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Bayesian Inference

Before discussing Bayesian inference, we recall the fundamental problem
of statistics: “The fundamental problem towards which the study of Statis-
tics is addressed is that of inference. Some data are observed and we wish
to make statements, inferences, about one or more unknown features of
the physical system which gave rise to these data” (O’Hagan, 2010). Upon
more careful consideration of the foundations of statistics we find many
different schools of thought. Even leaving aside those that are collectively
known as classical statistics, this leaves several choices: objective and sub-
jective Bayes, fiducialist inference, likelihood based methods, and more.1

This diversity is not unexpected! Deriving the desired inference on pa-
rameters and models from the data is a problem of induction, which is one
of the most controversial problems in philosophy. Each school of thought
follows its own principles and methods to lead to statistical inference.
Berger (1984) describes this as: “Statistics needs a: ‘foundation’, by which
I mean a framework of analysis within which any statistical investigation
can theoretically be planned, performed, and meaningfully evaluated. The
words ‘any’ and ‘theoretically’ are key, in that the framework should ap-
ply to any situation but may only theoretically be implementable. Practical
difficulties or time limitations may prevent complete (or even partial) utili-
sation of such framework, but the direction in which ‘truth’ could be found
would at least be known”. The foundations of Bayesian inference are bet-
ter understood when seen in contrast to those of its mainstream competitor,
classical inference.

1 Subjective Bayes is essentially the subject of this volume. In addition to these schools of
thought, there are even half-Bayesians who accept the use of a priori information but
believe that probability calculus is inadequate to combine prior information with data,
which should instead be replaced by a notion of causal inference.
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2 Bayesian Inference

1.1 The Classical Paradigm

Classical statistics seeks to make inference about a population starting from
a sample. Let x (or x = (x1, x2, . . . , xn), where n is a sample size,) denote
the data. The set X of possible samples x is known as the sample space,
usually X ⊆ Rn. Underlying classical inference is the recognition of vari-
ability across samples, keeping in mind that the observed data are only
one of many – possibly infinitely many – data sets that could have been
observed. The interpretation of the data depends not only on the observed
data, but also on the assumptions put forward about the process generating
the observable data. As a consequence, the data are treated as a realization
of a random variable or a random vector X with a distribution Fθ, which
of course is not entirely known. However, there is usually some knowledge
(theoretical considerations, experimental evidence, etc.) about the nature
of the chance experiment under consideration that allow one to conjecture
that Fθ is a member of a family of distributions F . This family of distri-
butions becomes the statistical model for X. The assumption of a model is
also known as the model specification and is an essential part of developing
the desired inference.

Assuming that X is a continuous random variable or random vector, it is
common practice to represent the distributions F by their respective den-
sity functions. When the density functions are indexed by a parameter θ in
a parameter space Θ, the model can be written as F = { f (x | θ), x ∈ X :
θ ∈ Θ}. In many cases, the n variables (X1, X2, . . . , Xn) are assumed inde-
pendent conditional on θ and the statistical model can be written in terms
of the marginal densities of Xi, i = 1, 2, . . . , n:

F =
{
f (x | θ) = Πn

i=1 fi(xi | θ) : θ ∈ Θ
}
, x ∈ X,

and fi(· | θ) = f (· | θ), i = 1, 2, . . . , n, if additionally the variables Xi

are assumed to be identically distributed. The latter is often referred to as
random sampling.

Beyond the task of modeling and parametrization, classical inference
includes many methods to extract conclusions about the characteristics of
the model that best represents the population and tries to answer questions
like the following: (1) Are the data x compatible with a family F ? (2)
Assuming that the specification is correct and that the data are generated
from a model in the family F , what conclusions can be drawn about the
parameter θ0 that indexes the distribution Fθ that “appropriately” describes
the phenomenon under study?

Classical methods – also known as frequentist methods – are evaluated
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1.1 The Classical Paradigm 3

under the principle of repeated sampling, that is, with respect to the per-
formance under infinitely many hypothetical repetitions of the experiment
carried out under identical conditions. One of the aspects of this principle
is the use of frequencies as a measure of uncertainties, that is, a frequentist
interpretation of probability. See , Paulino et al. (2018, section 1.2), for a
review of this and other interpretations of probability.

In the case of parametric inference, in answer to question (2) above, we
need to consider first the question of point estimation, which, grosso modo,
is: Given a sample X = (X1, X2, . . . , Xn), how should one “guess,” esti-
mate, or approximate the true value θ, through an estimator T (X1, X2, . . . ,

Xn). The estimator should have the desired properties such as unbiasedness,
consistency, sufficiency, efficiency, etc.

For example, with X ≡ Rn, the estimator T (X1, X2, . . . , Xn) based on a
random sample is said to be centered or unbiased if

E{T | θ} =

∫
Rn

T (x1, x2, . . . , xn)Πn
i=1 f (xi | θ) dx1dx2 . . . dxn = θ, ∀θ ∈ Θ.

This is a property related to the principle of repeated sampling, as can be
seen by the fact that it includes integration over the sample space (in this
case Rn). Considering this entire space is only relevant if one imagines in-
finitely many repetitions of the sampling process or observations of the n
random variables (X1, X2, . . . , Xn). The same applies when one considers
other criteria for evaluation of estimators within the classical paradigm. In
other words, implicit in the principle of repeated sampling is a considera-
tion of what might happen in the entire sample space.

Parametric inference often takes the form of confidence intervals. In-
stead of proposing a single value for θ, one indicates an interval whose
endpoints are a function of the sample,

(T ∗(X1, X2, . . . , Xn),T ∗∗(X1, X2, . . . , Xn)),

and which covers the true parameter value with a certain probability, prefer-
ably a high probability (typically referred to as the confidence level),

P{T ∗(X1, X2, . . . , Xn) < θ < T ∗∗(X1, X2, . . . , Xn) | θ} = 1 − α,

0 < α < 1. This expression pre-experimentally translates a probability
of covering the unknown value θ to a random interval (T ∗,T ∗∗) whose
lower and upper limits are functions of (X1, X2, . . . , Xn) and, therefore, ran-
dom variables. However, once a specific sample is observed (i.e., post-
experimentally) as n real values, (x1, x2, . . . , xn), this becomes a specific
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4 Bayesian Inference

interval on the real line (now with real numbers as lower and upper limits).

(T ∗(x1, x2, . . . , xn),T ∗∗(x1, x2, . . . , xn)),

and the probability

P{∗T (x1, x2, . . . , xn) < θ < T ∗∗(x1, x2, . . . , xn) | θ} = 1 − α,

0 < α < 1, is no longer meaningful. In fact, once θ has an unknown, but
fixed, value, this probability can only be 1 or 0, depending upon whether
the true value of θ is or is not in the real interval

(T ∗(x1, x2, . . . , xn),T ∗∗(x1, x2, . . . , xn)).

Of course, since θ is unknown, the investigator does not know which situ-
ation applies. However, a classical statistician accepts the frequentist inter-
pretation of probability and invokes the principle of repeated sampling in
the following way: If one imagines a repetition of the sampling and infer-
ence process (each sample with n observations) a large number of times,
then in (1 − α) 100% of the repetitions the numerical interval will include
the value of θ.

Another instance of classical statistical inference is a parametric hypoth-
esis test. In the course of scientific investigation one frequently encounters,
in the context of a certain theory, the concept of a hypothesis about the
value of one (or multiple) parameter(s), for example in the symbols

H0 : θ = θ0.

This raises the following fundamental question: Do the data (x1, x2, . . . , xn)
support or not support the proposed hypothesis? This hypothesis is tradi-
tionally referred to as the null hypothesis. Also here the classical solution
is again based on the principle of repeated sampling if one follows the
Neyman–Pearson theory. It aims to find a rejection region W (critical re-
gion) defined as a subset of the sample space, W ⊂ X, such that

(X1, X2, . . . , Xn) ∈ W ⇒ rejection of H0,

(X1, X2, . . . , Xn) < W ⇒ fail to reject H0.

The approach aims to control the probability of a type-I error,

P{(X1, X2, . . . , Xn) ∈ W | H0 is true},

and minimize the probability of a type-II error,

P{(X1, X2, . . . , Xn) < W | H0 is false}.
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1.2 The Bayesian Paradigm 5

What does it mean that the critical region is associated with a type-I er-
ror, equal to, for example, 0.05? The investigator can not know whether a
false or true hypothesis is being rejected when a particular observation falls
into the critical region and the hypothesis is thus rejected. However, being a
classical statistician the investigator is convinced that under a large number
of repetitions and if the hypothesis were true, then only in 5% of the cases
would the observation fall into the rejection region. What does it mean that
the critical region is associated with a type-II error equal to, say 0.10? Sim-
ilarly, when a particular observation is not in the rejection region and thus
the hypothesis is not rejected, then the investigator cannot know whether
a true or false hypothesis is being accepted. Being a classical statistician,
the investigator can affirm that under a large number of repetitions of the
entire process and if the hypothesis were in fact false, only in 10% of the
cases would the observation not fall into the rejection region.

In the following discussion, it is assumed that the reader is familiar with
at least the most elementary aspects of how classical inference approaches
estimation and hypothesis testing, which is therefore not discussed here in
further detail.

1.2 The Bayesian Paradigm

For Lindley, the substitution of the classical paradigm by the Bayesian
paradigm represents a true scientific revolution in the sense of Kuhn (1962)
The initial seed for the Bayesian approach to inference problems was planted
by Richard Price when, in 1763, he posthumously published the work of
Rev. Thomas Bayes titled An Essay towards Solving a Problem in the Doc-
trine of Chances. An interpretation of probability as a degree of belief –
fundamental in the Bayesian philosophy – has a long history, including J.
Bernoulli, in 1713, with his work Ars Conjectandi. One of the first authors
to define probabilities as a degree of beliefs in the truth of a given proposi-
tion was De Morgan, in Formal Logic, in 1847, who stated: (1) probability
is identified as a degree of belief; (2) the degrees of belief can be mea-
sured; and (3) these degrees of belief can be identified with a certain set of
judgments. The idea of coherence of a system of degrees of belief seems
to be due to Ramsey, for whom the behavior of an individual when betting
on the truth of a given proposition is associated with the degree of belief
that the individual attaches to it. If an individual states odds or possibilities
(chances) – in favor of the truth or untruth – as r : s, then the degree of be-
lief in the proposition is, for this individual, r/(r+ s). For Ramsey, no set of
bets in given propositions is admissible for a coherent individual if it would
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6 Bayesian Inference

lead to certain loss. The strongest exponent of the concept of personal prob-
abilities is, however, de Finetti. In discussing the Bayesian paradigm and its
application to statistics, one must also cite Harold Jeffreys, who, reacting
to the predominantly classical position in the middle of the century, besides
inviting disapproval, managed to resurrect Bayesianism, giving it a logical
basis and putting forward solutions to statistical inference problems in his
time. From there the number of Bayesians grew rapidly and it becomes
impossible to mention all but the most influential – perhaps Good, Savage,
and Lindley.

The well-known Bayes’ theorem is a proposition about conditional prob-
abilities. It is simply probability calculus and is thus not subject to any
doubts. Only the application to statistical inference problems is subject to
some controversy. It obviously plays a central role in Bayesian inference,
which is fundamentally different from classical inference. In the classical
model, the parameter θ, θ ∈ Θ, is an unknown but fixed quantity, i.e., it is a
particular value that indexes the sampling model or family of distributions
F that “appropriately” describes the process or physical system that gener-
ates the data. In the Bayesian model, the parameter θ, θ ∈ Θ, is treated as an
unobservable random variable. In the Bayesian view, any unknown quan-
tity – in this case, the parameter θ – is uncertain and all uncertainties are
described in terms of a probability model. Related to this view, Bayesians
would argue that initial information or a priori information – prior or ex-
ternal to the particular experiment, but too important to be ignored – must
be translated into a probability model for θ, say h(θ), and referred to as the
prior distribution. The elicitation and interpretation of prior distributions
are some of the most controversial aspects of Bayesian theory.

The family F is also part of the Bayesian model; that is, the sampling
model is a common part of the classical and the Bayesian paradigms, ex-
cept that in the latter the elements f (x | θ) of F are in general assumed to
also have a subjective interpretation, similar to h(θ).

The discussion of prior distributions illustrates some aspects of the dis-
agreement between Bayesian and classical statisticians. For the earlier,
Berger, for example, the subjective choice of the family F is often con-
sidered a more drastic use of prior information than the use of prior dis-
tributions. And some would add: In the process of modeling, a classi-
cal statistician uses prior information, albeit in a very informal manner.
Such informal use of prior information is seen critically under a Bayesian
paradigm, which would require that initial or prior information of an in-
vestigator needs to be formally stated as a probability distribution on the
random variable θ. Classical statisticians, for example, Lehmann, see an
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1.2 The Bayesian Paradigm 7

important difference between the modeling of F and the specification of
h(θ). In the earlier case one has a data set x = (x1, x2, . . . , xn) that is gener-
ated by a member of F and can be used to test the assumed distribution.

To understand the Bayesian point of view, recall that for a classical
statistician all problems that involve a binomial random variable X can be
reduced to a Bernoulli model with an unknown parameter θ that represents
a “success” probability. For Bayesians, each problem is unique and has its
own real context where θ is an important quantity about which there is, in
general, some level of knowledge that might vary from problem to problem
and investigator to investigator. Thus, the probability model that captures
this variability is based on a priori information and is specific to a given
problem and a given investigator. In fact, a priori information includes per-
sonal judgements and experiences of most diverse types, resulting from in
general not replicable situations, and can thus only be formalized in sub-
jective terms. This formalism requires that the investigator comply with
coherence or consistency conditions that permit the use of probability cal-
culus. However, different investigators can in general use different prior
distributions for the same parameter without violating coherence condi-
tions.

Assume that we observe X = x and are given some f (x | θ) ∈ F and a
prior distribution h(θ). Then Bayes’ theorem implies2

h(θ | x) =
f (x | θ)h(θ)∫

θ
f (x | θ)h(θ) dθ

, θ ∈ Θ, (1.1)

where h(θ | x) is the posterior distribution of θ after observing X = x.
Here, the initial information of the investigator is characterized by h(θ),
and modified with the observed data by being updated to h(θ | x). The
denominator in (1.1), denoted f (x), is the marginal (or prior predictive)
distribution for X; that is, for an observation of X whatever the value of θ.

The concept of a likelihood function appears in the context of classical
inference, and is not less important in the Bayesian context. Regarding its
definition, it is convenient to distinguish between the discrete and continu-
ous cases (Kempthorn and Folks, 1971), but both cases lead to the function
of θ,

L(θ | x) = k f (x | θ), θ ∈ Θ or
L(θ | x1, . . . , xn) = kΠi f (xi | θ), θ ∈ Θ,

(1.2)

which expresses for every θ ∈ Θ its likelihood or plausibility when X = x
or (X1 = x1, X2 = x2, . . . , Xn = xn) is observed. The symbol k represents a

2 Easily adapted if x were a vector or if the parameter space were discrete.
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8 Bayesian Inference

factor that does not depend on θ. The likelihood function – it is not a prob-
ability, and therefore, for example, it is not meaningful to add likelihoods –
plays an important role in Bayes’ theorem as it is the factor through which
the data, x, updates prior knowledge about θ; that is, the likelihood can be
interpreted as quantifying the information about θ that is provided by the
data x.

In summary, for a Bayesian the posterior distribution contains, by way
of Bayes’ theorem, all available information about a parameter:

prior information + information from the sample.

It follows that all Bayesian inference is based on h(θ | x) [or h(θ | x1, x2,

. . . , xn)].
When θ is a parameter vector, that is, θ = (γ, φ) ∈ Γ × Φ, it can be

the case that the desired inference is restricted to a subvector of θ, say
γ. In this case, in contrast to the classical paradigm, the elimination of
the nuisance parameter φ under the Bayesian paradigm follows always the
same principle, namely through the marginalization of the joint posterior
distribution,

h(γ | x) =

∫
Φ

h(γ, φ | x)dφ =

∫
Φ

h(γ | φ, x)h(φ | x)dφ. (1.3)

Possible difficulties in the analytic evaluation of the marginal disappear
when γ and φ are a priori independent and the likelihood function factors
into L(θ | x) = L1(γ | x) × L2(φ | x), leading to h(γ | x) ∝ h(γ)L1(γ | x).

1.3 Bayesian Inference

In the Bayesian approach, it is convenient to distinguish between two ob-
jectives: (1) inference about unknown parameters θ, and (2) inference about
future data (prediction).

1.3.1 Parametric Inference

In the case of inference on parameters, we find a certain agreement – at
least superficially – between classical and Bayesian objectives, although
in the implementation the two approaches differ. On one side, classical in-
ference is based on probabilities associated with different samples, x, that
could be observed under some fixed but unknown value of θ. That is, in-
ference is based on sampling distributions that “weigh” probabilistically
the values that a variable X or statistic T (X) can assume across the sample
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1.3 Bayesian Inference 9

space. On the other hand, Bayesian inference is based on subjective prob-
abilities or a posteriori credibilities associated with different values of the
parameter θ and conditional on the particular observed x value. The main
point is that x is fixed and known and θ is uncertain.

For example, once x is observed, a Bayesian being asked about the
hypothesis {θ ≤ 0.5} would directly address the question by calculating
P(θ ≤ 0.5 | x) based on h(θ | x), i.e., without leaving probability cal-
culus. In contrast, a classical statistician would not directly answer the
question. Stating, for example, that the hypothesis H0 : θ ≤ 0.5 is re-
jected at significance level 5% does not mean that its probability is less
than 0.05, but that if the hypothesis H0 were true, (i.e., if in fact θ ≤ 0.5),
then the probability of X falling into a given rejection region W would be
P(X ∈ W | θ ≤ 0.5) < 0.05, and if in fact x ∈ W, then the hypothesis is
rejected.

In O’Hagan’s words (O’Hagan, 2010), while a Bayesian can state prob-
abilities about the parameters, which are considered random variables, this
is not possible for a classical statistician, who uses probabilities on data
and not on parameters and needs to restate such probabilities such that they
seem to say something about the parameter. The question is also related to a
different view of the sample space. For a classical statistician, the concept
of the sample space is fundamental, as repeated sampling would explore
the entire space. A Bayesian would start by objecting to the reliance on
repeated sampling and would assert that only the actually observed value
x is of interest and not the space that x belongs to, which could be totally
arbitrary, and which contains, besides x, observations that could have been
observed, but were not.3

In estimation problems a classical statistician has several alternatives for
functions of the data – estimators – whose sampling properties are inves-
tigated under different perspectives (consistency, unbiasedness, etc.). For
a Bayesian there is only one estimator, which specifically is the posterior
distribution h(θ | x). One can, of course, summarize this distribution in dif-
ferent ways, using mode, mean, median, or variance. But this is unrelated
to the problem facing a classical statistician, who has to find a so-called op-
timal estimator. For a Bayesian such a problem only exists in the context of
decision theory, an area in which the Bayesian view has a clear advantage
over the classical view. Related to this, Savage claims that in past decades

3 The irrelevance of the sample space also leads to the same issue about stopping rules,
something which Mayo and Kruse (2001) note, recalling Armitage, could cause
problems for Bayesians.
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10 Bayesian Inference

the central problem in the face of uncertainty is shifting from which infer-
ence one should report, to which decision should be taken. As individual
decisions have been considered outdated by some philosophers, we have
also recently seen a resurgence of the Bayesian approach in the context of
group decisions.

Under a Bayesian approach, confidence intervals are replaced by credi-
ble intervals (or regions). Given x, and once a posterior distribution is deter-
mined, one finds a credible interval for a parameter θ (assume, for the mo-
ment, a scalar). The interval is formed by two values in θ, say [θ(x), θ̄(x)],
or simpler, (θ, θ̄), such that

P(θ < θ < θ̄ | x) =

∫ θ

θ

h(θ | x) dθ = 1 − α, (1.4)

where 1 − α (usually 0.90, 0.95, or 0.99) is the desired level of credibility.
If Θ = (−∞,+∞), then one straightforward way of constructing a (in this
case, central) credible interval is based on tails of the posterior distribution
such that ∫ θ

−∞

h(θ | x) dθ =

∫ +∞

θ

h(θ | x) dθ =
α

2
. (1.5)

Equation (1.4) has an awkward implication: The interval (θ, θ) is not
unique. It could even happen that the values θ in the reported interval have
less credibility than values θ outside the same interval. Therefore, to pro-
ceed with the choice of an interval that satisfies (1.4) and at the same time
is of minimum size, Bayesians prefer to work with HPD (highest posterior
density) credible sets A = {θ : h(θ | x1, x2, . . . , xn) ≥ k(α)}, where k(α) is
the largest real number such that P(A) ≥ 1 − α. For a unimodal posterior,
the set becomes a HPD credible interval.

Credible sets have a direct interpretation in terms of probability. The
same is not true for confidence intervals, which are based on a probability
not related to θ, but rather a probability related to the data; more specif-
ically, they are random intervals based on a generic sample, and which
after observing a particular sample become a confidence of covering the
unknown value θ by the resulting numerical interval. In general, this can
not be interpreted as a probability or credibility about θ. Besides other crit-
ical aspects of the theory of confidence intervals (or regions), there are the
ironical comments of Lindley (1990), who says to know various axioms of
probability – for example, those due to Savage, de Finetti, or Kolmogorov
– but no axiomatic definition of confidence.

For example, when a Bayesian investigates a composite hypothesis H0 :
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θ ∈ Θ0 versus a composite alternative H1 : θ ∈ Θ1, with Θ0 ∩ Θ1 =

∅,Θ0 ∪ Θ1 = θ, she or he uses expressions in terms of probabilities on θ.
When the investigator possesses a distribution h(θ), θ ∈ Θ, representing the
initial credibility attributed to different parameter values, her or his prior
probabilities of the competing hypotheses are determined by

P(Θ0) =

∫
Θ0

h(θ) dθ, P(Θ1) =

∫
Θ1

h(θ) dθ .

The ratio P(Θ0)/P(Θ1) is known as the prior odds for H0 versus H1. Af-
ter the experiment resulting in the observations x, and after determining
h(θ | x), a Bayesian statistician calculates the corresponding posterior prob-
abilities

P(Θ0 | x) =

∫
Θ0

h(θ | x) dθ, P(Θ1 | x) =

∫
Θ1

h(θ | x) dθ,

and usually also the posterior odds for H0 versus H1, that is, P(Θ0 | x)/P(Θ1 |

x). One can therefore say that in the Bayesian framework the inference out-
come is not so much the acceptance or rejection of a the hypothesis H0 –
as is the case in the Neyman–Pearson framework – but rather the updating
of the plausibility that is attributed to the competing hypotheses. Bayesian
inference can be described as a comparison of posterior odds versus prior
odds through

B(x) =
P(Θ0 | x)/P(Θ1 | x)

P(Θ0)/P(Θ1)
, (1.6)

which is known as the Bayes factor in favor of H0 (or Θ0). The Bayes factor
quantifies the evidence in the data x in favor of H0. Of course, the larger
the Bayes factor, the larger is the increase of the posterior odds relative
to the prior odds and thus the support that the data give to the hypothesis
H0. In general, the Bayes factor depends on the prior distribution and can
be expressed as a ratio of likelihoods weighted by the prior distributions
conditional on the respective hypothesis on Θ0 and Θ1 (see also Paulino et
al., 2003). In this sense one can not say that the Bayes factor is a measure
of the support for H0 based on only the data.

When the hypothesis about θ is specific to the point of being defined
as H0 : θ = θ0, evaluation of a Bayes factor or of posterior odds requires
that the prior distribution be consistent with this conjecture in the sense
of avoiding zero probability for H0, implying in general that the prior is a
mixture model. This implication is considered natural by Bayesians such
as Jeffreys, with the argument that a prior distribution needs to integrate
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12 Bayesian Inference

probabilistic judgments that are inherent in the statement of competing hy-
potheses, which in this case attribute some importance to θ0, as opposed to
other values of θ.

Other Bayesians such as Lindley and Zellner advocate a different ap-
proach, with a certain formal analogy with classical significance tests, in a
way in which the statement of point hypotheses does not interfere with the
prior distribution. Their approach can be described as a quantification of
relative plausibility under the posterior for the value θ0, via the evaluation
of P = P(θ < R0(x) | x), where R0(x) = {θ ∈ Θ : h(θ | x) ≥ h(θ0 | x)} is
the smallest HPD region that contains θ0. Large (small) values of the pos-
terior relative plausibility P for H0 are evidence in favor of (against) this
hypothesis.

The fundamental tool of the Bayesian approach and the way the joint
model M = { f (x | θ)h(θ), x ∈ X, θ ∈ Θ} is used in the implementation
of inference already suggest that the question of evaluating the adequacy
of a conjectured model in absolute terms might not have an answer in the
sense of Popper (reject/not reject) of the type that is guaranteed by classical
goodness-of-fit tests.

Bayes factors can be used if it is possible to extend the model M (or
parts of it) to a larger family that contains the true model as an unknown
quantity, and that allows comparing models within it. Otherwise, one can
only define various measures of model adequacy for a relative analysis of
a reference model in the context of a class of suitably defined competing
models (see Chapter 5). The unsatisfactory nature of such options has lead
some statisticians to defend a Bayesian approach only when the underlying
model is not put into question, a condition which Gillies (2001) refers to
as fixity of the theoretical framework.

1.3.2 Predictive Inference

Many Bayesians believe that inference should not be restricted to state-
ments about unobservable parameters. They note that parametric inference
is awkward in that actual values are rarely known for parameters and there-
fore such inference can rarely be compared with reality. For Bayesians like
Lindley, the most fundamental problem is to start with a set of observations
(x1, x2, . . . , xn) (yesterday) and infer conclusions, in terms of (subjective)
probability, about a set of future observations (xn+1, xn+2, . . . , xn+m) (tomor-
row).

For easier exposition we assume m = 1 and that the n + 1 random vari-
ables X1, X2, . . . , Xn, Xn+1 are independent and identically distributed, given
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θ with probability density function f (x | θ). The problem is to predict the
random variable Xn+1 after observing (X1 = x1, X2 = x2, . . . , Xn = xn).
Trying to predict Xn+1 with sampling model f (x | θ) we face two sources
of randomness: (1) uncertainty that has to do with Xn+1 being a random
variable; (2) the impact of the uncertainty on θ. For example, if we esti-
mate θ with the maximum likelihood estimator θ̂ = θ̂(x1, x2, . . . , xn) and
write P(a < Xn+1 < b | x1, x2, . . . , xn) �

∫ b

a
f (x | θ̂) dx, as estimate of the

probability of the event a < Xn+1 < b, then this expression ignores the ran-
domness in the substitution of the parameter by its estimate. However, both
types of randomness need to enter the prediction. The method of substitut-
ing an estimate for an unknown parameter in the sampling model (plug-in
procedure) should thus be seen with some caveat.

Although the classical solution of the prediction problem involves much
more than this (Amaral Turkman, 1980), it still could be said that the
Bayesian solution is much cleaner. If one has only prior information, for-
malized as a prior distribution h(θ), the natural tool to use is the already dis-
cussed marginal or prior predictive distribution f (x). The more interesting
case is when one observes x = (X1 = x1, X2 = x2, . . . , Xn = xn) and wishes
to predict Xn+1, assuming that conditional on θ the latter is independent of
the previous observations [the problem of predicting (Xn+1, Xn+2 . . . , Xn+m)
is not very different]. Using a completely probabilistic argument we have
f (xn+1 | x) =

∫
θ

f (xn+1 | θ)h(θ | x) dθ, where the posterior distribution takes
the place of the prior, as representing the information given the sample.
One can then report summaries of this predictive distribution, including
probabilities of any region in the sample space for Xn+1 or values, a = a(x)
and b = b(x) for any pre-specified probability P(a < Xn+1 < b | x) =∫ b

a
f (xn+1 | x) dxn+1, which then determine a prediction interval (of HPD

type if desired).

1.4 Conclusion

In summary, from a Bayesian point of view:

• The classical approach to statistical inference proceeds by arguments of
an inductive type, such as, the notion of confidence intervals, which do
not have a direct interpretation as probabilities. The difficulty or impos-
sibility of making inference with a direct probabilistic interpretation –
as the parameter θ itself is not even considered as a random variable – is
strongly criticized by Jaynes (2003).

• Under a Bayesian approach, all inference can be derived from a logical

https://doi.org/10.1017/9781108646185.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108646185.003


14 Bayesian Inference

application of probability calculus. Bayesian statistical inference does
not rely on any results that could not be derived from the rules of prob-
ability calculus, in particular Bayes’ theorem. As O’Hagan (2010) puts
it: “Probability theory is a completely self-consistent system. Any ques-
tion of probabilities has one and only one answer, although there may
be many ways to derive it.”

Short of taking an extremist position, it is convenient to recall statements
like that of Dawid (1985), who, besides confessing a clear preference for
Bayesian theory comments that no statistical theory, Bayesian or not, can
ever be entirely satisfactory. A position that some statisticians would argue
for today is not the exclusively Bayesian option of authors like Savage, but
rather an eclectic position shared by Wasserman (2004) when he argues
that, in summary, combining prior judgments with data is naturally done by
Bayesian methods, but to construct methods that guarantee good results in
the long run under repeated observations, one needs to resort to frequentist
methods.

Problems
1.1 Suppose there are N cable cars in San Francisco, numbered 1 to N. You

don’t know the value of N, so this is the unknown parameter. Your prior
distribution on N is a geometric distribution with mean 100; that is

h(N) =
1

100

(
99
100

)N−1

,

N = 1, 2, . . . .You see a cable car at random. It is numbered x = 203. Assume
that x =number on a randomly picked car and has the probability distribution
f (x | N) = 1/N for x = 1, . . . ,N, and f (x | N) = 0 for x > N.

a. Find the posterior distribution h(N | x). Find the Bayes estimate of N, i.e.,
the posterior mean of N, and the posterior standard deviation of N (use
results for a geometric series

∑∞
x=k ax; or use a numerical approximation).

b. Find a 95% HPD credible interval for N (you will not be able to exactly
match the 95% – get as close as possible).

1.2 Recording the number of bacteria (yi) found in n = 6 water samples (of the
same volume), we find yi = 2, 3, 8, 6, 4, and 1 (you might need S =

∑
yi =

24). It is thought reasonable to assume that yi follows a Poisson distribution
with mean θ, i = 1, . . . , n.
Also suppose that the prior h(θ) ∝ 1/

√
θ is used for the parameter θ (this is

a so-called improper prior – see Chapter 2 for more discussion).
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a. Find the posterior distribution h(θ | y), and show how you will obtain a
95% credible interval for θ.

b. Suppose that you are now told that only non-zero outcomes were recorded
in the above experiment, and therefore the correct distribution for yi, i =

1, ..., 6, is the truncated Poisson given by

f (y | θ) =
e−θθy

y!(1 − e−θ)
, y = 1, 2, ...

(i) Write down the likelihood function, and the posterior (using the
same prior as before) up to a constant.

(ii) Find a 95% credible interval using numerical integration (the pre-
vious posterior is no longer in a simple form that allows analytic
evaluation of credible intervals).

1.3 Assume that the waiting time for a bus follows an exponential distribution
with parameter θ. We have a single observation, x = 3. Assume that θ can
only take one of 5 values, Θ = {1, 2, 3, 4, 5}, with prior probabilities h(θ) ∝
1/θ, θ ∈ Θ.

a. Find the posterior mode (MAP), the posterior standard deviation SD(θ |
x), and the (frequentist) standard error of the estimator, i.e., SD(MAP | θ).

b. Find a 60% HPD credible interval A = (θ0, θ1), i.e., find the shortest
interval A with P(A | x) ≥ 0.6.

c. Find h(θ | x, θ ≥ 2), i.e., find the posterior distribution for θ when we
know that θ ≥ 2.

d. Find the posterior mode MAP0 conditional on θ ≥ 2, the conditional pos-
terior standard deviation SD(θ | x, θ ≥ 2), and the (frequentist) standard
error of the estimator, SD(MAP0 | θ).
Compare with the answers under item (a) and comment.

e. How would you justify the choice of the prior distribution h(θ) ∝ 1/θ?

1.4 Your friend always uses a certain coin to bet “heads or tails”4 and you have
doubts whether the coin is unbiased or not. Let θ denote the probability of a
head. You want to test H1 : θ < 0.5 versus H2 : θ = 0.5 versus H3 : θ > 0.5.
Assign a prior probability 1/2 that the coin is unbiased and equal probability
to the other two hypotheses. That is, p(H2) = 0.5 and p(H1) = p(H3) = 0.25.
The prior distribution for θ under H1 and H3 is uniform. That is, h(θ | H1) =

U(0, 0.5) and h(θ | H3) = U(0.5, 1). Assume you observe n = 1 coin toss.
Let x1 ∈ {0, 1} denote an indicator of “head.”

a. Find the predictive distribution (i.e., the marginal distribution) for the first
toss, under each of the three hypotheses, i.e., find p(x1 = 1 | H1), p(x1 =

1 | H2), and p(x1 = 1 | H3).
b. Find the predictive distribution for the first toss, p(x1 = 1).

4 The labels “head” and “tail” refer to the two sides of a 25 cent coin.
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c. Still using the data x1 from one coin toss, given x1 = 1,

(i) find the Bayes factors for H1 versus H2 and for H3 versus H2;
(ii) find the posterior probability that the coin is unbiased.
(iii) In general it is not meaningful to compute a Bayes factor with a

non-informative uniform prior h(θ) ∝ c (because the choice of c is
arbitrary). Why is it okay here?
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