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THE BLOCH SPACE AND BESOV SPACES
OP ANALYTIC FUNCTIONS

KAREL STROETHOFF

We shall give an elementary proof of a characterisation for the Bloch space due
to Holland and Walsh, and obtain analogous characterisations for the little Bloch
space and Besov spaces of analytic functions on the unit disk in the complex plane.

1. INTRODUCTION

We let D = {z 6 C : \z\ < 1}, and use dA for the normalised Lebesgue area
measure on D. For 1 < p < oo, an analytic function / is in the Besov space Bp if

- \*\2)" 2

that is, the function ( l - | z | 2 ) / ' E Lp(B,dX), where d\(z) = ( l - |z|2) dA{z). We
note that the measure A is not a finite measure on D ; its importance stems from the
fact that it is Mobius-invariant. To make this precise we need more notation. For
w E ID the Mobius transformation <pw is defined by

w — z
f - ^ ' f o r z

The following identity is easily verified:

( ) ( |2( h|) ( - |2|
(1) 1 - | ^ ( * ) | 2 = ^ TT2^-.

\l-wz\
So, the function <pw maps D into itself. It is furthermore easy to verify that (pw is its

own inverse. Noting that f'w{z) = f |tw| — l ) / ( l —wz) , the above identity states:

(2)
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-2 / «\ -2
and thus d\{<pw{z)) = (l - \<fw(z)\2^ \<p'w(z)\2 dA(z) = (l - |*|2) dA(z) = d\(z).

Hence we have the following change-of-variable formula:

(3)

where h is a positive measurable function on D. Using (3) it is easily seen that

11/ ° <PW\\B — II/IIB > a n d consequently, if / £ Bp, then / o <pw £ Bp, for all w £ E>.

The Besov space B\ is defined differently: it is the set of all analytic functions / on D

such that

I < oo.
ID

Even though the above semi-norm is not Mobius-invariant, the Besov space B\ is; that
is, if / £ Z?i, then / o ipw £ B\, for all w £ D. Another Mobius-invariant space of
analytic functions on D> is the Bloch space B; it is the set of all analytic functions / on
D for which

: = s u p ( l - H 2 ) | / ' ( Z ) | < o o .

That B is Mobius—invariant is most easily seen from the observation that

( l - |z|2) |/ '(*)| = | ( / < W ( 0 ) | , so that | | / | |B - sup{|(/op,)'(0)| : z £ D}, and

thus | | / o p^Ha = | | / | | B , for all w £ D. Note that Bi C Bp C B for each 1 < p < oo.

It is easy to prove that all these spaces are Banach spaces. Rubel and Timoney [9]

have actually shown that the Bloch space B is maximal among all Mobius-invariant

Banach spaces of analytic functions on D (provided there are so-called "decent" linear

functionals). In [2] Arazy and Fisher have shown that the Besov space Z?i is minimal

among all Mobius—invariant Banach spaces of analytic functions on D (see also [3]).

The Besov space Z?2 •, more often referred to as the Dirichlet space, is easily seen to be

a Hilbert space. In [4] Arazy and Fisher proved that Bi is the only Mobius—invariant

Hilbert space of analytic functions on ID.

In the next section we shall state and prove a criterion for containment in the Bloch
space obtained by Holland and Walsh [8]. In section 3 we shall prove a characterisa-
tion for the analytic Besov spaces analogous to the criterion of Holland and Walsh for
containment in the Bloch space.

2. THE BLOCH SPACE

In [8] Holland and Walsh obtained the following characterisation for the Bloch

space.

THEOREM 1. For an analytic function f on D:

f€B
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Holland and Walsh's proof of the above result is quite complicated. We shall show
how the Mobius-invariance can be exploited to obtain a very easy proof of the above
theorem.

PROOF OF THEOREM 1: The implication "<=" is trivial. To prove the other

imph'cation, suppose that f £ B. Then

l/(«) ~ /(0)| ^ f \u\ \f'(tu)\ dt < ||/||B f '"' dt = \\f\\B I log i ± M ,
Jo Jo 1 — t \u\ J- — lul

for each u G P . Now

U} 1 _ V

" 2 ~ / 2W2

- N ) 2|tt|

where we used the inequality (1 — |u| J ^ 1 — \u\. It follows that

( l -

for all M G B>. For z,w G P , replace / in the above inequality by / o ipw and let

u = <pw(z). Using ^ ( ^ ( z ) ) = 2, | | / o V^IIB = | | / | | s and identity (1), we get

ii/ii

and thus

(4)
v ' v • • / v. • / z — •

for distinct z,w G E), completing the proof of Theorem 1. D

Before we consider the analytic Besov spaces in the next section, we briefly discuss
the little Block space Bo, the set of all analytic functions / on D for which

lim ( l - \z\2) f'{z) = 0.
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For an analytic function / on ID and 0 < t < 1 the dilate ft is the function defined by
ft(z) = f(tz). In [1] it is shown that for an analytic function / on D : / £ So if and
only if | | / - / t | | B - » 0 as * - » l " .

In analogy to Theorem 1 we have the following result.

THEOREM 2 . For an analytic function f on D:

lim sup'l (1 — \z\ )
I z l — i - I. V / z — w

: w 6 ED, w ^ z}-o.

PROOF: The implication "<=" is again trivial. To prove the other implication,
suppose that f G Bo and let 0 < t < 1. Using (4) we see that the dilate ft satisfies:

/ 2\i/2 / 2>.

/«(

-\tw\

Applying inequality (4) to the function f — ft, it follows with the help of the triangle
inequality that

su P {(i-l-P)'
f{z)-f{w)

Z — ID
:w €

First letting \z\ —» 1 and then < —> 1 , the implication "=>" follows. D

For various other characterisations of the Bloch and little Bloch space we refer the
reader to [1, 5, 10, 11, 12].

3. BESOV SPACES OF ANALYTIC FUNCTIONS

Another way of interpreting Theorem 1 is that for an analytic function / on D we

have / 6 B if and only if the function (l - \z\2) (l - |w|2) (/(z) - f{w))/(z - w)

is in Z°°(ID> X ED) . We shall prove the corresponding result for the Besov spaces:

THEOREM 3 . If 2 < p < oo, then for an analytic function f on U) we have:

I f(z) - f(w) v / . . . , \ P / 2 / . .->\P/2

z — w
d\(w)d\(z)<oo.

Of special interest is the case in which (1 — \z\2) d\(z) = dA(z). This is

when p = 4, and we have the following special case of Theorem 3:
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COROLLARY 4 . For an analytic function / on ED we have:

In the proof of Theorem 3 we shall need a couple of lemmas. In order to state the
first of these lemmas we need to introduce more notation.

For w £ ID and 0 < r < 1 we write D(w,r) for the set {ipw(z) : \z\ < r} = tpw(rW) .

Because (pw is a Mobius transformation, the set D(w,r) is a Euclidean disk contained in

D. Its Euchdean centre and radius are easily determined to be ( l — r2)w / (1 — r2 \w\ J

and (1 — \w\ \r I (1 — r2 \w\ J respectively (see, for example [7, Section 1.1]). We refer

to the set D(w,r) as the pseudohyperbolic disk centred at w with (pseudohyperbolic)

radius r.

LEMMA 5 . Let 1 ^ p < oo, a > 0, and 0 < r < 1. There is a constant C, only

depending upon p , a, and r, such that

f \g(z)\p (l - \z\2Yd\{z) > C \g(w)\p (l - \w\2Y,
JD(w,r) V ' V '

for every analytic function j on D and M 6 D,

PROOF: Let g be an analytic function on D. It is easy to verify that

[
JrB

and by Jensen's inequality we have:

\g(z)f (l - \z\2)ad\(z) > \g(0)\p j (l - \z\2Y d\(z) = Co \g(0)\P ,
D(0,T) V ' JD(0,r) V '

so the inequality holds for w = 0 with Co = /o
r (1 — x)a~ dx. Now if w 6 B>, apply

the above inequality to g o tpw. Using change-of-variable formula (3) and identity (1)
we have:

^ / lsOM*))lp (i - \'\2)ad\{z)
JD(0,r) V '

= I \g{u)\p(l-\<pw{u)\2)ad\(u)

D(w,r) |1 — WU\
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If u G D(w,r), then u = tpw(z), for some z £ rV>, and thus |1 — wu\

= (l - M 2 ) / |1 - wz\ ^ ( l - M 2 ) / ( ! +»•)• It foUows that

dX(u)

(i-H2)'

proving the lemma (with C = Co/(1 + r) a). D

T O W A R D S THE P R O O F OF THEOREM 3. Let / be analytic on D. For w g D write

D(w) for D(w, 1/2), and apply Lemma 5 to the function g(z) — (f(z) — f(w))/(z — w)

to get:

JD(W)

f(z)-f(w)

z —w

p/2

It follows that

/JJ f(z) -
— 10

p/2

C f \f'(w)\p(l-\w\2)PdX(w).

This proves the implication "<=" in Theorem 3. To prove the converse we shall use the
following lemma.

LEMMA 6. Let 1 ^ p < oo, and a > 1. There is a finite constant C, only
depending on p and a such that

/or every ana/ytic function ^ on D.
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PROOF: This follows easily from Theorem 5.6 of [6] and the fact that for the

measure d(M(u) = (l — |u|2J dX(u) the linear operator V, defined on Lp(&, dp.) by

(Vg)(u) — (g(u) — g{0))/u, is bounded (as can be shown using the closed graph theo-

rem). D

COMPLETION OF THE PROOF THEOREM 3: Fix w e D. Using identity (1) and
making the change-of-variables z = <pw(u) we have:

}} z — w

P/2

_ f\U°<Pw)(u)-(f°<Pw)(0)

Applying Lemma 6 to the function / o <pw we see that

o <Pw)(u) - ( / o <fw){0)L \l-\u?)P'd\{u)

= C J\f(Vv{u))\* (l - |^(«) P/2

Integrating with respect to w now yields:

(

d\{u).

|u|2) d\(u) [using (2)]

P / 2 d\{z) [using (3)]

I [using (1)].
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As a special case of one of the Forelli-Rudin estimates (see, for example, [12, Lemma

4.2.2]),the inner integral is bounded by a constant times ( l - |z|2) . (Note that

this estimate requires (p/2) — 2 > —1, that is, p > 2.) Thus, there is a constant C"

such that

f f \f(z) - f(w) P f ?\P/2/ ,\p/2
/ / \JK ' IK ' ( l - | z | 2 ) ( l - M 2 ) dX(z)dXtw)

JBJW Z — W \ / \ /

-p/2

dA(z)

and the proof of Theorem 3 is completed. D

REMARK. For 1 ̂  p < oo and a $J —1, an analytic function h on D satisfies JD |/i(z)|p

(1 — \z\ J dA(z) < oo only when h = 0. It is easily seen that for 1 ^ p ^ 2 the

condition of Theorem 3 involving the iterated integral implies that the function / must

be constant. Thus, the conclusion of Theorem 3 does not hold for 1 ^ p ^ 2.
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