits relatively more stable during their temporal evolution. As expected from equation
(16), the initial semi-major axis a0 in the tidal model is crucial in determining the timescale for the
circularization of the orbit, and thus to keep the tidal heating mechanism effective. High initial orbital
eccentricities e0 make distant moons potentially habitable, since the HZ region shifts to larger orbital
configurations for high eccentricities (see Fig. 12).
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Non-uniform mass distribution

As reported in equation (16), the mass of the moons, along with the orbital parameters, determines their
tidal evolution. In order to take into account this aspect, in addition to the constant Earth-mass model,

Fig. 8. Eccentricity and semi-major axis of Earth-mass moons which survived Sim1, do not enter the
Roche radius of the FFP, and can retain an atmosphere. The temporal evolution of the moons’ para-
meters is shown in the vertical direction, while different surface pressure conditions are represented in
the different columns. The moons are divided as follows: sub-HZ moons are the ones with a surface
temperature colder than the freezing point of water, super-HZ are the warmer ones (above the boiling
point), while HZ moons are capable of retaining liquid water on their surfaces. The sub-HZ moons are
represented with the KDE and the grey contour lines, which show the 5th, 50th and 95th percentiles.
With the same percentiles, also HZ and super-HZ moons are represented with a KDE in blue and
orange respectively. We note that the number of moons in the HZ increases for higher surface pres-
sures, and satellites with larger p0 can remain habitable for longer times. In Appendix C the surface
temperatures of the HZ moons are explicitly shown. The normalization of the KDE is analogous to
Fig. 4.
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we study the habitability of the moons with the mass distribution from Cilibrasi et al. (2021). It initially
includes relatively low-mass satellites, and, after the ejection, only 8% of moons are more massive than
Europa. We repeat the same analysis as of the Earth-mass case using the different atmospheric surface
pressures. In this case, the total mass of the atmospheric envelope of each satellite varies as its
maximum altitude changes with the surface gravity and the effective temperature (equation (19)).
In addition to this, we limit our calculations to p0≥ 1 bar, since with lower values very few
moons enter the HZ. Low-mass satellites are not expected to retain dense atmospheres (i.e. with
p0 = 100 bar), as observed in the Solar System.

However, it is worth mentioning that, even with these limiting assumptions, the low-mass satellites
do not generate enough tidal heating to heat up the atmosphere and their surface, and to produce liquid
water. Another problem that could affect this class of moons is the atmospheric loss via thermal escape;
however, they are too cold to make this process effective, and only the moons that enter the Roche limit
will produce enough heating, but these are removed from our sample by construction.

In Figs. 9 and 10, we show the influence of the mass, semi-major axis and eccentricity on the num-
ber of habitable moons and on their presence in the HZ. Figure 9 shows that only the more massive
satellites populate the HZ. Denser atmospheres decrease the minimum mass of habitable satellites.
In particular, at p0 = 1 bar the minimum mass of the satellites in the HZ is Mm = 1.81 × 1025 g, at
p0 = 10 bar is Mm = 4.76 × 1024 g and at p0 = 100 bar is Mm = 2.21 × 1024 g. Regarding the orbital
parameters, we observe the same general trend as for the Earth-mass case (Fig. 8), but to enter the
HZ, the moons should reach smaller and more eccentric orbital configurations.

In Fig. 10 we also observe a less pronounced evolution of the orbital parameters (in particular the
eccentricity) for the sub-HZ moons, compared to Fig. 8. This is because, very low-mass satellites,
which also constitute the majority of the moons, do not strongly tidally interact with the FFP. This
translates to more stable orbits during the temporal evolution, as well as less substantial surface heating
coming from tidal dissipation. With respect to the orbital parameters, the mass plays a minor role in
tidal evolution. For instance, the most massive moon of Cilibrasi et al. (2021)’s sample (Mm =
5.42 × 1027 g), even with a0 = 5.06 RJ, but with a small eccentricity (e0 = 0.04), experiences a
particularly fast orbital circularization (& 1Myr), resulting in a short time spent in the HZ.

Assuming this mass distribution, the moons will populate the HZ for timescales shorter than 1 Gyr.
This is because, given the smaller number of massive satellites in the distribution, it is statistically
less probable to find a moon with orbital parameters compatible with long HZ timescales. In fact,
for p0 = 1 bar, moons could populate the HZ up to 15Myr, while for p0 = 10 bar and p0 = 100 bar,
habitable conditions are retained up to 166Myr and 917Myr, respectively.

Limitations

Our results are biased by the many assumptions made throughout the modelling. First, we assumed a
planetary system with three Jupiter-like planets. Dynamical simulations with different masses of the
perturbers were performed by Hong et al. (2018), showing that more (less) massive perturbers have
smaller (larger) stability boundaries. Regarding the number of giant planets per system, increasing
the number of simulated planets also increases the number of ejected FFPs from the system
(Anderson et al., 2019). Changing this number could affect the dynamics and thus the survivability
rate of the moons.

Regarding the survivability of the moons around the escaping planet, we only studied the effect of a
last strong close encounter on their orbital parameters, completely neglecting the role played by previ-
ous close encounters on the initial population and orbital parameters of the moons. Studying more in
detail a single simulation (Sim1) with a considerably small last close encounter, the more distant moons
were anyway lost during the evolution, and their orbital parameters were substantially affected also not
considering the entire dynamical evolution. Even moons captured by the ejecting planet from the per-
turber are potentially capable of ending up in very eccentric orbits, which could allow distant satellites
to become habitable.
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Since our moons are considered massless particles during the dynamical evolution, their mutual
interaction was not calculated. Also after the ejection process, in the tidal model, we assumed only sin-
gle planet–moon systems, completely neglecting the interaction among different satellites in the tidal
evolution. Migrating satellites, under the effect of tidal dissipation, are likely captured in resonant con-
figurations, which can further increase the timescale of the tidal heating mechanism. Rabago and
Steffen (2019) demonstrated that both mean-motion and Laplace resonant configurations of satellites
placed at the Galilean system orbital distances could also survive the ejection process in most of the
simulations. This suggests that previously resonant-captured satellites are possible to survive the
dynamical scattering event.

In our model, we consider Earth-mass satellites orbiting around a Jupiter-mass FFP. Although such a
massive satellite is not present in the Solar System, according to population synthesis studies, e.g.
Cilibrasi et al. (2018) and Cilibrasi et al. (2021), Earth-mass moons could form around a
Jupiter-mass planet, even though they are not the most probable outcome, at least following their find-
ings. However, as of today, there are no observational constraints to the mass of such objects. More

Fig. 9. Mass and semi-major axis of moons with Cilibrasi et al. (2021)’s masses which survived Sim1,
do not enter the Roche radius of the FFP, and can retain an atmosphere. The temporal evolution of the
moons’ parameters is shown in the vertical direction, while different surface pressure conditions are
represented in the different columns. The moons are divided as follows: sub-HZ moons are the ones
with a surface temperature colder than the freezing point of water, super-HZ are the warmer ones
(above the boiling point), while HZ moons are capable of retaining liquid water on their surfaces.
The sub-HZ moons are represented with the KDE and the grey contour lines, which show the 5th,
50th and 95th percentiles. With the same percentiles, also HZ and super-HZ moons are represented
with a KDE in blue and orange respectively. We note that the number of moons in the HZ increases
for higher surface pressures, and satellites with larger p0 can remain habitable for longer times.
Less massive satellites could become habitable with more substantial atmospheres. The triangles
show the mass of the Earth (in blue), Mars (in red) and Europa (in green) for comparison. The nor-
malization of the KDE is analogous to Fig. 4.
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massive FFPs are also expected to be able to form and retain more massive moons, but this is beyond
the set-up of our work. The moons that follow the mass distribution of Cilibrasi et al. (2021) are domi-
nated by very low-mass objects, i.e. much smaller than the Galilean moons. These low-mass satellites
are introduced in the initial distribution as satellite seeds that are continuously injected during the simu-
lation; at the later stages of the evolution, the almost not-accreted seeds impact the final mass
distribution.

In general, population synthesis studies of forming satellites around giant planets are still very challen-
ging, and a difference in their initial statistics can affect our final results. However, we expect different initial
statistics to impact more on the background grey distribution in Figs. 8–10 than on the HZ and super-HZ
distributions. We expect the close encounter to act on the moons in the way described in Figs. 2 and 3 and
the subsequent tidal evolution to heat up the moons in the cluster identified in Figs. 8–10.

The atmosphere model we implemented considers a CO2-dominated atmosphere, as in general, an
optically thick atmosphere plays an important role in trapping the heat generated by tidal friction. The
composition of a hypothetical exomoon atmosphere is still very uncertain, both for lack of observa-
tions, as well as because the composition is probably linked with the formation history of the system.
Less substantial atmospheres with respect to the ones considered in Fig. 8 are probably more common,
affecting our final results and restricting the parameter space and timescale in which habitable condi-
tions can be sustained by the moons, as shown in Figs. 6 and 12 (Appendix C). Nevertheless, more
massive satellites should be able to form around more massive giant planets and could be potentially
considered better candidates to retain more massive atmospheric envelopes.

Discussion and conclusion

Liquid water is believed to be a crucial ingredient for the emergence of life as we know it. It could be
found on the surface of an exoplanet if the semi-major axis of the planet is within the HZ of its host

Fig. 10. Same as Fig. 8, but for moons whose masses are taken from the Cilibrasi et al. (2021)
catalogue.

338 Giulia Roccetti et al.

https://doi.org/10.1017/S1473550423000046 Published online by Cambridge University Press

https://doi.org/10.1017/S1473550423000046


star. However, it is believed that other objects, like the exomoons orbiting giant FFPs, might retain
oceans of liquid water, even if they do not lie in the canonical definition of stellar HZ (Ávila et al.,
2021). FFPs could be the result of the early ejection of a giant planet from its stellar system, and exo-
moons formed and orbiting the FFP might survive the ejection process remaining bound to it (Hong
et al., 2018; Rabago and Steffen 2019). On such exomoons, the presence of liquid water is made pos-
sible by tidal and radiogenic heating, together with the presence of an optically thick atmosphere.
However, the timescale for this scenario is controlled by the evolution of the orbital parameters,
which are first influenced by the ejection process and then by the tidal evolution. The goal of this
study is to investigate the potential timescale for the presence of liquid water on the surfaces of
these exomoons, and which are the initial orbital parameters, masses and atmospheric conditions
which allow habitable conditions.

To this aim, we performed a set of dynamical simulations of the ejection process of a Jupiter-like
planet from a planetary system with three giant planets around a Sun-like star, and we studied the effect
of the last close encounter on the stability and survivability of the moons. To model our statistical ana-
lysis, we rely on the initial parameter distribution from the population synthesis model of Cilibrasi et al.
(2021), where orbital parameters (and masses) for 26 293 moons are provided. We can summarize our
main findings of the dynamical evolution, and in particular on the effect of the last close encounter on
the orbits of the moons, as follows:

• the orbits of the surviving moons are strongly affected by the last close encounter;
• analogously, the impact parameter of the last close encounter plays a major role in the survivability
rate of the moons, as already shown by Hong et al. (2018);

• surviving moons reach relatively more eccentric and distant configurations, with the outer moons
being more affected by the dynamic process.

We then selected a simulation with a considerably small impact parameter (b = 15.36 RJ), and we
evolved the orbits of the surviving moons with a tidal model (Hut 1981; Bolmont et al., 2011). In
this way, we could determine when the circularization happens, i.e. when the tidal heating becomes
negligible. The time-dependent tidal heating mechanism is also coupled with a CO2-dominated atmos-
phere, in order to compute the temperature at the surface of the moons. We found that:

• close-in and eccentric moons are the best candidates for habitable conditions, but moons with very
small orbits could exceed the boiling point of water (see Figs. 8 and 12);

• moons that experience substantial tidal heating migrate to closer orbits, while starting to circularize. In
this scenario, moons can enter the HZ even later in the temporal evolution, when they reach closer orbits;

• when the circularization happens (e→ 0), moons stop their inward migration and their tidal energy
drops to zero.

Despite during their lifetime several of the modelled moons present conditions that allow the pres-
ence of liquid water, they need to be maintained for a timescale compatible with life to emerge.
Regarding the habitability conditions, our main findings are:

• moons with a relatively small initial semi-major axis after the ejection (a∼15–25 RJ) are capable of
retaining habitable conditions for long timescale, depending on the surface pressure assumed;

• stable orbital eccentricities are needed for long timescales in the HZ, even though the initial orbital
eccentricity in the tidal model is not as crucial as the initial semi-major axis;

• an increase in the mass and the density of the atmosphere (i.e. moving to larger surface pressures)
significantly increases the number of moons found in the HZ, as well as their timeframe on retaining
habitable conditions (see Figs. 7 and 8);

• moons with a surface pressure of p0 = 1 bar have a maximum time spent in the HZ of 52Myr, for
p0 = 10 bar of 276Myr and for p0 = 100 bar of 1.60 Gyr.

We conclude that the moons closer to the hosting planet are the most likely to remain bound during
the ejection from the planetary system. These close-in moons are the most suitable for retaining
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habitable conditions for the longest timescale, which, when assuming denser atmospheres, are compar-
able with the emergence of life. In particular, for Earth-mass moons with Venus-like atmospheric con-
ditions, around 2% of them could be found in the HZ beyond 1 Gyr, which is comparable to the
timescale of the emergence of life on Earth (Cavalazzi et al., 2021).

The results of our study represent a lower estimate of the number of habitable moons orbiting an
FFP. First, we considered the tidal heating mechanism as the only energy source, but other heating
mechanisms could significantly contribute, at different scales, to increase the total energy budget of
the moons. For example, radiogenic heating could play a key role in the total energy budget, depending
on the internal composition and the history of the planetary system (Frank et al., 2014). The assump-
tion of a CO2-dominated atmosphere represents a special case that favours habitability, being CO2 an
effective greenhouse gas. In addition, we also considered relatively massive atmospheres, which might
be less realistic for lighter satellites. However, even under these limiting conditions, the least massive
moons do not reach habitable conditions, indicating that massive moons are needed for tidal heating to
be effective.

It should also be noted that, at pressures of 0.1 bar, wet–dry cycles, which are considered a prom-
ising pathway for the polymerization of RNA (Ianeselli et al., 2022a), leads to faster dryings at lower
temperatures. This might enhance the polymerization of RNA (Dass and others 2022), while still pro-
viding enough amount of CO2 to boost the strand separation due to pH and salt cycling (Ianeselli et al.,
2022a, 2022b).

We also neglected the resonance configurations that could potentially originate among moons in
the tidal evolution. Rabago and Steffen (2019) demonstrated that resonant configurations could be
preserved during the ejection process of the FFP. These resonant configurations might help maintain
the orbit eccentric, hence leading to a longer survival timescale of the tidal heating mechanism, as
seen for example in the Galilean system (Yoder 1979). We did not investigate the timescale of the
tidal heating mechanism on moons with resonant configurations, but we expect them to increase the
final statistics of habitable moons. However, additional simulations are required.

FFPs could also result from other possible mechanisms, which were not investigated in this work.
We can extend our definition of FFPs by including BDs, which are supposed to form with a similar
mechanism as a planetary system, not reaching the 13MJ threshold. In this scenario, a central BD
could form and retain moons (or planets). Without an ejection process, the potential moons orbiting
around such a BD will probably have more circular orbits. Given the importance of the orbital eccen-
tricity on tidal heating, secondary objects formed in situ around a BD should have smaller orbit to
maintain habitable conditions periods longer than a few billion years.

One of the major findings of our work is that exomoons with optically thick atmospheres, with p0 =
100 bar, could retain liquid water on their surfaces for billions of years, which is a timescale compatible
with the emergence of life. The composition of the atmosphere itself, the mass of the envelope (and
thus the surface pressure), and its evolution in time play a very important role in determining the
amount of water that can be produced (Ávila et al., 2021) and its timescale of survivability. More pre-
cise models that couple the internal structure and evolution of the mantle and the crust of these moons
are needed to better constrain the atmospheric conditions.

Limbach et al. (2021) analysed 57 known FFPs and the possibility of observing exomoons
eventually orbiting around them. They found that the transit of exomoons on these objects should
be frequent, with moons’ orbital period of only a few days, and detectable with a transit depth of
around 0.1–2%, with bright FFPs representing the best targets to be observed. The JWST will observe
WISE 0855 in cycle 1 for 11 h and the observation will be sensitive to exomoons as small as Titan/
Ganymede with 5σ. From our results, assuming a close-in (a & 15RJ) and eccentric orbit, the potential
moon can retain liquid water on its surface also considering only a surface pressure for a
CO2-dominated atmosphere of 10 bar, with bigger objects being even more favourable candidates,
also depending on the mass of the FFP.
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Appendix A

The polynomial equations to solve the tidal model (equations (3)–(5)) are

Na1(e) = 1+ 31/2e2 + 255/8e4 + 185/16e6 + 85/64e8

(1− e2)15/2

Na2(e) = 1+ 15/2e2 + 45/8e4 + 5/16e6

(1− e2)6

Ne1(e) = 1+ 15/4e2 + 15/8e4 + 5/64e6

(1− e2)13/2

Ne2(e) = 1+ 3/2e2 + 1/8e4

(1− e2)5

No1(e) = 1+ 15/2e2 + 45/8e4 + 5/16e6

(1− e2)13/2

No2(e) = 1+ 3e2 + 3/8e4

(1− e2)5
,

and are taken from Bolmont et al. (2011).

Appendix B

In equation (5), the temporal evolution of the planetary radius plays the most dominant role in deter-
mining the spin evolution of the planet, and thus the evolution of the orbital parameters.
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The planetary radius evolution profile is taken from Leconte (2011), for a Jupiter-mass FFP that
shrinks from 1.6 RJ to 1.0 RJ, as shown in Fig. 11. Their profile is modelled as

f = A× e−B log10 (t) + C, (22)
with A = 20.043 RJ, B = 0.559 and C = 0.917 RJ.

The profile used for the radius evolution of the planet plays a major role in the tidal model. The
factor dRp/dt dominates equation (5), and thus the planetary spin depends on the selected profile.
Since the tidal interaction between the planet and the moon depends on the position of the tidal
bulge, a difference in planetary spin will result in a different evolution of the orbital parameters.

Appendix C

Figure 12 shows the surface temperature of the moons in the HZ of Fig. 8 during the tidal evolution.
With respect to Fig. 8, here we limit the semi-major axis between 5 and 50 RJ, and the eccentricity
between 0.01 and 1, to focus on the HZ cluster. We also indicate the few habitable moons in the
p0 = 0.1 bar. The grey contours are the KDE of all the moons (sub-HZ, HZ and super-HZ), while
the coloured dots are only the HZ satellites. The colour bar for the surface temperatures varies for
different p0, since the boiling temperature of water depends on the surface pressure. Again, we observe
the clear trend of an increasing number of moons in the HZ, and the correlation between time spent in
the HZ and surface pressure.

Figure 12 reports the correlation between the eccentricity and semi-major axis for the moons that
populate the HZ. We fit the boundaries of the HZ region, selected as the 5% hottest and coldest
moons. The red solid line and the blue line indicate respectively the hottest and coldest boundaries.
In each panel with habitable moons, we report the parameters of the fit as

10c2am2 , e , 10c1am1 , (.23)
where a is in units of RJ. The HZ region becomes larger as we move to more massive atmospheres
because the range of habitable surface temperature broadens.

Fig. 11. Temporal evolution of the planetary radius following the assumption for an FFP with a
Jupiter-mass from Leconte (2011).
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Fig. 12. Same as Fig. 8, with a focus on the HZ cluster. The grey contour lines represent all the moons in the investigated population, while the colour
dots indicate the surface temperature of the HZ satellites. With the red and blue solid lines, we fit the HZ cluster boundaries, and the fit parameters are
reported in each panel with habitable moons. The colour bar indicates the surface temperature between freezing and boiling points, and it changes
increasing the surface pressure of the atmosphere.
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