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BIREFLECTIONALITY IN ABSOLUTE GEOMETRY 

BY 

DRAGOSLAV LJUBIC 

ABSTRACT. If G is any group then g £ G is called an involution if 
g =^ 1 and g o g = 1. A group G is called bireflectional if every element 
in G is a product of two involutions. It is known that 2- dimensional, 3-
dimensional, and some types of «-dimensional (n > 3) absolute geometries 
(in the sense of H. Kinder) are bireflectional. In this article the author 
proves the general result that every «-dimensional absolute geometry is 
bireflectional. 

1. Introduction. If G is any group, then g G G is called an involution if g ^ 1 
and g o g — 1. A group G is called bireflectional if every element in G is a product 
of two involutions. For example, symmetries in &-planes of the «-dimensional real 
euclidean space are involutions and the group of isometries is bireflectional ([3], p. 
3). Bireflectionality is thoroughly explored in [2], and in particular it is proved that 
the isometry group of 2-dimensional absolute geometry is bireflectional. J. Ahrens 
([1], p. 165) extended this result to dimension 3. The main goal of the present note 
is to prove that the same result holds in the «-dimensional case for all n ^ 2. The 
axiomatic system used is adopted from [10] (see also [2], §20.9). 

In order to put our work in perspective, we first list some closely related results. 
Starting with an isometry group (given axiomatically) one defines ideal points, lines, 
..., orthogonality, and imbeds the resulting incidence-orthogonality structure into a 
projective metric space of the corresponding dimension ([2], [1], [10]). Via coordi-
nization of the projective metric space the original isometry group becomes a subgroup 
of projective orthogonal group POn+\(k1 f) ([2]. §20. 8 — 10). The coordinate field k is 
a commutative of characteristic ^ 2 and the symmetric bilinear form/ is of rank n+1 
and index 0 or 1, or of rank n and index 1. Unfortunately, only in the elliptic case (f 
or rank n + 1 and index 0) does one obtain the whole group POn+\, so a nice result of 
M. J. Wonenburger does not solve our problem completely. She proved in [13] that a 
linear transformation A of a finite dimensional vector space over a commutative field 
of characteristic ^ 2 is a product of two involutions if and only if A is invertible and 
similar to its inverse. In particular, she proved that if A G On+\{k,f), where/ is of 
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rank n+1, then involutions of the decomposition can be chosen from On+\ (£,/); hence 
the orthogonal group On+\(kJ) is bireflectional. This trivially implies bireflectionality 
of the elliptic isometry group. Surprisingly, the last fact seems to have been as yet 
unnoticed. 

E. W. Ellers and W. Nolte in [6] extended the results of M J. Wonenburger for 
fields of characteristic 2 (for simplectic groups also). E. W. Ellers generalized the 
concept of bireflectionality to unitary groups ([5]). 

In section 2 we give the definitions and results that we use in the proof of the 
main theorem. We begin with the axiomatic system of H. Kinder. This nice theory 
includes the classical Euclidean, hyperbolic, and elliptic geometry. In section 3 we 
prove the main theorem and in section 4 we post a problem concerning one important 
implication of it. 

2. Preliminaries. We start with a brief survey of the notation, definitions and results 
we are going to use later. In the definitions and results quoted we follow [10]. 

Let @ be a group generated by an invariant set S of involutions. If for some involu
tions JC,y G &xoy is an involution, we denote that by x\y. Also JCH, .. . ,x\nx |;t2i,..., 
JC2/I2|... |jtju,. •••**/!* abbreviates: xip\xjq whenever i <j. Elements of & are called hy-
perplane symmetries and are denoted by lower case Greek letters. Let n be a fixed 
positive integer. Products oc\ o . . . o an-k, such that ax | . . . |an_*, 0 ^ k < n, are called 
k-plane symmetries (or )ust plane symmetries if k is obvious or not relevant) and are de
noted by lower case indexed Greek letters ak,(3k,.... For k = 0,1,2 the corresponding 
products are also called point, line, and plane symmetries, respectively. Point symme
tries are also denoted by upper case Roman letters. We call a pair (®,S) (or just @) the 
n-dimensional isometry group, its elements isometries, and the theory thus obtained 
n-dimensional absolute geometry, if n ^ 2 and the following axioms are satisfied: 
Axiom 1*. Given a i , . . . , a„_i, A there is some a such that a\a\,..., an-\, A. Axiom 
\n. Given a\\... \an-2\A,B there is some a such that a | a j , an-2, A,B. Axiom 2n. 
If a i | . . . \an-2\oc,(3\A,B, then a = (3 or A — B. Axiom 3„. If <x\\... |art_2,A|a,/?,7 
and an-2 ^ A, then ao/Jo7 G 6. Axiom 4„. If a\\... |an_i|a,/3,7, then ao/3o7 G 6. 
Axiom Xn. There are a\..., an such that a\ \... \an. Axiom Dn. Given a\ | . . . \an there 
is some a such that a f a„, a ^ an and a|c*i | . . . \an-\. 

An isometry group @ is called elliptic if it satisfies Axiom Prt. There are 
a\, , art+i such that «i | . . . |crw+i. 

In this paragraph we describe an incidence-orthogonality structure, called (n-
dimensional) group space, which naturally corresponds to every isometry group. The 
hyperplane a corresponding to a hyperplane symmetry a is defined as oc = {A : A\a}. 
If a* = «i o . . . o «„_*, with a\ | . . . |a,,_*, then the k-plane ock, 0 ^ £ < n, is defined 
as «i n «2 H. . . Pi «„_*. 0, l, 2-planes are also called points, lines, and planes, respec
tively and the generic term will be plane. Because no confusion is likely to arise we 
shall denote ak by a*. As in an "ordinary geometry" we say that planes a1 and ft 
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span the plane (a',/?7) = C\{x : i D a ' ^ ^ x a plane}. If there is no such a plane 
(ot\ft) will denote (the set of all points of) the group space of $ . Planes a1 and ft 
are called orthogonal (symbolically a1 _L ft) if a' = 7i H . . . (17/1-* n<$i D . . . n<$*_/ 
and ft = 7i H. . .ri7/i-*riei H. . .He*-; for some 7's, <5's and e's such that ij < k ^ 
/ +y, k ^ n and 7i|.•.. |7/i-*|£i|...£*_,• |e i | . . . |e*_/. The main feature of orthogonal 
planes we are going to use is that the corresponding plane symmetries commute. If 
of H ft 3 0, and / ^ 0, we shall denote by (or*, (ft)1) the span of a* and ln~x, where 
T~lnft = 0 and Y"1 -L ft. 

Inner automorphisms X i—• yXF - 1 = X r of & induce bijections of the group space 
onto itself, which preserve incidence and orthogonality. The group @* obtained in this 
way is called the group of isometries of the group space. Its elements (isometries) 
inherit the names of the corresponding elements of &. Moreover we shall use the same 
notation for them in this paper. Groups $ and @* are isomorphic and group-theoretic 
statements about © can be equivalently expressed in the (more "picturesque") language 
of the group space and its group of isometries. 

We saw that in the elliptic case a point A(= a^ H . . . Pi an+\) and a hyperplane 
a\ can generate the same isometry. If this is the case, we say that A is conjugate to 
every point B € a\. A unique hyperplane a\ corresponds to the given point A (so on 
every line A1 3 A there is exactly one point B conjugate to A) and points of cc\ are 
conjugate to A. Every line through A and some point of a plane a* C cc\ is orthogonal 
to of. Conversely, if two different lines through A are orthogonal to some plane of, 
then ock C oc\. 

3. The main theorem. In this section we shall prove the main theorem (Theorem 3) 
using a few auxiliary propositions. Theorem 1 and Lemmas 1 and 2 will be established 
first; they make possible the induction in Lemma 4 and Theorem 3. Theorems 1 and 
2 give a "construction" of invariant points and lines needed for the applications of 
Lemmas 1 and 2. 

Let 71^,2 û m < n, be a fixed plane of the group space of @. The hyperplane 
symmetries a, a _L if1, generate a group which acts on (the set of all points of) 7r"\ 
We shall denote by GP/71^ the corresponding group of automorphisms of if1. (Here 
we think of a as an element of &*.) We easily check that GP/71^ is an m-dimensional 
isometry group with hyperplane symmetries oc/if1, a Lrf1. The basic property which 
gives the proof is 

(i) ajiT^lif1 iff a|j3(a,/3 J. 7rm). 
The property (i) holds since ajiT^jif1 iff ajif1 = ofijif1 ^ fijif1 iff a/if1 = 

OZ/TT"1 ^ (i/it™, where a/ = oft. Comparing fixed points of a^oi and (3 in ir"1 we 
conclude that a/if1 = oljif1 ^ p/i^ffi a = o/ ^ /3, i.e., iff a\/3. 

A straightforward consequence of (i) is 
(ii) £-plane symmetries of @*/7rmare an-m+k/'nm = of o if/iT = ofjif, where 

a* ^ and an~m+k = (of, (IT™)1). 
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Therefore, in analogy to the proof of (i) we obtain 
(iii) a/^A/if" iff a\A. 
Finally, the plane if71 is an intersection a_(„_w_i)n.. .na0 for some a_(w_m_i)|... |ao» 

and hence 
(iv) a _L 7T"1 iff a|a_ (n_m_i)|.. . |a0. 
Properties (i), (ii), (iii), and (iv) imply 

THEOREM 1. S * / ^ is an m-dimensional isometry group with k-plane symmetries 
(ii). Incidence-orthogonality relations in the group space of^/if1 are inherited from 
the group space of(&. 

From now on we shall usually write a* instead of ofi /if1 when o^^if71 and the 

group &* /if1 is considered. 

LEMMA 1. Let O be a point in a plane if1,! ^ m < n. Suppose further that 
planes aSjJ = 1, . . . k, contain O, p of them are contained in if" and the rest contain 

vn-m = (0^ (y*)^). iff = a* o . . . o as
k
k andfjif" = 1, then f = 1 for even p and 

f = if» for odd p. 

PROOF. We may assume that a\l,..., ap
p C 7rm and (tf D v"~m for j > p. If 

we denote a) = {aj,vn~m\) ^ p, and g = a'/ o . . . o ap
p o ap

p;\ o . . . o as
k
k, then 

^ a ; i o 7 r / M o . . . o a ? o 7 r m o ^ ; ; o . . . o a 5 / = / o (if"f and g fit™ = f/if" = 1. 
Hence we are done if we show that g = 1. 

First, note that g fixes if" and vn~m pointwise. Next, given a point M g if"Ui/n m, g 
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fixes planes ( M , ^ ) and (M,i/n~m) and so their intersection /i2. In the plane p2 

lines i/1 = (M,nm) D vn~m and IT1 = (M,i/n~m) Pi if1 are fixed pointwise, therefore 
lines orthogonal to them are fixed. This implies that all points of p2 having different 
perpendiculars onto vL and TX1- are fixed. Hence, every line of p2 is fixed (because it 
contains two such points), which fixes points of p2 as their intersections. • 

The implications of Lemma 1 are going to be very extensive but easily recognizable; 
therefore we shall use it without any reference. 

LEMMA 2. If 0? = O for some f G © and every point O of an l-plane 7Z, 0 ^ / ^ 
n — 1, thenf = a\ o ... o c^ where oti D ll. 

PROOF. Let / = 0. Theorem 8.4 of [7] implies that given (9, or, (3 we can find 7,<5 
such that a o /3 = 7 o S and O G 7. Hence, given / — (3\ o . . . o (3m we can replace 
inductively f5\,..., /3m-\, /3m with some ct\,..., am_i, /3'm such that/ = c*i o.. .oam-\ o 
j8j„ and at 3 O. Finally,/ o O — Oof and a, 3 (9 imply am_i o . . . o ocx of = (3'm 3 O 
or (3'm = O. If / ^ 3 O we are done. If /3'm = O we replace /?^ with a product 
am o . . . o am+«_i = O for some a m | . . . am+n-i |<9. 

Inductively, we assume that Lemma 2 holds for all / with 0 ^ I ^ m < n — 1. 
Let I = m+\ and 7m C 7m+1. Our assumption implies / = /?i o . . . o fik for some 
/?i,...,/3* D 7m. Let 7T2 be the plane orthogonal to /?i and /?2 at O G 7W. Since 
7W C (O,^2)-1), there is a hyperplane ai containing 7m+1 and orthogonal to 7r2. 
Denote /?| = /3i H TT2, /^ = /32 H TT2 and aj = «i n TT2. 

In the plane n2 there exists a line (5'2
X 3 O such that (3\ o (3\ = ct\ o Z^1 (Axiom 

32). Therefore (by Lemma 1) /3\ o /?2 — «i o /32, where /32 D /J^1 and /32 _L TT2 (SO 
/?2 ^ 7"1)- Hence, given/ = (3\ o ... o (3k with /?/ D 7W, we can replace inductively 
j8i,... ,/3* with a i , . . . , a* such that/ = a jo . . . o ^ and orj,... , a*-i D 7m+1. Finally, 
<**(= ak-\ o .. .o a\ of) fixes 7W+1 pointwise, which implies ock D 7W+1. • 

We say that M is a midpoint for points A ^ B if AM = B and M G 04,#). If 
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A = B we define A to be the midpoint for A and B. (In the elliptic case AM — A does 
not imply M = A.) Not every two points have a midpoint! In the elliptic case two 
different points have 0 or 2 midpoints, i.e., if M is a midpoint for A and B, then its 
conjugate point also is. More generally, if A = B £ a*, or A ^ B and A^ — B, we 
say that o* is a p/ûwe 6>/ symmetry for A and 5 . It is clear that once there is a midpoint 
M for A ^ B then every plane a* 3 M, <r* _L (A, 5) is a plane of symmetry for them. 
Conversely, every plane of symmetry for A ^ B is at their midpoint orthogonal to 
(A,B). We now prove two easy generalizations of a theorem of Hjelmslev (Theorem 
3.28 of [2]). 

THEOREM 2. If A — B? for some points A, B and an i some try f G $, then A and B 
have a midpoint. 

PROOF. It is sufficient to show that A and B, where A ^ B, have a hyperplane of 
symmetry. The isometry / is a product a* o . . . o «i of hyperplane symmetries. We 
obtain a sequence of points B,B\ — # " ' , . . . , #* = B^k_x = A and we are done (by 
induction) if we prove that there is a hyperplane r for which BT — Ba2O0Cl = B2 (i.e. 

In a plane TT2 containing B,B\ and B2 we have Ba\ — B\ and B^2 — B2. where 
al-i = aiilTT2. By Theorem 4.1 of [2], £ r ' = £2 for some r1 C TT2. Hence BT = £2, 
where r = ( r 1 , ^ 2 ) 1 ) . D 

THEOREM 3. If 0? = O and (plY = A1 /or some isometry f, lines A1,//1 ««J a 
pomf 0 G A1, then there is a hyperplane a 3 O such that (A1)*7 = p}. Moreover, a 
can be chosen so that f o a fixes A1 pointwise. 

PROOF. By Lemma 2, / = a* o . . . o ot\ for some a, 3 0 . As in Theorem 2, we 
are done if we prove that there is a hyperplane r 3 O such that (a2 ° « O / M 1 = T/M1 

(i.e. such that TO a2 o a\ fixes /i1 pointwise). Let M ^ O be a point of ii1 not 
conjugate to 0,M\ = Ma^M2 = M®2 and 7r2 some plane containing M,Mj and M2. 
Denote a? = or,- n 7r2, / = 1,2. If O' is the orthogonal projection of O onto 7r2, then 
O' G a} H a^ s mce O is not conjugate to M G 7r2) and there are lines a;1 3 0\ 
M and r1 such that rx o a\o a\ — UJX (again by Theorem 4.1 of [2]). Therefore, if 
T = (r1, (7T2)1) and u — (a;1, (7r2)x), then TO a2o a\ = UJ fixes /i1 pointwise. D 

Af, 
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In the proof of Lemma 4 we shall need the following result. 

LEMMA 3. If planes a* and ft,k,l ^ 0, k + / ^ n, contain some point O and 
isometryf — a* oft fixes some line A1 3 O pointwise, then a* and ft have a common 
line. 

PROOF. Let A be some point of A1 not conjugate to O. Planes ak and ft belong to 
some hyperplanes of symmetry for A and B = A0^ = A@ . If A = B, then A1 C a*, ft. 
If A y B, then a* and ft are in the same hyperplane a of symmetry (for A and B) 
because otherwise O would be conjugate to A. In this case ock and ft have a common 
line in a. • 

We prove Lemma 4 and Theorem 4 simultaneously by induction. Lemma 4 holds 
for n = m + 1 provided Lemma 4 and Theorem 4 hold for n ^ m. Hence, the inductive 
hypothesis of Theorem 4 (n ^ m) enables us to apply Lemma 4 for n — m + 1. 

LEMMA 4. Suppose f = ofi o ft for some isometry f G & and planes o^^ft such 
that o^ift 3 0,1 — k G {0,1} and I + k = n. Given a line A1 3 O there exist planes 
lk,8l such thatf = lko8l,lk 3 O and8l D A1. 

PROOF. For n = 2 the statement is proved in [2]. At the inductive step we assume 
that Lemma 4 and Theorem 4 are true for 2 tï= n ^ m. 

(i) Suppose « = m + 1 is odd, hence / = k + 1 and AZ = 2k + 1. Let 7r be a 
hyperplane containing a* and orthogonal to ft+l, /i1 the line orthogonal to TT at 0 , 
and i/2 a plane containing A1 and /i1. Denote /J* = /?*+1 fl7r, A{ = i/2nn. The isometry 
/ induces the isometry f/n = ofi o ft of 7r, and by induction f/ir = lk o 8k for some 
7* 3 O and «*DAj. S o / = 7* o£*+1, where <5*+1 - («*, /x1) and (therefore) <5*+1 D A1. 

(ii) Assume now n = m + 1 is even, hence / = k and AI = 2&. Applying Theorem 
3, we obtain a hyperplane a 3 O such tha t / o G fixes A1 pointwise. By Lemma 
2, / o o can be represented as ct\ o . . . o a,, a, D A1. Therefore / o cr induces the 
isometry if o a)/7r = a"~2 o . . . o a" -2 of 7r = (0, (A1)-1), where a"~2 = a/ D 7r. By 
induction (f o cr)/7r = es o £ = / o cr for some es,Ç C 7r such that e5,£* 3 0 and 
r — s, 2k — 1 — (t + s) G {0,1}. The remaining part of the proof depends on t + s. 

(a) First, suppose s = /: — 1 and t = k. Denote by i/1 the line orthogonal to a at 
(9, by T2 a plane containing A1 and i/1, by i/} the line T2 Pi 7r. 
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By induction, ek l o(f can be replaced by 6k { o rjk, where 6k l 3 O and rjk D v\. 
Hence, for ^ + 1 = (r]k,\l) _L a,6k = (S*-1,A1) and 0* = T/*+1 Ha , we have/ = 
5*"1 or)koa = 6korjk+l oa = 6ko$K. Finally,/ = 6kotik = (<&kf o8k = 7* o6k, and 
we are done. 

(b) Suppose now that s = t = k — 1. We first show that / fixes pointwise some 
line through O. 

If rj2k-2 is a plane containing ek~l and ?-\û2 = (0,(r)2k-2)L),tM = (ek~\'&2) 
and^+ 1 =(Ck"1,*2), t h e n / o a ^ e ^ o ^ " 1 = e * - i o 77* 2 o ^ 2 ( , < ? - ' = . .k+\ 

or}' 
, * - i 

Hence, / o a fixes d2 pointwise which implies that / fixes pointwise a line through O 
in tf2 PI a. 

$2 

Therefore, using Lemma 3, we can conclude that of and (3k have a common line 
vx 3 0. 

Let i/ be the hyperplane orthogonal to i/1 at 0 . Then//*/ = a*-1 o/?*-1 = / , where 
a*-1 = or* n i / and /3*_1 = (3k Hi/. Let £2*-2 be a plane containing a*-1 and /3*-1,£ 
a hyperplane containing £2*-2 and A1,^1 the line in £ orthogonal to £2*-2 at 0 . As 
usual, we construct a line A J which belongs to £2*-2 and to a 2-plane through A1 and 

e 
Now//£2* 2 — of l o(3k l —fjy —f and by induction//£ 2k-2 v * - l , >6k-1 = / 

for some i*" 1 ,^" 1 C ^ " 2 , 7 / : " 1 , 9 0 and Sk~l D Aj. Finally, 7* = (7*"1,^1) and 
<5* — (£*-1, £*) are the planes we need. • 
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COROLLARY 1. Suppose f = ak oft for some isometry f G & and planes ak,ft such 
that ctk,ft 3 0,1 — k G {0, 1} and l + k = n— 1. Given a line A1 3 O there are planes 
lk+l,6l+l such thatf = 7*+1 o£/+1,7*+1 3 O and 6l+l DA1. 

PROOF. . Let A{ be the intersection of a hyperplane TT containing a* and ft with 
a 2-plane which is othogonal to n and contains A1. Applying Lemma 4 for f/n — 
ak oft =f and the line A} we obtain//TT = 7* oSl = / , where 7* 3 O and <$' D A}. 
So 7*+1 = (7*, 7T-1) and <5/+1 = (Sl, n1) are the planes we need. • 

THEOREM 4. Every isometry f of an n-dimensional isometry group & is a product 
of two plane symmetries ak and ft, where I — k,n — (/ + k) G {0,1}. If O? — O for 
some O G ©, then ak and ft can be chosen so that ak,ft 3 O. 

PROOF. For n = 2 the statement is proved in [2]. At the inductive step we assume 
that Theorem 4 holds for 2 è n ^ m. Then Lemma 4 holds for 2 ^ n ^ m + 1. Let 
« = #2+ 1. 

(i) Suppose/ fixes some point O and a line A1 3 O pointwise. Then/ induces the 
isometry f/n of the hyperplane TT orthogonal to A1 at O and, as in Lemma 4,f/n = 
a*oft = / for some o*,/3' C^ak,ft 30 and l-k,m-(l + k) G {0,1}. If * + / = m 
we are finished. If k + I — m — 1, then f = ak o ft = ak+l o /?/+1, where planes 
o*+1 = («*, A1) and /3/+1 = (ft,\l) satisfy given conditions. 

(ii) Suppose now/ has an invariant point O. By Theorem 3 there is a hyperplane 
( T 3 0 such that/ocr fixes some line A1 3 O pointwise. Using (i) we getfocr — jko5l 

for some lk,6l 3 O and / — k,m + 1 —(l + k) G {0,1}. Denote by i/1 the line through 
O orthogonal to a. 

If / + k = m + 1, then by Lemma 4 f o a = ek o a1 for some e*, a1 3 O and 
or7 D i/1 (i.e. a1 _L a). Hence, for ocl~x — a1 D a and /?* = (ek)a we obtain 
f — ek o a1 o a — ek o al~{ — al~l o /3* which is just what we wanted. 

If l + k = m, then by Corollary 1 f o a = ek+l o al+l for some ek+l,al+l 3 O 
and al+l J_ a. Again, if a1 = a/+1 Pier and ft+l = (ek+l)a, we are finished by 
/ = c*+1 o a/+1 o a = e*+1 o a7 = a7 o /3*+1. 
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(iii) Suppose now that O is an arbitrary point. Theorem 1 provides us with a 
hyperplane a of symmetry for O and/ _ 1 (0) . i.e. such that/o a fixes O. Therefore, as 
we proved in ( i i ) , /oa = /ykoSl for some lk,8l 3 O and l + k,m + 1 - ( / + &) G {0,1}. 
Denote by i/1 a line through 0 orthogonal to a. Using the same procedure as in (ii) 
we are done by applying Lemma 4 or Corollary 1. • 

4. Final remarks. Starting with the results of this paper we derive in [11] so-called 
normal forms for elements of © (see [9]) provided ® satisfies an additional 

Axiom Nn. Every two |_^p J -dimensional planes of an n-dimensional isometry 
group, n > 2, which span a (2 |_^J + \)-plane have a common perpendicular line. 
Every two [^-dimensional planes which span a 2[%\-plane have a common perpen
dicular 2-plane intersecting them along lines. 

A natural question arises 
PROBLEM. What are the fields corresponding to @ for which Axiom Nn holds? 
In [12] we extend the results of this paper and the paper [11] to infinite-dimensional 

absolute geometry (see [8]). 
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