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Abstract

We compare two inherently different approaches to implement complex process systems

in Eden: stable process systems and a compositional approach. A stable process system is

characterised by handling several computation stages in each of the participating processes.

Often, processes communicate using streams of data, change behaviour with the different

computation phases, and more often than not, exactly one process is allocated to each

processor element. In contrast, a complex process system can also be achieved by skeleton

composition of a number of elementary skeletons, such as parallel transformation, reduction, or

special communication patterns. In a compositional implementation, each computation phase

leads to a new set of interacting processes. When implementing complex parallel algorithms,

skeleton composition is usually easier and more flexible, but has a larger overhead from

additional process creation and communication. We present case studies of different parallel

application kernels implemented as stable systems and using composition in Eden, including

a comprehensive description of Eden’s features. Our results show that the compositional

performance loss can be alleviated by co-locating processes which directly communicate,

and by using Eden’s remote data concept to enable such direct communication. Moreover,

Eden’s parallel runtime system handles communication between co-located processes in

an optimised way. EdenTV visualisations of execution traces are invaluable to analyse

program characteristics and for targeted optimisations towards better process placement and

communication avoidance.

1 Introduction

With the advent of massively parallel hardware like GPUs and specialised manycore

CPUs, functional approaches to parallel programming have received increased

attention. Efficient parallel data processing is a crucial foundation for many modern

application areas, and parallel functional programming is increasingly accepted as

one of the most promising approaches to productive parallel programming.

Because of their mathematical nature, functional languages like Haskell (Haskell,

2010) are excellent tools for reasoning about patterns and skeletons of parallel

processing. Purely functional languages are explicit about all possible side-effects
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and specify the intended computation at an abstraction level suitable for algorithmic

reasoning and optimisations. The approach of algorithmic skeletons (Cole, 1989) has

largely similar goals, and adds a generalising algorithmic aspect: An algorithmic

skeleton captures an algorithmic structure and its inherent parallelism as a higher

order function realising its parallelism (semi-) automatically. Algorithmic skeletons

are therefore particularly suited for a functional implementation. Skeletons can be

easily provided in a library (of higher order functions) when implemented in a

functional language.

The Haskell dialect Eden (Loogen et al., 2005) can both express a skeleton

implementation (lower library level) and be used directly for application pro-

gramming, which makes it easy for programmers to switch role. In many cases,

parallel applications can be built simply by choosing an appropriate skeleton from

Eden’s skeleton library, or possibly by composing several skeletons for different sub-

computations of more complex algorithms. Haskell’s purity encourages modularity

and composition of functionality from small well-tailored building blocks. However,

these possibilities raise the question of which abstraction level is appropriate for

skeleton-based parallel programming. When several parallel skeletons are combined

into a larger algorithmic pattern, the granularity of each process will decrease,

and compared to a monolithic implementation, a compositional one will incur an

overhead of additional communication and synchronisation between them.

Up to now, Eden’s philosophy has always been to create stable process topologies

with a one-to-one mapping of processes to processor elements (PEs). Already in 1998,

Breitinger stated in her Ph.D thesis (Breitinger, 1998) that “For the implementation

of an iteration algorithm, it is particularly important that the processes involved are

created only once and not for every iteration anew. Eden differs from implicitly parallel

functional languages in that it makes the specification of such stable process systems

possible”.

Consequently, typical algorithmic skeletons have been developed in Eden as stable

process systems, such as an iteration skeleton iterUntil in Loogen et al. (2003).

This skeleton uses a stable master-worker system to implement an iterated parallel

map skeleton: A set of worker processes evaluates the iteration body in parallel,

and a controlling master process supplies the input and collects the workers’ results.

The communication between the master and the workers takes place via stream

channels, enabling a reuse of the worker processes across all iteration steps. As soon

as the termination condition is fulfiled, the master process finishes the evaluation

and closes the stream channels, terminating the worker processes. More recently, we

developed a more general skeleton iteration framework (Dieterle et al., 2013) where

arbitrary skeletons can be iterated and the master process is replaced with more

general iteration controls, all of this on the basis of static process networks.

On the other hand, a remote data concept for Eden had been developed to

support skeleton composition (Dieterle et al., 2010) and shortcut communication

between process siblings in composed skeleton setups. Remote data handles are

passed between composed skeletons to establish direct data communication between

corresponding processes. This is especially important in a distributed setting because

the distributed result of one skeleton does not need to be collected and re-distributed
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for the subsequent skeleton but can simply remain distributed and/or passed directly

to the locations where it is needed. Such local communication has since been further

optimised in the Eden runtime system (RTS), enabling co-located processes to

actually share data instead of communicating it. It turns out that this change has

important consequences on the underlying cost models which guide the monolithic

optimisations like the iterUntil described above.

In Dieterle et al. (2010), the idea of composing skeletons using the remote data

concept was introduced and some elementary building blocks like parallel reduction

and all-to-all communication were defined as skeletons with remote data interface.

However, the paper did not contain any more elaborate case study, and was not

supported by the underlying RTS optimisation. Later, during development of our

iteration framework, a comparison of the framework and a recursive compositional

implementation using remote data had a surprising result: despite the fact that

the recursive version would instantiate a new set of worker processes for each

iteration step, its performance was competitive — sometimes better — than the

stable monolithic framework version. This contradicts the optimality assumption

about monolithic process networks, and motivated the systematic investigation,

comparing recursive and monolithic skeleton instantiations through systematic case

studies in the paper at hand.

The focus of this paper is on programming methodology. It continues and extends

work presented in the previous publications (Dieterle et al., 2010; Dieterle et al.,

2013) , comparing the two different approaches that were previously advocated, in

several case studies:

1. We discuss the parallel sorting algorithm PSRS (Parallel Sorting by Regular

Sampling) (Li et al., 1993), implemented using a composition of simple parMap

skeletons or using a larger monolithic allToAll skeleton from the Eden

skeleton library;

2. we contrast a compositional and a monolithic implementation of the conjugate

gradient method; and

3. we analyse the different implementations of the n-body problem, which was

the original motivator for this paper.

Using these case studies, we show that complex parallel algorithms can elegantly

be implemented in Eden using composition of skeletons with remote data interface,

and show that the performance of compositional implementations can match that

of sophisticated monolithic skeletons with stable process systems.

The following section presents all features of Eden necessary to understand the

case studies and skeletons we present. Subsequently, Sections 3.1 through 3.3 present

the case studies. The PSRS algorithm composes transposition and parallel map,

while the other two case studies iteratively execute an inner parallel skeleton to

approximate a solution. Section 3.4 summarises the results of the case studies.

Section 4 discusses related work, Section 5 concludes.
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2 Eden: parallel Haskell using explicit processes

Eden (Loogen et al., 2005) extends Haskell (2010) with a small set of syntactic

constructs for explicit process specification and creation. While providing enough

control to implement parallel algorithms efficiently, it frees the programmer from

managing tedious low-level details by introducing automatic communication (via

head-strict lazy lists), synchronisation, and process handling.

In this section, we explain the main Eden constructs relevant for skeleton

programming and composition: eager creation of parallel processes using function

spawnF, Eden’s type-based communication mechanisms and philosophy, and the

remote data concept, which forms the basis for passing distributed data between

different skeleton instances. Also, we give a short overview of Eden’s skeleton library

and explain the analysis of Eden programs using the Eden Trace Viewer EdenTV.

All Eden programs have to import the module Control.Parallel.Eden which

provides definitions of all Eden constructs as well as providing the type class Trans

of transmissible data types.

2.1 Eager process creation with spawnF

spawnF :: (Trans a, Trans b) ⇒ [a → b] → [a] → [b]

The spawnF function, when applied to a list of functions [f1, . . . , fn] and a list of

arguments [a1, . . . , am]. creates a series of k = (min n m) processes, where the ith

process, 1 � i � k receives the value of ai as input, evaluates the application (fi ai)

and outputs its result. spawnF returns the list of all process outputs. Either of the

argument lists may be infinite if the other one is finite.

On process creation, implicit one-to-one communication channels between the

parent process (evaluating the spawnF application) and the newly created child

processes are installed. For each child process, its argument expression ai is evaluated

in the parent process by a newly created concurrent thread, and then communicated

via a channel of type a to the corresponding child processes. Vice versa, each child

process will evaluate the application of its function fi to the received argument ai
and send it back to the parent process via a corresponding channel of type b (details

will be explained in Subsection 2.2).

parent process

child process i

creates�

�
�

result of ai

��
result of (fi ai)

Eden’s spawnF must change Haskell’s lazy evaluation principle in order to parallelise

a computation. Lazy evaluation is inherently sequential and would otherwise lead

to distributed sequentiality instead of true parallelism. Therefore, spawnF eagerly

creates all child processes irrespectively of the actual demand for their outputs.

Furthermore, all inputs and outputs of Eden processes are evaluated to normal
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form before being transferred via communication channels. Both design decisions

overrule laziness in support of parallelism and must be used carefully in order to

avoid unnecessary computations and overhead.

All communication happens automatically using appropriate communication

functions provided via the type class Trans. The type of any data that is exchanged

between processes must therefore be an instance of the type class Trans. The creation

of processes and of communication channels, data transfer between parent and child

processes, as well as the suspension of processes when their input is needed but not

yet available will be done automatically by the Eden parallel RTS.1

2.1.1 Process placement

In Eden’s RTS, PEs are numbered from 1 to the number of PEs. This number is

available to the program as constant noPe :: Int. Furthermore, the number of

the PE on which a process is executed is available as constant selfPe :: Int.

In the simple spawnF version presented above, new processes are placed evenly in

the system by a local round-robin scheme on each PE, starting with selfPe+1.

While this is a convenient default, and sufficient for simple parallel applications,

more advanced parallel programs with many processes often benefit massively from

explicitly placing processes on specific PEs, to achieve an even work-load on all PEs

and to optimise communication by co-locating processes that will communicate. For

this purpose, Eden provides a version spawnFAt which includes explicit placement.

spawnFAt :: (Trans a, Trans b) ⇒
[Int] → [a → b] → [a] → [b]

This variant takes an additional parameter of type [Int] which specifies the PE

numbers on which the newly created processes should be placed. The list of PE

numbers is used modulo noPe plus 1, and with wraparound if it is shorter than

the two other argument lists. Values of 0 and an empty list act as defaults to fall

back to the RTS-supported round-robin placement (PE 0 does not exist), whereby:

spawnF = spawnFAt [0] = spawnFAt [].

2.2 Type-driven communication: The type class Trans

Arguments and results of an Eden process are generally evaluated to normal

form before they are sent to their destination. Therefore, process instantiation

is roughly equivalent to hyper-strict function application from a denotational

perspective. However, two special communication modes exist, which introduce

implicit concurrency for top-level tuples and stream communication for lists:

1. Tuples are evaluated by concurrent threads, one per component, which allows

processes to concurrently produce several independent outputs.

2. Lists are transmitted as streams, one (fully evaluated) element at a time.

1 Eden has been implemented by extending the Glasgow Haskell Compiler (GHC)(GHC, 1991–2015),
see (Berthold & Loogen, 2007).
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The type class Trans implements the Eden process communication by implicitly used

communication functions which are overloaded for these two special communication

modes.

Implicit concurrency and stream communication, together with Haskell’s lazy

evaluation, allow for the definition of recursive process networks and processes

connected by infinite data streams, such as a process ring.

Example: A simple process ring could be defined as follows:

ring0 :: (Trans i, Trans o, Trans r) ⇒
[(i,r) → (o,r)] → [i] → [o]

ring0 fs is = let (os ,outrs) = unzip $ spawnF fs (zip is inrs)
inrs = last outrs : init outrs

in os

Each ring process takes a pair of inputs: an input from the parent process and a

ring input from its predecessor in the ring. It produces a pair of outputs: an output

for the parent and a ring output for the successor in the ring. All ring processes

are eagerly created using spawnF. The ring communication is achieved by using the

right-rotated list of ring outputs as ring inputs.2 In most applications, the type of

data passed on the ring will carry a stream, i.e. r will be a list type. �

The send function defined in Trans will evaluate the data to be communicated

to normal form before packing and sending it. Therefore, a data type can only be

instance of Trans if the data can be evaluated to normal form, i.e. if the type is an

instance of NFData. Trans instances for many standard data types are pre-defined

in the Eden module. Note that there will be exactly one thread per process outport,

where an outport connects a sender process to a communication channel. Eden

works with push communication, i.e. values are communicated as soon as available.

2.2.1 Chunking

Although streaming of lists is important for Eden’s expressivity, in most cases, it is

too expensive to send every list element in a single message. A well-known approach

to throttle the number of messages is stream chunking, i.e. the stream is transformed

into a stream of subsequent sublists using the following function chunk:

chunk :: Int → [a] → [[a]]
chunk size [] = []
chunk size xs = ys : chunk size zs

where (ys ,zs) = splitAt size xs

This works, because only the outermost list is sent as a stream. The corresponding

dechunk function is simply concat :: [[a]] → [a] from the Haskell prelude,

which flattens a list of lists into a single list by concatenating all sublists. The most

appropriate chunk size is problem-dependent; therefore, list chunking cannot be

automated without any further analysis.

2 The alert reader might have noticed that with the above definition, the “ring communication” will
happen indirectly via the parent process which passes the ring output of each process to its successor
process. We will later introduce the remote data concept which can be used to install direct channel
connections between ring processes.
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2.2.2 Optimised communication between processes

By default, data sent over an Eden channel are serialised and communicated

between PEs, and then deserialised by the receiver, which creates a copy. However,

communication between processes which are placed on the same PE is optimised,

the two processes will share the same copy instead of exchanging messages and

serialising data. This optimisation is essential for an effective composition and

iteration of skeletons.

2.3 Remote data concept

During process creation, channels are only installed between parent and child

processes. This implies that only process trees can be built. In order to enable

the generation of general process topologies like rings or grids, Eden supports a

special way of installing direct communication channels between sibling processes,

or generally between processes which are not parent and child: the remote data

concept.

Remote data in Eden (Dieterle et al., 2010) is provided with the following API:

type RD a -- remote data

-- convert local data into remote data
release :: Trans a ⇒ a → RD a

-- convert remote data into local data
fetch :: Trans a ⇒ RD a → a

The main idea of remote data is to replace data communication between processes

with an exchange of handles to data (called remote data). These handles can be

used to fetch the real data directly to the desired target. Remote data of type a is

represented by a handle of type RD a with interface functions release and fetch.

Function release creates a remote data handle that can be passed to other processes,

which will in turn use the function fetch to access the remote data. When data are

fetched, the releasing process will transmit the data completely automatically, in a

separate implicit Haskell thread.

The following simple example illustrates how the remote data concept is used to

establish a direct channel connection between sibling processes.

Example: Given functions f and g, the expression ((g ◦ f) inp) can be calculated

in parallel3 by creating a process for each function. However, simply replacing the

function calls by process instantiations:

spawnF [g] ◦ spawnF [f] $ [inp]

leads to the process network in Figure 1(a). Process main (which is assumed to

evaluate the above expression) instantiates child processes calculating f and g. It

sends the input inp to the process calculating f. When the result of f inp has been

received by main, it is passed on to the process calculating g, which will likewise

3 In fact, the two function applications will of course be evaluated in distributed sequentiality; unless
(f inp) has a list type, in which case one gets a two-stage pipeline.
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Fig. 1. Process topology (a) without and (b) with remote data.

send its result back to main. Obviously, the result of the process calculating f is not

sent directly to the process calculating g, thus causing unnecessary communication

costs.

To achieve direct communication between the sibling processes, we can use remote

data (see Figure 1(b)):

spawnF [g ◦ fetch] ◦ spawnF [release ◦ f] $ [inp]

The output produced by the process calculating f is now encapsulated in a remote

handle that is passed to the process calculating g, and fetched there. Note that the

remote data handle is treated like the original data in the first version, i.e. it is passed

via the main process from the process computing f to the one computing g. �

Example: Using the remote data concept, we can modify the simple process ring

defined above to establish direct communication channels for the ring communica-

tion:

ring :: (Trans i, Trans o, Trans r) ⇒
[(i,r) → (o,r)] → [i] → [o]

ring fs is
= let (os ,outrs) = unzip $ spawnF fsRD (zip is inrs)

inrs = last outrs : init outrs
fsRD = map lift fs

in os

lift :: ((i,r) → (o,r)) → (i, RD r) → (o, RD r)
lift f (i, h_inr) = let (o, outr) = f (i, fetch h_inr)

h_outr = release outr
in (o, h_outr)

The ring functions are lifted to use remote data in the second, i.e. the ring

component. The lifted function takes a handle and fetches the input data from the

ring. The ring output is released and the handle is returned. �

An important restriction is that remote data handles can only be used once to

fetch remote data. If data will be fetched by several processes, several different

handles have to be released to the different processes. These handles can e.g. be

produced by replicating the data and calling (map release) on the replicated data.

Convenience functions releaseAll and fetchAll are provided, which are eager

versions of (map release) and (map fetch), respectively:

releaseAll :: [a] → [RD a]
fetchAll :: [RD a] → [a]
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2.4 Eden skeleton library

Eden’s programming methodology is based on skeletons (Cole, 1989) which define

general parallel computation schemes like parallel maps and master-worker systems,

divide-and-conquer schemes, or communication topologies like pipelines, rings, torus,

hypercubes, or grids. In Eden, skeletons can simply be defined as parallel higher

order functions. The ring skeleton above is an example of a topology skeleton. A

well-known elementary skeleton is the parallel map implementation parMap which

creates a process for each application of the parameter function to an element of

the input list. The parMap function can be defined easily using spawnF:

parMap :: (Trans a, Trans b) ⇒
(a → b) → [a] → [b]

parMap f = spawnF (repeat f)

Note that parMap is more eager than the standard map. The input list should be

finite to guarantee a finite number of processes, and the input and the output list

will both be evaluated to normal form.

Eden’s skeleton library edenskel4 consists of several modules:

Control.Parallel.Eden.Map contains several parallel implementations of

map :: (a→b) → [a] → [b] as e.g. the simple parMap defined above.

Control.Parallel.Eden.MapReduce provides simple parallel versions of the composi-

tion of a foldr or foldl and a map.

Control.Parallel.Eden.Workpool considers workpool processing, i.e. replicated-worker

skeletons which implement a dynamic task distribution in contrast to the parallel

map implementations which distribute input values or tasks statically to the

worker processes.

Control.Parallel.Eden.DivConq provides several divide-and-conquer skeletons, which

differ in the way parallelism is established. Mainly, two different parallel divide-

and-conquer versions are distinguished. The distributed expansion scheme creates

processes for recursive calls during the recursive unfolding of the divide-and-

conquer scheme while the flat expansion scheme does the recursive unfolding up

to a given depth and then uses a parallel map skeleton for the parallel evaluation

of all recursive calls of the divide-and-conquer scheme on this depth.

Control.Parallel.Eden.Topology defines several skeletons that implement a network

of processes interconnected by a characteristic communication topology. Among

others, there are pipeline and ring skeletons, a torus skeleton, an all-to-all skeleton

and an all-reduce skeleton.

Control.Parallel.Eden.Iteration provides the skeleton iterUntil which implements

iterative algorithms where the iteration body is evaluated in parallel by a number

of worker processes and a master process decides whether to finish the evaluation

or to start another round.

4 available on hackage: http://hackage.haskell.org/package/edenskel
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2.5 Skeleton composition

The remote data concept is the key concept for an efficient composition of skeletons

in Eden. Skeletons with a remote data interface receive handles which they can use

to fetch their input data immediately from the processes producing the data. In the

same way, their results are not returned as data, but just as handles which can be

used to fetch the output data. Thus, with a remote data interface between composed

skeletons, data can directly be transferred between communicating processes of

subsequent skeleton instantiations.

2.5.1 Composing parMap and parRed

The library Control.Parallel.Eden.MapReduce contains simple parallel map-

reduce skeletons, which typically split the input list into as many sublists as PEs

available (constant noPe). For each sublist, a parallel process is created which does a

sequential map-reduce on this sublist. Finally, the results of all processes are collected

in the parent process where a final reduction is done. This simple two-stage parallel

reduction is sufficient for small numbers of PEs. In large systems, the sequential

reduction in the parent process may quickly lead to a bottleneck.

The parallel reduction skeleton parRed has been designed to fold data that is

distributed among a set of processes using a set of processes in a tree scheme,

i.e. it starts combining the data from pairs of processes and continues pairing and

combining until the final reduction result has been computed by the root process.

The skeleton’s interface uses remote data, taking a list of remote data handles as

arguments and delivering the result again as a remote data handle.

parRed :: (Trans a) ⇒
(a → a → a) → -- Reduction function
a → -- neutral element
[RD a] → RD a -- Input → Output

The parMap skeleton can simply be lifted to return remote data handles instead

of the data itself:

parMapRD :: (Trans a, Trans b) ⇒
(a → b) → [a] → [Rd b]

parMapRD f = parMap (release ◦ f)

Using normal function composition, these skeletons can be composed to define a

parallel map-reduce skeleton which does a tree-like parallel reduction:

parMapRed :: (Trans a, Trans b) ⇒
(b → b → b) → b →
(a → b) →
[a] → b

parMapRed g e f = fetch ◦ (parRed g e) ◦ (parMapRD f)

Each parMap process releases its data (i.e. returns a handle), which will be fetched

by one of the parRed processes. The parRed skeleton returns a handle to the result

which must be fetched by the main process.

Example: Consider the simple recursive divide-and-conquer definition of the well-

known mergesort algorithm given in Figure 2. Empty or singleton lists are al-
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Fig. 2. Haskell Mergesort program.

ready sorted. Lists with more than two elements will be split into two halves by

unshuffle 2. The sublists are sorted by recursive calls of mergeSort. Finally, the

sorted result lists are merged into the sorted result list using the auxiliary function

sortMerge:

A parallel version of mergesort can be defined using the parMapRed skeleton

defined above:

parms :: (Ord a, Show a, Trans a) ⇒
Int → -- number of sort processes
[a] → [a] -- sorting function

parms np xs
= parMapRed sortMerge [] mergeSort $ unshuffle np xs

The input list is divided into np sublists in a round robin manner. The parallel map-

reduce skeleton takes the function mergeSort for the sublist sorting by the parallel

map processes and the function sortMerge for the merging of the sorted sublists

by the parallel reduction processes. For simplicity, we have omitted chunking and

dechunking of process inputs and outputs. Figure 3 illustrates the resulting parallel

process network for np= 8. The dotted lines indicate the passing of remote data

handles via the main process, to establish the direct data connections from the map

processes to the reduction processes. �

2.6 EdenTV

When developing parallel programs, tool support for tracing parallel program

behaviour is essential for program analysis and performance tuning. Very often,

the parallel execution can yield unexpected interleavings and one can easily create

single hotspots in a parallel system. To support tracing for optimisation and

debugging, Eden’s parallel RTS has been instrumented to produce execution trace

files containing sequences of important events during program execution, such as

process or thread creation, exchange of messages, and garbage collection (Berthold

& Loogen, 2008). Modern GHC versions since version 6.12.3 support tracing of

multithreaded program executions in a similar way, which can be analysed with the

tool ThreadScope (Jones et al., 2009). Eden’s and GHC’s tracing solutions share the
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Fig. 3. MergeSort process system using compositional parMapRed skeleton.

same trace data format and infrastructure today. GHC’s trace files can be visualised

by EdenTV to analyse thread activities.

Eden’s parallel RTS creates noPe instantiations of the sequential GHC RTS,

called logical PEs or machines, which will be mapped on the physical processing

elements by the operating system or by the used middleware (MPI or PVM). In

most cases, the programmer will create as many logical PEs as physical cores or

processing nodes are available, although this is not mandatory. An Eden program

will generate processes which are allocated to the different (logical) PEs and which

comprise several threads to compute the process outputs. Thus, there are three levels

of execution units: logical machines — processes — threads.

The Eden Trace Viewer (EdenTV)5 can visualise and analyse trace files produced

by Eden’s parallel RTS. EdenTV generates activity profiles (space-time diagrams with

time on the x -axis) with horizontal bars representing the respective displayed execu-

tion units (machines (i.e. PEs), processes or Haskell threads). The machines diagram

(see e.g. Figure 4(a)) shows PE utilisation over time. The diagrams for processes and

threads (see e.g. Figure 4(c)) show the activity of the different processes and threads

(including internal system threads which run in their own ‘virtual’ process). An addi-

tional ‘processes per machine’ diagram (see e.g. Figure 4(b)) shows the same bars as

the processes diagram but groups them according to their placement on the machines.

The diagram bars have segments in different colours, which indicate the activities

of the respective execution unit (machine, process, or thread) over time during

execution. Bars for threads and processes are:

• green (gray), when the logical unit is running;

• yellow (light gray), when it is runnable but currently not running; and

• red (dark grey), when the unit is blocked.

In addition, a machine can be idle which means that no processes are allocated to

the machine. Idleness of machines is indicated by a small blue bar. The thread states

5 available on hackage: http://hackage.haskell.org/package/edentv
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Fig. 4. EdenTV activity profiles and statistics.
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are immediately determined from the thread state events in the traces of processes.

The states of processes and machines are derived from the information about thread

states.

Figure 4 shows three different EdenTV activity profiles of a run of the above

map-reduce mergesort program (plus chunking). One million random numbers

have been sorted, chunks of size 1,000 have been used in streams. In addition

to the different activity profiles, EdenTV provides some statistical information as

shown in Figure 4(d). Apart from the overall runtime, this tells the number of

machines, processes, threads, conversations, and messages. The difference between

conversations and messages is that message streams are counted as a single

conversation but as many messages as have been sent in the stream. If there

are no message streams, the number of conversations and messages will be identical.

In our example program, the number of conversations (96) is much less than the

total number of messages (2,475). This shows immediately that communicated lists

in the program have been streamed.

The machines view (Figure 4(a)) shows that the program has been executed on

eight PEs. The lowest bar corresponds to the main PE, numbered 1, which executes

the main process. The computation starts with a sequential phase where only PE

1 has been active. PEs 2 to 8 initially run idle (small blue bars). In this initial

phase, the input list of random numbers is computed by the main process on PE

1. After about 1.3 seconds PEs 2 to 8 start working, but initially, all processes

on these PEs are blocked. The processes-per-machine diagram (Figure 4(b)) reveals

that, in addition to system processes on each PE and the main process on PE 1,

there are two processes on each PE. From the program code it is clear that one

map process (lower bar) and one reduce process (upper bar) have been allocated

to each PE. The map and reduce processes are created almost at the same time

which is due to Haskell’s outermost evaluation strategy. Map processes are created

first because they deliver the input for the reduce processes. Accordingly, they start

running before the reduce processes which are initially blocked waiting for data

from the map processes. The threads diagram (Figure 4(c)) shows most details.

There are 81 threads, 35 of them on PE 1. Seventeen long-lasting threads compute

the main output of the 17 processes. The other threads evaluate the inputs of all

child processes. In this paper, we work mainly with the processes-per-machine view,

because this view reflects the programmer’s process-oriented view of Eden programs.

Sometimes it is also instructive to inspect the thread view. In Figure 4(c), there are

e.g. the eight threads just above the lowest (main) thread which compute and send

the inputs for the eight map processes. Most of the time they are runnable (yellow)

and there are small running phases (green) which alternate between the eight threads

according to the thread scheduling. This detail shows that there is a bottleneck in

the delivering of input for the map processes which explains the initial blocking

phase of the map processes.

In order to analyse the communication between processes and machines, it is

possible to overlay messages/streams on the corresponding processes and machines

activity files. Figure 5 shows streams and messages overlays in the machines and

processes-per-machine views, zoomed in the parallel program phase. Streams and

https://doi.org/10.1017/S0956796816000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000083


Skeleton composition versus stable process systems in Eden 15

Fig. 5. Zoomed EdenTV views with streams and message overlays.

messages overlays can only be shown for machines and processes, and not for

threads, because only processes and not threads exchange messages in Eden. In the

conversations overlay, message streams are indicated as shaded areas while in the

messages overlay, there is a vector (black line with end marked with a dot) from

the sender to the receiver process or machine for each message that has been sent.

Note that process creation messages are shown as red vectors while data messages

between processes located on the same machine are shown in blue and all other

data messages are shown in black.

The messages overlays show more clearly that there are three program phases

apart from the sequential start phase (see the underbracing in Figure 5): when the

child processes have been started, the main process, or more precisely the eight

threads within the main process computing the input for the map processes, is busy
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unshuffling the list of random numbers into eight sublists and passing chunks of these

sublists to all PEs (including itself, as PE 1 is not reserved for the main process in this

version). Then, all map processes sort the received sublists and pass the sorted sublist

to the reduce processes allocated to the same PE, using optimised communication

shortcuts (indicated by vertical short blue vectors). Finally, the reduce processes

perform a parallel reduction following the common recursive doubling scheme.

Please note the close correspondence between the process scheme of the mergesort

program in Figure 3 and the processes-per-machine activity profile with message

overlays in Figure 5.

3 Case studies

In this section, we consider three case studies with which we investigate the

performance hit caused by using skeleton composition instead of stable process

systems. The first case study shows that complex parallel algorithms and process

networks can easily be defined in Eden using skeleton composition with remote data

interfaces. The further case studies compare the implementation of parallel iterative

algorithms with recursive skeleton instantiations and stable process systems. The

iteration case studies are a conjugate gradient computation and, again, the n-body

simulation already considered in Dieterle et al. (2013). All program runs analysed

in this paper have been executed on the following platform:

4 × AMD Opterontm Processors 6378 with 16 Cores, 16 MB L3-Cache at

2.4 GHz, and 64 GB DDR3 SDRAM, 1,600 MHz

3.1 Finite composition: Parallel sorting by regular sampling (PSRS)

In the area of distributed parallel sorting, PSRS: Parallel Sorting by Regular

Sampling (Li et al., 1993) is a specialised version of mergesort aimed at good

scaling properties. Its complexity is optimal, O( n·log(n)
p

), if the number n of values

to be sorted is greater than p3, where p is the number of available PEs. The PSRS

algorithm takes a distributed unsorted list and produces a distributed sorted list.

Therefore, the distribution of the input list from one source and the collection of

the result lists to one destination is not a necessary part of the sorting algorithm

— in contrast to parallel mergesort, which performs a non-trivial reduction with

sortMerge when collecting the workers’ results. This property ensures that the

PSRS algorithm can be efficiently composed with other skeletons for distributed

data processing.

Assuming that input is provided in p segments of equal size distributed on p PEs,

PSRS consists of four phases:

1. In parallel: Each process sorts one segment and selects a sample of p elements;
2. The main process collects and sorts all p2 samples (p samples from each

process), selects (p − 1) pivot elements and broadcasts them to all processes;
3. In parallel: Each process decomposes its segments into p partitions (according

to the pivot elements) and sends partition j to process j (1 � j � p), keeping

one partition;
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Fig. 6. PSRS in Eden.

4. In parallel: Each process merges p − 1 partitions received from siblings with

its own.

3.1.1 Compositional definition of PSRS in Eden

The PSRS algorithm can be implemented straightforwardly in Eden, using the

remote data based composition technique and the parMap skeleton. Figure 6 shows

the essentials of the implementation. The four phases of PSRS correspond exactly

to the functions composed in the top-level definition.

In Phase 1, the parMapAt processes fetch their remote input data, sort it locally,

and return to the parent process both a list of samples and a handle to the sorted

data. The parent process gathers all samples and extracts the global pivots (a sample

of all samples), which are then distributed back to the other processes for Phase

3 (as the first tuple component). The data handles are left untouched in-between

the two parMap instances (second tuple component); they only forward the data

between the different co-located mapper processes. In Phase 3, each parallel process

partitions its sorted local data according to the global pivots, and creates a list of

p remote handles, one for each of the p partitions.6 These handles are returned to

the parent process, which transposes the matrix of p × p handles and returns them

6 This includes a handle for the partition that should be kept, making extra code for this special case
unnecessary. Due to the optimised local communication, this incurs no overhead.
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Fig. 7. PSRS process network.

Fig. 8. Activity profile of PSRS: final phase and communication.

to the child processes. Hence, every process of Phase 4 is responsible for one of the

partitions: It fetches the respective partitions from all other processes, merges these

(sorted) partitions, and releases its segment of the globally sorted distributed data.

The process network is depicted in Figure 7. Figure 8 shows a runtime trace on

eight PEs with input size n = 1,000,000 and p = 7 worker PEs (PE 1 was dedicated

to the main process). The different phases can be clearly recognised from the activity

shown in the processes-per-machine view. We see different processes in the worker

PEs for Phases 1, 3, and 4. Worker PEs are most active in Phase 1 (local sorting).
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Fig. 9. The allToAllRD skeleton.

Phases 3 and 4, after the parent has processed the samples, are marked by commu-

nication with other siblings. The input is distributed by releaseAll ◦ unshuffle

beforehand, and collected by concat ◦ fetchAll after the computation. Runtime

is dominated by this distribution (message blocks in the beginning) and result

list collection (black area in the end) phases, which overlap with the distributed

processing phases.

3.1.2 Definition of PSRS using the AlltoAllRD Skeleton

The parMap - transpose pattern in phases 3–4 of our PSRS implementation:

parMap(t2 ◦ fetchAll) ◦ transpose ◦ parMap(releaseAll ◦ t1)

is quite common in parallel algorithms. The transposition combined with fetchAll

and releaseAll establishes an all-to-all topology to transpose the distributed matrix.

We find this pattern e.g. in our definition of the googleMapReduce skeleton (Berthold

et al., 2009a), our parallel FFT implementation (Berthold et al., 2009b) or the n-body

simulation presented in Section 3.3 of this paper. Therefore, this pattern is provided

as a general topology skeleton allToAllRD (Dieterle et al., 2010), which performs

both map computations in the same set of processes, using Eden’s tuple concurrency

to provide the two inputs lazily when available (see Figure 9, definition of inp and

two-component worker function p in arrow notation).

Also note a necessary invariant which cannot be expressed in the (standard)

Haskell type system: As the transposed input is supplied to n child processes

(second input component), each process should compute n intermediate values from

the argument to function t1 (first input component). t1 is supplied by the application

programmer. Therefore, the skeleton includes a first parameter n to t1 which can

determine the number of list elements that the function will yield (of course, this

number will be inherently known in many applications).

A version of PSRS using the allToAllRD skeleton is listed in Figure 10. Most code

is taken from the compositional version presented earlier. The first phase of PSRS

(local pre-sorting and sampling) is separately done in a parMap call with remote

data handles. The subsequent parallel phases 3 and 4 are implemented together by
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Fig. 10. PSRS using all-to-all in Eden.

Fig. 11. PSRS compositional (left) and using all-to-all (right) with nine PEs (eight workers)

input size 1,000,000, zoom into distributed phase.

a call to allToAllRDAt with const partition and const mergeAll, hence both

ignoring their first argument.7

The code does not require many fetch and release calls, as most of them

are now implicitly done inside the allToAllRD skeleton. One extra releaseAll is

required to allow for skeleton input of type [RD ([a],RD [a])].

3.1.3 Experimental evaluation

To compare the compositional implementation and the one using the allToAll

skeleton, we focus on the distributed computation phase of the PSRS algorithm.

Figure 11 shows the runtime trace of the two PSRS versions (compositional

implementation on the left), with input size 1,000,000 and p = 8 worker PEs. The

allToAll version (right trace) works with one process less per PE, but runtimes and

process activities of both versions are largely similar, with slightly better runtimes

here for the compositional version (average difference: −5.85%). This is confirmed

by the runtimes and speedups of PSRS on an increasing number of processors with

7 For partition, the result list length is determined by the first argument (pivots), which is the same
for all child processes (produced by replicate in processSamples). mergeAll does not require the
pivots, as it only merges sorted lists.
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Fig. 12. PSRS runtimes and speedups, only distributed phase.

input sizes 10,000,000 and 60,000,000 (see Figure 12). The close correspondence

between both versions is independent from the input size. Well-understood, the

algorithm scales well when input and output stay distributed.

3.2 Iteration: Conjugate gradient (CG)

Conjugate gradient is an efficient iterative algorithm for solving large linear systems

whose matrix is symmetric and positive definite (Saad, 1996). It generates vector

sequences of iterates which are successive approximations to the solution, residual

vectors corresponding to the iterates and search directions used in updating the

iterates and the residuals.

The Haskell code given in Figure 13 follows the presentation of Breitinger (1998).

A data type ISol is used for representing an iterative solution comprising an

iterate x, a residual r, a search direction p, and an iteration counter. The cg code

uses common basic matrix and vector operations (scalar and dot product, vector

arithmetics, and matrix-vector multiplication matVec), whose definitions are omitted

here. We use the library Data.Vector.Unboxed for the representation of vectors. A

Matrix is a list of vectors. The use of unboxed vectors instead of lists accelerated

our programs by the factor 10.

3.2.1 Recursive process instantiations

This iterative program is parallelised by decomposing the matrix-vector multiplica-

tion into as many tasks as PEs are available. The matrix is split into chunks of row
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Fig. 13. Haskell implementation of conjugate gradient.

vectors and the vector is broadcast to all worker processes, such that each worker

process can compute a chunk of the result vector. The parallel version differs from

the sequential one by only two small changes:

1. q = matVec a p is replaced with

q = concat $ parMap (uncurry matVec) (zip aSplit (repeat p)))

2. and a respective decomposition aSplit of the matrix in the outer where-block

aSplit = splitIntoN np a :: [[Matrix]].

Each process receives a matrix chunk and the whole vector. The number of

PEs np becomes an additional parameter of the function cg. The drawback of this

parallelisation is that the matrix chunks would repeatedly be distributed by the main

process to all child processes. A better approach is to forward the matrix chunks

locally between the corresponding processes in the iteration, using remote data and

co-allocation to reduce communication overhead. Moreover, it is advantageous to

suppress streaming by boxing the matrix chunks into a special lazy box LBox:

newtype LBox a = LBox {unLbox :: a}
instance NFData a ⇒ NFData (LBox a)
where rnf (LBox x) = () -- rnf x is avoided

instance Trans a ⇒ Trans (LBox a)

Data in a lazy box will not be evaluated to normal form before sending. This is

especially useful for data that is known to be in normal form. The repeated traversal

https://doi.org/10.1017/S0956796816000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000083


Skeleton composition versus stable process systems in Eden 23

Fig. 14. Parallel conjugate gradient with recursive process instantiations.

of the data by rnf is suppressed. Lazy boxes will be sent in a single message, i.e.

streaming or concurrent sending will be suppressed. The resulting program code is

given in Figure 14.

The iteration function nextIter now receives the list of handles to the boxed

matrix chunks as an additional parameter of type [RD (LBox Matrix)]. It is

important that each process produces a new handle to be passed to its successor (via

the main process) because a handle can only be used once. The worker processes

are created using the parMapAt skeleton with the desired placement on successive

PEs starting with PE 2 (indicated by the first parameter [2..]).

Figure 15 shows three views of a trace of a program run for a matrix and

vectors of size 20,000 on eight PEs. Ten iterations are performed. The machines

view in Figure 15(a) and the processes-per-machine view in Figure 15(b) have

messages overlayed. In Figure 15(c), the processes-per-machine view is shown without

messages. The computation starts with the distributed evaluation of the input

matrix chunks by auxiliary processes. This evaluation takes about half a second.

Then, the parallel iteration phase starts. In Figure 15(a) and (b), the iterations

are clearly separated by the message exchanges between the main PE and main

process, respectively, and all other PEs and processes. The message traffic consists

of the following communications: First, the main process sends process instantiation

messages to all PEs. As a reply, it receives a message with the input channels from

each process. Then, it sends the processes’ input via the received channels. The input

consists of the matrix chunk handle and the vector. The processes perform a matrix

vector multiplication with their matrix chunk and the input vector and return their
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Fig. 15. Activity profile of parallel CG program with recursive process instantiations.
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Fig. 16. Interface of iterUntil iteration skeleton.

result vector which is a chunk of the overall result vector to the main process. The

main process decides whether to terminate or to start another iteration step. This

synchronisation by the master induces that slow worker processes may slow down

the whole computation, as can be observed in iteration steps 6 and 7, where the

worker processes on PEs 5 and 7 need more time which leads to blocking phases

in the other PEs. In iteration step 7, the worker on PE 2 is the slowest. Although

the computation is very regular and each worker has to perform computations

with the same complexity, such imbalances in computation time can be caused by

concurrent computations performed on the physical machine which could not be

used exclusively.

In the processes-per-machine view in Figure 15(b) and (c), it can be observed

that the main process starts eight new parMap processes per iteration. The short

process bars overlap slightly which can more clearly be seen without the message

overlay (Figure 15(c)). The overlap is due to the passing of the matrix chunk

from one process to its successor process. Each process terminates as soon as

it has sent its matrix chunk. Because subsequent processes are co-allocated and

share their PE’s heap, passing the matrix chunk reduces to a simple pointer

exchange.

The statistics in Figure 15(d) shows that 89 processes have been created, the

main processes, eight auxiliary processes to compute the matrix chunks, and finally

10 times eight processes for the 10 parallel iteration steps on eight PEs. Five

hundred thirteen threads are created: the main thread, eight system threads (one

per PE), one input and two output threads per auxiliary process and, in particular,

three input and three output threads for each of the 80 worker processes — two

inputs and two outputs from and to the main process and one input and output

from the predecessor process and to the successor process, i.e. in total there are

1 + 8 + 3 × 8 + 6 × 80 = 513 threads.

3.2.2 Parallel implementation using the iterUntil skeleton

The Eden skeleton library provides the iterUntil skeleton for the evaluation of

simple parallel iterative computations. A set of worker processes is created, which

perform a parallel map as the iteration body, while a controlling main (or master)

process decides about termination and provides the input for each iteration. Both

the workers and the master process keep a local state. Internally, data are exchanged

between workers and master as streams of tasks (from the master to all workers)

and results (from all workers to the master), one element per iteration step and

worker, respectively.
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Fig. 17. Parallel implementation of conjugate gradient using iterUntil skeleton.

The iterUntil skeleton’s interface is shown in Figure 16. The behaviour of the

skeleton is controlled by three functions:

1. The input transformation function transforms the input into lists of worker

states and of worker inputs and a master state.

2. The worker function takes a state and an input and produces a result and a

state.

3. The combine function is used by the master to decide about termination. It

takes the master state and the list of worker results and produces either a final

result or a list of worker inputs and a master state.

The conjugate gradient algorithm can easily be parallelised using the iterUntil

skeleton. Figure 17 shows the necessary definitions of the three function parameters.

In each iteration, the current vector is replicated as input for all workers. The

matrix chunks are the worker states, which actually do not change during the entire

computation. The master state is the iterative solution of type ISol. The worker

function computes its chunk of the matrix vector multiplication and keeps its matrix

part as the local worker state. The master concatenates all vector chunks received

from the workers, and checks for termination (using converge as defined before).

The nextIter function is adapted to take the current vector, which is the result of

the matrix vector multiplication, instead of the matrix as parameter, as the matrix

vector multiplication is computed in parallel by the worker processes.

Figure 18 shows two views of an activity profile of this iterUntil-based version,

run with the same program parameters as in the activity profile shown in Figure 15

https://doi.org/10.1017/S0956796816000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000083


Skeleton composition versus stable process systems in Eden 27

Fig. 18. Activity profile of parallel iterUntil CG program.

for the compositional (recursive) program version. For this program version, the

machines view in Figure 18(a) is very similar to the machines view in Figure 15(a).

The processes-per-machine views, however, reveal the different approaches. With

the iterUntil skeleton exactly one process is generated per machine and these

communicate with the main process between the different iterations, see Figure 18(b).

The message streams overlay would cover most of the activity bars. As in Figure 15,

there is an imbalance, by chance in the same iterations 6 and 7 as in Figure 15, but

due to different PEs causing the delays. The machines views in Figures 18 and 15(a)

do not reveal whether processes are started for each iteration or whether a process

system is stable during the whole computation. Only by looking at the processes-
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Fig. 19. Runtimes (in seconds) and speedup of parallel conjugate gradient programs for

input sizes 20,000 and 50,000 and 30 iterations.

per-machine view, one detects the different approaches. The statistics in Figure 18(c)

show that only 17 processes have been created, namely the main process, eight

auxiliary processes and eight iterUntil processes. Accordingly, less threads have

been created and less messages have been exchanged. The compositional version is

a tenth of a second slower than the iterUntil skeleton version in this experiment,

a very small difference given the total runtimes are close to 3 seconds.

3.2.3 Experimental evaluation

The advantage of the compositional parallel CG program is that it is very close to

the original sequential program. Only local changes to the sequential program led

to a parallel program which shows the same overall behaviour as the iterUntil

instantiation when looking at the machine level only. Figure 19 shows the runtimes

of the two program versions for input vectors of 20,000 and 50,000 elements when

performing 30 iterations on 2 to 64 PEs as well as the absolute speedups achieved

in comparison with the sequential cg program (see Figure 13) running on a single

PE. Both programs scale very well and the runtimes and speedup curves are very

close. More often than not, the compositional version is slightly slower than the

iterUntil version, but the differences are small (around 10% on average). For the

matrix dimension 50,000 both program versions achieve even super-linear speedups

up to 52 PEs which will be due to cache effects. The parallel programs take benefit

from the multiple cache stores due to the inherent locality in the unboxed vector

data type. When the runtimes become very small, i.e. when the amount of work per
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PE falls below a certain threshold, additional PEs will no longer improve speedups.

This effect can be observed for more than 44 PEs with input size 20,000 and for

more than 52 PEs with input size 50,000.

3.3 Using the iteration framework: N-Body, CG

The conjugate gradient computation shown the last section is a true iterated parallel

map, the worker processes in each iteration are completely decoupled from each

other. In many applications, worker processes need information from their peers,

which is not implemented in the iterUntil skeleton. As an example, we discuss

an all-pairs n-body simulation. N-body simulations approximate the movement of

n-celestial bodies in three-dimensional space by discrete time steps, taking into

account their mutual gravitational attraction. Each body has a known mass and a

current position and velocity at any given time step. In each time step t, position,

and velocity of each body are updated as follows:

1. Velocity changes depending on all other bodies’ masses and positions,

�̇pt = �̇pt−1 − G ·
∑

mi
�pt−1−�pit−1

| �pt−1−�pit−1
|3 ;

2. position changes according to the body’s new current velocity, �pt =�pt−1 +�̇pt.

The multiplicative gravitational constant G can be omitted, by assuming that the

unit of the coordinate system is Gm.

The sequential code (which we do not show here in full) is based on a data type

Body that encapsulates a body’s mass, position, and velocity and three functions: A

function getMasspoint to extract a body’s mass and position, a function changeVel

that changes a body’s velocity by considering a set of other masspoints (other bodies,

Equation (1) above), and a function move that moves a body by changing its position

according to its velocity and one time unit (Equation (2) above).

getMasspoint :: Body → Masspoint
changeVel :: [Masspoint] → Body → Body
move :: Body → Body

3.3.1 Compositional parallelisation of N-body

A simple parallel n-body implementation will distribute all bodies over the available

PEs. In a single iteration, each PE will

1. communicate masses and positions for its own bodies (masspoints) to all other

PEs;

2. consider the received masspoints to update its own bodies’ velocities;

3. and finally update its bodies’ positions using new velocities.

The communication pattern used here is, again, described by the allToAllRD-

skeleton from Section 3.1.2, but in this case, every process sends the same data

to all peers, which is commonly called allGather, implemented by the following

allGatherRD skeleton.
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allGatherRD :: (a → i) → (a → [i] → b) → [RD a] → [RD b]
allGatherRD f g = allToAllRD f’ g

where
f’ n xs = replicate n $ f xs

Using allGatherRD, a single iteration step is implemented by the following step

function:

step :: [RD [Body]] → [RD [Body]]
step = allGatherRD (map getMassPoint) updateAll

updateAll :: [Body] → [[ MassPoint ]] → [Body]
updateAll bs mss = map move $ map (updateVel ms) bs

where
ms = concat mss

Again, the use of remote data handles in the interface allows for iterating this

step function easily by function composition. Since we are going to use all available

PEs per step, the implicit round-robin placement of processes done by the RTS

will co-allocate them nicely. (Otherwise, we would have used placement parameters.)

The list of bodies needs to be partitioned into the available amount of workers

(noPe) beforehand, and data are handed over as remote data handles created by

releaseAll. The actual distribution of the lists happens when the parallel processes

of the first iteration fetch the data. After the n steps of the iteration, data are

fetched back to the main PE and shuffled back into the original order.

nbodysim :: Int → [Body] → [Body]
nbodysim n = (shuffle ◦ fetchAll) -- combine

◦ (foldr1 ( ◦ ) (replicate n step)) -- iterate
◦ (releaseAll ◦ unshuffle noPe) -- partition

Figure 20 illustrates the runtime behaviour of the computation, in a small example

run with 2,000 bodies and four iterations on four PEs. In contrast to the conjugate

gradient example, the number of iterations is known from the start; therefore,

processes for all four iterations are created as soon as input data is available to the

main process. On each PE and in each iteration, one process becomes active when

it receives the bodies from its predecessor. The local mass points are communicated

to the siblings, then the local bodies velocities and positions are updated, and those

are finally handed over to the successor process.

3.3.2 Comparison with iteration framework implementation

In Dieterle et al. (2013), we presented a framework for skeleton iteration that avoids

the repeated process instantiation in favour of long-lived processes connected by

streams for the iteration. While some applications benefit in performance from

using our framework, the n-body simulation performed better in the compositional

variant described here. Figure 21 shows runtimes and speedups for both versions

with 20,000 bodies and 10 iterations. On average, the compositional program is

about 10% faster than the version based on the iteration framework, with the

performance gain increasing with PE numbers.

Figure 22 shows an activity profile of our n-body implementation using the

iteration framework, for the same parameters as in the other trace (Figure 20).
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Fig. 20. Activity profile (processes-per-machine view) of parallel n-body program with

composed process instantiations, with messages overlay.

Fig. 21. Runtimes and relative Speedups of n-body-simulations on different numbers of PEs.

This version uses two processes per PE (apart from the main process): a controller

process which determines the termination of the iteration (i.e. simply counting to

four in this case), and the worker process which computes the current bodies and

queries the controller after each step.

The third iteration in Figure 22 shows an interesting anomaly. Process P1:3

on machine 1 is the last to begin the third iteration. It has already received the

masspoints for iteration 3 from its peers, which are blocked waiting for masspoints

from P1:3. However, P1:3 now first computes its updates instead of sending its

data to the peers,8 thereby delaying the iteration step globally. This is an artefact

8 Each Eden process communication happens in a different thread. Therefore, each process internally
has five threads (one to communicate with peers, including itself, one to compute and send the final
iteration result).

https://doi.org/10.1017/S0956796816000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000083


32 M. Dieterle et al.

Fig. 22. Activity profile (processes-per-machine view) of parallel n-body program with

iteration framework, with messages overlay.

of GHC’s Haskell thread scheduling: A thread that is descheduled due to heap

overflow is rescheduled immediately after GC. Threads for communication with

peers should have higher priority than the main computation thread in the skeleton,

but the GHC runtime does not support thread priorities.9 However, the anomaly

does not explain the performance differences observed. We examined several activity

profiles for both program versions, and found that this happens in about the same

frequency for both versions.

3.3.3 Re-considering CG

The iteration framework can also be used to implement the conjugate gradient

algorithm using a stable process system. We repeated our measurements for the CG

algorithm in order to find out how the iteration framework performs in the case

of simple iterations without need for inter-worker commmunication. The results are

shown in Figure 23. As the iteration framework works with different Eden modules,

we repeated also the measurements shown in Figure 19.

Again runtimes of the three different implementations are very close. Differences

appear more clearly in the speedup curves. Here, the iteration framework version

performs slightly better than the monolithic iterUntil skeleton version. With the

modular approach of the iteration framework, we can match the problem more

specifically and gain more performance, even though we use the same problem

specific parameter functions.

9 There were promising attempts at implementing priority scheduling for Haskell threads, but the
implemented solution suffered from performance problems and the feature was controversial. For the
full discussion, see https://ghc.haskell.org/trac/ghc/ticket/7606.
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Fig. 23. Runtimes (in seconds) and speedup of parallel conjugate gradient programs for

input sizes 20,000 and 50,000 and 30 iterations including iteration framework measurements.

In order to measure only the core phase of the parallel computation, we compute

the corresponding matrix chunks in parallel on all PEs and pass remote data

handles to the processes of the iterUntil skeleton and the iteration framework,

respectively. In the iterUntil case, we are forced to repeatedly fetch and release

the local matrix chunks on all the workers in every iteration step, because the

skeleton does not include special treatment for the initial step. This local bypassing

is efficiently supported by the RTS, but even though incurs a certain overhead. The

more flexible iteration framework allows us to define a version where the initial

input (the matrix chunk) is fetched only once and then kept as local state of the

worker processes.

3.4 Discussion

We have presented three different case studies. In each case study, we have developed

a parallel program using skeleton composition where new parallel processes are

created for subsequent computation phases. Such compositional programs are much

easier to develop because the program code is much closer to a sequential program

or specification. They will be more amenable to optimisations, maintenance, and

further developments, but may exhibit slightly worse performance due to repeated

process creations and additional need for communications. This could be avoided

by the development of stable process systems where a single set of worker processes

is created for the whole parallel computation.
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Our goal has been to compare compositional parallel programs with correspond-

ing stable process parallelisations using typical case studies. Due to the different

characteristics of the case studies, we had to use different approaches to establish

stable process systems, namely pre-defined skeletons alltoallRD and iterUntil,

and our recently developed iteration framework (Dieterle et al., 2013). The following

table summarises our experiments and shows the average runtime gain by developing

a stable-process implementation:

Case study Kind of computation Stable approach
Average

runtime gain

PSRS Fixed number of stages alltoallRD skeleton −2.85

CG Iteration, independent workers iterUntil skeleton 5.5%

N-Body Iteration, interconnected workers Iteration framework −14%

CG Iteration with independent steps Iteration framework 8.85%

Only for the Conjugate Gradient algorithm, we were able to improve the performance

by implementing stable process systems. The performance gain is less than 10%.

In general, the development costs of stable systems might not be proportional

to the performance gain. If a pre-defined stable-process skeleton or framework is

not available, it might even not be worthwhile to invest in its development. The

compositional program versions are much easier to develop than the stable-process

program versions.

Trace analyses and runtime measurements show in all case studies that both

program versions show almost identical parallel program behaviours. When the

programmers keep in mind the following simple rules to avoid sources of ineffi-

ciency like e.g. a bad process distribution causing load imbalance or unnecessary

communications, the performance loss caused by skeleton composition will be

minimized:

• Use a remote data interface to support direct communication between producer

and consumer processes;

• co-allocate corresponding processes of subsequent computation phases to take

profit from the optimised local communication between co-allocated processes

in the Eden parallel RTS.

When working with remote data handles, it is important to keep in mind that these

handles can be used only once. If data has to be fetched from several processes,

several remote data handles must be created. It is not possible to simply copy or

share handles and use them to fetch the same data multiple times.

4 Related work

4.1 Parallel functional programming using Haskell

Functional languages have traditionally been recognised for their potential to easily

express parallelism and write safe parallel programs. Therefore, functional languages
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and concepts for parallelism have received much attention when multicore CPUs

and later GPUs became common. During the same time, the last decade, Haskell

has seen widespread adoption in industry and a rapidly growing community.

Historically, the first parallel Haskells were aimed at exploiting inherent paral-

lelism in the graph reduction, such as the annotation-based approach of Glasgow

parallel Haskell (Peyton Jones et al., 1987; Trinder et al., 1996). The concept of

evaluation strategies (Trinder et al., 1998; Marlow et al., 2010) allows programmers

to decouple computation and coordination, in a somewhat similar way as skeletons.

The semi-implicit annotation-based approaches (as well as the completely implicit

pH (Aditya et al., 1995)) fit well with the declarative nature of functional languages

and with Haskell’s laziness and purity. However, it was found to incur overheads

and require a certain sophistication when optimising parallel programs (argued in

Marlow et al. (2011)).

Another research direction in parallel Haskell is to follow a data-parallel approach,

providing special container types (arrays) and operations with parallel implemen-

tations on them. The full data-parallel Haskell (Chakravarty et al., 2007) inspired

by NESL (Blelloch, 1996) has taken a long time to mature, and yielded several by-

products: libraries RePA (Lippmeier et al., 2012) and vector (Leshchinskiy, 2008),

and type system features of general interest (especially indexed types (Chakravarty

et al., 2005)). GPU languages like Accelerate (Chakravarty et al., 2011) or Nikola

(Mainland & Morrisett, 2010) follow the same data-parallel philosophy, but target

GPUs in a two-stage DSL architecture. Parallel array operations in such array-

oriented approaches can be considered as data-parallel skeletons, and nesting/flat-

tening is central to DpH (whereas RePA and Accelerate only allow regular nesting).

The common denominator to all approaches mentioned so far is that they

completely retain the purity of the Haskell computation language. Explicit con-

currency and more explicit parallelism deviate from Haskell’s purity to achieve

better performance and give programmers the ability (and burden) to explicitly

control parallelism and coordinate sub-computations.

Explicit concurrency can of course be used to parallelise programs — but only

on a fairly small scale of a few cores, and in shared memory. To some extent,

the same holds for the Par Monad library (Marlow et al., 2011); where explicitly

forked tasks are connected in a data-flow style, and for our working language

Eden, (especially its monadic lower level implementation language EdI (Berthold &

Loogen, 2007) with explicit communication, resembling the Par Monad closely). To

capitalise on the functional setting, the explicit and liberal programming style must

be replaced by a more structured parallelism specification. Besides the differences

due to shared-heap or distributed-heap implementations, both Par Monad and Eden

are equally well-suited for the development of skeletons and the work presented here.

The Par Monad approach is limited in scaling due to its multicore implementation.

The Eden implementation uses distributed heaps on separate RTS instances in

a cluster (or separate OS processes) and can therefore scale better. In turn, the

optimisations discussed in the main part are specifically targeting a cost model

where communication is expensive, whereas communication cost would be very

minor in an equivalent Par Monad implementation.
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Finally, there are Cloud Haskell (Epstein et al., 2011) and HdpH (Maier et al.,

2014), which both target compute clusters and similar networked systems. Both are

relatively new, and their rather tricky way to realise communication between different

PEs somewhat complicates skeleton development. Cloud Haskell follows an actor

model (Hewitt et al., 1973) in the spirit of Erlang (Armstrong, 2007), and concentrates

on portability of network layers and basic control support, rather than providing

high-level skeleton libraries. HdpH generalises the Par Monad programming model

for compute clusters, and concentrates on realising failover safety, combined with

load-balancing work stealing mechanisms similar to the GUM implementation of

Glasgow parallel Haskell.

For the topic of the paper at hand, the Par Monad would be the most suitable

replacement for Eden to develop composable skeletons for parallel programming.

HdpH has similar potential, but sets focus on different aspects, and does not provide

the easy communication of Eden and its implementation.

4.2 Nesting and composition in other skeleton libraries

In the skeleton programming community, the problem of nesting, and more generally,

composing skeletons, has been identified as crucial from the very beginnings (Cole,

1989). Type-checking and scheduling have been identified as the main complications

of nesting and composing skeletons; the former harms programming safety and

comfort, while the latter affects execution performance. Many skeleton libraries are

based on imperative host languages like C++, C, or Java, and differ in terms of

their nesting capabilities. We elaborate on a few examples, following the survey work

of González-Vélez and Leyton (2010).

Some libraries distinguish data- and task-parallel skeletons, and only allow to nest

a data-parallel skeleton inside a task-parallel one. Examples are Muesli (Kuchen,

2007) and the older P3L (Bacci et al., 1995). JaSkel (Ferreira et al., 2006), a Java-based

library, allows arbitrary nesting, but sacrifices type checking of skeletal programs

by very liberal skeleton types (all data are considered as Objects). The prominent

C++-based library eSkel (Benoit & Cole, 2002) developed in Edinburgh integrates

the nesting deeply into its concepts. Nesting in transient mode leads to repeated

instantiations of the nested skeleton, while persistent mode reuses the created

instance. Our work described here essentially investigates this very distinction;

our case studies compare transient compositional solutions to bespoke ones with

persistent worker processes.

In general, when a non-functional skeleton library has matured beyond prototype

stage, skeleton nesting is usually supported, sometimes by making design compro-

mises, sometimes as an integral design aspect.

5 Conclusions and future work

The parallel Haskell dialect Eden features control constructs for the explicit parallel

execution of communicating processes with independent heaps. Its original target

architecture were cluster systems with distributed memory, but it also performs
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competitive on modern multicore platforms in NUMA architecture. The Eden

compiler extends GHC with a parallel RTS. Eden can be deployed on distributed

systems, currently on top of middleware like MPI and PVM, as well as on multicores,

where a special implementation using copying instead of message passing is provided.

The language is well-suited for the implementation of algorithmic skeletons, making

them directly available in the Eden skeleton library. In the best case, parallel

programming in Eden consists mainly of choosing and composing suitable skeletons

from the library, and of appropriate instantiation. EdenTV is a powerful tool to

analyse the runtime behaviour of Eden programs.

The focus of this paper has been on programming methodology for skeleton-based

parallel Eden programs. We have contrasted two different approaches to implement

complex parallel algorithms: stable process systems and skeleton composition. Up to

now, Eden’s philosophy has always been to work with stable process systems in order

to save process creation and communication costs. On the other hand, Eden skeletons

can easily be composed to create complex process systems using remote data and

specific co-allocation of processes. Eden’s parallel RTS optimises communication

between co-allocated processes, replacing communication with copying and thus

saving the overhead induced by serialisation and deserialisation of data to be

communicated.

We have considered three different case studies, a fixed composition (PSRS) and

two iteration problems where the iteration steps are performed in parallel by a

set of workers (CG, n-Body). In all case studies, our trace analyses with EdenTV

show very similar overall program behaviour of both versions when only looking

at the machines view. The more detailed processes-per-machine views as well as the

statistics provided by EdenTV confirm that many more processes are created and

many more messages are exchanged with the compositional approaches than with

the stable process program versions. Nevertheless, the runtime measurements of both

program versions are always very close: for PSRS and n-Body, the compositional

version performs even better than the stable versions, whereas for CG two different

stable versions are better than the compositional version. In total, the differences in

runtimes and speedups are very low, in average between −15% and +10%.

In general, composing complex process topologies from elementary skeletons is

easier than the design and implementation of a sophisticated stable process skeleton

for the same purpose. The program code is much closer to the sequential program

version and easier to understand. This simplifies optimisations and is a good basis for

further developments and code maintenance. Due to Eden’s remote data concept, the

explicit co-allocation of processes, and in particular the optimised communication

between co-allocated processes within Eden’s parallel RTS, the process creation

and communication overhead can be minimised, and thus, the performance of the

compositional approach is competitive with the more involved development of stable

process systems.

In our case studies, the processes of the compositional program versions have

mostly been created using parMap instantiations. Our approach is far more general.

It is e.g. no problem to recursively instantiate other skeletons like e.g. a torus

skeleton. Powers of matrices could e.g. be computed by iterating a parallel matrix
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multiplication in a torus network. Thus, the technique leaves space for additional

investigations. In addition to our work in this direction, we are currently working on

a redesign and generalisation of the implicit communication mechanism of Eden to

abstract from and generalise input/output transformations on communicated data.
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