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FUNCTIONAL EQUATIONS OF GENERALIZED
EPSTEIN ZETA FUNCTIONS IN SEVERAL
COMPLEX VARIABLES

AUDREY A. TERRAS

Let S™ be the matrix of a positive definite quadratic form and
(ph c pr—l)ecr_l. Deﬁne

r—1
(1) Cngpeeinr(Sy 015 0 = oy 01-) = B [STUI™

Here the sum is over unimodular matrices U™ = (U®™%¥0%) which lie in a
complete set of representatives for the equivalence relation U~V if U=VP,
with P unimodular and having block form

Py *
0 P

The following notation shall be used throughout:

A™™ for an n by m matrix A

A = g,

|A] = determinant of A

S[A] = *ASA, *A being the transpose of A

N; = énj, i=12+:+,7, Ne=n= }T]nj.
=1 =1

A unimodular matrix U™ is one with integral entries and determinant 1.
The function (1) is clearly a generalization of Epstein’s zeta function,
as well as a generalization of functions defined by Koecher [1], Maass [3],
and Selberg [4], [5], [6]. It can also be viewed as an Eisenstein series; for
which, see Langlands [2].
Ifn,=1for all i =12 +-.,7 and 7 ==#n, denote the function defined
by (1) as & = &1,.. 10
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1n, for i =12+--,

We know from [7] that (1) converges for Re o, > 2

7 —1. It was also shown in [7] that

(2) é‘n ,~--,n,»<S’p RN &' ) = gn(sy ,0)
' " Tt py =0, for i&{N, --+,Ny}.

Also from [7], every permutation ¢ of {1,2, - - -, n] induces a functional
equation of £ (S,e). More precisely, one introduces the new variables

2 1=1,2,++-,n with pi=zi+l—zi+—é~. That means

P1 —l‘l‘l A 21 1
: —1+1 o |~ >
p = = : . + : = Az + % .
B . 1
Pn 0 -1 Zn 7

Define ¢(x) = I'(x)¢(2x). Here ¢ denotes the ordinary Riemann zeta function.
Now define

Za—L -2 g J2
’ — "2 i=1 7 H . _L
o'(z) = | S| T 1g<,-gn¢<z’ 2%+ )

Then the functional equations of £.(S, p) = £4y(S,2), for p = Az + %, are

O'(2)8 (S, 2°) = D'(2)805(S, 2),
where (2°); = 2,), that is,
#° = P°z, where P°= (3,u,), 8;; being

the usual Kronecker delta.
One can rewrite the functional equations in terms of the variables p
by defining

B(p) = 0'(2), for p = Az + —

.
b

E)
o7 = AP a0 — L) + 1

F(p, o) = gg;g

Then the functional equations become
(3) g(n)(s’ P',) =F (P’a)g(n)(sa p)-

Note that we have defined the map p— p° to be the map induced on the
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p coordinates by the map z— 2. It is clear that (0°);=Q[p1, * « +, Pu-ils
for i=1,.-,n—1.
Now equation (2) suggests that some of the equations (3) induce func-

tional equations or relations on the functions &,,,.....,. The purpose now

. . . r
is to discover which r-tuples (ny, + -+, n;), (my, +++, m;) such that Xin,=n
=1

=i‘::,"1mi have the property that the corresponding zeta functions &,,,...,s,
and &n,.-..,m, are related by (3) for some o¢. A result in this direction is
proved in [7] for 7 =2. Relations were obtained between &; .-; and &, ;
in that case for i = 1,2, .- +,2—1, This means that if i =»n—4{, a non-
trivial functional equation is induced on ¢&;; by some permutation of {1,2,
e+ +,2¢}, in (3).

In order to state the problem more precisely, define F, ... ., (0,0) =
F(p,0) )

p; =0, for j&{N, - - -, N}.

We say that for (ny, - - -,%,) and (m,, + - +,m,) such that élni =n= irgmi,

Copoiiiny ~Cmfreveimy

if and only if there exists a permutation ¢ of {1,2, - - +,n} such that setting
p; =0, for j&{N, ---,N,} In (3), one obtains:

F"]-"',nr(p’ U)Cnl.-'-,ny(sy PNI.'--.pNy_l)

= gml,---,mT(S’ p;lly ° "pl,l{r_l)-

Here N, = _Etnj and M, = f_‘.m, And o'y, = (0" .
j=1 J=1 szo, ]qE{le""NT};

SO pl,w,EQ[pr A '1pN7_1]-

We shall soon see that “~” is indeed an equivalence relation.

Clearly &n,,...,n; ~&m,,-...m, under ¢ is equivalent to the condition that
the o’s which are set equal to zero to produce &,,,...,.., from &, must be
sent by the map p — p° to the p’s which are set equal to zero to produce
Enyyeoem, from L.

Define 27,,.....n, to be the set of n —7 hyperplanes defined by z;.,—%;
+% =0, for j&{N, -+ +,N,}. Recall that N, = Ztlnj, i=12---,7. It
=

is obvious that &, ....n, ~&n,,....n, under ¢ is equivalent to requiring that

T

the map z— 2’ take the set 27, ..., one-to-one, onto the set S, ... n,.

T
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T T
TaeoreMm 1. For every (ny, « « +,n;) and (my, « + +,my) such that Elni=n=.2‘{ mi.
1= 1=

gnl,---,n, -~ gml.n-,mr

if and only if there exists a permutation p of {1,2, « + -, 7} such that n; = m,q.

Proof. Suppose for some permutation g of {1,2, - - -, 7}, #;=m,y. Define
i [
a permutation ¢, of {1,2, - - -, n} as follows. Set N;=3'n; and M, = 3 m;.
j=1 j=1
Then define

c Ny — (g —1)+ e Ny — oo Nyo v )
v =
e My~ (=1 My — g M- -+

Then for 1<j <n;, = muw,

1
%o, (= j+1)  Ro (w=) T 5

_ 1
—sz(i)—j"'l - szu)—j + 7 .
This means that z->2°* takes 7, ...,n, one-to-one, onto Fn,,....m,.

Suppose next that &u,.....n, ~&m,.....m;, under o. Then z-—2° takes

T

by, -on, ONE-tO-ONE, ONtO FZ7,,....m,. Lhe first claim is that there exists a

permutation g of {1,2, - « -,7} such that if
i i
Nz= an, M,;= Zﬂ’lj,
Jj=1 =1

then o(N;) = M.
To see this, note that

1

(zNi — Zyr _%_ = 0)5%1_...,,,,, but (zN,.H — o+ = o)az%l_...,n,.

And for all k={1,2, - - -, u} — {N}, N, * + +, N},

1

(zk — et = 0)6 Gty and <zk+1 — 2z, + % = 0)6%1,...,,,,.

Thus for ¢ to send F7#,,....., one-to-one, onto F#,,. ..., it is necessary
that o(N;) = M,, for some permutation g of {1,2, --.,7}.
The next claim is that if »; >1, then m,;, > 1, and ¢(N;,—1) = M,;—1.

If this is not the case, then (0 =2y, — 25,1 +—;~)E%l,...,n, is mapped by
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¢ onto (0 = Za ) — Zolw,—» + —%)95%,,1,...,,,”. This is a contradiction.

Thus, by induction, we obtain, for 1=<<j < n; that o(N,—j)= M.»—7,
mup=n;. It must be shown that m,, =n,. If this were not so, then
1y < mupy and 0 = 2y, -0 ~ i -, + %e%h...,m,. Let M,y—n;=0d(x).
We know that M, — (n; —1) = o(N;, —(n; —1)). Now where can 2z lie in
the interval between 1 and #? It cannot lie between N,., and N, for any
k. If it did, then o(z) would be between M,y and M,u) — mu. This
means ¥ cannot exist, a contradiction.

Note that Theorem 1 implies that ““~’ is an equivalence relation.

Now define [#n;, +:+,n] to be the equivalence class of all {n,,....m,
which are related to &,,,...,n, by ~.

Define C(ny, + + +,n;) to be the number of elements of [#;, +++,5,]. And
define N(xn,7) to be the number of distinct classes [n, « « -, n/] for fixed =
and 7.

CoROLLARY. N(n,7) is the number of partitions of n into T parts (disregarding
order). :

Thus N(n,7) is also equal to the number of partitions of »n having
largest summand 7.

Now define E(ny, -+ -,n,) as the number of functional equations of
&ny,eom, induced by functional equations Cwmy(e) ~ Em(p?), for permutations
o of {1,2,+.,nu}.

And lastly define G(n,7) to be the number of functions ¢,,,... ., for fixed
n and 7. Clearly G(n,7) = <;? _ D . '

Given (ny, + + +,n;), let = permute the indices {1,2, - - -,7} so that

M) = W) = ¢ 0 0 = Welr) < Belrv1) = Melrpa) = ¢ 00 F Halppary) < ° 0 0

R 12,(Tl+,,2+...+7‘_1) < nz(r1+---+n-1+1)

S = Relreeetrye

J
That is, using our usual notation for (ry,7s « -« +,7), namely R; = >ir; we
1
have
Ne(rye1) = Me(rye2) = ° ° * = Ne(ry,p) < WelRy,q 410

for j=0,1,--.,s. Here R, =0.

THEOREM 2. E(ny, » « +yn:) = (r) ! (ro)!e o < (ro)l.
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Proof. The problem is to count the number of permutations ¢ of
{1,2, - - -, n} such that z—2" fixes 27, ....n By the proof of Theorem 1,

such a permutation ¢ has the following properties: o(N;) = Ny, for some

re

permutation z# of {1,2,---,7}. And N, —j)=Nuw — 4, for 1<j<m,.
Flnally Nu) = Ny
Therefore, if i =1,-+,s,

[Z(T(R,; + 7)el(R; +])I] =1,2,+« +, 731}y .7= L2+, 741,

There are exactly (r,)!(r:)!- -« -(r,)! such g, and therefore the same number
of g. )

-
CoROLLARY.  Clm, * + 1) = =
Proof. Clear.

We shall consider some examples:

1. =2, n>1.

s ~[4]
E(nyyny) =1+ 5n1n2

Gn,2)=n—1
2, T=n—1, n>1.
Nn,n—1 =1

E1,«--,1,2)=(n~1)!
Gnym—1)=n—1

3. n=7
7T=5

N(7,5) =2
E(2,2,1,1,1) = 3! 2! €2,2,1,1,1) = 10
E(3,1,1,1,1) = 4! c(3,1,1,1,1) =5
G(7,5) =15

b, 71=4
N(7,4) =3
E(4,1,1,1) = 3! C41,1,1)=4
E(3,2,1,1) = 2! c(3,2,1,1) =12
E2,2,2,1) = 3! C(2,2,2,1) =4
G(7,4) =20
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c. 1=3
N(7,3) =4
E(5,1,1) = 2 Cc5,1,1) =3
E4,2,1) = C(4,2,1) = 3!
E(3,3,1) = 2 C(3,3,1) =3
E(3,2,2) = 2 C(3,2,2) =3
G(7,3) =15

Added in proof (October 18, 1971):

For another way of obtaining the results in this paper, see

Maass, H., Siegel’s Modular Forms and Dirichlet Series, Lecture Notes in Mathe-
matics, Vol. 216, New York, Springer Verlag, 1971.
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