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Abstract. We study an interesting class of Banach function algebras of infinitely
differentiable functions on perfect, compact plane sets. These algebras were introduced
by H. G. Dales and A. M. Davie in 1973, called Dales-Davie algebras and denoted by
D(X, M), where X is a perfect, compact plane set and M = {Mn}∞n=0 is a sequence of
positive numbers such that M0 = 1 and (m + n)!/Mm+n ≤ (m!/Mm)(n!/Mn) for m, n ∈
N. Let d = lim sup (n!/Mn)1/n and Xd = {z ∈ C : dist(z, X) ≤ d}. We show that, under
certain conditions on X , every f ∈ D(X, M) has an analytic extension to Xd . Let DP

[DR] be the subalgebra of all f ∈ D(X, M) that can be approximated by the restriction
to X of polynomials [rational functions with poles off X ]. We show that the maximal
ideal space of DP is X̂d , the polynomial convex hull of Xd , and the maximal ideal space
of DR is Xd . Using some formulae from combinatorial analysis, we find the maximal
ideal space of certain subalgebras of Dales-Davie algebras.

2000 Mathematics Subject Classification. Primary 46J10, 46J15. Secondary 46J20.

1. Introduction. Let X be a compact Hausdorff space. We denote the space of
all continuous complex-valued functions on X by C(X). For f ∈ C(X) and a closed
subset E of X , we denote the uniform norm of f on E by |f |E . A function algebra on
X is a subalgebra A of C(X) that separates the points of X and contains the constant
functions. If there is an algebra norm on A such that A is complete under this norm,
then A is a Banach function algebra on X , and if the given norm is the uniform norm
on X , then A is a uniform algebra on X .

We denote by M(A), the maximal ideal space of A. Clearly, for each x ∈ X , the
map εx : A → C, defined by εx( f ) = f (x), is a non-zero complex homomorphism on
A called the evaluation character at x. The map J : X → M(A), defined by J(x) = εx,
is injective and continuous, and so X is homeomorphic to a compact subset of M(A).
If the map J is surjective, then A is a natural Banach function algebra on X .

If A is a Banach function algebra on X , then Ā, the uniform closure of A in C(X),
is a uniform algebra on X and, clearly, M(A) ⊆ M(A). The following result in this
area is proved in [5].

THEOREM 1.1. Let X be a compact Hausdorff space and let A be a Banach function
algebra on X. Then M(A) = M(Ā) if and only if |̂f |M(A) = |f |X , for all f ∈ A, where f̂
is the Gelfand transform of f .

For a compact plane set X , we denote the set of all functions on X that are
analytic on int(X) by A(X), and the set of all functions on X having an analytic
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extension to a neighborhood of X by H0(X). We denote the set of the restriction to
X of rational functions with poles off X by R0(X), and the set of the restriction to
X of polynomials by P0(X). The polynomial convex hull of X is denoted by X̂ . By
the coordinate functional on X we mean the function z on X that maps any point to
itself.

Let X be a perfect, compact plane set. We say that a complex-valued function f
on X is complex-differentiable at a point a ∈ X if the limit

f ′(a) = lim
{

f (z) − f (a)
z − a

, z → a, z ∈ X
}

exists. We call f ′(a) the complex derivative of f at a. We denote the nth derivative of f
at a ∈ X by f (n)(a). We denote the set of n times continuously complex-differentiable
functions on X by Dn(X), and the set of infinitely complex-differentiable functions on
X by D∞(X).

Let M = {Mn}∞n=0 be a sequence of positive numbers such that M0 = 1. Then M
is an algebra sequence if, for all m, n ∈ N, we have

(m + n) !
Mm+n

≤ m !
Mm

n !
Mn

.

M is an analytic sequence if d(M) = lim supn→∞(n !/Mn)1/n > 0. If d(M) = 0, the
sequence M is non-analytic.

For a perfect compact plane set X and an algebra sequence M = {Mn}∞n=0, a
Dales-Davie algebra associated with X and M is defined by

D(X, M) =
{

f ∈ D∞(X) :
∞∑

k=0

∣∣f (k)
∣∣
X

Mk
< ∞

}
,

where the norm on D(X, M) is given by

‖f ‖ =
∞∑

k=0

∣∣f (k)
∣∣
X

Mk
.

Since M is an algebra sequence, D(X, M) is a normed function algebra on X .
A compact subset X of the complex plane is connected by rectifiable arcs if any two

points of X can be joined by a rectifiable arc lying within X . For such a set, let δ(z, w)
denote the geodesic distance between z and w; that is, the infimum of the lengths of the
arcs joining z and w. Clearly δ defines a metric, the geodesic metric, on X .

DEFINITION 1.2. Let X be a compact plane set which is connected by rectifiable
arcs, and suppose that δ(z, w) is the geodesic distance between z and w in X .

(i) X is regular if for any z ∈ X there exists a constant Cz such that δ(z, w) ≤
Cz |z − w|, for all w ∈ X .

(ii) X is uniformly regular if there exists a constant C such that δ(z, w) ≤ C |z − w|,
for all z, w ∈ X .

The following result is proved in [4, Lemma 1.5(iii)] for uniformly regular sets. An
examination of the proof shows that it is also valid for regular sets.
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LEMMA 1.3. Let X be a regular set and let z ∈ X. Then, for all f ∈ Dn(X) and every
ζ ∈ X, ∣∣∣∣f (ζ ) −

n−1∑
k=0

f (k)(z)
k !

(ζ − z)k
∣∣∣∣ ≤ |f (n)|X

(n − 1) !
(Cz)n |ζ − z|n,

where Cz is the constant in Definition 1.2.

Dales and Davie in [4] proved that if X is a finite union of uniformly regular sets
then D(X, M) is complete. In fact, if X is a finite union of regular sets then D(X, M) is
complete. For some further results see [2]. Throughout this note, we assume that X is
such a perfect compact plane set so that D(X, M) is complete.

We need the following result about an algebra sequence M; see [3, Pro-
position A.1.26].

LEMMA 1.4. Let M = {Mn}∞n=0 be an algebra sequence. Then

d(M) = lim
n→∞(n!/Mn)1/n = inf

{
(n!/Mn)1/n : n ∈ N

}
.

NOTATION. Let X be a compact plane set. For a point ζ ∈ C, the distance between
ζ and X is defined by dist(ζ, X) = inf{|ζ − z| : z ∈ X}. For a non-negative real number
d, we set Xd = {ζ ∈ C : dist(ζ, X) ≤ d}. If d = 0 we set �d = int(X), and if d > 0 we
set �d = {ζ ∈ C : dist(ζ, X) < d}. For z ∈ C and r > 0, �(z, r) = {ζ ∈ C : |ζ − z| < r}
and �(z, r) = {ζ ∈ C : |ζ − z| ≤ r}, are the open and closed disc with center at z and
radius r.

2. Certain subalgebras. Clearly, for any algebra sequence M = {Mn}∞n=0 and every
perfect compact plane set X , D(X, M) contains the polynomials on X ; that is, P0(X) ⊆
D(X, M).

PROPOSITION 2.1. Let d = d(M). Then D(X, M) contains H0(Xd) and, moreover, the
embedding of H0(Xd) in D(X, M) is continuous in the sense that if ( fn) ⊆ H0(Xd) and
fn → f uniformly on a neighbourhood of Xd, then fn → f in D(X, M).

Proof. For f ∈ H0(Xd) there is a neighbourhood U of Xd such that f is analytic
on U . Choose ρ > d so that Xρ ⊆ U . By the Cauchy integral formula

f (n)(z) = n !
2π i

∫
C(z,ρ)

f (ζ ) dζ

(ζ − z)n+1
(z ∈ X),

where C(z, ρ) is the circle with center at z and radius ρ. Therefore,

|f (n)(z)|
n !

≤ |f |Xρ

2π

2πρ

ρn+1
= |f |Xρ

ρn
,

and

‖f ‖ =
∞∑

n=0

∣∣f (n)
∣∣
X

Mn
≤ |f |Xρ

∞∑
n=0

1
ρn

n!
Mn

< ∞. (2.1)
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Now, suppose that fn → f uniformly in some neighbourhood of Xd . We can choose
ρ > d such that |fn − f |Xρ

→ 0. Similarly, we have

lim
n→∞ ‖fn − f ‖ ≤ lim

n→∞ |fn − f |Xρ

∞∑
m=0

1
ρm

m!
Mm

= 0.

�
PROPOSITION 2.2. Suppose that d is a non-negative real number. Then D(X, M)

contains R0(Xd) if and only if d(M) ≤ d.

Proof. If d(M) ≤ d then, by Proposition 2.1, R0(Xd) ⊆ D(X, M). Suppose that
R0(Xd) ⊆ D(X, M). Let ρ > d be arbitrary, and let ζ ∈ C be such that ρ = dist(ζ, X).
By the assumption, if f (z) = 1/(ζ − z) for z 	= ζ , then f ∈ D(X, M). Therefore

‖f ‖ =
∞∑

n=0

∣∣f (n)
∣∣
X

Mn
=

∞∑
n=0

n !
Mn

1
ρn+1

< ∞.

This implies that d(M) = lim supn→∞(n!/Mn)1/n ≤ ρ and, since ρ > d is arbitrary, we
have d(M) ≤ d. �

COROLLARY 2.3. R0(X) ⊆ D(X, M) if and only if limn→∞(n!/Mn)1/n = 0.

DEFINITION 2.4. Let d = d(M). We define DP(X, M), DR(X, M), and DH(X, M)
to be the closure of P0(Xd), R0(Xd) and H0(Xd) in D(X, M), respectively. These algebra
are simply denoted by DP, DR, and DH .

COROLLARY 2.5. Let d = d(M). Then
(i) H0(X̂d) ⊆ DP,

(ii) H0(Xd) ⊆ DR and, consequently, DR = DH.

Proof. For f ∈ H0(X̂d), there is ρ > d such that f ∈ H0(X̂ρ). By Runge’s theorem,
there is a sequence (pn) of polynomials such that |pn − f |Xρ

→ 0 as n → ∞. By (2.1),

‖pn − f ‖ ≤ |pn − f |Xρ

∞∑
n=0

1
ρn

n!
Mn

→ 0.

The proof of part (ii) is similar. �

3. Extension of infinitely differentiable functions. Throughout this section, we
assume that M = {Mn}∞n=0 is an analytic algebra sequence with d = d(M) > 0, and we
write D for D(X, M). For f ∈ D and for ζ ∈ X , by Lemma 1.4, we have that

Fz(ζ ) =
∞∑

k=0

f (k)(z)
k !

(ζ − z)k, (3.1)

is uniformly convergent in �(z, d), and so the function Fz : �(z, d) → C is continuous
on �(z, d) and analytic on �(z, d). A natural question arises here.

Does f ∈ D have an extension in A(Xd)?
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It seems that the answer to this question depends on X . Dales in [3, Theo-
rem 4.4.16 (i)] has answered this question for X = [0, 1] as follows.

THEOREM 3.1. Let X = [0, 1], and let M be an analytic algebra sequence. Then D is
isomorphic to a natural Banach function algebra D̂ on Xd, and D̂ is contained in A(Xd).

We answer this question in more general cases.

THEOREM 3.2. Let X be a perfect, compact plane set. Then every f ∈ DH has a
unique extension F in A(Xd) and |F |Xd ≤ ‖f ‖.

Proof. Let f ∈ DH . There is a sequence {fn} in H0(Xd) such that ‖fn − f ‖ → 0. In
particular, {fn} is a Cauchy sequence in D. We show that {fn} is a Cauchy sequence in
C(Xd). Let ζ ∈ Xd . Then there is z ∈ X such that |ζ − z| ≤ d. Since every fn is analytic
in a neighborhood of Xd , we have

fn(ζ ) =
∞∑

k=0

f (k)
n (z)
k !

(ζ − z)k (n ∈ N).

Consequently

|fn(ζ ) − fm(ζ )| ≤
∞∑

k=0

∣∣f (k)
n − f (k)

m
∣∣
X

k !
|ζ − z|k

≤
∞∑

k=0

∣∣f (k)
n − f (k)

m
∣∣
X

Mk

Mk

k !
d k

≤ ‖fn − fm‖ .

This shows that |fn − fm|Xd → 0 as m, n → ∞. Let F ∈ C(Xd) be the uniform limit of
{fn} on Xd ; then F ∈ A(Xd), F |X = f , and |F |Xd = limn→∞ |fn|Xd ≤ limn→∞ ‖fn‖ = ‖f ‖.

Suppose that F1 ∈ A(Xd) and F1|X = f . Since X is perfect, it has a limit point and
this implies that F1 = F . �

COROLLARY 3.3. Let X be a perfect, compact plane set. Then every f ∈ DP(X, M)
has a unique extension F in A(X̂d) and |F |X̂d

≤ ‖f ‖.

Proof. Let f ∈ DP. There is a sequence {pn} of polynomials such that ‖pn − f ‖ →
0. As in the proof of Theorem 3.2, |pm − pn|Xd → 0 as m, n → ∞, so that |pm − pn|X̂d

→
0 as m, n → ∞. Let F ∈ C(X̂d) be the uniform limit of {pn} on X̂d . Clearly F ∈
A(X̂d), F |X = f and |F |X̂d

= limn→∞ |pn|X̂d
= limn→∞ |pn|Xd ≤ limn→∞ ‖pn‖ = ‖f ‖.

The uniqueness of F follows from Theorem 3.2. �

In the rest of this section, we try to find sufficient conditions on X to guarantee
that every f ∈ D can be extended to a function F in A(Xd).

LEMMA 3.4. Suppose that X is regular and f ∈ D. Then for every z ∈ X, there exists
r = r(z) > 0 such that f (ζ ) = Fz(ζ ) for ζ ∈ �(z, r) ∩ X. In particular, f has an analytic
extension on �(z, r).
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Proof. Let z ∈ X , and let r = d/Cz, where Cz is the constant in Definition 1.2. If
ζ ∈ X , and |ζ − z| < r, then for some β > 1, |ζ − z| ≤ d/(βCz). By Lemma 1.3,

lim
n→∞

∣∣∣∣f (ζ ) −
n−1∑
m=0

f (k)(z)
k !

(ζ − z)k
∣∣∣∣ ≤ lim

n→∞

( ∣∣f (n)
∣∣
X

(n − 1) !
(Cz)n |ζ − z|n

)

≤ lim
n→∞

( ∣∣f (n)
∣∣
X

(n − 1) !
(d/β)n

)
= 0.

This shows that f (ζ ) = Fz(ζ ), for all ζ ∈ �(z, r) ∩ X . �

COROLLARY 3.5. Let X be a regular set. Then D ⊂ H0(X).

Proof. Let f ∈ D. By Lemma 3.4, since X is regular, for each z ∈ X , there is
r(z) > 0 such that f = Fz on �(z, r(z)) ∩ X . There exist z1, . . . , zn ∈ X such that X ⊆
U = ⋃n

j=1 �(zj, rj/2), where rj = r(zj). Define F : U → C by F(ζ ) = Fzj (ζ ), where ζ ∈
�(zj, rj/2). Suppose that �(zi, ri/2) ∩ �(zj, rj/2) 	= ∅, for some i, j. Then |zi − zj| <

max{ri, rj} and, therefore, E = �(zi, ri) ∩ �(zj, rj) ∩ X 	= ∅. Since Fzi = Fzj on E and E
has a limit point, Fzi = Fzj on �(zi, ri/2) ∩ �(zj, rj/2). Hence, F is an analytic extension
of f on U , and so f ∈ H0(X). �

COROLLARY 3.6. Let X be a regular set and a ∈ X. Suppose that f ∈ D and f (k)(a) =
0, for k ≥ 0. Then f = 0.

THEOREM 3.7. Let X be a regular set, and let Q = {(z, w) ∈ X × X : |z − w| < 2d}.
If Q is connected then every f ∈ D has an analytic extension to �d . Moreover

sup{|F(ζ )| : ζ ∈ �d} ≤ ‖f ‖.

Proof. Define S = {(z, w) ∈ Q : Fz(ζ ) = Fw(ζ ), for all ζ ∈ �(z, d) ∩ �(w, d)}. We
show that S is an open and closed subset of Q.

Let (z, w) ∈ S. By Lemma 3.4, there exist positive numbers r(z) and r(w) such
that Fz = f on �(z, r(z)) ∩ X , Fw = f on �(w, r(w)) ∩ X , and moreover, if z1 ∈
�(z, r(z)) and w1 ∈ �(w, r(w)) then �(z, d) ∩ �(w, d) ∩ �(z1, d) ∩ �(w1, d) 	= ∅. Set
V = �(z, r(z)) × �(w, r(w)), and let (z1, w1) ∈ V ∩ Q. Then Fz1 = Fz = f on �(z, r(z)) ∩
X and Fw1 = Fw = f on �(w, r(w)) ∩ X . Thus Fz1 = Fz on �(z, d) ∩ �(z1, d) ∩ X
and Fw1 = Fw on �(w, d) ∩ �(w1, d) ∩ X . This shows that Fz1 = Fw1 on �(z1, d) ∩
�(w1, d) ∩ X , V ∩ Q ⊆ S and, therefore, S is an open subset of Q.

We now show that S is a closed subset of Q. Let (z, w) ∈ Q \ S, and let V be
the neighborhood of (z, w) given in the proof of openness of S in the last paragraph.
Let (z1, w1) ∈ V ∩ Q. Using the same argument, if Fz1 = Fw1 then Fz = Fw. Since
(z, w) ∈ Q \ S, Fz 	= Fw, and so Fz1 	= Fw1 . This shows that V ∩ Q ⊆ Q \ S, and thus
Q \ S is open in Q.

Therefore, S is a non-empty closed and open subset of Q and, since Q is connected,
we conclude that S = Q, and hence F is the desired extension of f to �d . �

We do not completely know for which X every f ∈ D can be extended to a function
in A(Xd). One may think that if X is a set with the property that each pair z, w of
points in X can be joined by a sufficiently smooth curve within X , then every f ∈ D
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has an analytic extension on �d . The following example shows that this is not true in
general.

EXAMPLE. For ε > 0 small, let X = {2eiθ : −π + ε ≤ θ ≤ π − ε}. Suppose that
Mn = n ! and

f (z) = Log(z) = ln |z| + iθ (−π < θ < π ).

Then f ∈ D and d = 1. Clearly, for ε small enough, f has no analytic extension on �d .

4. Maximal ideal space. Dales and Davie in [4] proved that if d(M) = 0, then
M(DR) = X and M(DP) = X̂ . We have the following result.

THEOREM 4.1. Let X be a compact, perfect plane set such that D(X, M) is complete.
Then M(DR) = Xd and M(DP) = X̂d , where d = d(M).

Proof. Let ζ ∈ Xd . We define hζ : DR → C by hζ ( f ) = F(ζ ), where F is the unique
extension of f in A(Xd) given by Theorem 3.2. Theorem 3.2 shows that hζ ∈ M(DR).

Let h ∈ M(DR) and ζ = h(z), where z is the coordinate functional on X . If
ζ /∈ Xd , then 1

ζ−z ∈ DR which is a contradiction, and so ζ ∈ Xd . It is easy to
see that h( f ) = f (ζ ), for all f ∈ R0(Xd). For f ∈ DR, there is a sequence {fn} in
R0(Xd) such that ‖fn − f ‖ → 0. Again, by Theorem 3.2, fn(ζ ) → f (ζ ) and therefore
h( f ) = limn→∞ h( fn) = limn→∞ fn(ζ ) = f (ζ ).

Similarly, for ζ ∈ X̂d , define hζ : DP → C by hζ ( f ) = F(ζ ), where F is the unique
extension of f in A(X̂d) given by Corollary 3.3. By Corollary 3.3, hζ ∈ M(DP).

Let h ∈ M(DP), and ζ = h(z), where z is the coordinate functional on X . If ζ /∈ X̂d

then 1
ζ−z ∈ DP, which is a contradiction, so that ζ ∈ X̂d . It is easy to see that h(p) =

p(ζ ) for all polynomials p. For f ∈ DP, there is a sequence {pn} of polynomials such
that ‖pn − f ‖ → 0. Again, by Corollary 3.3, pn(ζ ) → f (ζ ) and h( f ) = limn→∞ h(pn) =
limn→∞ pn(ζ ) = f (ζ ). �

To continue we need some formulae from combinatorial analysis. For m, n ∈ N
with n ≥ m, we take S(m, n) as the set of all (a1, a2, . . . , an) ∈ (Z+)n such that a1 +
a2 + · · · + an = m and a1 + 2a2 + · · · + nan = n. For any m ∈ N and any sequence
{Ak} of positive numbers, by [1, Formula B3, p. 823],( ∞∑

k=1

Ak

)m

= m!
∞∑

n=m

∑ 1∏
ak!

n∏
k=1

(Ak)ak , (4.1)

where the inner sum is taken over all (a1, a2, . . . , an) ∈ S(m, n). The following equality
for higher derivatives of composite functions is known as the Faa di Bruno’s Formula
(see [1, p. 823]):

(F ◦ f )(n) =
n∑

m=0

F (m)( f )
∑ n!∏

ak!

n∏
k=1

(
f (k)

k!

)ak

, (4.2)

where the inner sum is taken over all (a1, a2, . . . , an) ∈ S(m, n).
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LEMMA 4.2. Let K > 0 and {εm} be a sequence of positive numbers such that εm → 0
as m → ∞. Then

lim sup
p→∞

( p∑
m=0

(
p
m

)
(εm)mKp−m

)1/p

≤ K.

Proof. Without loss of generality, we may assume that K = 1. For ε > 0 there is
N ∈ � such that εm < ε, for any m > N. For p > N we have

p∑
m=0

(
p
m

)
(εm)m ≤

N∑
m=0

(
p
m

)
(εm)m +

p∑
m=N+1

(
p
m

)
εm

≤ pN
N∑

m=0

(εm)m + (1 + ε)p

≤ 2pN(1 + ε)p
N∑

m=0

(εm)m.

Hence lim supp→∞(
∑p

m=0

(p
m

)
(εm)m)1/p ≤ 1 + ε, which implies the required

in equality. �
LEMMA 4.3. Let X be a perfect compact plane set, and let M = {Mn}∞n=0 be an

algebra sequence. Suppose that A = {f ∈ D∞(X) : f ′ ∈ D(X, M)}.
(i) The set A is a subalgebra of D(X, M).

(ii) If d(M) = 0, then |f |X = |̂f |M(D) for all f ∈ A.

Proof. (i) Let f ∈ A. Since n+1
Mn+1

≤ 1
M1Mn

, we have

∞∑
n=0

∣∣f (n+1)
∣∣
X

Mn+1
≤

∞∑
n=0

∣∣f (n+1)
∣∣
X

Mn

1
(n + 1)M1

≤
∞∑

n=0

∣∣(f ′)(n)
∣∣
X

Mn
< ∞.

Hence f ∈ D(X, M), and A ⊆ D(X, M). It is easy to see that A is, in fact, a subalgebra
of D(X, M).

(ii) Let f ∈ A. For p ∈ N, by the Faa di Bruno’s formula (4.2) we have

‖f p‖ =
∞∑

n=0

∣∣( f p)(n)
∣∣
X

Mn
≤

∞∑
n=0

p∑
m=0

m!
(

p
m

) |f |p−m
X

Mn

∑ n!∏
ak!

n∏
k=1

(∣∣f (k)
∣∣
X

k!

)ak

.

After interchanging the order of summation, we have

‖f p‖ ≤
p∑

m=0

(
p
m

)
|f |p−m

X m!
∞∑

n=m

∑ 1∏
ak!

∏n
k=1(Pk−1)ak

Pn

∏( ∣∣f (k)
∣∣
X

k Mk−1

)ak

≤
p∑

m=0

(
p
m

)
|f |p−m

X m!
∞∑

n=m

∑ 1∏
ak!

Pn−m

Pn

∏( ∣∣f (k)
∣∣
X

k Mk−1

)ak

≤
p∑

m=0

(
p
m

)
|f |p−m

X
m!
Pm

∞∑
n=m

∑ 1∏
ak!

∏ (∣∣f (k)
∣∣
X

Mk−1

)ak

.
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By Formula (4.1),

‖f p‖ ≤
p∑

m=0

(
p
m

)
|f |p−m

X

(
(1/Pm)1/m‖f ′‖)m

.

Applying Lemma 4.2, with εm = ‖f ′‖(m!/Mm)1/m, we have |̂f |M(D) ≤ |f |X . �
THEOREM 4.4. Let M = {Mn}∞n=0 be a non-analytic algebra sequence (d(M) = 0),

and let X be uniformly regular. Then B = A, the closure of A in D(X, M), is a natural
subalgebra of D(X, M).

Proof. Since d(M) = 0, R0(X) ⊆ B ⊆ D1(X). By [4, Lemma 1.5(iv)], D1(X) ⊆
R(X). This shows that B = R(X), where B is the uniform closure of B in C(X). Using
Theorem 1.1, it is enough to show that |̂f |M(D) = |f |X , for all f ∈ B.

Let f ∈ B. Then there exists a sequence {fn} in A such that ‖fn − f ‖ → 0 as n → ∞.
Since |fn − f |X ≤ |̂fn − f̂ |M(D) ≤ ‖fn − f ‖, we conclude that |̂fn|M(D) → |̂f |M(D) and
|fn|X → |f |X . By the previous result, |̂fn|M(D) = |fn|X and so |̂f |M(D) = |f |X . �

Question. Is the subalgebra A = {f ∈ D∞(X) : f ′ ∈ D(X, M)} dense in D(X, M)?
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