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Abstract

Let L be an integer lattice, and S a set of lattice points in L. We say that S is optimal if it minimises
the number of rectangular sublattices of L (including degenerate ones) which contain an even number
of points in S. We show that the resolution of the Hadamard conjecture is equivalent to the
determination of |S | for an optimal set S in a (4s - 1) X (4s - 1) integer lattice L. We then
specialise to the case of 1 X n integer lattices, characterising and enumerating their optimal sets.

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 20.

1. Introduction

The well-known Hadamard conjecture asserts the existence of a 45 X 4s Hada-
mard matrix for each positive integer s. In [2] its resolution is shown to be
equivalent to the discovery of a basis for the cycle space of the complete bipartite
graph K4s 4i which maximises the number of 4-circuits which are the sum
(modulo 2) of an odd number of basis circuits. Of course, the search for such a
basis can be conducted on other graphs as well. For Km „ with m > 2 and n > 2,
we use a basis studied by Schmeichel in [4] to transform the search into a problem
about an (m — 1) X (n — 1) integer lattice. A thorough study of this problem is
then made for the case m = 2.
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258 J. McCall and C. H. C. Little [2 ]

2. The relationship between the Hadamard conjecture and integer lattices

Let m > 2 and n > 2. Let Kmn be the complete bipartite graph with vertex set
{x1,x2,...,xm, yv }>2,---,yn}, where *, is adjacent to _yy- for each / and / Any
4-circuit in Km n will be denoted by listing its vertices as a string. Let S be the set
of (w - 1)(« - 1) 4-circuits of the form xiyjxi+1yj+1 where 1 < / < m - 1 and
1 <y < n - 1. It is shown in [4] that S is a basis of the cycle space of Kmn.
Moreover, if xrysx,yu is a 4-circuit, where r < t and s < u, then

u-l t-\

(1) x,y,x,yu =1111 xiyJxi+1yJ+l
i = r

where the sum of circuits is determined by the symmetric difference of their edge
sets.

The idea propounded in this paper is to represent the 4-circuit xixJxi+1yJ+l by
the point in the plane with coordinates (/, j). Given positive integers a, b, c, d
such that a < c and b < d, let us define R(a, b, c, d) as the set of all points with
coordinates of the form (/, j) where a < i < c, b < y < d and / and j are
integers. We call R(a, b, c, d) a rectangle, even though it may consist of a single
point, in which case we deem it to be doubly degenerate. The points (a, b), (a, d),
(c,b), (c,d) are the corners of the rectangle. By (1) we see that the 4-circuit
xrysx,yu, where r < t and s < u, is the sum of those represented by the elements
of R(r, s, t — 1, M — 1). Thus we may conceive of xrysx,yu as being represented
by R(r, s, t - 1, u - 1). The doubly degenerate rectangles therefore represent the
circuits in S. We shall identify the circuits in 5 with the corresponding points.

Let us now introduce an arbitrary basis B of the cycle space of Km „. We must
inquire as to whether xrysxtyu is the sum of an even or an odd number of circuits
in B. Let 50 and S1 be complementary subsets of S. Suppose that the points in
So and S1 represent circuits in S that are the sum of an even or an odd number,
respectively, of circuits in B. Then the circuit represented by any rectangle R is
the sum of an odd number of circuits of B if and only if \R n 5^ is odd. One
problem which emerges is the following: given Sx, can a suitable B be found? The
following theorem reveals the answer. Let us first say that B is S^primitive if
every circuit in 5X is the sum of an odd number of circuits in B and every circuit
in So is the sum of an even number of circuits of B.

THEOREM 1. Let S1 c S. Then there is an S^primitive basis B of the cycle space
ofKmtHifandmfyifSl* 0.

PROOF. Suppose that S1 = 0, and that there exists an Sj-primitive basis B of
the cycle space # of Kmn. Then every circuit in 5 is the sum of an even number
of circuits in B. As S is a basis of '€, it follows that every circuit of Km „ is the
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sum of an even n u m b e r of circuits in B. As the circuits in B p rov ide counterex-
amples to this assertion, we infer that B does not exist.

Suppose Sx ¥= 0. Let L be the integer lattice of points of the form (/', j) where
/, j are integers such that 1 < i < m — 1 and 1 <_/ < n — 1.

Observe first that L may be partitioned into rectangles containing exactly one
point of Sv For example, choose any point p e Sv and let p = (i, j). If there is
no positive integer ft < i such that (ft, j) e Su then let a = 1. Otherwise let ft be
the largest integer less than i for which (ft, j) e Sv and let a = ft + 1. If there is
no integer ft' > / such that (ft', _/) e S ,̂ then let c = m — 1; otherwise let c = i.
If there is no positive integer k <j such that (/, k) e S1 for some /, then let
b = 1. Otherwise let A: be the largest integer less than j for which (l,k)e S1 for
some /, and let b = k + 1. If there is no integer &' >y such that ( U ' ) G S , for
some /, then let d = n — 1; otherwise let d — j . Let r(/>) = R(a, b, c, d). It is
now clear that the set & of all rectangles of the form r(p), where p e Sl5

constitutes the desired partition of L.
We must construct an 51-primitive basis B of <€. The circuits in B will be those

that are represented by a rectangle which is contained in a rectangle in & and has
a point in Sx as one of its corners.

In order to show that B is a basis, we first enumerate its elements. Choose any
point (a, b) in L. This point belongs to a unique rectangle P e ^ . This rectangle
in turn contains a unique point (/, _/) e 5X. Let mt = min(a, i), m2 = min(b, j),
M1 = max(a, /), M2 = max(£, j). Then Rim^ m2, Mx, M2) is a rectangle /(a, ft)
representing a circuit in fi. This function / is surjective, for if R is any rectangle
representing a circuit in B, then just one of its corners is a point in Sv and R is
the image of the diagonally opposite corner. R is not the image of any other
point, and so / is injective. Hence \B\ is equal to the number of points in L,
which is (m — 1)(« - 1), the dimension of <€.

Certainly each point in Sx represents a circuit in B. It therefore suffices to
show that each point in So represents a circuit which can be written as the sum of
an even number of circuits in B.

We therefore suppose that the point (a, b) chosen above belongs to So. Without
loss of generality, we may assume that either a < i and b = j , or a < i and b < j .
In the former case, it follows from (1) that the circuit C represented by {a, b) is
the sum xayjXi+1yj+l + xa+lyjXi+lyj+l. Similarly in the latter case, we have

C = xaybxi+1yJ+1 + xa+1ybxi+1yJ+1 + xayb+1xi+1yJ+1 + xa+1yb+1xi+1yJ+1.

Hence B is the required Sj-primitive basis.
Let L be the integer lattice introduced in the above proof. We have L # 0

because m > 2 and n > 2. We now define a subset Sx of S to be an optimal set
for L if the number of rectangles R in L for which
(2) \R Pi Sx| = Imod2

is maximised. We note the following result.
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THEOREM 2. / / 5 X is optimal, then Sx =£ 0 .

PROOF. If Sl = 0 , then (2) holds for no rectangle R. If S1 =* 0 , then (2) holds
for any doubly degenerate rectangle consisting of a point of Sv Hence Sv if
empty, cannot be optimal.

From Theorems 1 and 2 we see that for any optimal set S1 there is an
Si-primitive basis. It therefore follows from the remarks in the introduction that
the resolution of the Hadamard conjecture is equivalent to the calculation of the
number of rectangles satisfying (2) where S1 is an optimal set for a (4.y - 1) X
(4s — 1) integer lattice. This observation motivates the study of optimal sets. In
the next section we characterise the optimal sets for a 1 X n integer lattice.

3. Characterisation of optimal sets for a 1 X n integer lattice

The problem of finding an optimal set is equivalent to that of finding a set SL

such that the number of rectangles R in L for which

(3) I ^ D S j I s O m o d l
is minimised. For a 1 X « integer lattice L, let y(n) be the minimum possible
number of rectangles R in L for which (3) holds. The first task is to compute
y(n).

THEOREM 3. Let Lbe a I X n integer lattice. If n is even, then y(n) = «2/4. / /
n is odd, then y(n) = (n2 - l)/4.

PROOF. For each S1 c L, let T(SX) be the set of rectangles R for which (3)
holds.

Let L = {pv p2,..., pn} where pt = (/, 1) for all /. These points together with
Pn+i = (" + 1> 1) form the vertex set of a copy of the complete graph Kn+l. For
simplicity we denote the rectangle R(i, 1, j , 1) by R(i, j) for each / and / This
rectangle shall correspond in Kn+1 to the edge joining vertices pt and pj+l. If
i^j < k, then at least one of R(i, j), R(j + 1, k), R(i, k) must be in TiSJ.
The corresponding edges of Kn+1 form a triangle. Hence |7XSi)| is at least as
large as the minimum number of edges whose deletion from Kn+1 yields a graph
with no triangles. By a theorem of Turan (see [5] or [1]), the largest subgraph of
Kn+l having no triangles is Kn/2An+1)/1 if n is even and K(n+1)/2Xn+1)/2 if n is
odd. The numbers of edges in these graphs are n(n + 2)/4 and (n + \)2/A
respectively. Hence the numbers of edges in their complements are n2/4 and
(n2 — l ) /4 respectively. We infer that y(«) > n2/4 if n is even, and y(n) >
(n2 - l ) /4 if n is odd.
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In order to establish the required equations, take 5X = L. The number of
rectangles for which (3) holds is now easily seen to be ££d2i(« — 2k + 1) = n2/4
if n is even and Ytf~i)/2{n - 2k + 1) = (n2 - l ) / 4 if n is odd. The theorem
follows.

For simplicity we identify each lattice point with its abscissa. For the rectangle
R(i, j) as defined in the above proof, we call j the origin and j the terminus. R
will be called odd or even according to whether it satisfies (2) or (3). For each
integer p such that 1 < p < n it is convenient to know how many even rectangles
have p as terminus. The following lemma supplies easy recursion for the answer.

LEMMA 4. Let L be a\ X n integer lattice. For each integer p e ( 1 , . . . , « } , let

e(p, L) denote the number of even rectangles of L with terminus p. Then

I1 ^lG5

,/l€ESi;

(b) for each p > L,

\p-e(p-l,L)-l ifpeSv

PROOF, (a) Obvious.
(b) If p e So, the even rectangles with terminus p are {p} and those of the

form R U {/?} where R is an even rectangle terminating at p — 1. Suppose
therefore that p e Sx. Then the even rectangles with terminus p are those of the
form R' U {/>} where R' is an odd rectangle terminating at p - 1. There are
p — 1 — e(p — 1, L) such rectangles.

We call e(p, L) the contribution of p to F(L), where T(L) is the number of
rectangles R in L for which (3) holds. Thus F(L) > y{n), with equality if and
only if Sl is optimal. In this case, we sometimes refer to L itself as optimal.

LEMMA 5. Let L and M be 1 X n and 1 X (n — 2) integer lattices respectively,
where n > 2. If F(L) - F(Af) = n - 1, then M is optimal if and only if L is
optimal.

PROOF. Suppose L is optimal. If n is even, then

= T(L) - n + 1 = ^ - n + 1 = ^ ~ ^ ,

whereas if n is odd then

In both cases M is optimal. Similarly if M is optimal then so is L.
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We are now prepared for our characterisation of 1 X n optimal integer lattices.
It is convenient here to introduce the empty integer lattice A, which we consider
to be optimal. We also specify Sl by writing the characteristic function of L n Sx,
which we represent by a string of O's and l's. Thus the /th element of this string is
0 if / e So and 1 otherwise.

THEOREM 6. Let L be a 1 X n integer lattice. Then L is optimal if and only if one
of the following conditions obtains

(a) L e {A, 1,10);
(b) L = MllN where MN is an optimal 1 X (n - 2) integer lattice;
(c) L = MOWN where M\N is an optimal 1 X (« - 2) integer lattice;
(d) L = M01 where M is an optimal 1 X (n — 2) integer lattice.

Moreover if L is optimal then N in (b) and (c) may be chosen to contain only O's.

PROOF. We show first that if one of the above conditions holds, then L is
optimal.

(a) Obvious.
(b) We need to compute T(L) - T(MN). Let x be the contribution to T(MN)

of the last element of M. (We take x = 0 if M = A.) Let N be a 1 X m integer
lattice. The respective contributions to T(L) of the two new l's are n - m - 2 - x
and n — m — 1 — (n — m — 2 — x) = x + l. The contribution e(n — m + 1, L)

to T(L) of the first element of N, if it exists, is therefore JC + 2 = (JC + 1) + 1 =
e(n - m - 1, MN) + 1 if n - m + 1 e So in L, and n - m - (x + 1) =
(n - m - x - 2) + 1 = e(n - m - 1, MN) + 1 if n - m + 1 £ Sl in L. Thus
the first point of N contributes 1 more to F(L) than to F( MN), and by induction
so does each subsequent point. Hence T(L) — T(MN) = (n — m — 2 — x) +
(x + 1) + m — n — 1, and so L is optimal by Lemma 5.

(c) Let JC be the contribution to T(M1N) of the last element of M. Let N
be a 1 X m integer lattice. We now have e(n — m — 2, M010N) = x + 1,
e(n - m - 1, M010JV) = ( n - m - 2 ) - ( x + l) = n - m - x - 3 and

e(n — m,M010N) = n — m — x — 2, whereas e(n — m - 2, M\N) = n - m —

x — 3. Hence as before each element of N contributes 1 more to T(L) than to
T(M1N). Thus T(L) - T(MIN) = n - 1.

(d) Let e(n - 2, L) = x. Then e(n - 1, L) = x + 1 and e(n, L) = n - x - 2,

so that F(L) - T(M) = x + l + n - x - 2 = n - l .

Therefore in cases (b)-(d), L is optimal by Lemma 5.
Conversely, suppose L is optimal. We distinguish two cases.

Case I. Suppose some point of L - {1} belongs to Sv

A. Suppose L is of the form Mil. By the computation above we have
T(L) — T(M) = n — 1. Therefore M is optimal by Lemma 5, and so condition
(b) holds.
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B. Similarly if L is of the form M 0 1 , then M is optimal, and so condition (d)

holds.

C. In the remaining subcase, the last element of L is 0. By assumption the last

1 has a predecessor, which may be 0 or 1. In the former case, L is of the form

MOlOiV where N contains only 0's. By Lemma 5 we deduce that M1N is optimal,

and so condition (c) holds. In the latter case L is of the form M11N where N

contains only 0's. Here MN is optimal and condition (b) holds.

Case II. Suppopse that all points of L, except possibly the first, belong to So. If

So = L, then F ( L ) = Hl=ik = n(n + l ) / 2 . Since L is optimal, it follows that

n(n + l ) / 2 < n 2 / 4 , so that n{n + 2) < 0. Hence n = 0, and so L = A.

Suppose therefore that 1 e Sv (Hence L ¥= A.) In this case T(L) = Y.nkz\k =

n(n - l ) / 2 , and by the argument above we obtain n(n - 2) < 0. Thus n e (1 ,2}

a n d s o L e {1,10}.
Theorem 6 gives a method for generating every optimal integer lattice from the

set { A, 1,10}. It transpires that any optimal lattice may be derived uniquely from
one of these three integer lattices by means of the operations implicit in (b)-(d),
with N in (b) and (c) constained to consist entirely of 0's.

THEOREM 7. Let L be an optimal l x n integer lattice. Then L is derived in a

unique way from an integer lattice in {A, 1, 10} by means of the operations in

(b) - (d) of Theorem 6 applied with N as a string of 0's in (b) and (c).

PROOF. By Theorem 6, there exists a sequence J? of integer lattices
L0,Ll,...,Lq such that Lo e {A, 1,10}, Lq = L and, for each / > 0, L, is
obtained from L,_j by one of the operations (b)-(d) of Theorem 6. With N as
hypothesised, the nature of this operation can be inferred from the form of Lt,
and so £P is uniquely determined.

Operation (d) of Theorem 6 needs to be performed at most once if N is allowed
to be arbitrary. This can be seen most easily if we consider the application of
operations (b)-(d) in reverse in order to reduce an optimal integer lattice L to an
integer lattice in the set {A, 1, 10}. Operations (b) and (c) may be applied
repeatedly in order to obtain a string in which every element, except possibly the
first or last, is 0. Then operation (d) can be applied in reverse at most once. In
fact we may dispense with it by rephrasing the theorem as follows.

THEOREM 8. Let L be al X n integer lattice. Then L is optimal if and only if one
of the following conditions obtains

(a)Le {A, 1,10,01,101,1001};
(b) L = M11N where MN is an optimal 1 X (n — 2) integer lattice;
(c) L = M010JV where M1N is an optimal 1 X (« - 2) integer lattice.
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This theorem follows from the above remarks together with the observation
tha t the last three elements of the set displayed in (a) are obtained from the first
three respectively by applying operat ion (d).

N o t e tha t a 1 X n integer lattice can be tested for optimality very quickly by
applying opera t ions (b) and (c) in reverse as often as possible and then checking
to see whether the resulting string is one of those specified in (a).

W e conclude this section by noting that the optimal l X n integer lattices are
the elements of the context-free language, with alphabet {0 ,1} , generated from a
symbol S b y the following product ions:

S -* P\
S -» P0P1
S -* P1P0P
S -> P1P0P1
S -> P1P0P0P1
p - P 1 P 1

PI -» P0PIP0P
P-*A.

4. Enumeration of optimal integer lattices

Theorem 6 can be used to enumerate optimal 1 X n integer lattices for any n.
For each n and j ; < n define lnj to be the number of optimal 1 X n integer
lattices which end with a run of exactly j 0's. The number of optimal 1 X n
integer lattices is LJUo'nit- Operations (b) (with N = A) and (d) of Theorem 6
can be used to generate distinct optimal integer lattices ending with 1. Hence
ln0 = 2T.lZoln-2k f°r e a c n " > 1. Now let j > 0. An optimal integer lattice
ending with a run of exactly j 0's can be produced by operation (c) from one
ending in a run of exactly j — 1 0's, or by operation (b) from one ending in a run
of at leasty'O's. Therefore lnj = E^~y

2_1/n_2^- These results, together with the
equations l^ = /10 = 1 and ln = 0, enable us to obtain lnJ recursively for any n.
In fact, we obtain the following theorem.

T H E O R E M 9 . / / n = 2 r or n = 2 r + 1 , there are ( 2 r
r

+ 1 ) optimal l X n integer
l a t t i c e s .

PROOF. First we note the identity
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where r > j . It certainly holds for all r 3* j if j — 0. If it holds for a fixed j > 0

and for all r > j , then for all r > j we have

+ 1

and so (4) holds in general whenever r > j .

Note also that if j > r where n = 2r + 1, then lnj = 0 by Theorem 8. We

show next that lnj = (2r
rZ

j- ) for all j < r. This result certainly holds if r = 0,

since /10 = 1. Assume therefore that it holds for 1 X (« - 2) optimal integer

lattices, and that r > 0. If 1 < 7 < r, then

n-2

'nj = 2^ 'n-2,k
k=j-l

r-l

*-o

by (4), since r > 1 so that 2r-j — l^r— j . Finally

-ir-i)
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The number of optimal l X n integer lattices, where n = 2r + 1, is therefore

k=0

by (4).
If n = 2r, note first that / ^ = /10 = 1. Suppose that for all j< n we have

hi = h+ij- Then ln+20 = 2Ln
k=olnk = 2L"ktlln+hk = ln+xo and similarly ln+Xj

= / n + 3 J f o r a l l 7 > 0 .
Therefore lnj = h+ij holds by induction for all even n and for all j < n.

Hence T.k^olnk = ££-(>'«+1,*> a n ^ ^ follows that the number of 1 X 2r optimal
integer lattices is also (2r

r
+1).

Theorem 9 suggests that there may be a 1:1 correspondence between optimal
1 X (2r + 1) integer lattices and selections of r objects from a set of cardinality
2r + 1. Like the construction of the optimal integer lattice itself, such a selection
may in fact be achieved inductively as follows.

When operation (b) of Theorem 6 is performed with N = A, take the comple-
ment of the existing selection, and choose neither of the two new l's. When
N =£ A, take the existing selection together with the first of the new l's. When
operation (c) is performed, take the existing selection together with the first of the
new O's. When operation (d) is performed, take the existing selection and the new
1. A detailed proof that the resulting correspondence is 1:1 appears in [3].

5. Conclusion

Knowing from [2] that the resolution of the Hadamard conjecture is equivalent
to the discovery of a basis for the cycle space of K4s4s which maximises the
number of 4-circuits which are the sum (modulo 2) of an odd number of basis
circuits, we used a (4s - 1) X (As - 1) integer lattice as a tool to study a
condition for a 4-circuit to be such a sum. Specifically, if S is as defined in
Section 2, and Sx is the subset of S consisting of all the circuits in S which are
the sum of an odd number of circuits in an arbitrary basis B of the cycle space of
K4s4s, then a circuit represented by a rectangle R in the integer lattice is the sum
of an odd number of circuits of B if and only if \R n 5X| is odd. Thus we defined
a subset T of S to be optimal for the integer lattice if the number of rectangles R
satisfying \R n T\ = 1 (mod 2) is maximised or, equivalently, if the number of
rectangles R satisfying \R n T\ s 0 (mod 2) is minimised. By Theorem 1 and
Theorem 2 we saw that any optimal T is of the form 5X for some basis B of the
cycle space of K4sAs. Therefore the Hadamard conjecture would be resolved by
the construction of an optimal set for a (As — 1) X (As - 1) integer lattice. This
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observation provided the motivation for a study of the optimal sets for the simper
case of a 1 X n integer lattice. These optimal sets were characterised and
enumerated, and constructions for them were given. It is the hope of the authors
that these results will be found to provide useful tools for the study of optimal
sets in larger integer lattices.
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