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Abstract

We study how the Conditioning on Added Regression Predictions (CARP) statistics from different item
pairs can be aggregated into a single overall test of monotone homogeneity. As a pairwise statistic, we use
the mean conditional covariance (MCC) or its standardized value (Z). We use three different estimates of the
covariance matrix of the pairwise test statistics: (1) the covariance matrix of the MCCs, based on the sample
moments; (2) the covariance matrix of the MCCs or Zs, based on bootstrapping; and (3) the covariance
matrix of the Zs, equated to the identity matrix. We consider various aggregation methods, including (a) the
chi-bar-square statistic; (b) the preselected standardized partial sum of pairwise statistics; (c) the product
of preselected p-values; (d) the minimum of preselected p-values; and (e–h) the same statistics, but now
conditioned on post-selecting only the negative values in the test sample. We study the Type 1 error rate
and power of the ensuing 20 tests based on simulations. The tests with the highest power among the tests
that control the Type I error rate are based on Z-statistics with the identity matrix: the conditional likelihood
ratio test, the conditionalized product of p-values, the conditionalized sum of Z-values, and the preselected
product of p-values.

Keywords: conditional association; monotone homogeneity model; monotone latent variable model; multidimensional
measurement; unidimensional measurement

1. Introduction

In this paper, we develop new statistics for confirmatory tests of unidimensionality based on the
nonparametric item response theory (IRT) model of monotone homogeneity (MH) (Mokken, 1971)
with binary items. This model assumes that there is a unidimensional (i.e., real-valued) variable Θ
such that the items are conditionally independent given Θ, and such that the item regressions on Θ
are monotone increasing. Many parametric IRT models, such as the 2PL model and the Rasch model,
are a special case of MH. We develop our statistical tests for the context where researchers have the
theory or hypothesis that items of a certain specified set or category all have a monotone regression on
the same latent variable, while the specific shape of the regressions is unspecified; that is, it does not
have to be logistic, as in the 2PL or the Rasch model, or any other function, such as the normal ogive.
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We assume that the objective of the test is to falsify the theory of unidimensionality. Thus, the objective
is entirely aimed at fundamental theory development and not at the more pragmatic goal of building an
efficient measurement tool.

Our objective of fundamental theory development rules out the possibility of assessing dimension-
ality with flexible parametric models such as latent class models (Douglas & Cohen, 2001; Van Onna,
2002; Vermunt, 2001) or monotone polynomial models (Falk & Cai, 2016). If such a parametric model
is violated, it does not provide a convincing falsification of the theory because the violation may be
caused by failure of the specific parametric assumptions. Conversely, if such a restrictive parametric
model is not rejected, one may wonder whether maybe the statistical test used was not sensitive to some
assumptions (e.g., van den Wollenberg, 1982).

The new test statistics will be based on the recently developed Conditioning on Added Regression
Predictions (CARP) statistics of Ellis and Sijtsma (2023). The CARP testing approach is a generalization
of Rosenbaum’s (1984) case 5, in which one tests nonnegativity of the covariance of an item pair,
conditionally on decile groups defined by the sum score on the other items. The generalization Ellis
and Sijtsma proposed using a weighted sum score instead of a simple sum score, where the weights
are based on regression analysis in a training sample. Ellis and Sijtsma (2023) argued that this is
currently the only known partial test of conditional association (see next section) that can detect
multidimensionality within monotone IRT models. This is the reason why we focus on this test
statistic.

An important limitation of the CARP test is that it pertains to a single item pair. Generally, a test
has many item pairs, and it would seem logical to apply a test to each item pair, but hitherto it has not
been studied how such pairwise tests can be compounded into a single test statistic. The same is true for
Rosenbaum’s case 5 test. For example, if a psychological test consists of 10 items, the CARP tests would
yield 45 p-values, one for each item pair. The main question of this article is: How can the pairwise
CARP statistics be aggregated into a single omnibus test?

The next section provides some background information about the CARP tests. After the specifica-
tion of the hypothesis and the relevant pairwise statistics (mean conditional covariances (MCCs) and
their Z-values), we consider various methods to estimate the covariance matrix of the pairwise statistics.
These estimated matrices are used in the theory of order restricted statistical inference (Robertson et al.,
1988) and multiple testing (Davidov, 2011; Ellis et al., 2018) to compound them into overall statistics in
20 different ways. We will compare the mathematical structure of some of these aggregated statistics to
the most prominent competitor, which is the DETECT index (Zhang & Stout, 1999a, 1999b). Next, we
use Monte Carlo simulations to study the Type 1 error rates and power of the ensuing tests and select
the best tests.

2. Conditional association and CARP tests

Rosenbaum (1984) showed that MH implies that the item score variables have the property of
conditional association, which means that any two increasing functions of any subtest have a non-
negative covariance conditionally upon any function of the items that were not included in the
subtest. Holland and Rosenbaum (1986) generalized this result to non-binary items. Clarke and Yuan
(2001) and De Gooijer and Yuan (2011) developed statistical tests for conditional association, but
it is well known that a full test of conditional association is not feasible for realistic sizes of item
sets because of the large number of tested conditions and the sparseness of the relevant response
patterns. Several authors have therefore focussed on what Ligtvoet (2022) recently called “partial
tests of conditional association.” These tests include MTP2 (Bartolucci & Forcina, 2000; Ellis, 2015),
nonnegative partial correlations (Ellis, 2014), nonnegative correlations (Mokken, 1971), and increasing
item-rest regressions (“manifest monotonicity”; Junker & Sijtsma, 2000). Ellis and Sijtsma (2023)
showed that all these conditions are insensitive to violations of unidimensionality if the data are
generated by multiple latent variables that are independent or MTP2. They developed the CARP test,
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which includes Rosenbaum’s case 5 as a special case. This is currently the only known partial test
of conditional association that can detect such violations. That is the reason why we focus on the
CARP test.

3. Definitions

3.1. Definitions of variables
Assume that the item scores are binary manifest variables. Let variable Xi represent the scores (1 = pos-
itive, 0 = negative) a random subject obtained on the i-th item, and denote the full vector of item scores
as X = (X1, . . . ,XJ). For each item pair (i,j), we assume that there is a discrete variable Rij that is used for
creating groups in which the conditional covariances are computed. We call the Rijs the conditioning
variables, and we assume that they attain integer values ranging from 1 to maxRij. For example, in Case 2
of Rosenbaum (1984), Rij is defined as the sum score on the other items; that is, the items Xk with k ≠ i,j.
Then, we have Rij = (∑J

k=1 Xk)−Xi −Xj; we call this the pairwise rest score. In Case 5 of Rosenbaum
(1984), Rij consists of deciles of the pairwise rest score. In the CARP test of Ellis and Sijtsma (2023), Rij
consists of deciles of a weighted sum score on the other items, with weights estimated from a training
sample. Let R be the vector of all Rij (i,j = 1, . . . ,J; i ≠ j).

3.2. The hypothesis
The null hypothesis of interest is

H0 ∶ Cov(Xi,Xj∣Rij = s) ≥ 0 for all i,j = 1, . . . ,J; s = 1, . . . ,maxRij.

However, the version of the Mantel–Haenszel statistic Rosenbaum (1984) and Ellis and Sijtsma
(2023) used for testing H0 is rather based on a weighted mean of sample covariances, and it would
be more precise to say that the null hypothesis is

H0 ∶
max Rij

∑
s=1

P(Rij = s)Cov(Xi,Xj∣Rij = s) ≥ 0 for all i,j = 1, . . . ,J.

3.3. Definition of the pairwise statistics
In this section, we define two sample statistics per item pair (i,j) that we aggregate later. First, we define
the mean of conditional covariances that estimates the quantity P(Rij = s)Cov(Xi,Xj∣Rij = s) in the null
hypothesis. Second, we define the Z-statistic, which is the standardized version of the first statistic. The
formal definition is the following.

Assume that there are N i.i.d. copies of X, denoted by X(n) = (X(n)1 , . . . ,X(n)J ); n = 1,2, . . . ,N. X(n)

contains the scores of the nth subject in the sample. Let I(n)ijs ∶= 1[R(n)ij = s] denote the indicator function

for the event Rij = s in subject n. That is, 1[R(n)ij = s] = 1 if R(n)ij = s, and 1[R(n)ij = s] = 0 otherwise. Let

Nijs =∑N
n=1 I(n)ijs denote the number of subjects with R(n)ij = s. The conditional covariance in the subgroup

with R(n)ij = s is given by

Cijs =

N
∑

n=1
X(n)i X(n)j I(n)ijs

Nijs
−

N
∑

n=1
X(n)i I(n)ijs

Nijs

N
∑

n=1
X(n)j I(n)ijs

Nijs
.

The version of the Mantel–Haenszel statistic Rosenbaum (1984) used is based on standardization of

Cij+ =
S
∑
s=1

NijsCijs.
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We refer to Cij+ as the MCC. The standardization Rosenbaum used is based on the variance estimate

Vij =
S
∑
s=1

N
∑

n=1
X(n)i I(n)ijs

N
∑

n=1
(1−X(n)i )I(n)ijs

N
∑

n=1
X(n)j I(n)ijs

N
∑

n=1
(1−X(n)j )I(n)ijs

N2
ijs (Nijs−1) .

The Z-statistic is then defined as

Zij =
Cij++0.5
√

Vij
.

The term 0.5 is a continuity correction.

4. Estimation of the covariance matrix of the pairwise test statistics

In this section, we discuss the estimation of the covariance matrix of the Cij+s and the covariance
matrix of the Zijs. These covariance matrices are conceptually like the asymptotic covariance matrices in
structural equation modelling (SEM) because they estimate the covariance across all possible samples.
However, because the asymptotic covariance matrices in SEM are typically derived from the model
and typically pertain to model estimates rather than conditional covariances, we further refrain from
focusing on the apparent similarity. Next, we delineate three estimation methods.

4.1. Estimation based on sample moments
The equation for MCC contains only sums of products and products of sums, divided by the Nijs.
We worked out a formula for Cov(Cijs,Cklt), assuming that Nijs and Nklt are fixed values rather than
random variables (see Appendix). This new equation uses only moments of the variables X(n)i I(n)ijs ,
X(n)j I(n)ijs , X(n)k I(n)klt , X(n)l I(n)klt , and their products. By substituting the corresponding sample moments,
one obtains an estimate Ĉov(Cijs,Cklt) for Cov(Cijs,Cklt). Next, the required covariance is estimated as
Ĉov(Cij+,Ckl+) ∶= ∑s∑tNijsNkltĈov(Cijs,Cklt).

It should be noted that in the IRT application of testing the MH model, the Nijs are not fixed. By doing
as if the Nijs are fixed anyway, we ignore the possibility of a correlation between Cijs and Nijs. This might
still entail a better approximation than assuming the identity matrix, and we will use the simulation
studies to decide whether this approximation is useful.

4.2. Estimation based on bootstrapping
4.2.1. Bootstrapping of the MCCs
In this approach, we resample N rows of the data matrix with replacement and compute the MCC for
each item pair (i,j) in the resample. Denote the MCC of item pair (i,j) in a resample as C∗ij+. We resample
nresample = 1000 times, thus constructing a matrix of nresample rows and J (J−1)/2 columns, in which
each row m contains the C∗ij+ values of the m-th resample. Next, we compute the covariance matrix of
the C∗ij+s.

4.2.2. Bootstrapping of the Zs
In this approach, we resample N rows of the data matrix with replacement and compute the Z-statistic
for each item pair (i,j) in the resample. Denote the Z-value of item pair (i,j) in a resample as Z∗ij . We
resample nresample = 1000 times, thus constructing a matrix of nresample rows and J (J−1)/2 columns, in
which each row m contains the Z∗ij values of the m-th resample. Next, we compute the covariance matrix
of the Z∗ij s.
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4.3. Estimation with the identity matrix
In this approach, the third method, we simply assume that the asymptotic covariance matrix of the Zijs
is the identity matrix. This is comparable to the diagonally weighted least squares (DWLS) method often
used for polychoric correlations in ordinal factor analysis (Li, 2015). The reason why we suspect that
the identity matrix may work well is that under MH, each conditioning group with a fixed pairwise rest
score has only a small remaining variance of the latent variable, which implies that the response variables
are close to independent, and independent Bernoulli variables have covariances that are asymptotically
uncorrelated (Anderson & Goodman, 1957).

5. Aggregation of the pairwise statistics

In this section, we consider the lower-diagonal matrix of Cij+s or Zijs as a vector y in R
J(J−1)/2. Let W

be the covariance matrix of y as estimated in any method of the previous section. We consider various
methods to aggregate y into an omnibus test.

5.1. Distance to the nonnegative cone
The theory in this section is based on order restricted statistical inference (Robertson et al., 1988).

We project y onto the nonnegative cone in R
J(J−1)/2, defined by C = {x ∈ R

J(J−1)
2 ∣x1 ≥ 0,x2 ≥ 0, . . . ,

xJ(J−1)/2 ≥ 0}. We define the projection y∗ as the point in C that minimizes the squared Maha-

lanobis distance (y−y∗)TW−1 (y−y∗). The chi-bar-square statistic is then defined as this squared
distance, i.e.

χ2 ∶= (y−y∗)TW−1 (y−y∗) .

This result serves as the overall test statistic in the decision rules discussed in the next section. The
following algorithm was used to obtain y∗ and χ2 ∶

1. Obtain the Cholesky decomposition W−1 = BTB, and let A = B−1.
2. Compute z =By. If W is the covariance matrix of y, then the covariance matrix of z is the identity

matrix.
3. Project z onto the cone Ax ≥ 0 with the function coneA of the R-package coneproj (Liao & Meyer,

2014). Let z∗ be the result of this projection; then y∗ =Az∗.
4. Compute χ2 = ∥z−z∗∥2, where ∥⋅∥ is the Euclidian distance.

5.2. Preselected standardized partial sum of pairwise statistics
In their CARP statistics, Ellis and Sijtsma (2023) split the total sample of subjects into a training sample
and a test sample. In our treatment hitherto, all statistics were computed with the test sample. However,
one can compute Cij+ in the training sample as well; denote this as Ctraining

ij+ . Let T− be the set of pairs
(i,j) with Ctraining

ij+ < 0 and i > j, and denote its size as ∣ T− ∣. We add the corresponding values of y and
divide the sum by its standard error. More specifically, let y (i−1)(i−2)

2 +j = Cij+ for all J ≥ i > j ≥ 1, and
define y− as the subvector of y containing the elements y (i−1)(i−2)

2 +j for which (i,j) ∈ T−. Let W− be the
submatrix of W, corresponding to the elements of y−; Ellis and Sijtsma (2023) defined the omnibus
statistic as

ZPS ∶=
∑y−√
∑W−

,
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where∑ indicates the sum over all elements in the following vector or matrix. Here, we call this omnibus
test statistic the preselected standardized partial sum of pairwise statistics. For clarity, if y contains the
Zijs and W is assumed to be the identity matrix, then

ZPS =
∑{Zij∣(i,j) ∈ T−}√

∣ T− ∣
.

5.3. Conditionalized multiple testing procedures
Ellis et al. (2018) argued that multiple testing procedures for interval hypotheses can be enhanced
with the following general adaptation: Pick some real number λ ∈ (0,1], and select only the p-values
with pi < λ, and divide each pi by λ; then, apply an ordinary multiple testing procedure, such as the
Bonferroni correction or the Benjamini-Hochberg correction, to the resulting set. That is, apply an
ordinary multiple testing procedure to the set of corrected p-values {pi/λ ∶ pi < λ}. Ellis et al. argue that
this procedure often controls the Type 1 error, certainly with independent p-values, and also with non-
independent p-values if the number of p-values is large and the Bonferroni-correction is used. They
show that this procedure increases the power if the p-values are supra-uniform; that is, if most p-values
are higher than would be expected in a uniform distribution. We expect that the latter condition is
often fulfilled in the situation under investigation here, where the p-values test whether conditional
covariances are nonnegative in the context of MH. If MH holds and the item response functions are not
flat, then the conditional covariances will be positive, yielding supra-uniform p-values.

Ellis et al. (2018) investigated their conditionalization procedure with the multiple testing methods
Davidov (2011) discussed in the context of independent p-values, and we will apply some of these
multiple testing methods here. Davidov recommended using the I+ statistics, but the method that
he labelled “normal” achieved similar power (Davidov, p. 2439–2440). The latter method means that
the p-values are converted to standard normal Z-statistics and added, and this method is the natural
candidate if the test statistics underlying the p-values are normal. Applied to the present situation with
the conditionalization rule of Ellis et al. (2018) and λ = 0.5, this amounts to the following. Let S be the
set of pairs i > j with Zij < 0 in the test sample, and denote its size as ∣ S ∣. A test statistic based on the
conditionalized sum is

ZCS ∶=
∑{Φ−1 (2Φ(Zij))∣(i,j) ∈ S}

√
∣S∣

,

where S is the number of pairs i < j with Zij < 0. However, the statistic that was most powerful in the
simulations, Ellis et al. reported was the product of p-values, which Davidov attributed to Fisher. In the
present situation, after a log-transformation of the conditionalized product, we obtain,

QCP ∶= −2∑{log(2Φ(Zij))∣(i,j) ∈ S},

which is compared to a chi-square distribution with df = 2 ∣ S ∣.
Finally, we consider the Bonferroni correction because it is so easy and well-known despite the

general consensus that more powerful alternatives exist. In conditionalized form, this amounts to

pCB =min{∣S∣Φ(Zij)∣(i,j) ∈ S}.

Note that all three statistics, ZCS, QCP, and pCB, ignore the correlations of the Zijs. In ZCS and QCP, it
is implicitly assumed that the Zijs are uncorrelated, and we are not certain that they control the Type 1
error in correlated cases. However, the correlations between pairwise CARP statistics might be so small
that it hardly affect the distribution, as we argued in the section where we proposed the identity matrix.
Therefore, we study these statistics despite the uncertainty about possibly correlated Zijs.
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5.4. Preselection with multiple testing procedures
The idea of a preselection of item pairs based on the training sample can also be applied to multiple
testing procedures, like the conditionalization principle Ellis et al. (2018) discussed. Suppose the data
sample is randomly split into a training sample and a test sample. Let the training data matrix be
denoted as D1 and the test data matrix as D2, where D1 and D2 are independent. Suppose that for each
subset L of pairs of variables in D2 there is a multiple testing procedure ML that controls the Type I
error when it is applied to L. More precisely, ML is a function that is applied to D2 and only uses the
pairs of variables in L, resulting in a 1 (reject) or 0 (no reject) decision, with P(ML (D2) = 1) ≤ α if
the null hypothesis is true, where α is the nominal level of significance. Suppose that we chose L as
a function of D1; let this function be denoted as Λ with range R(Λ). An example of this would be
that Λ selects the pairs with negative conditional covariances and ML uses the p-values pij = Φ(Zij)
of (i,j) ∈ L with the Bonferroni correction. That is, Λ(D1) = {(i,j) ∶ Ctraining

ij+ < 0 and i > j} and ML =
1⇐⇒ min{pij ∣L∣} ≤ α. Then MΛ(D1) (D2) is the procedure that applies the Bonferroni correction to
p-values in the test sample using only pairs that have a negative conditional covariance in the training
sample. Such procedures control the Type I error rate: Since D1 and D2 are independent, the conditional
distribution of D2 given Λ(D1) is the same as the unconditional distribution of D2, so the rejection
rate is

P(MΛ(D1) (D2) = 1) = E(P(MΛ(D1) (D2) = 1∣Λ(D1)))

= ∑
L∈R(Λ)

P(ML (D2) = 1)P(Λ(D1) = L) ≤ ∑
L∈R(Λ)

αP(Λ(D1) = L) = α.

Thus, we may calculate p-values for conditional covariances in the test data using only the pairs
that have a negative conditional covariance in the training sample and then apply a multiple testing
procedure to this selection as if it were the entire test data set from the outset. Applying this procedure
to the statistics of the previous section, we obtain the following results. Let T− be the set of pairs (i,j)
with Ctraining

ij+ < 0 and i > j. Then

QPP ∶= −2∑{log(Φ(Zij))∣(i,j) ∈ T−},
with df = 2 ∣ T− ∣ , ∣ where ∣ T− ∣ is the size of T−. Similarly,

pPB ∶=min{∣T−∣Φ(Zij)∣(i,j) ∈ T−}.

6. Decision rules

6.1. Decision rules: the LR test and the conditional LR test
In this section, we consider two decision rules based on χ2. The first decision rule uses the uncon-
ditional distribution of χ2. The second decision rule uses the conditional distribution of χ2, given
the dimensionality of the boundary hyperplane that contains y∗. If W is the identity matrix, then
this dimensionality is equal to the number of negative MCCs. Both the Cij+s and the Zijs have
an asymptotic multivariate normal distribution as N → ∞ (Browne, 1984, proposition 2). There-
fore, we assume a multivariate normal distribution for y, which is either the vector of Cij+s or the
vector of Zijs.

First, we consider the likelihood ratio (LR) test. Using this test, we reject the null hypothesis if χ2

exceeds a critical level (Robertson et al., 1988). Under the least favorable case of the null hypothesis,
where Cov(Xi,Xj∣Rij = s) = 0 for all i,j = 1, . . . ,J; s = 1, . . . ,maxRij, the distribution of χ2 is a weighted
average of chi-square distributions (Robertson et al., 1988):

P(χ2 > c) =
J(J−2)

2

∑
r=1

P(χ2
r > c)P(df (y∗) = r) .
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We estimated the weights P(df (y∗) = r) by drawing from a multivariate normal distribution with
a covariance matrix W, and counting for each draw how many coordinates are negative. We used 105

draws. Denote the estimated probability of getting r negative coordinates as
∼
pr . The p-value for the

observed chi-bar-squared is obtained as

pLR ∶=
J(J−2)

2

∑
r=1

P(χ2
r > χ2

obs)
∼
pr.

The null hypothesis is rejected if pLR < α.
Second, we consider the conditional test based on Wollan and Dykstra (1986). Ellis et al. (2018) gen-

eralized the conditionalization principle to other multiple testing procedures with one-sided hypotheses
and demonstrated that conditionalization achieves a strong gain in power if most null hypotheses are
true, a situation that can be expected here. We also discuss other conditional tests; therefore, we call this
test the conditional likelihood (CL) ratio test.

Let dh(y∗) be the dimensionality of the boundary hyperplane on which y is projected, and let
df (y∗) = J(J−1)

2 − dh(y∗). Wollan and Dykstra explain that the conditional distribution of χ2 given
df (y∗) = r is a chi-square distribution with r degrees of freedom if r > 0. Let χ2

r (α) be the right-sided
critical value for nominal significance level α in a chi-square distribution with r degrees of freedom;
that is, P(χ2

r > χ2
r (α)) = α. In the conditional test, we reject the null hypothesis if both df (y∗) > 0 and

χ2 > χ2
df (y∗) (α). Assuming a multivariate normal distribution, the Type 1 error rate of the conditional

test is less than α, because, as pointed out by Wollan and Dykstra,

P(reject H0) =
J(J−2)

2

∑
r=1

P(χ2 > χ2
r (α)∣df (y∗) = r)P(df (y∗) = r)

=
J(J−2)

2

∑
r=1

αP(df (y∗) = r) = α(1−P(df (y∗) = 0)) .

The event df (y∗) = 0 corresponds to y∗ = y, which would happen if all Cij+ or Zij are nonnegative.
Wollan and Dykstra continue to estimate this factor, but this probability is small for five items or more,
and therefore it is ignored here, consistent with Ellis et al. (2018). In sum, we define

pCL ∶= P(χ2
df (y∗) > χ2

obs) if df (y∗) > 0

pCL ∶= 1 if df (y∗) = 0

6.2. Decision rules: other tests
The p-values of the other tests are computed using

pPS ∶=Φ(ZPS) ;

pCS ∶=Φ(ZCS) ;

pPP ∶=G2
2∣T−∣ (QPP) ;

pCP ∶=G2
2∣S∣ (QCP),

where Φ is the standard normal cumulative distribution function and G2
k is the chi-square survival

function with k degrees of freedom. The corrected p-values pCB and pPB are used without further
correction.
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7. Comparison with competing methods

We compare our statistics with the two prominent alternative methods for the proposed test, which are
the DIMTEST or DETECT procedures for analysis of essential dimensionality. DIMTEST and DETECT
are two procedures based on Stout’s (1987) theory of essential dimensionality (also Stout et al. 1996).
DIMTEST has a confirmative approach that tests unidimensionality, whereas DETECT was created as
an explorative approach that divides the set of test items into clusters that are associated with different
dimensions. Li et al. (2017, p. 210) summarize DIMTEST as follows:

The DIMTEST procedure (Nandakumar, Yu, Li, & Stout, 1998; Stout, 1987; Stout, Froelich, &
Gao, 2001) is often used to test the null hypothesis that an exam is locally independent and
unidimensional. It does this by dividing the test into two subtests (an assessment subtest called
AT and a partitioning subtest called PT) and testing whether there are any local dependencies
among the AT items, conditioned on the score on the partitioning test. DIMTEST has been widely
studied for dichotomous item exams and has good power when AT and PT are chosen well (e.g.,
Froelich & Habing, 2008). If AT and PT are chosen poorly (e.g., both are random samples of items),
the procedure will have power near 0.

Like a non-aggregated CARP test, DIMTEST uses conditional covariances, but whereas a CARP test
rejects unidimensionality if the conditional covariances are negative, DIMTEST rejects unidimension-
ality if the conditional covariances are too high. Both CARP tests and DIMTEST divide the set of items
into a partitioning test and an assessment test first, but CARP tests restrict the assessment test to a pair
of items. Our new aggregated CARP (ACARP) test avoids this problem of selecting an assessment test
by aggregating the individual CARP tests across item pairs. DIMTEST handles this problem by splitting
the test based on factor analysis in a training sample, and the procedure can be improved further with
bootstrapping (Froelich & Habing, 2008). DIMTEST is based on the statistic

T = ∑
i,j ∈ AT

i ≠ j

E(Cov(Xi,Xj∣Θ)) .

A sample estimate T̂ of T is obtained by replacing Θ with an estimate Θ̂ based on the partitioning
test, usually the sum score. Stout (1987) argued that Cov(Xi,Xj∣Θ) = 0 if the test is unidimensional,
and, therefore, Cov(Xi,Xj∣Θ̂) ≈ 0 if Θ̂ is a good estimate of Θ. A high value of T̂ means that the test
is not unidimensional. This may be due to multi-dimensionality or lack of local independence. Several
adjustments and improvements of DIMTEST have been suggested to estimate or reduce the bias in T̂
caused by Θ̂ being a fallible estimate of Θ (e.g., Kieftenbeld & Nandakumar, 2015), especially if the
number of items is small.

DETECT is a method to cluster items based on their conditional covariances. The clustering is based
on Zhang and Stout’s (1999) theory of conditional covariances for tests with a simple structure. The
procedure produces a clustering of the items, and a unidimensional test should result in one cluster
that contains all items. This is an explorative method, and not a statistical significance test. For a given
partition P of the set of test items (that is, {1, . . . ,J} in our notation), the theoretical DETECT index is

D ∶= 1
J (J−1) ∑

i,j ∈ TT
i ≠ j

δPij E(Cov(Xi,Xj∣Θ)),

where TT is the set of all items in the test, and δPij = 1 if i and j are elements of the same cluster in P ,
and δPij = −1 otherwise. DETECT searches for the partition that maximizes D using an estimate Θ̂ that
replaces Θ, leading to a sample estimate D̂ of D. Many adjustments and improvements of DETECT have
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been suggested to estimate or reduce the bias in D̂ caused by Θ̂ being a fallible estimate of Θ (Roussos
& Ozbek, 2006; Zhang, 2007), especially if the number of items is small.

Considering the relationship between DIMTEST and DETECT, we study how DETECT could be
used as a confirmatory test of unidimensionality. It would then be logical to defineP as one cluster that
contains all items, and the theoretical DETECT index for this would be

D1 ∶=
1

J (J−1) ∑
i,j ∈ TT

i ≠ j

E(Cov(Xi,Xj∣Θ)) .

Aside from the factor 1/J (J−1), one could describe D1 as an instance of T where both the assessment
test and the partitioning test contain all items. A high value of D1 would lead to the conclusion that the
test is not unidimensional.

For the sake of comparison, a single CARP test would test whether E(Cov(Xi,Xj∣Θ̂i+ Θ̂j)) ≥ 0,
where Θ̂i and Θ̂j are predictors of Xi and Xj, respectively, based on the items excluding i and j. The
ZPS statistic based on the pairwise MCCs Cij+, as defined earlier, can be considered a sample estimate
of the theoretical index

ζPS ∶=
∑

(i,j)∈T−
E(Cov(Xi,Xj∣Θ̂i+ Θ̂j))
√
∑Ω−

,

where T− consists of the pairs for which E(Cov(Xi,Xj∣Θ̂i+ Θ̂j)) < 0 and i < j in the training sample,
and Ω− is the covariance matrix used for normalization. A negative value of ζPS would lead to the
conclusion that the test is not unidimensional. The DIMTEST index T̂ and the DETECT index D̂1 thus
have a structure that is very similar to the ZPS statistic before the latter is normalized with

√
∑Ω−.

The main difference is that they are computed using different pairs (i,j). While DIMTEST would use
pairs with high conditional covariances in the training sample, ZPS would use pairs with low conditional
covariances in the training sample. Note that if Θ̂i and Θ̂j are poor estimates, E(Cov(Xi,Xj∣Θ̂i+ Θ̂j))
must still be nonnegative, and therefore ACARP does not require bias corrections in order to control
the Type I error rate.

DIMTEST, DETECT, and the ACARP tests developed here are closely related. The main difference
is the choice of the targeted item pairs and the conditioning variable and the implications that this has
for the sign of the covariances. In DIMTEST and DETECT, the conditioning variable is supposed to
capture the partitioning test, and unidimensionality is rejected if the conditional covariances in the
assessment test are high. In the ACARP tests, one would rather combine covariances of pairs from
different dimensions; the conditioning variables are supposed to predict the assessment items, and
unidimensionality is rejected if the conditional covariances are negative. For example, if the test has
two dimensions A and B, DIMTEST would use A as the assessment test and B as the partitioning test,
or conversely; but ZPS would use pairs (i,j) with i ∈ A and j ∈ B.

8. Simulation study I: preliminary selection of test methods

We investigated whether the Type 1 error rate is under control in typical IRT cases, and we compared
our test methods on statistical power. In the first simulation study, we aimed to make a preliminary
selection of the most promising test methods, which we investigated further in the second and third
simulation studies. We used J items and a logistic model,

P(Xi = 1∣Θ1,Θ2) = (1+exp(−(αi1Θ1+αi2Θ2+βi)))−1,

where (Θ1,Θ2) has a bivariate standard normal distribution with correlation 0. Denote the number of
items that load on dimensions 1 and 2 as J1 and J2, respectively, so that J1+ J2 = J.
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For the first simulations, we used J = 10. We studied three possible dimensionality cases:

• Dimensionality 0: In this case, αi1 = αi2 = 0 for 1 ≤ i ≤ J
• Dimensionality 1: In this case, αi1 > 0 and αi2 = 0 for 1 ≤ i ≤ J
• Dimensionality 2: In this case, αi1 > 0 and αi2 = 0 for 1 ≤ i ≤ J1, and αi2 > 0 and αi1 = 0 for J1 < i ≤ J2.

We used J1 = ceiling(J/2).

The methods discussed allow several ways to obtain a p-value: based on Cij+ or Zij; aggregated with
LR, CL, PS, PP, PB, CS, CP, or CB; and their covariance matrix estimated with the sample moments
or bootstrapping or set to the identity matrix. We adopt the following convention to name the tests
with four-letter acronyms: The first letter indicates the pairwise statistic (Z for the Zij and M for the
MCCs, Cij+); the second letter indicates the covariance matrix (B for bootstrapping, M for moments, I
for identity matrix, and N for none); the last two letters indicate the aggregation method (LR, CL, PS,
PP, PB, CS, CP, or CB). For example, ZICS is based on Zijs with the identity matrix and aggregation
with the conditionalized sum. An asterisk will be used to indicate a group of tests; for example, ZI**
is the group of tests based on the Zijs with the identity matrix. Not all combinations are reasonable:
The identity matrix is only reasonable for the Zijs but not for the Cij+s, and the sample moments and
bootstrap method make sense only for LR, CL, and PS. The remaining 20 relevant combinations are
displayed in the first column of Table 1. In addition to these tests, we studied the DETECT index D̂1.

The simulations were conducted in R, and the code is provided on the Open Science Framework
(https://osf.io/hyuzm/). Statistical testing was done at a nominal level of significance α = 0.05. We
programmed the CARP tests with the training sample size equal to 30% of the total sample. For
DETECT, we used the confirmatory DETECT function conf.detect of the sirt R-package (Robitzsch,
2022), with all items in one cluster; this gives D̂1. We rejected unidimensionality if D̂1 > 0.20, as
recommended in the sirt documentation and Roussos and Ozbek (2006, p. 220).

DETECT had a rejection rate of 0 in all circumstances. In the Discussion, we reflect on this result.
Tables 1 and 2 show the rejection rates for all other methods. Table 1 shows the rejection rates with all
αid ∈ {0,1},βi = 0 for 1000 samples of 1000 subjects. All 1000 samples in a column are generated with
the same parameters. Table 2 shows the rejection rates if the αid that are not constrained to be zero have
distribution αid ∼Uniform(0,2) and the βi ∼Uniform(−2,2). The 1000 samples in a column of Table 2
all have different parameters, and all contain 1000 subjects.

We conclude that only the following combinations keep the Type 1 error rate under control in both
dimensionality 0 and dimensionality 1, at least in the above cases:

• If the covariance matrix is replaced by the identity matrix: all aggregation methods based on the
pairwise Zij-statistics.

• If the covariance matrix is estimated from sample moments: all aggregation methods based on
pairwise Cij+ or Zij-statistics.

• If the covariance matrix is estimated by bootstrapping: only PS, based on pairwise Cij+ or Zij-
statistics.

The tests *BCL have a Type I error rate that significantly exceeds 0.05 in Table 1 (p = 0.0006). If
we omit these tests, and compare the other tests that use a covariance matrix (CL, LR, and PS) across
the different versions (M or Z; bootstrap, moments, or identity), then the tests based on the pairwise
Zij-statistics with the identity matrix have the highest power. The tests where the covariance matrix
was based on the sample moments had the lowest power, and we conclude that this method has no
advantages.

The maximum discrimination parameter αid = 1.0 in the simulations of Tables 1 and 2 is rather low.
For a broader view, we also conducted simulations with discrimination parameters αid = 1.7 (medium)
and αid = 7.0 (extremely high) if the item loads on dimension d, using 100 simulations of 1000 subjects
per case. Figure 1 shows the plots of the p-values (Schweder & Spjøtvoll, 1982) for the cases with
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Table 1. Rejection rates for various tests, based on 1000 samples with fixed item parameters

Pairwise Estimation covariance Aggregation Rejection rate Rejection rate Rejection rate

statistic matrix method dimensionality 0 dimensionality 1 dimensionality 2

M bootstrap CL 0.074 0.000 0.557

M bootstrap LR 0.062 0.000 0.182

M bootstrap PS 0.028 0.000 0.596

Z bootstrap CL 0.061 0.000 0.529

Z bootstrap LR 0.055 0.000 0.168

Z bootstrap PS 0.028 0.000 0.592

Z identity CL 0.044 0.000 0.554

Z identity CP 0.043 0.000 0.584

Z identity CS 0.036 0.000 0.587

Z identity LR 0.023 0.000 0.336

Z identity PP 0.029 0.000 0.755

Z identity PS 0.026 0.000 0.686

M moments CL 0.042 0.000 0.190

M moments LR 0.028 0.000 0.000

M moments PS 0.023 0.000 0.312

Z moments CL 0.054 0.000 0.349

Z moments LR 0.033 0.000 0.000

Z moments PS 0.026 0.000 0.368

Z none CB 0.027 0.000 0.242

Z none PB 0.038 0.000 0.296

Note: M = MCC (Cij+); Z = pairwise Z-statistic (Zij ); LR = likelihood ratio; CL = conditional likelihood ratio; CS = conditional sum;
CP= conditional product; CB= conditional Bonferroni; PS= preselected sum; PP= preselected product; and PB= preselected Bonferroni.
The item parameters were fixed to αid ∈ {0,1},βi = 0. Each of the 1000 samples contained 1000 subjects.

dimensionality 0 and 1, and Figure 2 shows these plots for dimensionality 2. If the p-values have a
uniform distribution, they lay on the diagonal line y = x in the plot. These plots confirm the conclusions
of Tables 1 and 2: in cases with dimensionality 0 (αi1 = αi2 = 0), all tests produce p-values that are
approximately uniformly distributed or slightly higher. In cases with dimensionality 1, (αi1 > 0,αi2 = 0),
all tests produce p-values that higher than uniform, and this effect increases with the discrimination
parameter. This is to be expected because the population values of the conditional covariances are
positive in unidimensional cases with αi1 > 0. The power is generally lowest if the covariance matrix
is estimated with the moments method. With bootstrapping, each Z***-test produces p-values that are
very close to the p-values of the corresponding M***-test. However, the power of the tests based on the
identity matrix matches or outperforms the power of the corresponding tests based on bootstrapping.
The next simulation study will therefore focus on the tests based on the identity matrix.

9. Simulation study II: comparison of aggregation methods

In this second simulation study, we focussed on the tests that use the identity matrix as the covariance
matrix of the Z-statistics. The goal was to determine which aggregation methods (CL, LR, PS, CS, PP,
CP, PB, and CB) have the highest power and whether this depends on the number of items, number
of subjects, and discrimination parameters. The goal was furthermore to determine whether there are
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Table 2. Rejection rates for various tests, based on 1000 samples with random item parameters

Pairwise Estimation covariance Aggregation Rejection rate Rejection rate Rejection rate

statistic matrix method dimensionality 0 dimensionality 1 dimensionality 2

M bootstrap CL 0.055 0.010 0.293

M bootstrap LR 0.038 0.000 0.125

M bootstrap PS 0.012 0.000 0.232

Z bootstrap CL 0.055 0.009 0.288

Z bootstrap LR 0.038 0.000 0.123

Z bootstrap PS 0.011 0.000 0.217

Z identity CL 0.024 0.009 0.289

Z Identity CP 0.023 0.008 0.292

Z identity CS 0.030 0.010 0.264

Z identity LR 0.012 0.000 0.160

Z identity PP 0.016 0.003 0.306

Z identity PS 0.009 0.000 0.248

M moments CL 0.017 0.006 0.065

M moments LR 0.008 0.000 0.000

M moments PS 0.006 0.000 0.078

Z moments CL 0.039 0.021 0.179

Z moments LR 0.014 0.000 0.000

Z moments PS 0.010 0.000 0.112

Z none CB 0.031 0.020 0.168

Z none PB 0.025 0.011 0.190

Note: M = MCC (Cij+); Z = pairwise Z-statistic (Zij ); LR = likelihood ratio; CL = conditional likelihood ratio; CS = conditionalized sum;
CP = conditionalized product; CB = conditionalized Bonferroni; PS = preselected sum; PP = preselected product; and PB = preselected
Bonferroni. The item parameters had distribution αi1 = αi2 = 0 (dimensionality 0), αi1 ∼ Uniform(0,2), αi2 = 0 (dimensionality 1), or
αi1,αi2 ∼ Uniform(0,2) (dimensionality 2), and βi ∼ Uniform(−2,2). Each of the 1000 samples contained 1000 subjects.

cases with unexpected low power. We investigate the effects of the number of items (J), sample size
(N), and discrimination parameter (αid) on the rejection rates, with fixed item difficulty βi = 0, using 100
simulations per combination. The rejection rates of the two-dimensional cases with low discrimination
parameters, αid ∈ {0,1}, are shown in Figure 3.

For medium-valued discrimination parameters, αid ∈ {0,1.7}, the estimated power was generally
0.99 or 1.00 even with N = 500 and J = 10, except for PB and CB. We did not display these excellent
power rates in a figure because they do not help discern any pattern. For low discrimination parameters,
αid ∈ {0,1}, and N = 2,000, the power was usually about .90 or higher, with the exception of ZIPB and
ZICB. The power differences between the tests are more pronounced for αid ∈ {0,1} and N = 500 or
N = 1000. There we see that the power of ZICL, ZICS, and ZICP increases with the number of items,
and that the power of these three tests is generally the highest, except that the power of ZIPP is higher
if the number of items is small. The power of ZIPB and ZICB is generally among the lowest and tends
to remain low if the number of items increases with N = 500 or N = 1000. The power of ZIPS tends to
decrease with the number of items if N = 500 or N = 1000. The power of ZILR tends to remain low if the
number of items increases with N = 500, but slowly increases if N = 1000. In sum, the highest power is
observed for ZICL, ZICS, ZICP, and sometimes ZIPP. Therefore, we will focus on these tests in the next
section.
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Figure 1. Plots of p-values showing the Type I error rates.
Note: The vertical axis is the p-value and the horizontal axis is the rank of the p-value. Dashed

curve = M***, solid curve = Z***, black = CT, red = LR, green = PS, blue = CS, light blue = PP, and

magenta = CP.

10. Simulation study III: type I error rates

In Simulation Study I, we investigated the Type I error rate only for J = 10 items and a sample size of
N = 1000 subjects. The present section discusses the Type I error rate more thoroughly, with simulations
with varying J and N, but only for the ZI** tests, which were selected in Simulation Study I, and we focus
especially on the tests ZICL, ZICS, ZICP, and ZIPP, based on their power in Simulation Study II. We
label tests with J ≤ 10 small and tests with J > 10 large. Further, we consider N ≤ 1000 small and N > 1000
large.
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Iden�ty Moments Bootstrap
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Figure 2. Plots of p-values showing the power.
Note: The vertical axis is the p-value and the horizontal axis is the rank of the p-value. Dashed curve = M***, solid curve = Z***,

black = CT, red = LR, green = PS, blue = CS, light blue = PP, and magenta = CP.

10.1. Zero-dimensional cases
We investigated the effects of the number of items (J), sample sizes (N) on the rejection rates for a
nominal significance level of 5%, with fixed discrimination parameters αid = 0 and fixed item difficulties
βi = 0, using 100 simulations per combination. For the number of items, we used all small values
(J = 3,4,5,6,7,8,9,10) and two large values (J = 20,30). For the number of subjects, we used several
small values (N = 250,500,750,1000) and two large values (N = 2000,N = 104). For each of the test
statistics ZICL, ZICS, ZICP, and ZIPP, the cumulative distribution of rejection counts was larger than
the cumulative binomial distribution with n = 100,π = 0.05; that is, the rejection rates were smaller
than expected under the binomial distribution. The highest rejection rates (0.07, 0.08, 0.09, and 0.10)
were mostly observed with J = 3,4,5,6 and N = 104. Therefore a second simulation was conducted
with these values of J and N, but with 1000 simulations per combination. The rejection rates for
ZICL, ZICS, ZICP, and ZIPP varied between 0.041 and 0.061, and none were significantly greater than
0.05. We also studied this for cases where the J,N,αid,βi were chosen randomly and independently
from uniform distributions with J between 3 and 30, N between 250 and 104, and βi ∈ (−2,2). We
sampled 100 cases of (J,N,β), and generated 100 data sets with a zero-dimensional model for each case.
The cumulative distribution of rejection counts was larger than the cumulative binomial distribution
with n = 100,π = 0.05 for all ZI** tests except ZIPB. ZIPB had two cases with rejection rates of 0.11.
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Figure 3. Rejection rates as a function of the number of items and sample sizes.

We conclude that the Type I error rate is under control for the tests ZICL, ZICS, ZICP, and ZIPP in
these cases.

10.2. Unidimensional cases
We investigated the effects of the number of items (J), sample sizes (N) on the rejection rates for a
nominal significance level of 5%, with fixed discrimination parameters αi1 = 1,αi2 = 0 and fixed item
difficulties βi = 0, using 100 simulations per combination. For the number of items, we used all small
values (J = 3,4,5,6,7,8,9,10) and two large values (J = 20,30). For the number of subjects, we used
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Table 3. Distribution of rejection rates in various settings of J and N with unidimensional models

J N

min max min max Rejection rate ZICP ZICL ZICS ZIPP ZILR ZIPS ZICB ZIPB

3 30 250 104 0.00 73 71 70 93 99 93 41 60

0.01 18 19 22 5 1 4 25 25

0.02 7 8 8 1 0 2 19 10

0.03 2 1 0 1 0 1 10 4

0.04 0 1 0 0 0 0 2 0

0.05 0 0 0 0 0 0 2 0

0.06 0 0 0 0 0 0 0 0

0.07 0 0 0 0 0 0 0 0

0.08 0 0 0 0 0 0 1 0

0.09 0 0 0 0 0 0 0 1

10 10 103 104 0.00 46 44 47 79 100 92 36 49

0.01 29 29 24 17 0 6 22 20

0.02 12 11 16 2 0 0 18 13

0.03 6 7 9 2 0 2 12 13

0.04 5 6 3 0 0 0 3 3

0.05 1 1 0 0 0 0 7 1

0.06 1 2 1 0 0 0 2 1

10 20 103 104 0.00 71 67 65 95 100 96 31 47

0.01 16 16 25 3 0 2 18 27

0.02 5 10 6 0 0 2 25 16

0.03 5 4 2 1 0 0 15 6

0.04 2 1 1 1 0 0 3 2

0.05 0 1 0 0 0 0 5 1

0.06 0 0 0 0 0 0 3 0

0.07 1 1 1 0 0 0 0 1

3 10 102 103 0.00 40 39 43 78 95 82 29 49

0.01 36 36 32 12 5 11 28 29

0.02 12 12 12 6 0 5 22 13

0.03 5 4 7 3 0 2 11 4

0.04 3 5 3 1 0 0 5 4

0.05 0 1 0 0 0 0 3 0

0.06 2 1 2 0 0 0 0 0

0.07 2 1 1 0 0 0 2 0

0.08 0 0 0 0 0 0 0 1

0.09 0 1 0 0 0 0 0 0

Note: In each setting of J and N, 100 parameter cases were generated with J ∼ Uniform(min J,max J), N ∼ Uniform(min N,max N), αi1 ∼
Uniform(0,2), αi2 = 0, and βi ∼ Uniform(−2,2). In each of these 100 parameter cases, 100 samples were simulated. Each cell shows the number
of parameter cases with the rejection rate specified in that row. For example, for ZICP, there were 18 cases out of 100 that had a rejection rate of
0.01 over 100 samples in the first setting.
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several small values (N = 250,500,750,1000) and two large values (N = 2000,N = 104). The highest
rejection rate was 0.01. We also studied this for cases where the J,N,αi1,βi were chosen randomly and
independently from uniform distributions with J between 3 and 30, N between 250 and 104, αi1 ∈ (0,2),
and βi ∈ (−2,2). We sampled 100 cases of (J,N,β), and generated 100 data sets with a unidimensional
model for each case. The rejection rates are given in the first nine rows of Table 3. The rejection rates
of ZICP, ZICL, ZICS, and ZIPP were at most 0.04. The cumulative distribution of rejection counts of
each of the tests was larger than the cumulative binomial distribution with n = 100,π = 0.05, that is,
the rejection rates were smaller than expected under the binomial distribution. Table 3 also shows the
rejection rates in various other settings of J and N, with similar conclusions.

11. Simulation study IV: without continuity correction

The previous simulations were conducted with the Zij-statistics corrected for continuity with the
addition of a term 0.5 in the numerator, as proposed by Rosenbaum (1984) and adopted by Ellis and
Sijtsma (2023). Many other continuity corrections exist (Andrés et al., 2024), and we are not sure that a
continuity correction is necessary for the sample sizes ordinarily found in IRT. Therefore, we repeated
the simulation studies of the ZI-statistics without continuity correction. The simulations of Table 1 and
Table 2 are repeated in Table 4 and Table 5 without continuity correction.

As was to be expected, the rejection rates were now generally larger than in Tables 1 and 2. In
Table 4, most Type I error rates (Dimensionality 0) were now 0.05 or slightly higher, and the power
(Dimensionality 2) was substantially higher than in Table 1. In Table 5, all Type I error rates are below
0.05, and the power is still larger than in Table 2. The power rates in Tables 4 and 5 are low, but note that
these results were obtained for low discrimination parameters (αid ≤ 1). We also repeated Simulation
Study III without continuity correction, and our conclusion is that the rejection rates were dominated
by a binomial distribution with probability 0.05 in all cases, meaning that the Type I error rate is under
control. The rejection rates of these versions of ZICL, ZICP, and ZICS are close to 0.05 in the zero-
dimensional cases.

Table 6 shows the power rates for the simulations underlying Figure 3, but now repeated without
continuity correction, with the positive discrimination parameters set to 1 (low). If the objective is to
have power > 0.90, then all four tests achieved this goal with N = 2000 and J ≥ 10, and also with N = 1000
and J ≥ 14, but not with N = 500. However, if the positive discrimination parameters are equal to 1.7
(medium), then the power rates were 1.00 even with N = 500 and J ≥ 10. We did not display these
excellent power rates in a table because they were all 1.00.

Table 4. Rejection rates for various tests without continuity correction with fixed item parameters

Pairwise Covariance Aggregation Rejection rate Rejection rate Rejection rate

statistic matrix method dimensionality 0 dimensionality 1 dimensionality 2

Z identity CL 0.058 0.000 0.657

Z identity CP 0.058 0.000 0.686

Z identity CS 0.057 0.000 0.684

Z identity LR 0.052 0.000 0.447

Z identity PP 0.053 0.000 0.835

Z identity PS 0.050 0.000 0.756

Z none CB 0.039 0.000 0.278

Z none PB 0.051 0.000 0.334

Note: Z=pairwise Z-statistic (Zij ); LR= likelihood ratio; CL=conditional likelihood ratio; CS=conditional sum; CP=conditional
product; CB= conditional Bonferroni; PS= preselected sum; PP= preselected product; and PB= preselected Bonferroni. The
item parameters were fixed to αid ∈ {0,1},βi = 0. Each rate is based on 1000 samples of 1000 subjects.
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Table 5. Rejection rates for various tests without continuity correction with random item parameters

Pairwise Covariance Aggregation Rejection rate Rejection rate Rejection rate

statistic matrix method dimensionality 0 dimensionality 1 dimensionality 2

Z identity CL 0.045 0.007 0.354

Z Identity CP 0.048 0.008 0.361

Z identity CS 0.047 0.009 0.332

Z identity LR 0.038 0.000 0.212

Z identity PP 0.035 0.002 0.381

Z identity PS 0.039 0.000 0.300

Z none CB 0.035 0.024 0.200

Z none PB 0.038 0.013 0.221

Note: Z= pairwise Z-statistic (Zij ); LR= likelihood ratio; CL= conditional likelihood ratio; CS= conditionalized sum; CP= con-
ditionalized product; CB= conditionalized Bonferroni; PS=preselected sum; PP=preselected product; and PB=preselected
Bonferroni. The item parameters had distribution αi1 = αi2 = 0 (dimensionality 0), αi1 ∼ Uniform(0,2), αi2 = 0 (dimensionality
1), or αi1,αi2 ∼Uniform(0,2) (dimensionality 2), and βi ∼Uniform(−2,2). Each rate is based on 1000 samples of 1000 subjects.

Table 6. Rejection rates for various tests without continuity correction with low discrimination parameters

J N = 500 N = 1000 N = 2000

CL CS PP CP CL CS PP CP CL CS PP CP

10 0.30 0.31 0.37 0.31 0.66 0.77 0.89 0.72 0.95 0.98 1.00 0.96

12 0.35 0.39 0.32 0.37 0.86 0.87 0.93 0.89 1.00 0.99 1.00 1.00

14 0.41 0.43 0.37 0.40 0.92 0.91 0.94 0.92 1.00 1.00 1.00 1.00

16 0.62 0.61 0.51 0.65 0.98 0.98 0.99 0.98 1.00 1.00 1.00 1.00

18 0.61 0.60 0.38 0.64 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00

20 0.69 0.64 0.35 0.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

22 0.68 0.71 0.33 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

24 0.74 0.78 0.29 0.81 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

26 0.78 0.74 0.20 0.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

28 0.84 0.83 0.23 0.84 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

30 0.81 0.78 0.15 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: Z = pairwise Z-statistic (Zij ); CL = conditional likelihood ratio; CS = conditional sum; CP = conditional product; and
PP = preselected product. The item parameters were fixed to αid ∈ {0,1}, βi = 0. Each rate is based on 100 samples.

12. Conclusions and discussion

We conclude that the pairwise CARP tests Ellis and Sijtsma (2023) proposed can best be aggregated with
four of the tests developed here: ZICL, ZICP, ZICS, and ZIPP. These tests control the Type I error rate in
a wide variety of test lengths and sample sizes, and their power against two-dimensional alternatives is
larger than the power of other aggregate statistics that we studied. ZIPP had the greatest relative power
if there were less than 18 items with N = 1000, but not in most other cases. Further investigations are
needed to determine whether this is also true for alternatives with more than two dimensions.

The Type I error rates of the ZI-tests are well below the nominal rate of 0.05, and this suggests that
improvement is possible. The pairwise Z-statistic, as defined by Ellis and Sijtsma (2023), includes a
continuity correction that might be too conservative. Based on our simulations, we conclude that the
continuity correction may be abandoned for the sample sizes we studied (N ≥ 500). Without continuity
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correction, the Type I error rate is still under control, and the power increases. The Type I error rates of
ZICL, ZICP, and ZICS are then close to 0.05 in the zero-dimensional cases of Tables 4 and 5.

The Type I error rate in unidimensional cases is far below 0.05, even without continuity correction,
but this does not imply that the tests are too conservative. As an analogy, consider the elementary
normal-theory one-sided Z-test for a mean μ with known variance σ2. For the null hypothesis μ ≥ 0
and sample mean X one would use Z = (X/σ)

√
N and reject the null hypothesis if Φ(Z) < α. If real

data were generated with μ > 0, then P(Φ(Z) < α) < α, meaning that the Type I error rate is less than α.
This is usually not viewed as a sign that something is wrong with the one-sided Z-test. The situation in
our case is similar because we have a one-sided test for a mean, but in our case it is a mean of conditional
covariances. In the unidimensional case, this mean is positive, which reduces the Type I error rate.

If the discrimination parameters equal 1 and the intercepts equal 0, the power rates of ZICL, ZICP,
ZICS, and ZIPP are well above 0.90 for N = 2000, regardless of whether the continuity correction is used.
For these item parameters, if there are at least 14 items and the continuity correction is abandoned, the
power is also above 0.90 for N = 1000, but the power is substantially below 0.90 for N = 500 for all
studied test lengths between J = 10 and J = 30. We emphasize that these power rates were obtained for
low discrimination parameters. We consider discrimination parameters of 1 as low because we did not
use the general factor 1.7 in our parametrization (unlike e.g., Roussos & Ozbek, 2006). If the positive
discrimination parameters equal 1.7 (medium), then the power rates of ZICL, ZICP, ZICS, and ZIPP
are 1.00, even with N = 500 and all investigated test lengths from 10 to 30, based on simulations using
100 samples.

We also compared our statistics with the DETECT index, applied in a confirmatory manner, using
the criterion D1 < 0.20. To our surprise, despite the theoretical similarity of this index to the ZIPS
statistic, this index appeared to lack discriminatory power, as it never rejected the hypothesis of
unidimensionality. This is a puzzling result, seemingly at odds with the positive evaluations reported
by the index’s creators. While we have concerns about the validity of our results for DETECT, we were
unable to identify any errors in our code. We believe this issue warrants further investigation.

Our study provides three new statistics for a confirmatory test of unidimensionality in monotone
IRT models, and they seem to outperform older methods—at least in the cases we simulated. Still,
the power of these methods is somewhat disappointing for sample size N = 1000 and discrimination
parameter 1, and better methods may be possible. A simple improvement might be found in the size of
the training sample, which was set at 30% in all our analyses. Furthermore, aggregation of different splits
into training samples and test samples might be useful. Finally, it would be worthwhile to investigate
which of the four tests can be recommended as most powerful under various circumstances.

Data availability statement. The simulated data and the code that generated it, are available in the Open Science Framework
repository at https://osf.io/hyuzm/
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A. Appendix

Proposition A1. If Z is independent of (X,Y) then Cov(X,YZ) = Cov(X,Y)E(Z).

Proof. Cov(X,YZ) = E(XYZ)−E(X)E(YZ) = E(XY)E(Z)−E(X)E(Y)E(Z) = Cov(X,Y)E(Z). ◻

A1. The covariance of two sample covariances
In asymptotic distribution free (ADF) SEM, it is common to obtain the covariance matrix of sample covariances as the sample
grows to infinity, which is called the asymptotic covariance matrix (e.g., Browne, 1984). However, it is also possible to obtain an
exact formula for the covariance of two sample covariances for finite N, provided that the variables have finite fourth moments.

We develop the covariance of two sample covariances, assuming finite fourth moments of the involved variables. Denote
the variables to be studied as X = (X1,X2, . . . ,XJ). Suppose that a random sample of N subjects is drawn, and denote the score
of subject n on variable i as X(n)

i , and let X(n) = (X(n)
1 , . . . ,X(n)

J ), the score pattern of subject n. We assume that the N subjects
are drawn independently, and that therefore their score patterns X(1),X(2), . . . ,X(N) are independent, and that each X(n) has
the same multivariate distribution as X. Thus, the X(n) are independent copies of X. We study two sample covariances, given
by

CN
ij =

N
∑

n=1
X(n)

i X(n)
j

N
−

N
∑

n=1
X(n)

i

N

N
∑
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X(n)

j

N
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kl =

N
∑

n=1
X(n)

k X(n)
l

N
−

N
∑

n=1
X(n)

k

N

N
∑

n=1
X(n)

l

N

Using the summation rules for covariances, the covariance of these sample covariances is

Cov(CN
ij ,C

N
kl) = Cov
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⎜⎜⎜⎜
⎝

N
∑

n=1
X(n)

i X(n)
j

N
−

N
∑

n=1
X(n)

i

N

N
∑

n=1
X(n)

j

N
,

N
∑

n=1
X(n)

k X(n)
l

N
−

N
∑

n=1
X(n)

k

N

N
∑

n=1
X(n)

l

N

⎞
⎟⎟⎟⎟
⎠
=

N−2Cov(
N
∑
n=1

X(n)
i X(n)

j ,
N
∑
n=1

X(n)
k X(n)

l )−N−3Cov(
N
∑
n=1

X(n)
i X(n)

j ,
N
∑
n=1

X(n)
k

N
∑
n=1

X(n)
l )

−N−3Cov(
N
∑
n=1

X(n)
k X(n)

l ,
N
∑
n=1

X(n)
i

N
∑
n=1

X(n)
j )+N−4Cov(

N
∑
n=1

X(n)
i

N
∑
n=1

X(n)
j ,

N
∑
n=1

X(n)
k

N
∑
n=1

X(n)
l ) .

We will now develop the four terms in this sum, which will be called the four main terms. For the first main term, we need

Cov(
N
∑
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X(n)
i X(n)

j ,
N
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X(n)
k X(n)

l ) =
N
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j ,X(m)
k X(m)

l ) .

This sum has N2 terms, but if n ≠ m then Cov(X(n)
i X(n)

j ,X(m)
k X(m)

l ) = 0, and in the remaining N terms with n = m,

Cov(X(n)
i X(n)

j ,X(m)
k X(m)

l ) = Cov(X(n)
i X(n)

j ,X(n)
k X(n)

l ) = Cov(XiXj,XkXl). Therefore, we obtain
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For the second main term, we need
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Similar to the previous term, the outcome of the generic covariance term in this sum, Cov(X(n)
i X(n)

j ,X(m)
k X(r)

l ), depends
on which of the indices n,m,and r are equal. To keep track of this, we constructed Table A1, in which all possible truth values
of the equalities n =m, n = r, and m = r are listed. Each row contains one combination of truth values and the number of terms
with that combination. Each row also contains the intermediate expression of the covariance, where the true equalities of that
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Table A1. Development of the term∑N
n=1∑

N
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N
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row are substituted in the generic expression Cov(X(n)
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l ), and the final expression, where this is intermediate
expression is rewritten in terms of the central moments of X. A few examples may clarify this:

In the second row, we consider the generic terms Cov(X(n)
i X(n)

j ,X(m)
k X(r)

l ) with n ≠m,n ≠ r,m = r. There are N (N −1)
such terms, and substitution of the equality m= r leads to the intermediate expression Cov(X(n)

i X(n)
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l ). Since n≠m,
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k X(m)

l , and therefore this covariance is 0, which is the final expression.

In the third row, we consider the generic terms Cov(X(n)
i X(n)

j ,X(m)
k X(r)

l ) with n ≠ m,n = r,m ≠ r. There are N (N −1)
such terms, and substitution of the equality n = r leads to Cov(X(n)

i X(n)
j ,X(m)

k X(n)
l ). Since n ≠m, X(n)

i X(n)
j is independent

of X(m)
k but not of X(n)

l . Here, we can use proposition A1, and obtain Cov(XiXj,Xl)E(Xk).
In the fourth row, we consider the terms with n ≠m,n = r,m = r. This is a logical contradiction, and therefore there are 0

of such terms.
Summarizing from Table A1, we obtain
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For the third main term, we obtain analogously,
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For the fourth term, we need to develop
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X(n)
i

N
∑
n=1

X(n)
j ,

N
∑
n=1

X(n)
k

N
∑
n=1

X(n)
l ) = Cov

⎛
⎝

N
∑
n=1

N
∑
m=1

X(n)
i X(m)

j ,
N
∑
q=1

N
∑
r=1

X(q)
k X(r)

l
⎞
⎠

=
N
∑
n=1

N
∑
m=1

N
∑
q=1

N
∑
r=1

Cov(X(n)
i X(m)

j ,X(q)
k X(r)

l ) .

The generic expression for the covariances in this sum is Cov(X(n)
i X(m)

j ,X(q)
k X(r)

l ). There are now four indices,
n,m,q, and r and therefore there are six equalities that may or may not be true: m = n,q = n,q = m,r = n,r =
m, and r = q. All possible truth values of these equalities are listed in Table A2, together with their count, the
intermediate expression, and the final expression. For example, in the third row, we consider the case where r = m,
while all other indices are unequal. There are N (N −1)(N −2) such terms. Substitution of r = m leads to
Cov(X(n)

i X(m)
j ,X(q)

k X(r)
l ) = Cov(X(n)

i X(m)
j ,X(m)

k X(r)
l ), and then proposition A1 leads to Cov(X(n)

i X(m)
j ,X(m)

k X(r)
l ) =
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E(X(n)
i )Cov(X(m)

j ,X(m)
k )E(X(r)

l ) = Cov(Xj,Xl)E(Xi)E(Xk). In row 13 of Table A2, we used the following reasoning:

Cov(X(n)
i X(m)

j ,X(m)
k X(n)

l ) = E(X
(n)
i X(m)

j X(m)
k X(n)

l )−E(X
(n)
i X(m)

j )E(X(m)
k X(n)

l ) =

E(X(n)
i X(n)

l )E(X
(m)
j X(m)

k )−E(X(n)
i )E(X

(m)
j )E(X(m)

k )E(X(n)
l ) =

E(XiXl)E(XjXk)−E(Xi)E(Xj)E(Xk)E(Xl)

A similar argument leads to the final expression in row 19 of Table A2.
Taking all four main terms together, we obtain:

Cov(CN
ij ,C

N
kl) =N−2 NCov(XiXj,XkXl)

−N−3 (N (N −1)Cov(XiXj,Xl)E(Xk)+N (N −1)Cov(XiXj,Xk)E(Xl)+NCov(XiXj,XkXl))
−N−3 (N (N −1)Cov(XkXl,Xj)E(Xi)+N (N −1)Cov(XkXl,Xi)E(Xj)+NCov(XiXj,XkXl))+

N−4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

N (N −1)(N −2)( Cov(Xj,Xl)E(Xi)E(Xk)+Cov(Xi,Xl)E(Xj)E(Xk)+
Cov(Xj,Xk)E(Xi)E(Xl)+Cov(Xi,Xk)E(Xj)E(Xl)

)

+N (N −1)( Cov(XkXl,Xj)E(Xi)+Cov(XkXl,Xi)E(Xj)+
Cov(XiXj,Xl)E(Xk)+Cov(XiXj,Xk)E(Xl)

)+

N (N −1)(E(XiXl)E(XjXk)+E(XjXl)E(XiXk)−2E(Xi)E(Xj)E(Xk)E(Xl))+
NCov(XiXj,XkXl)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

A2. The covariance of two sums of conditional covariances with fixed weights
In the test proposed by Rosenbaum’s (1984) case 2, the covariance of two items is considered conditionally on the sum of the
other items. The statistics used by Rosenbaum is a standardization of a weighted sum of covariances, where the subgroup sizes
act as weights. We will now develop a formula for the covariance of a weighted sum of conditional covariances. Let Rij be the
variable that is used for the conditioning of pair (Xi,Xj). In the case of Rosenbaum’s case 2, Rij would be the sum of the other
items, but for our purposes it is sufficient to assume that the range of Rij is some finite set. The null hypothesis would now be
that Cov(Xi,Xj∣Rij = s) ≥ 0 for each s in the range of Rij. Denote the corresponding sample covariance as

Cijs = ĉov(Xi,Xj∣Rij = s) .

Let Nijs be the number of subjects in the subsample with Rij = s. Rosenbaum’s statistics is based on standardization of

Cij+ =∑
s

NijsCijs.

The goal of this section is to obtain a formula for Cov(Cij+,Ckl+). As a first step,

Cov(Cij+,Ckl+) =∑
s
∑

t
Cov(NijsCijs,NkltCklt) .

We will now first develop Cov(Cijs,Cklt). In this section, we will assume that Nijs and Nklt are fixed numbers instead of
random variables. Then∑s∑t Cov(NijsCijs,NkltCklt) =∑s∑t NijsNkltCov(Cijs,Cklt), so a formula for Cov(Cijs,Cklt)would solve
the problem. In Rosenbaum’s (1984) application, the Nijs and Nklt are actually random variables, as discussed in the main text.

Let I(n)
ijs = 1[R(n)

ij = s], the indicator function for the event Rij = s in subject n. That is, 1[R(n)
ij = s] = 1 if R(n)

ij = s, and

1[R(n)
ij = s] = 0 otherwise, so that Nijs =∑N

n=1 I(n)
ijs . Then

Cijs =

N
∑

n=1
X(n)

i X(n)
j I(n)

ijs

Nijs
−

N
∑

n=1
X(n)

i I(n)
ijs

Nijs

N
∑

n=1
X(n)

j I(n)
ijs

Nijs

Cklt =

N
∑

n=1
X(n)

k X(n)
l I(n)

klt

Nklt
−

N
∑

n=1
X(n)

k I(n)
klt

Nklt

N
∑

n=1
X(n)

l I(n)
klt

Nklt
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Table A2. Development of the term∑N
n=1∑

N
m=1∑

N
q=1∑

N
r=1 Cov(X(n)

i X(m)
j ,X(q)

k X(r)
l )

m = n q = n q =m r = n r =m r = q Count Final expression

1 0 0 0 0 0 0 N(N−1)(N−2)
(N−3)

0

2 0 0 0 0 0 1 N(N−1)(N−2) 0

3 0 0 0 0 1 0 N(N−1)(N−2) Cov(Xj,Xl)E(Xi)E(Xk)

4 0 0 0 0 1 1 0

5 0 0 0 1 0 0 N(N−1)(N−2) Cov(Xi,Xl)E(Xj)E(Xk)

6 0 0 0 1 0 1 0

7 0 0 0 1 1 0 0

8 0 0 0 1 1 1 0

9 0 0 1 0 0 0 N(N−1)(N−2) Cov(Xj,Xk)E(Xi)E(Xl)

10 0 0 1 0 0 1 0

11 0 0 1 0 1 0 0

12 0 0 1 0 1 1 N(N−1) Cov(XkXl,Xj)E(Xi)

13 0 0 1 1 0 0 N(N−1) E(XiXl)E(XjXk)−
E(Xi)E(Xj)E(Xk)E(Xl)

14 0 0 1 1 0 1 0

15 0 0 1 1 1 0 0

16 0 0 1 1 1 1 0

17 0 1 0 0 0 0 N(N−1)(N−2) Cov(Xi,Xk)E(Xj)E(Xl)

18 0 1 0 0 0 1 0

19 0 1 0 0 1 0 N(N−1) E(XjXl)E(XiXk)−
E(Xi)E(Xj)E(Xk)E(Xl)

20 0 1 0 0 1 1 0

21 0 1 0 1 0 0 0

22 0 1 0 1 0 1 N(N−1) Cov(XkXl,Xi)E(Xj)

23 0 1 0 1 1 0 0

24 0 1 0 1 1 1 0

25 0 1 1 0 0 0 0

26 0 1 1 0 0 1 0

27 0 1 1 0 1 0 0

28 0 1 1 0 1 1 0

29 0 1 1 1 0 0 0

30 0 1 1 1 0 1 0
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Table A2. Continued

m = n q = n q =m r = n r =m r = q Count Final expression

31 0 1 1 1 1 0 0

32 0 1 1 1 1 1 0

33 1 0 0 0 0 0 N(N−1)(N−2) 0

34 1 0 0 0 0 1 N(N−1) 0

35 1 0 0 0 1 0 0

36 1 0 0 0 1 1 0

37 1 0 0 1 0 0 0

38 1 0 0 1 0 1 0

39 1 0 0 1 1 0 N(N−1) Cov(XiXj,Xl)E(Xk)

40 1 0 0 1 1 1 0

41 1 0 1 0 0 0 0

42 1 0 1 0 0 1 0

43 1 0 1 0 1 0 0

44 1 0 1 0 1 1 0

45 1 0 1 1 0 0 0

46 1 0 1 1 0 1 0

47 1 0 1 1 1 0 0

48 1 0 1 1 1 1 0

49 1 1 0 0 0 0 0

50 1 1 0 0 0 1 0

51 1 1 0 0 1 0 0

52 1 1 0 0 1 1 0

53 1 1 0 1 0 0 0

54 1 1 0 1 0 1 0

55 1 1 0 1 1 0 0

56 1 1 0 1 1 1 0

57 1 1 1 0 0 0 N(N−1) Cov(XiXj,Xk)E(Xl)

58 1 1 1 0 0 1 0

59 1 1 1 0 1 0 0

60 1 1 1 0 1 1 0

61 1 1 1 1 0 0 0

62 1 1 1 1 0 1 0

63 1 1 1 1 1 0 0

64 1 1 1 1 1 1 N Cov(XiXj,XkXl)
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Therefore Cov(Cijs,Cklt) can be developed analogously to the one-sample case of the previous section. We start with
rewriting it into four main terms.

Cov(Cijs,Cklt) = Cov

⎛
⎜⎜⎜⎜
⎝

N
∑

n=1
X(n)

i X(n)
j I(n)

ijs

Nijs
,

N
∑

m=1
X(m)

k X(m)
l I(m)

klt

Nklt

⎞
⎟⎟⎟⎟
⎠

−Cov

⎛
⎜⎜⎜⎜
⎝

N
∑

n=1
X(n)

i X(n)
j I(n)

ijs

Nijs
,

N
∑

m=1
X(m)

k I(m)
klt

Nklt

N
∑
r=1

X(r)
l I(r)

klt

Nklt

⎞
⎟⎟⎟⎟
⎠

−Cov

⎛
⎜⎜⎜⎜
⎝

N
∑

n=1
X(n)

i I(n)
ijs

Nijs

N
∑

n=1
X(n)

j I(n)
ijs

Nijs
,

N
∑

n=1
X(n)

k X(n)
l I(n)

klt

Nklt

⎞
⎟⎟⎟⎟
⎠

+Cov

⎛
⎜⎜⎜⎜
⎝

N
∑

n=1
X(n)

i I(n)
ijs

Nijs

N
∑

n=1
X(n)

j I(n)
ijs

Nijs
,

N
∑

m=1
X(m)

k I(m)
klt

Nklt

N
∑
r=1

X(r)
l I(r)

klt

Nklt

⎞
⎟⎟⎟⎟
⎠

= 1
NijsNklt

N
∑
n=1

N
∑
m=1

Cov(X(n)
i X(n)

j I(n)
ijs ,X(m)

k X(m)
l I(m)

klt )

− 1
NijsN2

klt

N
∑
n=1

N
∑
m=1

N
∑
r=1

Cov(X(n)
i X(n)

j I(n)
ijs ,X(m)

k I(m)
klt X(r)

l I(r)
klt )

− 1
N2

ijsNklt

N
∑
n=1

N
∑
m=1

N
∑
r=1

Cov(X(n)
k X(n)

l I(n)
klt ,X(m)

i I(m)
ijs X(r)

j I(r)
ijs )

+ 1
N2

ijsN2
klt

N
∑
n=1

N
∑
m=1

N
∑
q=1

N
∑
r=1

Cov(X(n)
i I(n)

ijs X(m)
j I(m)

ijs ,X(q)
k I(q)

klt X(r)
l I(r)

klt ) .

Using the results of the previous section, we can express these terms as covariance of the variables XiIijs, XjIijs, XkIklt , and
XlIklt and their products. The first main term is

Cov

⎛
⎜⎜⎜⎜
⎝

N
∑

n=1
X(n)

i X(n)
j I(n)

ijs

Nijs
,

N
∑

m=1
X(m)

k X(m)
l I(m)

klt

Nklt

⎞
⎟⎟⎟⎟
⎠
= 1

NijsNklt

N
∑
n=1

N
∑
m=1

Cov(X(n)
i X(n)

j I(n)
ijs ,X(m)

k X(m)
l I(m)

klt )

= N
NijsNklt

Cov(XiXjIijs,XkXlIklt) .

The second main term is

−Cov

⎛
⎜⎜⎜⎜
⎝

N
∑

n=1
X(n)

i X(n)
j I(n)

ijs

Nijs
,

N
∑

m=1
X(m)

k I(m)
klt

Nklt

N
∑
r=1

X(r)
l I(r)

klt

Nklt

⎞
⎟⎟⎟⎟
⎠
= − 1

NijsN2
klt

N
∑
n=1

N
∑
m=1

N
∑
r=1

Cov(X(n)
i X(n)

j I(n)
ijs ,X(m)

k I(m)
klt X(r)

l I(r)
klt )

= − 1
NijsN2

klt
(N (N −1)Cov(XiXjIijs,XlIklt)E(XkIklt)

+N (N −1)Cov(XiXjIijs,XkIklt)E(XlIklt)
+NCov(XiXjIijs,XkXlIklt)).

This is developed in Table A3.
The third main term is analogously,

− 1
N2

ijsNklt

N
∑
n=1

N
∑
m=1

N
∑
r=1

Cov(X(n)
k X(n)

l I(n)
klt ,X(m)

i I(m)
ijs X(r)

j I(r)
ijs )

= − 1
N2

ijsNklt
(N (N −1)Cov(XkXlIklt,XjIijs)E(XiIijs)

+N (N −1)Cov(XkXlIklt,XiIijs)E(XjIijs)+NCov(XiXjIijs,XkXlIklt)).
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Table A3. Development of the term∑N
n=1∑

N
m=1∑

N
r=1 Cov(X(n)

i X(n)
j I(n)

ijs ,X(m)
k I(m)

klt X(r)
l I(r)

klt )

n =m n = r m = r Count Intermediate term Final term

0 0 0 N(N−1)(N−2) Cov(X(n)
i X(n)

j I(n)
ijs ,X(m)

k I(m)
klt X(r)

l I(r)
klt ) 0

0 0 1 N(N−1) Cov(X(n)
i X(n)

j I(n)
ijs ,X(m)

k I(m)
klt X(m)

l I(m)
klt ) 0

0 1 0 N(N−1) Cov(X(n)
i X(n)

j I(n)
ijs ,X(m)

k I(m)
klt X(n)

l I(n)
klt ) Cov(XiXjIijs,XlIklt)E(XkIklt)

0 1 1 0

1 0 0 N(N−1) Cov(X(n)
i X(n)

j I(n)
ijs ,X(n)

k I(n)
klt X(r)

l I(r)
klt ) Cov(XiXjIijs,XkIklt)E(XlIklt)

1 0 1 0

1 1 0 0

1 1 1 N Cov(X(n)
i X(n)

j I(n)
ijs ,X(n)

k X(n)
l I(n)

klt ) Cov(XiXjIijs,XkXlIklt)

The fourth main term is

1
N2

ijsN2
klt

N
∑
n=1

N
∑
m=1

N
∑
q=1

N
∑
r=1

Cov(X(n)
i I(n)

ijs X(m)
j I(m)

ijs ,X(q)
k I(q)

klt X(r)
l I(r)

klt )

= 1
N2

ijsN2
klt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

N (N −1)(N −2)
⎛
⎜⎜⎜⎜
⎝

Cov(XjIijs,XlIklt)E(XiIijs)E(XkIklt)
+Cov(XiIijs,XlIklt)E(XjIijs)E(XkIklt)
+Cov(XjIijs,XkIklt)E(XiIijs)E(XlIklt)
+Cov(XiIijs,XkIklt)E(XjIijs)E(XlIklt)

⎞
⎟⎟⎟⎟
⎠

+

N (N −1)
⎛
⎜⎜⎜⎜
⎝

Cov(XkXlIklt,XjIijs)E(XiIijs)
+Cov(XkXlIklt,XiIijs)E(XjIijs)
+Cov(XiXjIijs,XlIklt)E(XkIklt)
+Cov(XiXjIijs,XkIklt)E(XlIklt)

⎞
⎟⎟⎟⎟
⎠

+

N (N −1)( E(XiIijsXlIklt)E(XjIijsXkIklt)+E(XjIijsXlIklt)E(XiIijsXkIklt)
−2E(XiIijs)E(XjIijs)E(XkIklt)E(XlIklt)

)

+
NCov(XiXjIijs,XkXlIklt)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This is developed in Table A4.
Let us now summarize the results. For arbitrary variables V,W,X,Y write

γ1 (V,W,X,Y) = Cov(VW,XY)

γ2 (V,W,X,Y) = Cov(VW,Y)E(X)+Cov(VW,X)E(Y)

γ3 (V,W,X,Y) = γ2 (X,Y,V,W) = Cov(XY,W)E(V)+Cov(XY,V)E(W)

γ4 (V,W,X,Y) = Cov(V,X)E(W)E(Y)+Cov(V,Y)E(W)E(X)+Cov(W,X)E(V)E(Y)+Cov(W,Y)E(V)E(X)

γ5 (V,W,X,Y) = Cov(VW,X)E(Y)+Cov(VW,Y)E(X)+Cov(V,XY)E(W)+Cov(W,XY)E(V)
= γ2 (V,W,X,Y)+γ3 (V,W,X,Y)

γ6 (V,W,X,Y) = E(VY)E(WX)−E(V)E(W)E(X)E(Y)+E(WY)E(VX)−E(V)E(W)E(X)E(Y)

and

T1 (V,W,X,Y,N) =Nγ1 (V,W,X,Y)

T2 (V,W,X,Y,N) =N (N −1)γ2 (V,W,X,Y)+Nγ1 (V,W,X,Y)

T3 (V,W,X,Y,N) =N (N −1)γ3 (V,W,X,Y)+Nγ1 (V,W,X,Y)

T4 (V,W,X,Y,N) =N (N −1)(N −2)γ4 (V,W,X,Y)
+N (N −1)γ5 (V,W,X,Y)+N (N −1)γ6 (V,W,X,Y)+Nγ1 (V,W,X,Y) .
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Table A4. Development of∑N
n=1∑

N
m=1∑

N
q=1∑

N
r=1 Cov(X(n)

i I(n)
ijs X(m)

j I(m)
ijs ,X(q)

k I(q)
klt X(r)

l I(r)
klt )

m = n q = n q =m r = n r =m r = q Count Final

1 0 0 0 0 0 0 N(N−1)(N−2)
(N−3)

0

2 0 0 0 0 0 1 N(N−1)(N−2) 0

3 0 0 0 0 1 0 N(N−1)(N−2) Cov(XjIijs,XlIklt)E(XiIijs)
E(XkIklt)

4 0 0 0 0 1 1 0

5 0 0 0 1 0 0 N(N−1)(N−2) Cov(XiIijs,XlIklt)E(XjIijs)
E(XkIklt)

6 0 0 0 1 0 1 0

7 0 0 0 1 1 0 0

8 0 0 0 1 1 1 0

9 0 0 1 0 0 0 N(N−1)(N−2) Cov(XjIijs,XkIklt)E(XiIijs)
E(XlIklt)

10 0 0 1 0 0 1 0

11 0 0 1 0 1 0 0

12 0 0 1 0 1 1 N(N−1) Cov(XkXlIklt,XjIijs)E(XiIijs)

13 0 0 1 1 0 0 N(N−1) E(XjIijsXkIklt)E(XiIijsXlIklt)−
E(XiIijs)E(XjIijs)
E(XkIklt)E(XlIklt)

14 0 0 1 1 0 1 0

15 0 0 1 1 1 0 0

16 0 0 1 1 1 1 0

17 0 1 0 0 0 0 N(N−1)(N−2) Cov(XiIijs,XkIklt)E(XjIijs)
E(XlIklt)

18 0 1 0 0 0 1 0

19 0 1 0 0 1 0 N(N−1) E(XjIijsXlIklt)E(XiIijsXkIklt)−
E(XiIijs)E(XjIijs)
E(XkIklt)E(XlIklt)

20 0 1 0 0 1 1 0

21 0 1 0 1 0 0 0

22 0 1 0 1 0 1 N(N−1) Cov(XkXlIklt,XiIijs)E(XjIijs)

23 0 1 0 1 1 0 0

24 0 1 0 1 1 1 0

25 0 1 1 0 0 0 0

26 0 1 1 0 0 1 0

27 0 1 1 0 1 0 0

28 0 1 1 0 1 1 0
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Table A4. Continued

m = n q = n q =m r = n r =m r = q Count Final

29 0 1 1 1 0 0 0

30 0 1 1 1 0 1 0

31 0 1 1 1 1 0 0

32 0 1 1 1 1 1 0

33 1 0 0 0 0 0 N(N−1)(N−2) 0

34 1 0 0 0 0 1 N(N−1) 0

35 1 0 0 0 1 0 0

36 1 0 0 0 1 1 0

37 1 0 0 1 0 0 0

38 1 0 0 1 0 1 0

39 1 0 0 1 1 0 N(N−1) Cov(XiIijsXj,XlIklt)E(XkIklt)

40 1 0 0 1 1 1 0

41 1 0 1 0 0 0 0

42 1 0 1 0 0 1 0

43 1 0 1 0 1 0 0

44 1 0 1 0 1 1 0

45 1 0 1 1 0 0 0

46 1 0 1 1 0 1 0

47 1 0 1 1 1 0 0

48 1 0 1 1 1 1 0

49 1 1 0 0 0 0 0

50 1 1 0 0 0 1 0

51 1 1 0 0 1 0 0

52 1 1 0 0 1 1 0

53 1 1 0 1 0 0 0

54 1 1 0 1 0 1 0

55 1 1 0 1 1 0 0

56 1 1 0 1 1 1 0

57 1 1 1 0 0 0 N(N−1) Cov(XiXjIijs,XkIklt)E(XlIklt)

58 1 1 1 0 0 1 0

59 1 1 1 0 1 0 0

60 1 1 1 0 1 1 0

61 1 1 1 1 0 0 0

62 1 1 1 1 0 1 0

63 1 1 1 1 1 0 0

64 1 1 1 1 1 1 N Cov(XiXjIijs,XkXlIklt)
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Then the result of the previous section can be written as

Cov(CN
VW,CN

XY) =N−2T1 (V,W,X,Y,N)−N−3T2 (V,W,X,Y,N)−N−3T3 (V,W,X,Y,N)+N−4T4 (V,W,X,Y,N)

The result of the present section can be obtained with V = XiIijs, W = XjIijs, X = XkIklt , Y = XlIklt :

Cov(Cijs,Cklt) =
1

NijsNklt
T1 (XiIijs,XjIijs,XkIklt,XlIklt,N)

− 1
NijsN2

klt
T2 (XiIijs,XjIijs,XkIklt,XlIklt,N)

− 1
N2

ijsNklt
T3 (XiIijs,XjIijs,XkIklt,XlIklt,N)

+ 1
N2

ijsN2
klt

T4 (XiIijs,XjIijs,XkIklt,XlIklt,N) .

Thus

Cov(NijsCijs,NkltCklt) = T1 (XiIijs,XjIijs,XkIklt,XlIklt,N)

− 1
Nklt

T2 (XiIijs,XjIijs,XkIklt,XlIklt,N)

− 1
Nijs

T3 (XiIijs,XjIijs,XkIklt,XlIklt,N)

+ 1
NijsNklt

T4 (XiIijs,XjIijs,XkIklt,XlIklt,N) .
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