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Abstract

The resolution of the identity formula for a localisation operator with two admissible
wavelets on a separable and complex Hilbert space is given and the traces of these operators
are computed.

1. Introduction

A localisation operator with one admissible wavelet is like the windowed Fourier
transform used by Gabor [4] in time-frequency analysis. The admissible wavelet
plays the same role in the localisation operator that the window plays in the windowed
Fourier transform. We introduce in this paper localisation operators with two admis-
sible wavelets, which can be thought of as windowed Fourier transforms with two
windows and hence are better, or more flexible, tools for signal analysis. It turns out
that localisation operators with two admissible wavelets have a richer mathematical
structure than the one-wavelet analogues, which have been studied in detail in [3,6,9].
The natural setting for localisation operators is by now quite well understood to be the
theory of square-integrable representations of locally compact and Hausdorff groups
on infinite-dimensional, separable and complex Hilbert spaces.

Let G be a locally compact and Hausdorff group on which the left Haar measure is
denoted by fx. Let X be a separable and complex Hilbert space, the dimension of which
is infinite. We denote the inner product and the norm in X by ( ,) and || || respectively.
Let B(X) be the C*-algebra of all bounded linear operators on X and let || ||, denote
the norm in B(X). An irreducible and unitary representation n : G -*• B(X) of G on
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X is said to be square-integrable if there exists a nonzero element <p in X such that

[ \(<P,n(g)<p)\2dii(g)< oo. (1.1)
JG

We call any element <p in X for which ||^|| = 1 and (1.1) is valid an admissible
wavelet for the square-integrable representation n : G —• B(X) and we define the
constant cv by cv = fG \(<p, n(g)<p)\2 dfi{g).

REMARK 1.1. Let U = [(b, a) : b e K, a > 0} be the affine group on which the
binary operation • is given by (b{, a\) • (b2, a2) = (b\ -V axb2> aia2) for all (b\, ax) and
{b2, a2) in U. Let //+((R) be the Hardy space denned by

= {/ € L2(K) : / = 0 a.e. on (-oo, 0)},

where / is the Fourier transform of/. Let n : U -> //£(R) be the square-integrable
representation of £/ on //^(K) defined by

for all (i, a) in (/ and all / in H*(R). Then (1.1) is equivalent to the admissibility
condition to the effect that

Admissible wavelets <p for the square-integrable representation n : U - ^
are then exactly the same as the mother wavelets, which have been extensively studied
in the literature. See, for instance, [2] for an authoritative account of the subject.

THEOREM 1.2. Let (p be an admissible wavelet for the square-integrable represen-
tation n : G -*• B(X). Then

(x, y) = — I (x, n(g)cpH7T(g)<p, y) dfi(g) (1.2)
c<e JG

for all x and y in X.

REMARK 1.3. The formula (1.2) is known as the resolution of the identity formula.
Theorem 1.2 is a simplified version of Theorem 3.1 in [5] by Grossmann, Morlet and
Paul. A proof can also be found in [9, Chapter 1].
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Let F e Ll(G). Then for any x in X, we define LF,vx to be the element in X such
that

(LF.vx,y) = - [ F(g)(x,n(g)(pHn(g)<p,y)d{i(g) (1.3)
cip JG

for all y in X. Then we have the following proposition, which is Proposition 2.1 in [6]
by He and Wong. See also [9, Proposition 2.1].

PROPOSITION 1.4. LFiV : X -+ X is a bounded linear operator and

\\LF,4t<-\\F\\LHC).

REMARK 1.5. The bounded linear operator LF>V : X -> X is called the localisation
operator corresponding to the symbol F. The reason for the terminology stems from
the simple observation that if the symbol F in Ll(G) is replaced by the function
H : G ->• C given by H(g) = 1, g € G, then the resolution of the identity formula
implies that the localisation operator LH^ : X —> X is simply the identity operator
on X. Thus, in general, the symbol F is there to localise on G so as to produce a
nontrivial bounded linear operator on X with various applications in the mathematical
sciences. Localisation operators defined by (1.3) are generalisations of localisation
operators studied by Daubechies [1]. See also [2, Section 2.8] in this connection.

Let A : X -> X be a compact operator. If we denote by A* : X —> X the
adjoint of A : X —> X, then the linear operator (A*A)]'2 : X -> X is positive
and compact. Let [<pk : k = 1, 2, . . . } be an orthonormal basis for X consisting of
eigenvectors of (A*A)l/2 : X -> X and let sk(A) be the eigenvalue of (/4*A)1/2 :
X -> X corresponding to the eigenvector (pk,k — 1,2, We say that the compact
operator A : X -> X is in the trace class S\ if Y1T=\ 5*(^) < °°> anc* w e c a ' l •S*G4)>
£ = 1, 2 , . . . , the singular values of A. It can be shown that Si is a Banach space in
which the norm || ||S| is given by

The following result, which is well-known, will be useful to us and can be found
in [8, Section VI.6].

PROPOSITION 1.6. Let A .X^Xbea bounded linear operator such that

| ( p * , p t ) | oo
k=\

for all orthonormal bases {<pk : k = 1,2, ... }for X. Then A : X -> X is in S\.
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If A : X -» X is a linear operator in Si and [<pk : k = 1, 2 , . . . } is any orthonormal
basis for X, then it can be proved that the series JZtli CA^t. <Pk) is absolutely convergent
and the sum is independent of the choice of the orthonormal basis {<pk : k = 1,2, ...}.
Thus we can define the trace tr(A) of A : X -» X by tr(A) = Yl?=\(A(Pk, <Pk), where
[<pk : k = 1,2, ...} is any orthonormal basis for X. It is now easy to see that if
A : X —> X is a positive operator in S\, then ||A||5] = tr(A).

The following result is Theorem 2.2 in [3] by Du and Wong. A proof can also be
found in [9, Chapter 4].

PROPOSITION 1.7. Let F e L](G). Then the localisation operator LFtip : X -» X
is in S\ and

tr(LF.,) = - f F{g)dn{g).
Cv JG

The results hitherto described are for localisation operators LFtV : X -> X defined
in terms of one admissible wavelet <p for the square-integrable representation jr : G —>
B(X) of G on X. In this paper, we introduce the notion of a localisation operator
LF_9^ : X —> X, which is defined in terms of a symbol Fin L'(G) and two admissible
wavelets <p and \j/ for the square-integrable representation n : G —> B(X) of G on X.
It is proved in Section 3 that Lf>,^ : X ->• X is in S\ and a formula for the trace of
Lp^^ : X -» X is given. These results extend, respectively, the corresponding results
in [6, 3] from the one-wavelet case to the two-wavelet case. The main tool that we
need is an analogue of the resolution of the identity formula (1.2) for two admissible
wavelets for the square-integrable representation it : G —> B(X) of G on X, and this
is given in Section 2.

The motivation for the trace formula comes from the study of the free energy and the
partition function in quantum statistical mechanics as described in, for example, [7].

2. A resolution of the identity formula

In this section, we give an analogue of the resolution of the identity formula (1.2)
for two admissible wavelets for the square-integrable representation n : G —> B(X)
of G o n X .

THEOREM 2.1. Let <p and \fr be two admissible wavelets for the square-integrable
representation n : G -*• B(X)ofGonX. Then

/ (x,n(g)(p)(n(g)Tls, y)dfi(g) = c9^(x,y), x,y e X, (2.1)
JG

https://doi.org/10.1017/S1446181100013122 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013122


[5] Traces of localisation operators with two admissible wavelets 21

where

<W = / (<P,^(g)<P)(^(g)\l/,<p)dix(g). (2.2)
JG

PROOF. First we define A9 : X -> L2(G) and A$ : X -*• L2(G), respectively, by

= (x, n(g)<p), xeX, geG, (2.3)

and

(A+x)(g) = ( x , n ( g W ) , xeX, geG. (2.4)

Then, by (1.2), Av : X —> L2(G) and A^, : X —>• L2(G) are bounded linear operators.
By (2.3) and the fact that n : G —»• B(X) is a unitary representation, we get, for
x e X, and g,h € G,

{A9n{h)x)(g)
So

where

= (ir(h)x,

(L(h)f]

n(g)(p)

Avn(h)

)(g) = J

= (x,n(h

1 = L(h)A

'(h~xg). g,he

= {A^Qi

G,

'g). (2.5)

(2.6)

(2.7)

for a l l / in L2(G). Now, for all x and y in X, we get, by (2.4)-(2.7) and the fact that
n : G -> fi(X) is a unitary representation,

+y)LHc) = I (Avx)(h-1g)(A,l,y)(g)dfx(g)
J G

= f(Avx)(g)(A^y)(hg)dn(g) = (A^x, L(h.-')A^y)
JG

, A^,n(h-l)y)LHG) = {nQ^A^A^x, y), h e G, (2.8)

where (, )t2(o is tr>e inner product in L2(G). Thus, by (2.8), we get

A*fL(h)A9 = n(h)A^A9, h e G. (2.9)

Hence, by (2.6) and (2.9), we get

A\A9n{h) = n(h)A\Av, h e G. (2.10)

From (2.10) and the fact that n : G -*• B(X) is an irreducible representation, we
conclude by Schur's lemma that there exists a constant c9i$ such that

A ; A , = <V.,/, (2.11)
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where / is the identity operator on X. So, by (2.11), we get

, y) = (c^lx, y) = (A^Avx, y) =

= /
JG

f x,yeX, (2.12)
G

and the proof is complete if we let x = y = <p and note that \\<p\\ = 1 in (2.12).

REMARK 2.2. If cv^ ^ 0, then by (2.1), we have

( x , y ) = I (x,7r(g)<p)(7i(g)1/,y)dix(g), x,yeX,
cv,<l> JG

and we call this formula the resolution of the identity formula for the square-integrable
representation n : G —> B(X) of G on X corresponding to the admissible wavelets (p
and xfr.

REMARK 2.3. It is proved in [5, p. 2475] by Grossmann, Morlet and Paul that

x,yeX, (2.13)

where A is a positive and self-adjoint operator on X. Thus, by Theorem 2.1, we
get cv^ = (A<p, A\Js) for all admissible wavelets <p and \J/ for the square-integrable
representation n : G —> B(X) of G on X. If we define (<p, \jf) for all <p and \fr
in the set A W of all admissible wavelets for the square-integrable representation
it : G —»• B{X) of G on X by (#>, V) = <V ,̂ then (,) is an inner product in A W.
It should be pointed out that the proof of the fact that <,) is an inner product in A W
is an easy consequence of (2.2), and does not depend on the more technical formula
(2.13), which is proved in [5].

REMARK 2.4. That the inner product {,) in A W is just the inner product ( ,) in
X for unimodular groups is the content of the following theorem, which also tells
us when c9^ / 0 for unimodular groups. Although the theorem is an immediate
consequence of Theorem 3.1 (iii) and Equation (3.2) in [5], the simple and direct
proof that we give in this paper is of some interest in its own right.

THEOREM 2.5. Let G be a unimodular group, and let <p and ty be two admissible
wavelets for the square-integrable representation n : G —>• B(X) ofG on X. Then
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PROOF. By (2.2) and the fact that n : G -*• B(X) is a unitary representation,

= /
JG

= [ W,n(g)<p)(x(g)<P,<p)dii{g), (2.15)
JG

where /i(fl) = M ( # ~ ' ) for all measurable subsets B of G, and B"1 = {#"' : g e B}.
Now, using the unimodularity of G,

11 = P.. (2.16)

So, by (1.2), (2.15) and (2.16), we get (2.14).

The following consequence of formula (2.2) for cv<l, and Theorem 2.5 holds for
unimodular groups, and is an interesting result in its own right.

THEOREM 2.6. Let G be a unimodular group, and let <p and \Jr be two admissible
wavelets for the square-integrable representation n : G —> B(X) of G on X. Then
cv = c+.

PROOF. Putting* = y — f in (2.1), we get

(2.17)f
G

By (2.2) and (2.17), we get

c$i<p = c V i ^ . (2-18)

So, by Theorem 2.5, (2.18) and the fact that c? is real-valued,

= (f, <p)cv = (<p, \l/)cv.

So Cy = c$ if (<p, \Jr) ^ 0. Now, suppose that (<p, \[r) = 0. Let co e X be such that
\\co\\ = 1, {co, cp) ^ 0 and (co, r{r) ^ 0. As has been shown in [5], co is an admissible
wavelet for the square-integrable representation JT : G —*• B(X). Thus, by what we
have just shown, cv = cw and c^ = cw. Hence cv = c^, and the proof is complete.

3. The main result

Let <p and \j/ be admissible wavelets for the square-integrable representation n :
G -+ B(X) of G on X such that c^ ^ 0, where c9^ is given by (2.2). Let
F 6 L*(G). Then we define the localisation operator LFt<Pi$ : X -> X by

F,9.+x,y) = — I
c*>,vfr J G

{LF,9.+x,y) = — I F(gKx,n(g)<pKn(gW,y)dMg), x,yeX. (3.1)c
 J
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THEOREM 3.1. The localisation operator LftV^ : X —• X is in S\ and

F(g)dfi(g).

PROOF. By (3.1), the Schwarz inequality, the fact that n : G -*• B(X) is a unitary
representation, and ||^|| = \\}Jr\\ = 1, we get-

\{LF,p.*x,y)\ < —— I \F{g)\ \\n(g)<p\\ \\n(g)ir\\dfi(g)\\x\
\c<p,<tr\ JG

^ ( C ) l k l l l l y l l , x , y e x .
l C¥>, \ f r l

Thus LFiV^ : X —• X is a bounded linear operator. Next, let {<pk : k = 1, 2, . . . } be an
orthonormal basis for X. Then, by Fubini's theorem, Schwarz' inequality, Parseval's
identity, the fact that n : G -> fi(X) is a unitary representation, and ||ip|| = ||i/r|| = 1,
we get

OO

k=\

^ J o

r-^i f
|cv>l JG

(3.2)

So, by (3.2) and Proposition 1.7, LFiV^ : X -> X is in £,. Finally, let ftpt : jfc =
1,2, . . .} be any orthonormal basis for X. Then, by Fubini's theorem, Parseval's
identity, the fact that n : G -> B(X) is a unitary representation, and ||̂ >|| = ||^c|| = 1,
we get

OO -

F(g)(fPk,-

If
= /

c*>,^ JG k=l

1 f (&,v) f
= / F(gKn(g)f,n(g)<p)dMg)=JL^i / F(g)dn(g),

C<P,<I> J G C<P.<// J G

and the proof is complete.
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