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Abstract. The stability of a fixed point of an area-preserving transformation in the
plane is characterized by the invariant curves which surround it. The existence of
invariant curves had been extensively studied for elliptic fixed points. Here we study
the similar problem for parabolic fixed points. In particular we are interested in the
case where the fixed point is at infinity.

1. Introduction
Consider an area-preserving mapping of the plane which has a fixed point and let
Ai, A2 be the eigenvalues of its Jacobian at this point. Since the mapping is area
preserving, the determinant of the Jacobian is 1 and it follows that A^ 2 = 1. Since
the mapping is real, A,, A2 are either both real or are complex conjugates. If A,, A2

are real and not ±1 , the fixed point is called hyperbolic and it cannot be stable. If
A,=A2, |A,| = |A2| = 1 and A,, A2 are not ±1 , the fixed point is called elliptic. This
case is extensively studied and it is known that under some mild conditions the
fixed point is stable and it is surrounded by closed invariant curves [6,7,10].
Numerical examples are found in [2-4]. Finally, if At = A2 = 1, the fixed point is
called parabolic. This case attracted less attention, probably because it is a degenerate
one. This will be the subject of the present work.

We consider an area-preserving mapping

y),

yi = y + Q(x,y),

where P, Q = o(r) as r = (x2+_y2)1/2-» 0. Here (x, y) = (0,0) is a parabolic fixed point
with eigenvalues A, = A2 = 1. Such a degenerate fixed point may be stable or non-
stable. For example, the mapping

is area preserving; however, if/, g vanish at 0 and are positive elsewhere, the iterated
mappings of each {x0, y0), x0, yo>0, diverge to infinity. The present work discusses
when parabolic fixed points are surrounded by closed invariant curves and exhibit
stable behaviour.
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210 D. Aharonov and U. Elias

The main tool to establish the existence of invariant curves is Moser's theorem
about twist mappings [6, Theorem 3; 10, § 32]:

THEOREM. Given the mapping

in the annulus a<p<b, -oo<0<oo, b-a>\, where f, g are real-analytic and
periodic in 6 and every closed curve sufficiently close to p = constant intersects its image
curve. For e > 0 there exists 8, independent of y, such that if

\f\ + \g\<rs,
then the mapping admits infinitely many invariant curves of the form

P = v(t), e = t+u(t),

with y, v real-analytic, periodic functions and |w(r)|, \v(t) — a)\ < e.
The assumption that/, g are real analytic is not essential. In [9] it is only assumed

that f,ge C\ and in [5] that fge C3+a.
We shall show that under suitable assumptions the mapping (1.1) can be transfor-

med into a twist mapping to which the theory of Moser may be applied.
Most of this work deals with parabolic fixed points at infinity. However, we begin

it in § 2 with a result about a finite fixed point, which motivates the rest of the
discussion. § 3 deals with a parabolic fixed point at infinity and explains how it
differs from a finite fixed point. We discuss the mapping when its behaviour is
determined by the first nonlinear terms and distinguish between the cases when
these terms are homogeneous of order h, h < -2 , and when they are of order h = - 1 .
In § 4 we study a mapping which is analytic but its dominant part is only piecewise
continuous at infinity.

The most interesting mappings are, of course, the area-preserving ones. However,
because of reasons which will be clarified later on, we prefer to mention first a result
which emphasizes the intersection property rather than the area-preserving property.
For an area-preserving mapping this result is a particular case of a more general
theorem of Simo [11] and we also use the same ideas.t

2. Invariant curves around a finite fixed point
THEOREM 1. Given a real-analytic mapping

xy)

in a neighborhood of (0,0), which can be written as

xt=x + p(x,y)+p(x,y)

yi = y + q(x,y) + q(x,y),

t The authors wish to express their gratitude to the referee who drew their attention to Simo's work.
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where p(x, y), q{x, y) are polynomials homogeneous of degree h, h>\, and p, q are
such that

p(x,y),q(x,y) = O(rh+1) nearr = O. (2.3)

The fixed point (0,0) is surrounded by closed invariant curves provided the following
assumptions hold:

(a) xq(x,y)-yp(x,y)*0 for (x, y) * (0,0), (2.4)

(b) px + qy = 0, (2.5)

(c) Every closed curve sufficiently close to xq-yp = constant intersects its image
curve.

If (2.1) is area preserving, then assumptions (b) and (c) hold true automatically.

Proof. First we present a full proof of this simple result since it motivates the rest
of the work and then describe its relation to [11].

The differential system

) ,

y =q(x,y),

is a Hamiltonian system with

H(x, y) = [xq(x, y)-yp(x, y)]/(h +1). (2.7)

Indeed, by the homogeneity of degree h of q, xqx+yqy = hq, and by (2.5),

(h + l)Hx = (xqx + q)-yPx = (xqx + yqy) + q = (h + l)q, Hy = -p. (2.8)

We may assume, for example, that

H(x,y)>0 for (x,y) *(0,0).

Let us define

(•arctgly/x)

0 = H(cos<l>,sm<t>)-2/ih+i)d<f>,
JoJo

where the values of arctg pass from one branch to another as (x, y) surrounds the
origin.

Since H(x, y)?i0 for (x, y) # (0,0) and H(x, y) is a homogeneous polynomial,
H(x,y) = c are closed curves for c>0. They are also starlike since

(d/dt) arctg (y/x) = (y'x-x'y)/(x2 + y2) = (xq-yp)/r2#0.

Thus H(x, y) = c is a family of closed, starlike, similar curves which cover /?2\{0}.
Now, p increases along every ray through (0,0) and 6 increases with arg (y/x),
hence the correspondence (x, y)**(p, 6) is locally 1:1 in /?2\{0}. When one returns
to a point after surrounding the origin, 6 is increased by

I* 2 *
to = H(cos <f>, sin <j>y2/ih+i) d<p,

Jo

so our change of variables is even globally one-to-one, p, 6 are, of course, real
analytic functions of x, y for (x, y) ̂  (0,0).
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Our aim is to prove that under this change of variables, the mapping (2.1) becomes
the twist mapping

e, = e+P+f{P,e),

Pi = p+g(p, 0),

where/(p, 0), g(p, 6) are real-analytic in the domain p>0 , periodic in 6 and

f=o(p),g = o(p2) asp-»0+. (2.10)

Let us denote kx = xl-x = P, Ay = yi-y = Q and analogously Ap = p , -p , A0 =
dt — 6. Then, near the origin we have by our previous calculations

• • ] = H~2/(h+i)O(r2h+l), (2.11)
h +1

since the other terms are l[Hxxp
2+- • • ] = O(rih~l). But now H(x, y) is a

homogeneous polynomial of order h +1 and H(x, y) ̂  0 (or {x, y) ̂  (0,0), therefore
H{x,y)>Arh+\ So (2.11) becomes

Hence p1 = p + g(p, 6) where g(p, 0) = o(p2) near p = 0. As for d,

6x-0 = A0 = A(arctg(y/x))H(cos </>,sin <j>)~2nh+x)

r
- 2 / ( / i + l ) /-y(p+p)]H(x,yy

2/u'+i\l

by our assumptions xq-yp = O{rh+2) while xq-yp>Arh+1. Hence xq-yp =
o(xq-yp) and

Thus 0, = 6 + p+f(p, 6), where /(p, 0) = o(p) near p = 0. /(p, 6) and g(p, 0) are
obviously analytic when p > 0 and have period w, so (2.9)-(2.10) are established.

A small neighbourhood 0 < H(x, y) < e<
/l+1)/(/l~1)

 of the origin is thus mapped on
a narrow annulus 0 < p < e. When we replace p by ep, we get

Here 0<p<l and f(p,6)=f(ep,6) = o(e), g(p, d) = e~lg(ep, 6) = o(e).Hence
( | / | + |g|)/e-»0 as e-»0 as required in the theory of Moser. Finally, in order to use
Moser's theorem, we have only to guarantee that curves which are sufficiently close
to the circles p = constant, intersect their image curves. This is ensured by (c) and
the proof is completed.
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Invariant curves around a parabolic fixed point 213

Note that if (2.1) is area preserving then (b) and (c) are always satisfied. For the
Jacobian of (2.2) is

1+Px+Px Py+Py

Since J=\ and px + qy is homogeneous of degree h - 1 , we must have

Also, if an area-preserving mapping has a finite fixed point, then every closed curve
with surrounds this fixed point intersects its image.

When the mapping is area preserving, there exists a generating function g(x, yx)
which is defined by

dg(x,.
dyx

y=-
dg(x,yj)

dx

Let g(x, yx) = xyt + G(x, yt). Simo proved [11] that a parabolic fixed point is surroun-
ded by closed invariant curves if and only ifG(x, _y,) has a strict extremum there. To
calculate the generating function for (2.2), let us write

By a calculation similar to (2.8) we see here that

and in this case the theorem follows from the result of Simo. D

FIGURE 1. Invariant curves of the mapping (2.15). -0.5 < x, y < 0.5.
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Example 1. The conditions of Theorem 1 are fulfilled for the area-preserving
mapping

* ' = * + ' 2 " " 1 ' (2.15)
y, = y-{x+y2n-x)2n-\

Here h = 2n-\, H = x2" + y2n. Some invariant curves for 2n — 1 = 3 are shown in
figure 1. Each curve is generated by several hundred iterations of an initial point.

3. Invariant curves near infinity

In this section we discuss the mapping

Xi=x+P(x,y),

yi = y + Q(x,y),

where P(x,y), Q(x,y)^0 as r2 = x2+y1 -*oo, that is, when infinity is a parabolic
fixed point. In particular we shall assume that (3.1) can be written near infinity as

Xi = x+p(x,y)+p(x,y),

yi=y+q(x,y) + q(x,y),

where p(x, y), q(x,y) are real-analytic functions, homogeneous of negative degree
h, and p, q are real-analytic functions such that

P(x, y), 4(x, y) = Oir"-1) = O(r<|/I|+1)). (3.3)

There is a one-to-one correspondence between mappings with a fixed point at
infinity and mappings with a similar fixed point at the origin. Let T be a mapping
which has a fixed point at infinity such that it is surrounded by closed invariant
curves, and let R be a one-to-one mapping which maps infinity to the origin. Then
R o T° R~l has a fixed point at the origin, which is surrounded by invariant curves.
Nevertheless, a parabolic fixed point at infinity deserves some separate discussion.

First, the area-preserving property does not have near infinity the same role that
it has near a finite fixed point. As already mentioned, if an area-preserving mapping
has a finite fixed point, then every closed curve which surrounds this fixed point
intersects its image. This geometric reasoning fails for curves which surround a fixed
point at infinity, since the area outside the closed curve and outside its image are
both infinite. For example, the mapping

xI = (r2+l)1 / 2cos0,

is of type (3.2) and it has a fixed point at infinity, since for r> 1

xx = (r2+1)1/2 cos8 = r cos 6 + ((1 + r~2)m- \)r cos 6
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On the other hand (3.4) can be written as

r\=r2+\, 0, = 0. (3.5)

(3.5) is area preserving since r, drx ddx — rdrdd, but obviously no curve intersects
its image under this mapping. Consequently, the existence of invariant curves near
infinity is not implied by the area-preserving property alone, but it is related rather
to the intersection property. One way to overcome this difficulty will be demonstrated
at the end of § 4.

Besides this remark, the existence of invariant curves of (3.1) around infinity can
be shown as in Theorem 1

THEOREM 2. Given the real-analytic mapping (3.2) in a neighborhood of infinity and
let h^ —I. The fixed point at infinity is surrounded by closed invariant curves provided
the following assumptions hold:

(a) P* + qy = 0, (3.6)

(b) xq(x, y) - yp(x, y)?i0 near infinity. (3.7)

(c) Every closed curve sufficiently close to xq—yp = c intersects its image curve.

The proof is similar to that of Theorem 1, except some minor changes due to
fc<-2. Here xq-yp^Q as r->oo, qp-pq = O{r2h'x), and H>Arh+l implies r >
BHU(h+l). Thus (2.11)-(2.2) should be replaced by

Ap = O(H-2Hh+1))(qp-pq) = O(H-2/{h+i)r2h~')

= O( H~2/(h+i) H^2h~l}/(h+1)) = o(H^2h~3)/^h+l))
l I ) / ( * + 1 ) ) = o(p 2 ) . •

The second reason which leads us to discuss the fixed point at infinity is the
special case h = — 1, which is strictly excluded from Theorem 2. This case, where
P(x, y), q(x, y) are homogeneous of degree h = — 1, is especially delicate and interest-
ing and we shall discuss it now separately.

In the study of the case h ̂  - 1 , we had introduced the integral curves xq(x, y) —
yp(x, y) - c of the differential system (2.6)

x' = p(x,y),

y' = q(x,y), h*-\,

When p(x, y) and q(x, y) are homogeneous of degree h = - 1 , xq-yp is not appli-
cable any more, since it is identically constant. This follows from

(xq-yp)x = q + xqx-ypx = q + (xqx+yqy) = q + (-q) = 0,

(xq-yp)y = 0.
Hence we need a representation of the solutions of the system

x'=p^y^ 0.8)
y' = q(x,y), h = -l.
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LEMMA. Let

\difxq(x,y)-yp(x,y), (3.9)

', !)• (3.10)

(3.8) is a Hamiltonian system with

H(x,y) = {\/2)log(x2 + y2)-\ fi(<f>) d<f>. (3.11)

Its trajectories are closed curves if X. # 0 and
'2n

(3.12)
o

Proof. (3.8) is explicitly solvable in polar coordinates r = (x2 + _y2)1/2, <f> =
arctg (y/x):

r'(t) = (xx' + yy')/r = (xp + yq)/r,

<f>'(t) = (xy' — yx')r~2 = (xq—yp)r~2.

Since p(x, y) and q(x, y) are homogeneous of degree - 1 , the quantity

xp(x, y)+yq(x, y)=p{\, y/x) + q(x/y, 1)

depends only on <£ = arctg (y/x) and we denote it by

by our previous remark xq -yp is identically constant, say A, and so (3.8) becomes
r'— /*(<£)/r, <f>'= kr~2i* 0. Its solutions are

\ Jo /
This is a closed curve if A ^ 0 and (3.12) holds.

Differentiate now (3.11):

A 2x - y
x ~ 2 x 2 + >>2~x2 + }>

Substituting A and ix(<f>) from (3.10), the last quantity turns to be

(xq-yp)x + y(*

Similarly Hy = -p. Thus, H is the Hamiltonian for (3.8). D

The solutions of the differential system (3.8) are used to transform (3.1) into a
twist mapping.

THEOREM 3. Given the mapping

xl = x + p(x,y)+p(x,y)

yi=y + q(x,y) + q(x,y),
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near infinity, where p{x, y), q(x, y) are real-analytic functions, homogeneous of degree
- 1 , and p, q are real-analytic functions such that

p(x,y),q(x,y) = O(r2). (3.15)

The fixed point at infinity is surrounded by closed invariant curves provided the following
assumptions hold:

(a) Px + qy~O

and the constant xq —yp is nonzero.
(b) The function

is integrable and satisfies
•2-7T

n((f>)d<f>=0.
Jo

(c) Every closed curve sufficiently close to r = c exp (A~l j * fi(t) dt) intersects its
image curve.

Proof. Let G(x, y) = e\p (H) = rA exp (-j n(tj>) d(j>)) and
|*arctg(>'/x)

=
Jo

0 = G ( c o s <t>, s in 4>)~2n d<f>,
J

then, by using that p = G 2IK is a homogeneous function of degree - 2 ,

(l + o(l))G(cos $, sin i
Y Ay— y Av

Now GJG = q,Gxx/G = qx + q2, Gxy/ G = qy-qp, etc, so

Now, the doubly connected domain x > r > A exp (j* /x(f)/A dt) is mapped onto
sA"2. Thus, the mapping (3.1) had been transformed into a twist mapping

(SAO)
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on the ring 0<p<A~2, where/(p, 6), g(p, 6) are real analytic, periodic in 6 and
f=o(p), g = O(p5/2) as p-»0. If we replace p by A~2p, (3.16) is transformed into

) ,

on 0 < p < 1, where / (p, 6) =/(A"2p, 0) = o(A'2), §(p, d) = A2g(A~2p, 6) =
Here ( | / | + |g|)/Av4~2-»0 as /4-»oo, as required in the theory of Moser. •

The condition A ^ 0 in Theorem 3 is essential. For example, the mapping

xt = x + xy/r3,

which may be written as

satisfies all the assumptions of Theorem 3 except that xq -yp = 0, and it has obviously
no closed invariant curves.

4. An interesting example
In [1] there appeared the following problem (6439): prove that a sequence {an} of
real numbers satisfying an+1 = |an | -an_, is periodic of period 9. An elementary
solution is based on the observation that if, for example, two consecutive terms of
the sequence, say a, b, are nonpositive, then the first eleven terms of the sequence are

a, b, -a -b, -a-2b, -b, a + b, -a, -2a -b,-a-b,a,b, (4.1)

T. Sheil-Small asked one of the authors whether a sequence of complex numbers
{zj satisfying

zn+l = \zn\-zn-x (4.2)

is bounded? We shall answer this question in affirmative, using methods similar to
our previous results. This example reveals a delicate structure of a dynamical system,
surpassing in its importance the original question.

Since by (4.2) Im {zn+1} = -Im {zn_i}, we let a = Im {z0}, b = Im {zj, xn = Re {z2n},
yn = Re {z2n+i}, n = 0,1, By this notation (4.2) may be written as

v , = (v2 + b2Y/2-X

(4.3)

Consider the mapping

T: Xl = {y
2
+b^l/2~

X (4-4)

For the sake of simplicity we shall always assume that a, b ̂  0. T is a real analytic,
area preserving, one-to-one mapping in the whole (x, y) plane. Our aim is to prove
that its 9th power, 5 = T9, has a parabolic fixed point at infinity which is surrounded
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by invariant curves. This will imply, among other things, that every sequence
satisfying (4.2) is bounded.

The forthcoming proof is based on the following heuristic considerations:
If both \y\ and \y\ — x are large, then (4.4) approximates the piecewise linear

mapping

yl = \\y\-x\-y,
which corresponds to the real version of (4.2). Motivated by (4.1), we divide the
plane into 9 open cones

Ko = {x<0,y<0}, Ki = {x<y<2x},

K3 = {0<x<2y}, K4-

K6 = {0<2y<x}, K7

separated by rays through the origin. (See figure 2.) It is easy to see that To is linear
on each K, and maps it in a one to one manner onto Ki+l, i(mod 9). By the solution
of problem [1] it is obvious that TQ= /.

/ * .

FIGURE 2. The cones Ko,..., Ks for the mapping (4.4) with a = 2, b = 0.3 and two invariant curves
generated by iterations of initial points (40, 0), (50, 0).

Next we see how does S= T9 act on each cone Kit close to infinity but away
from the boundary of the cone. We begin, for example, with K0 = {x,y<0} but
restrict ourselves to a narrower cone

K0 = {v+a<aTg(y/x)<3iT/2-a}, a>0.
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On this restricted cone To approximates T near infinity up to Oir'1). Indeed, when
r2 = x2+y2-*• <x> in Ko, then -_y>0 is large and so

JC, = ( / + b2)m-x = (-y)(l + b2/2y2+O(r4)) - x

= -x-y-b2/2y + O(r3).

-x - y > 0 is large, too, so

FOT(X, y)e Ko, -x — 2y is large and b2/2y + a2/(x + y) = O{r~x), so we may calculate
the following iterations according to the same considerations and get

3),

After the ninth iteration we obtain

( +
\x + 2y x + y 2x + y)

oir-3), (x,yHK0.

Similar calculations in the other cones, away from their boundaries, lead us to
conclude that S = T9 may be written in each restricted cone /C, as

x, =
' yl=y + q(x,y)+O(r'3),

where p, q are homogeneous of degree - 1 . In particular

+ O(r-2)) on U

Let us put this into the identity T 9 - I = T{T9-I)T~X; since on every restricted
cone Kt, T(x,y)=T0(x,y)(l + O(r~')), it follows that

Thus, the analytic expressions for p{x, y), q(x, y) in the various Krs are related by

I ^ *
The functions p, q in (4.7) are analytic in each K{, i = 0 , . . . , 8, separately, but

discontinuous on 9 rays. On the other hand, the mapping S = T9 is obviously real
analytic in the whole (x, y) plane. Hence we are faced with the difficulty to represent
S by an expression similar to (4.7) and valid in the whole plane and to decide how
well the piecewise analytic p, q which we found above, represent our mapping.
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Invariant curves around a parabolic fixed point 221

To understand the role of p, q that were obtained in Kit we continue them
analytically to the whole open cones Kt. That is, let p, q be defined by (4.6) on the
whole Ko = {x, y < 0} and by the identity (4.8) on Kt, i = 1 , . . . , 8. Now we consider
in the whole plane the autonomous system of differential equations

*' = />(*,y), ( 4 .9 )

y' = q{x,y),

where p, q are discontinuous on 9 rays. In Ko, for example, the solutions of

V( + + V
\x + 2y x + y 2x + y/'

are

F(x,y) ^ [(x + 2y)(x + y)(2x + y)]1/2{a2+b2) x constant; (4.10)

also

Fx/F = q, Fy/F = -p.

In each other Kf the solutions are given by

F ° T~'(x, y) = constant.

The identity 1%=I shows that these 9 families of curves form closed trajectories
and all solutions of (4.9) are periodic.

At this point it is evident that the assumptions of Theorem 3 are too restrictive
to be applicable for the mapping (4.4). The following theorem will apply to the
mapping (4.4), too.

THEOREM 4. Given the real-analytic mapping

which may be written also as

xx = x + p{x,y)+p(x,y),

where p, q, p, q satisfy the following assumptions:
(a) p, q are homogeneous of degree -1 and differentiate, except on a finite number

of rays.
(b) Whenever p, q are differentiate, they satisfy

and the constant xq - yp is nonzero.
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(c) The solutions of the system of autonomous differential equations

x' = p(x,y),

are periodic.
The functions p, q satisfy the following smallness conditions:

(d) I',2 p(A cos t, A sin t) dt = o(A~*), JJ* q(A cos t, A sin t) dt- o(A~x), A-»oo.
(e) xq—yp = o(1) near infinity.
(f) lim P(x, y)/Q(x, y) exists when (x,y) tends to infinity along any ray through

(0,0).
Finally,

(g) Every closed curve which surrounds infinity intersects its image under the mapping
(4.4).

Then the fixed point of (4.4) at infinity is surrounded by closed invariant curves.

Note that if p, q = o(r~2), then (d), (e), (f) are automatically fulfilled.

Proof. We have already seen that if p, q are homogeneous of degree -1 and
px + qy = 0, then xq—yp is identically constant. Since xQ-yP is real analytic in the
whole plane and xq — yp = o(l), it is the same constant in domains which are
separated by rays where p, q are not differentiable. So let

A ̂  xq-yp (4.13)

and suppose A ^ 0. As xp + yq depends only on y/x = tan (/), we denote again

fi(t)d= xp(x, y) + yq(x, y) = p(y/x, l) + q(l, x/y). (4.14)

It was seen in (3.13) that the solutions of the system (4.12) are

( [* \
r = c e x p l - fi(t)/Xdt\ (4.15)

\ Jo /
and they are periodic if and only if

I n(t)/\dt = 0. (4.16)
Jo

Also observe that

fi(t)/\=(xp + yq)/(xq-yp). (4.17)

Motivated by (4.15)-(4.17), we shall suggest new variables such that (4.11) will
become an analytic twist mapping near infinity. Let

M= max (exp fi(t)/Xdt).

For a positive number A, let 3)A be the external domain

2)A: r>A/Af(exp fi(t)/kdt).

The circle r = A is contained in 3)A.
Because of (4.15)-(4.17), we begin our proof by estimatingr dt.
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where £ = Acos(t), TJ = Asin(t), when A->oo. For short we let P = P(^, 17), p =
pig, 17), etc. Since xq-yp = A, xQ-yP = (xg->'/>) + (xq->'p) = A + o(l), we have

g (f+y2)(qP~pQ) A\qp-pq)

Integrating this, we obtain by identity (4.17) and assumptions (a), (d),

{'2£P + vQ f'2 , f'2

—dt-\ u(t)/ A dt = O(A2) (pq-qp) dt = o(l). (4.18)
J,, tQ—i)P J,, J,,

In particular, we obtain on [0, 2TT]

Jo £Q-r)P

Therefore the number e(A) defined by

= — ~dt,
Jo tQ-vP

2ire(A)

tends to 0 as A -* oo. Moreover,

e{A) \dt = O (4.19)

and

is a real analytic, periodic function of f.
To this end we define new variables p, 6 as

where the value of arctg is that of the argument which corresponds to the point
(x, y) as it surrounds the origin.

p, 6 are real-analytic functions of (x, y). p decreases along any ray through (0,0)
and 6 increases with arg (y/x), hence the correspondence (p, #)«-»(*, y) is locally
one to one. When (x, y) surrounds (0,0) and returns to its original location, p
admits, by (4.19), the same value; in the same time 8 increases, according to (4.18),
by

Hence our change of variables is even globally one-to-one.
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By the estimate (4.18),

= (x2 + y2)-1 exp ^2 J^ M(()/A dtj

As already mentioned, the last two expressions keep their original values after
surrounding the origin, hence also the o(l) depends periodically on arg(_y/x).
Combining the last estimate with the definition of the domain 3)A, we see that 3>A

is mapped onto

0<p<(M/A) 2 ( l + o(l)). (4.21)

Now we describe the action of our mapping (4.4) in terms of the coordinates p, 0.

ButxQ-yP = A + o(l), so

61-e = \p + o(p). (4.22)

The change of p may be calculated by

Ay

f = arctg(y/x)

x

where (£ rj) denotes, as before, (A cos t, A sin t) and t = arctg (y/x). But

x + y-

therefore

A similar calculation shows that

and
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By the definition of p, (x2 + y2)~1 = O(p); also xQ-yP = A + o(l), so

and all we have to do is to estimate (xP + yQ)/{xQ-yP)\[^yy

a limit when (x, y) tends to infinity along any ray y/x = constant. The points (x, y),
(£ 77) are located on the same ray and in 3)A, So when A is sufficiently large, the
difference {xP + yQ)/(xQ-yP)\^y] is arbitrary small, that is o(l), and we have
proved that Ap = o(p2). Thus, the mapping (4.11) had been transformed into a twist
mapping

01 = 0 + Ap+ / (p ,0) , ( 4 2 3 )

Pi = P + g(p, #),

on the ring 0 < p < (M/ A)2( 1 + o( 1)), where/(p, 0), g(p, 0) are real analytic, periodic
in 0 and /= o(p), g = o(p2) as p-»0. If we replace p by A~2p, (4.23) is transformed
into

"J""" «), ( ^ 4 )

on 0 < p < l + o(l), where /(p, 0) =/(A"2p, 0) = o(A~2), g(p, 0) = A2g(A-2p, 0) =
o(A~2). If we denote y = AA~2, then (|/ | + |g|)/'y-»O as A-*oo, and all the require-
ments of the theory of Moser are satisfied for sufficiently large values of A. •

Now we return to the mapping (4.4) and prove that S= T9 satisfies all the
requirements of Theorem 4. In our preliminary calculations we obtained (4.7) away
from the boundaries of the cones Kt. Next we shall obtain identities which are valid
also on the boundaries. For example, Ko and K2 are separated by the ray x = 0,
y<0. So we consider the cone K02 = {iT+a <arg (y/x)<lir-a}, a >0, which
contains most of Ko u K2 u {x = 0, y < 0}.

On X02 ( x , j i ) , (x2,j2) are calculated as in Ko and

xi = -x + fcb2/(x + 2y) + (a2-b2)/y + (a2-b2)/(x + y)) + O(r-i). (4.25)

Next

where p, denotes the O{r~x) terms in x3. However, in K02 the term - x may be large
or small relative to px and a, so we define

Obviously f, = |x| + O(l). Using this notation and (4.5),
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In x4 we meet the term b2/(-x-y + ̂ ). It will be replaced by -b2/(x + y-\x\
O(r~2) to obtain

In the next calculation we replace \/{—y + C\) by l/(-y + \x\) + O(r~2):

+ (-a2+b2)/y)+O(r-2), (4.26)

Here, again, x may be small or large, so we define

where p2 denotes the O(r~x) terms in y4. Therefore

In the next step we replace l/(y + £2-£i) by l/y + O(r~2), and continue according
to the same scheme until

\x\)) + O(r-2) (4.27)

Now we put

and continue the iterations until we encounter

xg = X + (a *b\-2/(x + 2y)-l/(-y + \x\)~l/(x + y-\x\)) + O(r-2). (4.28)

Finally let

Then

To get a better idea about T9, we must estimate £ 4 - £3 + £2 - fi • Since p, = O(r"'),

and

+ O(r2)

By (4.25)-(4.28)
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So finally we write S= T9 on Ka2 as

y-\

(4-29)

(4.29) satisfies the conditions of Theorem 4. Choose p, q as in the preliminary
discussion and

P = o(r2),

2 2 W 2 - s g n

on K02. The corresponding expressions on the other cones may be obtained by
direct calculation or by applying the mapping (4.4) to (4.29). It is easily seen that
on Ko (4.29) is identical with (4.6). Note that while q + q is analytic on K02, q and
q are each discontinuous on the ray x = 0, y < 0.

The conditions (a), (b), (c) and (f) of Theorem 4 are easily verified. For example,
xq-yp = ^(a2+b2). All that remains to prove is

(d) J'2 q(A cos t, A sin t) dt = o(A~l), A-*<x>, and (e) xq—yp = o(l) near infinity.
Let £ = A cos t. One of the terms in J q(g, TJ) dt includes

By the inequality

0sarcsin x-arcsin y <arcsin (x2-y2)1/2, 0<y <x,

we have

u:
= |arcsin (sin r(l + a2/A2)~U2) -arcsin (sin «(l + b2/A2)"1/2)| J;

\b2-a2\ \i/2\ / / |b2-a2| V/2| b 2 -a 2

The other term of J q(£ 17) dt includes a similar factor, with a, b replaced by a, 0.
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Since p4 + p, = O(r"1) and -\/{-y + |x | ) - l / (x + y - \x\) = O(r~l), (d) is proved. In
order to prove (e), it suffices to verify that

X(x/(x2+a2y/2-x/(x2+b2y/2)

is bounded for every x, which is immediate.
The mapping 8=7^ also has the intersection property (g). T is area preserving

in the whole plane and has a unique finite fixed point

((4a2+b2)/15)1/2,(4fc2 + a2)/15)1/2).

Every closed curve which surrounds infinity and lays in a small neighbourhood of
infinity, surrounds the finite fixed point too, and so by the area-preserving property
near the finite fixed point, it intersects its image curve. Thus, finally, we may conclude
by Theorem 4 that the mapping (4.4) has invariant closed curves around infinity.
(See figure 2.) •

The occurrence of the finite fixed point of (4.4) is not accidental. By [8], if
/ :{*€ Rn; \\x\\ ^ r}-* R" is continuous such that for every boundary point y, \y\\ = r,
there is no m > 1 with f(y) = my, then / has a fixed point. Otherwise, g(y) =
r(f(y)~y)/\\f(y)—y\\ is continuous and by the Brouwer fixed point theorem there
exists a point y such that g(y) = r(f(y)-y)/\\f(y)-y\\=y. But then |M| = r and
f(y)=y(l + \\f(y)-y\\/r) = my, where m>\, a contradiction. Now, if xQ-yP^O
near infinity, then (3.1) satisfies the conditions of [8] on a sufficiently large circle,
so we have have:

If the mapping (3.1) is continuous and area preserving in the whole plane and
xQ—yP^Q near infinity, then it has the intersection property near infinity.

The existence of closed invariant curves of (4.4) near infinity also implies that
every sequence of complex numbers which satifies (4.2), is bounded. Indeed, for
given z0, z,, take x = Re{z0}, y = Re{zl}, a = Im{z0}, b = lm{z1} and let (4.4) be
the corresponding mapping. Choose an invariant curve F, sufficiently close to infinity,
such that (JC, y) and the finite fixed point of T are in its interior, int (F). Since F is
invariant and T is one to one and area preserving, int (F) is invariant, too. So all
the iterates (xn,yn) lay in int(F) and the sequence zn is bounded.
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