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Abstract. One is concerned with Cremona-like transformations, i.e., rational maps from Pn to
Pm that are birational onto the image Y � Pm and, moreover, the inverse map from Y to Pn

lifts to Pm.We establish a handy criterion of birationality in terms of certain syzygies and ranks
ofappropriatematrices and,moreover, give an effectivemethod to explicitlyobtaining the inverse
map. A handful of classes of Cremona and Cremona-like transformations follow as applications.
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Introduction

Let F :Pn Pm be a rational map and let Y � Pm be its image. We consider the
question as when F admits an inverse rational mapG de¢ned onY by the restrictions
of forms of the same degree on the ambient Pm. Our main result is Theorem 1.4
below which gives a criterion in order that F admit an inverse G and, moreover,
tells how to compute it. The criterion relies in a strong way on the notion of Jacobian
dual introduced in [14] and gives insight even in the case of ordinary Cremona
transformations. Quite a bit of the present work hinges on this criterion as such,
although we also give new structure results on representation of rational varieties
by projective spaces which invokes a mix of the criterion and some other arguments.

A word on the terminology. For convenience, rational maps such as G above will
be called liftable (with reference to the ¢xed projective embedding Y � Pm). For
a birational map F :Pn Y � Pm, whose inverse Fÿ1 is liftable, one can de¢ne
its type to be the pair �k; k0�, where k (resp. k0) is the degree of the forms de¢ning
F (resp. the degree of the forms de¢ning Fÿ1).

Fixing the embedding Y � Pm, in order to have the condition that all rational
maps with source Y be liftable, one could express it in terms of sheaves and sections,
namely: ¢rst, every locally free OY -module L ought to be the restriction to Y of
OPm �d�, for some dX 0; second, each individual section de¢ning the rational
map ought to be lifted to an element of H0�OPm�d��, i.e., the restriction maps

---

---
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H0�OPm�d�� ! H0�OY �d�� ought to be surjective. Examples of embeddings Y � Pn

enjoying these properties are projectively normal embedded varieties whose Picard
group is free of rank one with generator OPm�1� restricted to Y . It is well known
that if Y has dimension at least one and is smooth locally in codimension one,
the latter conditions are equivalent to saying that the homogeneous coordinate ring
of the embedding Y � Pm is a unique factorization domain. Several important
examples, such as projective spaces and Grassmannians in their Plu« cker embedding,
ful¢ll this condition. Still, there are many embeddings which are not arithmetically
factorial, but will nevertheless admit liftable birational maps: the classical theory
of representation of (rational) varieties by projective spaces carries many such con-
structions (cf., e.g., [10]).

Following the traditional terminology in the subject, the scheme de¢ned by the
coordinate forms of F will be called the base locus of F . A birational map with
source a projective space, whose base locus is smooth and connected is called special.

We now brie£y describe the contents of each Section.
The ¢rst Section establishes the main criterion of birationality as applied to a map

with source a projective space. This is done by a careful consideration of the syzygies
of the ideal generated by the coordinate forms de¢ning the rational map and the
bilinear forms occurring in the ideal of de¢nition of a convenient blowup, so the
main criterion is ¢rst translated in a purely algebraic form. The punch line here
as regards previous work is a systematic way of checking whether the map is
birational (onto the image) and, moreover, a highly effective method of explicitly
obtaining the inverse map. The main tool comes from the notion of jacobian dual
as introduced in [14], appropriately adapted to our current needs.

In the next section one narrows down the consideration to Cremona
transformations proper. After suf¢ciently rephrasing the main criterion in this case,
one applies it to show that when the ideal generated by the coordinate forms de¢ning
the rational map is of linear type and its ¢rst syzygy module is generated in degree
one, then the map is birational. Since ideals of linear type have been extensively
considered in recent literature, this adds quite a bit to the known classes of Cremona
transformations. Thus, for example, codimension two Cohen^Macaulay ideals and
ideals generated by Pfaf¢ans of skew symmetric matrices of odd size belong to these
classes provided they are suf¢ciently generic.

Ideals generated by squarefree monomials form a natural test ground for the main
criterium.We give very nearly a complete survey of the case of squarefree monomials
of degree 2, that may lead to a curious characterization of the Cremona
transformations among these. As it turns, there issues a series of Cremona
transformations of Pn of type �2; 12 �n� 2�� for every even value of n (this retrieves
for n � 2 the ordinary quadratic transformation of P2). For n odd the map is
not Cremona, rather what eventually comes out is a birational transformation
of a suitable hyperplane onto a hypersurface of Pn of degree �n� 1�=2 (this retrieves
for n � 5 the classical birational representation of the Perazzo hypersurface by a
linear space). There may be a similar theory in higher degrees as well, however,
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as of now a complete classi¢cation seems out of reach. We content ourselves in
making a few general comments on these. By and large, the class of Cremona
transformations de¢ned by squarefree monomials have a combinatorial £avor
and should probably be given an appropriate algorithmic treatment.

The third Section is largely experimental. Issuing from rational maps Pn Pn

de¢ned by quadrics, whose image is a quadric of maximal rank, one derives a
nearly mechanical procedure for producing involutive Cremona transformations
Pn Pn of type �nÿ 2; nÿ 2�. Again here the mechanism is effective though a
bit costly.

In Section 4 one discusses rational maps whose coordinates are the minors of a
certain size of a catalecticant matrix of generalized kind, a subject that has several
connections with the classical theory of Cremona transformations. In the case of
the 2� 2 minors of a 2� �m� 1� such matrix one is able to completely describe
the birational maps among these.

The last two sections collect scattered examples which can be uniformly treated
using recent theorems of Zak ([19]) and of Alzati and Russo ([1]). In analogy with a
result of Ein and Shepherd-Barron ([4]), where quadro-quadric special Cremona
transformations were characterized as the maps given by the linear system of
quadrics through the so called Severi varieties, one succeeds in characterizing
the special quadro-quadric birational transformations between P2mÿ2 and the
Grassmannian of lines G�1;m� as those given by the linear system of quadrics
through �mÿ 2�-dimensional smooth varieties of minimal degree, i.e., smooth
rational normal scrolls of dimension mÿ 2 and degree m� 1 in P2mÿ2

(equivalently as the maps de¢ned by the 2� 2 minors of a 2� �m� 1� catalecticant
matrix).

After this work was ¢nished our attention has been called up to the recent preprint
of Vermeire [17]. His condition �K2� is somewhat related to one of our technical
assumptions in case the rational map is de¢ned by quadrics. From the point of view
of the present work �K2� is often too strong a condition as the reader will easily
realize. The exact overlap between condition �K2� and ours is not immediate.
Nevertheless, both imply that the module of linear syzygies of the quadrics has
maximal possible rank.

1. Birational Maps with Source a Projective Space

We will make use of the following basic criterion, which is nearly tautological.

LEMMA 1.1.Let X � Pn, let F :X Pm be a rational map and let Y be the image of F .
Assume that F is liftable to forms f0; . . . ; fm of the same degree. Let
BZ\X �X � � X �k Y � X �k Pm be the blowup of X along the scheme Z \ X, where
Z � Pn is the scheme de¢ned by the homogeneous ideal I � �f0; . . . ; fm�. Then the
following are equivalent:

---

---

---
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(i) F is birational with liftable inverse.
(ii) There exist forms g0; . . . ; gn 2 k�y� of the same degree in the homogeneous

coordinate ring ofPm such thatBZ\X �X � � BZ0\Y �Y �, where Z0 � Pm is the scheme
de¢ned by the ideal �g0; . . . ; gn� � k�y�.

Proof. (i) ) (ii) By de¢nition, F restricts to a biregular map between nonempty
open sets of X and Y . Clearly, this biregular map has the same graph in X � Y
as its inverse G. Since G is liftable, it can be given by the restriction of forms
g0; . . . ; gn 2 k�y�. But the closure of either graph in X � Y is the blowup of X (resp.
Y ) along the scheme de¢ned by �f0; . . . ; fm� (resp g0; . . . ; gn).

(ii) ) (i) Since the structural projections BZ\X �X � ! X and BZ0\Y �Y � ! Y are
birational, the equality BZ\X �X � � BZ0\Y �Y � yields a composite birational map
Y X . Clearly, this map is de¢ned by the very forms g0; . . . ; gn 2 k�y�, hence is
liftable. &

Let F � �f0: . . . : fm�:Pn Pm be a rational map. We assume, without loss of
generality, that f0; . . . ; fm are linearly independent forms of the same degree X 2.

We establish the basic algebraic notation to be used throughout. Set
R:� k�x� � k�x0; . . . ; xn� � Sym�V��, where Pn � P�V�� and, similarly, S:�
k�y� � k�y0; . . . ; ym� � Sym�W ��, where Pm � P�W ��. Thus, the k-subalgebra
k�f0; . . . ; fm� � R is homogeneous and is the coordinate ring of the image
Y � Pm of F . Let a � S be the ideal generated by the de¢ning equations of Y
in Pm. Thus, S=a ' k�f0; . . . ; fm� as graded k-algebras.

Let I � �f0; . . . ; fm� � R. Consider the blowup B � BZ�Pn� of Pn along the scheme
Z � Pn de¢ned by I . This can be looked upon as the closure of the graph of the map
F on the biprojective space Pn �Pm. Let J � R
k S � k�x; y� denote the ideal of
de¢nition of B on Pn �Pm. Then J is generated by biforms of various bidegrees
�d1; d2�, d1 X 0; d2 X 1. Since f0; . . . ; fm have the same degree, the minimal generators
of a are exactly the minimal generators of J of bidegree �0; d2�, d2 X 2. The minimal
generators of J of bidegree �d1; 1�, with d1 X 1, are those that generate the de¢ning
ideal of the closely associated P�Sym�I��. A generator of bidegree �1; 1� is just a
bilinear form in the x; y-variables. It corresponds to a syzygy of the ideal I whose
coordinates are 1-forms (also called a linear syzygy).

Set f � ff0; . . . ; fmg for short. Let d be the common degree of these forms. Consider
the free graded presentation of �f�

�sR�ÿds� ÿ!
j

Rm�ÿd� ! R: �1�
Let j still denote the corresponding R-matrix with respect to suitable bases - j will
be informally called a presentation matrix of f (or of the ideal �f�). To account
for the degree one part of Im�j�, we decompose j as j � �j1 j j2�, where the entries
of j1 are linear and the entries of j2 are homogeneous of degree at least two. Said
otherwise, �J �1;1�� � I1�y � j1�, the ideal generated by the entries of y � j1. This takes
care of roughly half the algebraic notation we need.

---

---
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To get at the other half, let Y denote the Jacobian matrix of the biforms f�y� � j1g
with respect to the x-variables. Note that the entries of this matrix all lie in the ring
S. We will in the sequel be mainly concerned with the behaviour of Y on
�S:� S=a. For convenience �Y will denote Y taken modulo a. Also, q will stand
for the number of columns of j1).

Since �S is a standard graded ring, and �Y is a homogeneous matrix in this grading,
Z� �Y�:� ker � �Sn�1 ÿ!�Y �Sq� is a graded �S-module, and, moreover, the coordinates of a
given homogeneous vector of Z� �Y� have the same degree. Given any such vector of
Z� �Y�, with coordinates �g � f �g0; . . . ; �gng in �S, consider the k-homomorphism
R! �S that sends xi 7! �gi, for i � 0; . . . ; n and apply it to the entries of the matrix
j1 to get a matrix over �S which we will denote by j1��g�.

Next is our basic algebraic result from which we will derive a general criterion of
birationality.

PROPOSITION 1.2.Let there be given an ideal I � �f� � R � k�x� as above.With the
notation just introduced, the following conditions are equivalent:

(a) One has
(i) dim �S � n� 1
(ii) rank �YW n (hence Z� �Y� 6� �0)
(iii) For some nonzero homogeneous vector �g of Z� �Y�, rankj1��g� � rankj

�� m�.
(b) rankj1 � rankj �� m� and there exist forms �g � f�g0; . . . ; �gng � �S of the same

degree, not all zero, such that the identity map of k�x; y� induces a bigraded k-algebra
isomorphism RR�I� ' R �S���g��.

SUPPLEMENT. If (a) is satis¢ed then any two vectors as in (iii) are proportional.

Proof. (a)) (b) The proof is modelled after that of [14, Lemma 5.1], taking care of
the needed modi¢cations.

The scheme of proof is as follows. First we observe that certainly dimRR�I� �
dimR� 1 � n� 2 � dim �S � 1 � dimR �S���g��. We will de¢ne a bigraded k-algebra
epimorphism �F:RR�I� !! R �S���g��: Since both algebras are domains, this will do.
For the existence of such a bigraded surjection we use only conditions (ii) and (iii).

We will ¢rst de¢ne a bigraded k-algebra epimorphism F:SR�I� !! R �S���g��; where
SR�I�, as noted before, is the symmetric algebra of I . Since SR�I� '
R�y�=I1�y � j� we ¢rst de¢ne a map ~F with source the polynomial ring R�y� �
k�x; y�. We set ~F�xi� � �giT 2 �S��gT � � �S�T � and ~F�Yj� � �Yj 2 �S, where T is a new
variable.

We next show that ~F�I1�y � j�� � 0 2 �S. Note that, by construction, one has

y � j1 � x �Yt; �2�
where Yt denotes the transpose of Y. Applying ~F yields y � j1��gT � � �gT � �Yt � 0,
where the ¢rst equality follows from (2), observing that Y involves only y, while the
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vanishing issues from having taken �g such that �Y � �gt � 0 in �S.
We have shown that y � j1��g� � 0. On the other hand, by our second assumption to

the effect that rankj1��g� � rankj, one has

rankj � rankj1��g�W rankj��g�W rankj;

hence rankj��g� � rankj1��g�. This implies that y � j��g� � 0 as well (e.g., by passing
to the fraction ¢eld of �S�T �), hence ~F�I1�y � j�� � 0 as required.

To achieve the last step, letG � ker �SR�I� ÿ!RR�I�� - theR-torsion submodule of
SR�I�. Since a power of the ideal I annihilates G and rad�I� � rad�Im�j�� (because
m � rankj), then (say) Im�j�s G � 0. Applying ~F yields � ~F�Im�j���s ~F�G� �
Im�j��gT ��s ~F�G� � 0. Since rankj��g� � m, we have Im�j��gT �� 6� 0. Therefore,
~F�G� � 0.
This shows the existence of a surjective (bigraded) k-algebra homomorphism

�F: RR�I� !! R �S���g��; thus concluding the proof of the ¢rst implication.
(b) ) (a) By a trivial dimension argument, the isomorphism between the Rees

algebras implies condition (i) of item (a).
The isomorphism between the Rees algebras being induced by the identity of

k�x; y�, it follows that both algebras share the same bihomogeneous presentation
ideal over k�x; y�. Among a minimal set of generators of this ideal, let
F0�x; y�; . . . ;Fq�x; y� be a minimal set of biforms of bidgree �1; 1�. Using the same
notation as in the proof of the ¢rst implication and rewriting Fk�x; y� asPm�1

j�0 `k j�x� yj, the matrix whose entries are the x-linear forms `k j�x�
(0W kW q; 0W jWm) is the linear part j1 of a syzygy matrix of the ideal I . On
the other hand, rewriting Fk�x; y� as

Pn�1
i�0 ~̀k i�y� xj, one readily sees that the matrix

whose entries are the y-linear forms `k i�y� (0W kW q; 0W iW n) is the Jacobian
matrix Y of the biforms F0�x; y�; . . . ;Fq�x; y� with respect to the x- variables.
Moreover, since these biforms are relations of the Rees algebra R �S��g�, it follows
that

Pn�1
i�0 ~̀k i�y� �giT � Fk��gT ; y� � 0 in �S�T �. This means that �Y � �g � 0 in �S, hence

�g is a nonzero vector of Z� �Y�. It follows that rank �YW n. This shows condition (ii)
of (a).

To see (iii), let b � ker �R � k�x� ! k��g0; . . . ; �gn��, where xi 7! �gi as before. Now,
since the elements of g are homogeneous of the same degree, an element of b belongs
necessarily to the presentation ideal of R �S��g�. The latter is the same as the presen-
tation ideal of RR�I� which contains R as a subring. Therefore, b � 0 (i.e., �g is
algebraically independent over k). Thus, evaluating as above is an isomorphism and,
in particular, ranks remain unchanged. That is to say, rankj1��g� � rankj1 �
rankj, as was to be shown.

Finally, to prove the contention of the supplement, we note that another choice
of a vector �h such as �g implies that the corresponding Rees algebras are isomorphic
by a bigraded k-isomorphism. This isomorphism induces an isomorphism of the
graded k-algebras k��g� and k��h�. Therefore, as vectors over �S, �g and �h are
proportional. &
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A vector �g 2 �Sn�1 satisfying condition (a),(iii) of Proposition 1.2 will be named
here a Jacobian dual vector of I � �f�. The terminology is borrowed from [14], where
the theory of Jacobian dual modules has been fully developed.

DEFINITION 1.3. We will say that an ideal I � R as above has the strong rank
property if the matrix �Y has rank at most n � dimRÿ 1 and, for some minimal
homogeneous generator v 2 Z� �Y�, if we set �g � vt, the evaluated matrix j1��g�
has rank m � rankj � m�I� ÿ 1.

We now state our main geometric result giving a criterion for birationality.

THEOREM 1.4. Let F :Pn Pm be a rational map represented by linearly indepen-
dent forms f � ff0; . . . ; fmg � k�x� of the same degree X 2 and let Y be the image
of F. The following conditions are equivalent:

(a) One has
(i) dimY � n
(ii) The ideal I � �f� has the strong rank property.

(b) F is birational onto Y, with liftable inverse map, and rankj1 � rankj.

Moreover, in these conditions, if ��g� and ��h� are two Jacobian dual vectors of I then
their respective generators are representatives of the same rational map G:Y Pn

and G thus de¢ned is the inverse map to F.
Proof. The equivalence of (a) and (b) is a consequence of Proposition 1.2 and

Lemma 1.1, since the equality of the blowups (thought of as graphs in biprojective
space) corresponds to a bigraded k-algebra isomorphism RR�I� ' R �S���g�� induced
by the identity map of k�x; y�.

On the other hand, by the supplement to Proposition 1.2 it follows that ��g� and ��h�
are proportional as vectors with coordinates in �S, hence they de¢ne the same rational
map Y Pn. &

A question arises as to whether one has concrete conditions under which I has the
strong rank property. Given forms of the same degree �g � f�g0; . . . ; �gng � �S, let
b��g�:� ker �k�x� ! k��g� � �S�, with xi 7! �gi.

PROPOSITION 1.5. Let I � �f�, with f � ff0; . . . ; fmg � k�x� � k�x0; . . . ; xn� forms of
the same degree X 2, j be a graded presentation matrix of I and let j1 denote its
submatrix in degree one. Let �g � f�g0; . . . ; �gng � �S be forms of the same degree. Then
rankj1��g�Xm if and only if Im�j1� 6� b��g�. Moreover, if I has linear presentation
(i.e., if j � j1) then this condition is equivalent to I 6� b��g�.

Proof. The ¢rst equivalence is obvious since k�x�=b��g� ' k��g�. The second follows
because Im�j� and I have the same radical. &

---

---

---
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2. Cremona Transformations

In this section we consider a dominant rational map F :Pn Pn. If F is birational, it is
called a Cremona transformation.

For convenience, we restate the criterion of the previous section in this more
restricted context.

PROPOSITION 2.1.Let F :Pn Pn be a dominant rational map represented by forms
f � ff0; . . . ; fng � k�x� of the same degree X 2. Let j be a graded presentation matrix
of �f� and let j1 be its degree one submatrix. Then F is birational and
rankj1 � rankj if and only if the ideal I � �f� has the strong rank property.

2.1. CREMONA TRANSFORMATIONS OF LINEAR TYPE

We give a major case of the previous proposition. An ideal I � A in a ringA is said to
be of linear type if the natural A-algebra homomorphismRA�I� !! SA�I� is injective
or, equivalently, if the symmetric algebra of I has trivial A-torsion. It follows imme-
diately that the minimal number of generators of such an ideal locally at a prime p is
at most dimAp, a condition frequently called G1. This forces (in fact, is equivalent)
to a condition in terms of the Fitting ideals of j of various sizes:

ht It�j�X nÿ t� 2; for 1W tW n �3�

This condition has occasionally been dubbed F 1 (cf. [14, De¢nition 2.5]).

PROPOSITION 2.2. Let I � R � k�x� � k�x0; . . . ; xn� be a homogeneous ideal of
linear type, minimally generated by forms f � ff0; . . . ; fng, whose graded presentation
matrix has only linear entries. Then f is algebraically independent over k and I has the
strong rank property. In particular, the map F :Pn Pn is a Cremona map.

Proof. The result is essentially the core of the ¢rst part of [14]. For convenience, we
reproduce it for the present needs.

It is clear, ¢rst of all, that f is algebraically independent over k as a nonzero poly-
nomial relation over k cannot belong to the presentation ideal of the symmetric
algebra of I . We letY be de¢ned as before, i.e., x � j � y �Yt. Setting S � k�y�, surely
SR�I� � SS�cokerYt�. Since I is of linear type, the right hand side is a domain, hence
cokerYt is torsionfree and a dimension count implies that its rank is 1. Therefore,
cokerYt ' �g�, for some ideal g � S with same presentation matrix Yt. Clearly,
RR�I� � RS��g��, showing that the map de¢ned by f is a Cremona map with inverse
de¢ned by g. We also note that, as a bonus, g is of linear type as well and, in par-
ticular ht In�Y�X 2. &

Remark 2.3. A complete intersection of forms of degree X 2 is of linear type but
does not de¢ne a Cremona map. Thus, being Cremona often may require quite
a bit of linear syzygies.

---

---

---
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On the other hand, the condition of being of linear type is not necessary for
birationality. Here is an instance:

j �
0 0 ÿx1
ÿx0 x0 ÿ x1 x1
x0 0 0
x2 ÿx3 x3

0BB@
1CCA

The determinantal locus has the correct codimension (� 2) and so does I1�j�.
However, ht I2�j� � 2 which is one less than the required bound for condition
(3) to hold. Yet, the determinants f are still algebraically independent though
not of linear type. The map is a Cremona map with inverse given by the quadrics

g � y0y3; y1y3; y0�y1 ÿ y2�; y1�y0 ÿ y1�;
hence of type �3; 2�. The base locus scheme of the inverse is reduced (the union of one
simple line and three distinct points not lying on the line). Note that the presentation
matrix of the quadrics is not entirely linear. This is as it should be, since the minimal
relations of higher y-degree of f come exactly from the minimal homogeneous
syzygies of degree X 2 of g. It is conceivable that type �n; n� imply that �f� be of
linear type.

It should be noticed that this quadro-cubic Cremona transformation of P3 was
known to M. No« ther back in the early 1870's (cf. [8]). No« ther actually gave the
construction of a series of such transformations of type �2rÿ s� 1; r� 1�, for
any given positive integers r; s such that sW 3

2 r.

EXAMPLES

We give two large classes of instances of the linear type/linear presentation situation.
These classes have been largely treated in the literature (cf. [16] for a general over-
view). Let

R�ÿd ÿ 1�q ÿ!j Rn�1�ÿd� ÿ!f R

be the graded linear presentation of the ideal I � �f�. The simplest case has q � n or
q � n� 1.

EXAMPLES 2.4 (Maximal minors of an �n� 1� � n linear matrix). Let q � n above
and suppose that j satisfy condition (3) above. Then the map �f0: � � � : fn�:
Pn Pn is a Cremona map of type �n; n� and the inverse map de¢ne a base locus
of the same kind (i.e., a codimension two arithmetically Cohen^Macaulay variety).

To see that the map is Cremona it suf¢ces, by Proposition 2.2, to check that I is of
linear type. The latter follows, e.g., from [7, Corollary 7.4 and Theorem 9.1]. Next,
the proof of Proposition 2.2 showed that the transpose of Y is the presentation
matrix of the inverse map g and the ideal �g� is necessarily of linear type. Therefore,

---
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g satis¢es condition (3) and, in particular ht In�Y�X 2. Since g is obtained as the
n-minors of Y divided by its common gcd we must have g � In�Y�. This shows that
the inverse map is of the same degree.

EXAMPLE 2.5 (Pfaf¢ans of an odd size skew symmetric matrix). Let nX 2 be even
and suppose that j is an �n� 1� � �n� 1� skew symmetric matrix j over k�x�
satisfying condition (3) above. Let f � ff0; . . . ; fng be the Pfaf¢ans of j, where
we assume that ht �f� � 3 (the maximal possible value). Then the map f:Pn Pn

is a Cremona map of type �n=2; nÿ 1� and the base locus of the inverse map is
a codimension 2 arithmetically Buchsbaum variety of degree �n� 1��nÿ 2�=2.

Indeed, in the present conditions, it follows that j is the presentation matrix of the
ideal I generated by the Pfaf¢ans and I is of linear type (cf. [7, Corollary 7.4 and
Theorem 9.1]). By Proposition 2.2, the map de¢ned by f is a Cremona map.

To guess the type is a little more convoluted in this case. Let g de¢ne the inverse
map. We claim that the free homogeneous resolution of S=�g� over S is

0ÿ!S�ÿrÿ 2� ÿ!c S�ÿrÿ 1�n�1 ÿ!Y
t

S�ÿr�n�1 ÿ!g Sÿ!S=�g� ÿ! 0;

where c � yt and r � deg gi.
We ¢rst check that the above sequence of maps is a complex and then apply the

acyclicity criterion. By construction, we haveY � gt � 0, hence gYt � 0 as well. This
shows that the sequence is a complex at the relevant beginning.

Since j is skew symmetric, we have vjvt � 0 for any vector v, so, in particular,
yjyt � 0. Then it follows that xYtyt � 0, hence the entries of the column matrix
Ytyt are the coordinates of a syzygy of x, which is impossible since they involve
only y-variables. We must conclude that Ytyt � 0, which shows that the sequence
is a complex at the second step too.

We apply the acyclicity criterion: ¢rst, rankY � n by the supplement to
Proposition 1.2, or directly in the present case. Since ht �y�X 3, it only remains
to check that ht In�Y�X 2. But g is of linear type as well, hence this must be the
case over and over.

Having shown that the ideal �g� has such a free resolution, we can apply [14,
Lemma 4.7] to get the stated numerical and algebraic information on the base locus.

Actually, an ideal such as g, de¢ning a Cremona map, must have pfaf¢ans as the
inverse map. This follows from [14, Proposition 2.4]. Therefore, in an indirect way,
this takes care of other situations in which the presentation matrix is
�n� 1� � �n� 1�, with n even. We don't know if these exhaust the possibilities
for Cremona maps with linear square presentation matrix.

Remark 2.6. Since condition (3) is equivalent to saying that m�I}�W ht} for every
prime ideal } � I � �f�, it is clear that smoothness of Proj�R=I� implies that con-
dition when I is the ideal of Pfaf¢ans. However, the singular locus is de¢ned by
the pfaf¢ans of degree �nÿ 2�=2 of j. Therefore, only the case n � 4 quali¢es as

---
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a special (i.e., with connected smooth base locus) Cremona transformation. It is a
quadro-cubic (i.e., type �2; 3�) Cremona map whose base locus is an elliptic curve
(cf. [10]).

2.2. MONOMIAL CREMONA TRANSFORMATIONS

We agree to call a rational map F :Pn Pn monomial provided it is de¢ned by
monomials in the coordinates of the source. This means of course that the base locus
is a union of `fat' linear subspaces, but we will in this part mainly exploit the
algebraic data of such maps. If, moreover, the de¢ning monomials are squarefree
then the base locus is reduced. We will in this case obtain a whole series of Cremona
transformations whose base locus is reduced yet the syzygies are not generated by
linear ones.

Of course, in principle, one could develop an algorithm that takes all mutual
quotients of the de¢ning monomials (and further quotients of these) for eventual
retrieval of the af¢ne ¢eld generators xi=xj (j ¢xed, i variable). Still, this sort of
algorithm would hide the subtle symmetries in the data that explain the result,
if it happens at all to be the case. The case of the products of the variables taken
n at the time is quite deceptive in this sense as dividing out by a convenient monomial
(the product of all variables) will readily show that it is the Cremona map de¢ned by
the inverses of the variables ^ the notorious reciprocal Cremona transformation.

Nevertheless, it may be of interest to understand how the previous criteria work in
the monomial case. For this we recall the following combinatorial notion. To a
monomial Xa one associates its exponent vector a 2Nn. Given a ¢nite set
f � Xa0 ; . . . ;Xan of monomials, the integer matrix �a0; . . . ; an� is often called the
log-matrix of f.

Most of the simpli¢cation in this setup is embodied in the following result.

LEMMA 2.7 (char k � 0). Let F :Pn Pn be a rational monomial map, de¢ned by
monomials f of the same degree. With previous notation, assume that the linear part
j1 of the syzygy matrix of f has rank n. Then F is a Cremona transformation if
and only if the following conditions are satis¢ed:

(i) The log-matrix of f has rank n� 1
(ii) The jacobian matrix Y has rank W n.

In this case, the inverse of F is also monomial.
Proof.We apply Proposition 2.1. By [11, Proposition 1.2], the log-matrix of f and

the jacobian matrix of f have the same rank. Therefore, by (i), f is algebraically
independent over k. Thus, we only have to check that the ideal �f� has the strong
rank property. Let g 2 ker �Y� be a non-zero homogeneous vector. To see that
rankj1�g�X n, we use Proposition 1.5. First we claim that In�j� is generated by
monomials. This follows from the fact that j is graded in the ¢ne Nn�1-grading
of the polynomial ring k�x� (cf. [11, Lemma 1.1], where a similar argument was used).

---
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Of course, then also In�j1� is generated by monomials. Since rankj1 � n by
assumption, In�j1� 6� 0. Since no nonzero monomial can be a polynomial relation,
it must be the case that In�j1� is not contained in the ideal of polynomial relations
of g. This concludes the proof that F is birational under the stated conditions.

To conclude, we recall that ker �Y� has rank one, hence is cyclic, and that the
inverse map is given by the coordinates of the uniquely (up to a ¢eld constant)
de¢ned homogeneous generator of ker �Y�. However, by a similar argument as
before, one sees that Y is graded in the ¢ne Nn�1-grading of the polynomial ring
k�y�. Therefore, g has monomial coordinates, as was to be shown. &

In the special case of rational maps de¢ned by squarefree monomials of degree 2
we come very near to a complete characterization of the Cremona ones.

Let F :Pn Pn be the rational map de¢ned by a set of monomials of the form xixj ,
with i 6� j. For the sake of simplicity, we assume the following connectedness con-
dition: for any pair of distinct indices i; j 2 f0; . . . ; ng, there are indices
i1 � i; . . . ; ir � j 2 f0; . . . ; ng such that xi1xi2 ; . . . ; xirÿ1xir are monomials in the set.
Thus, the monomials correspond to the edges of a simple connected graph on
n� 1 vertices, which we denote by G�F �.

It looks reasonable to pose the following

CONJECTURE 2.8. Let F :Pn Pn be a rational monomial map, de¢ned by distinct
squarefree monomials f of degree 2 de¢ning a (connected) graph G�F �. Set
I � �f�. The following conditions are equivalent:

(i) I is of linear type,
(ii) G has exactly one cycle and this cycle is odd,
(iii) F is a Cremona transformation.

The result may not be dif¢cult to prove. On one side, (i) and (ii) are known to be
equivalent (cf. [18]). That (iii) implies (ii) is easy: since there are n� 1 edges as well,
the graph must contain a subgraph which is a cycle. Now, in such a setup, it is easy
or well known that the log-matrix of these monomials is the incidence matrix of
the corresponding graph. Moreover, the rank of the incidence matrix is maximal
(i.e., n� 1) if and only if the graph contains at least one subgraph which is a cycle
with an odd number of vertices (i.e., if and only if the graph is not bipartite). Thus
only non-bipartite graphs with n� 1 vertices and n� 1 edges stand a chance of yield-
ing Cremona transformations Pn Pn. Furthermore, such graphs can contain at
most one subgraph which is a cycle. Summing up, only graphs with n� 1 vertices
containing exactly one odd cycle (necessarily having n� 1 edges) are candidates
for yielding Cremona transformations Pn Pn.

The core is the implication is (ii) ) (iii) (or, equivalently, (i) ) (iii)). Checking
whether the linear part of the syzygy matrix has the right rank may well turn
out to be an easy combinatorial task, but estimating the rank of the jacobian matrix
Y does not seem to immediately yield.

---

---

---
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In the special case where the whole graph is itself a cycle, we can give complete
results. Moreover, the even case still leads to a Cremona map by restriction to a
suitable hyperplane. Assume, without loss of generality, that the monomials are
f � fx0x1; x1x2; . . . ; xnx0g.

We distinguish the even and odd cases.
For n even, the map is Cremona of type �2; 12 �n� 2��, as we now proceed to verify.

One can do much better, since the monomials actually generate an ideal of linear type
in this case ([18]) ^ however, it will be of little help trying to apply Proposition 2.2
directly as the presentation matrix of the monomials has as many linear as quadratic
syzygies.

It is not dif¢cult to see that the following syzygies form the linear part of a pres-
entation matrix of these monomials

j1 �

ÿxn 0 0 0 0 0 ÿx2
0 0 0 0 0 ÿx3 x0
0 0 0 0 ÿx4 x1 0
..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 x0 xnÿ2 0 0 0 0
x1 ÿxnÿ1 0 0 0 0 0

0BBBBBBB@

1CCCCCCCA
It is more laborious but also straightforward to write down the Jacobian matrixY of
the biforms y � j1 with respect to the x-variables. Direct calculation then shows that
the following monomials of degree �n� 2�=2 are the coordinates of a vector in
ker �Y�:

y0y1y3 � � � ynÿ1; y1y2y4 � � � yn; y2y3y5 � � � ynÿ1y0;
. . . ; ynÿ1yny1 � � � ynÿ3; yny0y2 � � � ynÿ2:

In particular, rankYW n. Finally, the ideal b � k�x� of polynomial relations of these
monomials is prime, hence contains no monomials. Direct inspection shows that
some (actually, all) n-minor of j1 is a monomial. Therefore, In�j1� 6� b. By
Proposition 1.5, the ideal �f� has the strong rank property.

Thus, the map is a Cremona map and the �n� 2�=2-forms are the coordinates of
the inverse map. Graph theoretically, these monomials correspond to minimal
coverings of the odd cycle, the variables appearing in one such monomial corre-
sponding to the vertices of the corresponding covering.

For n odd, the image variety is a hypersurface (of degree �n� 1�=2 with equation
y0y2 � � � ynÿ1 ÿ y1y3 � � � yn � 0), so the map is not even dominant. In this case, the
restriction of the map to a hyperplane, say xnÿ1 � xn, is birational onto the
hypersurface (notice that, after renaming variables, one of the coordinates will
be the square of a variable). To see this, one proceeds very closely to the even case
since the data are very similar. To guess a jacobian dual vector ^ notice that
now there will be various choices as the homogeneous coordinate ring of the
hypersurface is de¢nitely not factorial ^ one takes again the squarefree monomials

ON BIRATIONAL MAPS AND JACOBIAN MATRICES 347

https://doi.org/10.1023/A:1017572213947 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017572213947


corresponding to the minimal coverings of a cycle, only now of a cycle of order n. It
follows similarly that the ideal generated by the coordinates of the map has the
strong rank property and the restriction of the above monomials to the hypersurface
will give the inverse map. In particular, the map is of type �2; �n� 1�=2�.

We note en passant that the case n � 5 is the representation of the so called Per-
azzo hypersurface by quadrics of P4 (cf. [10, Chapter 8, Example 7]).

Remark 2.9. A similar discussion can be carried for the natural generalization of
the preceding maps, namely, those de¢ned by monomials corresponding to the paths
of a ¢xed length of a connected graph (the above case yielding paths of length one).
The case where the length of the path is one less than the cardinal of a minimal
cover (the latter coinciding with the codimension of the base locus) retrieves, up
to variables renaming, the inverse of the case of length one considered above.
Further, assume that n is even. The case where the length of the path is two less
than the codimension of the base locus yields an arithmetically Gorenstein reduced
base locus whose de¢ning equations are the Pfaf¢ans of an �n� 1� � �n� 1� skew
symmetric matrix. The corresponding ideal of Pfaf¢ans is of linear type, hence
the type of the Cremona transformation is �n=2; nÿ 1� by Example 2.5. Since in
principle one can compute the degree of the coordinates of the inverse map of a
Cremona transformation out of the given map (e.g., by the obvious extension of
the method of the residual curves given in [10, Chapter VIII, ½, Theorem VII]),
it would be quite curious to understand why the expected number is the same number
one gets by sheer combinatorics in these monomial transformations.

3. Involutive Cremona Transformations Out of Quadrics

Let q0; . . . ; qn 2 k�x� be linearly independent quadrics. If one asks when the corre-
sponding rational map Pn Pn is a Cremona transformation one will soon realize
that the quadrics have to be suf¢ciently special. For one thing, one needs suf¢ciently
many linear syzygies which is a phenomenon that imposes rather strong restrictions ^
e.g., the quadrics ought to at least not generate an �x�-primary ideal (i.e., not gen-
erate a complete intersection). It is not dif¢cult to write examples of zero-
dimensional schemes ideal-theoretically cut by n� 1 quadrics whose syzygies are
all generated in degree X 2. Moreover, it is quite conceivable that such examples
abound in any codimension. For that matter even less of these turn out to be
involutive �2; 2� Cremona transformations (see, e.g., [4] where the special �2; 2�
Cremona transformations are completely classi¢ed).

However, quadrics can still lead to involutive Cremona transformations in a curi-
ous way.

PROPOSITION 3.1 (char k � 0). Let q:� fq0; . . . ; qng � R � k�x� � k�x0; . . . ; xn�
(nX 3) be quadrics, let y � y�q� stand for the Jacobian matrix of q and let

---
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ff0; . . . ; fng � R be the n-minors of any n� �n� 1� submatrix of y divided by their gcd.
Assume that:

(i) f0; . . . ; fn are algebraically independent,
(ii) The rational map �q0: � � � : qn�:Pn Pn has no ¢xed component and its image is a

quadric hypersurface of maximal rank,
(iii) ht In�y�X 2 and coker�Rn�1 ÿ!y

t

Rn�1� is a torsionfree R-module.

Then �f0: � � � : fn�:Pn Pn is an involutive Cremona transformation of type
�nÿ 2; nÿ 2�.

Proof. By (ii), the subalgebra k�q� � R has dimension n. Since char k � 0,
ranky � n. By the basic property of the cofactors, y annihilates its matrix of
cofactors. If f:� ff0; . . . ; fng � R are the n-minors of any n� �n� 1� submatrix
of y divided by their gcd, it follows that ft is a syzygy of y and that
0ÿ!R ÿ!f

t

Rn�1 ÿ!y Rn�1 is an exact sequence. Dualizing yields a complex

Rn�1 ÿ!y
t

Rn�1ÿ! I � �f� ÿ! 0; �4�

which is clearly exact at I . But Im�yt� is a re£exive R-module by assumption (iii).
Therefore, Im�yt� � ker �Rn�1ÿ! I� are re£exive R-modules which coincide locally
in codimension one because ht In�y�X 2 by the other half of (iii). Thus, (4) is exact.

On the other hand, taking the Jacobian matrix Y of the forms y � yt with respect to
the x-variables yields back the original matrix y (cf. [12, Lemma 7.28]). Therefore,
the map will be birational, with same inverse, provided we show that f has the
characteristic property of a Jacobian dual vector. However, by Proposition 1.5,
for that it suf¢ces to show that the generators f are algebraically independent, which
is our assumption (i). This shows that �f0: � � � : fn�:Pn Pn is an involutive Cremona
transformation.

To obtain its type, we use (5) again to compute the Hilbert series of R=I . We ¢rst
complete (4) to a free resolution. We contend that there is an invertible linear
q! q0 transformation of the k-vector space �q�2 such that

0ÿ!R ÿ!q
0t

Rn�1 ÿ!y
t

Rn�1ÿ! I � �f� ÿ! 0; �5�

is the free resolution of I . Indeed, let Q�q0; . . . ; qn� �
P

0W iW jW n lijqiqj � 0 be the
quadratic relation satis¢ed by the points in the image of the rational map de¢ned
by q (i.e., the generator of the presentation ideal of k�q�). For any 0W `W n, taking
derivatives @=@x`, one immediately sees that q0t is a syzygy of yt, with
q0t � Q � qt, where Q is the matrix of the quadratic form Q, which is invertible
by the rank assumption. Thus, (5) is a complex and it is exact in the left as well
since rank y � n and since I1�q0t� � �q� has codimension at least 2 because q de¢nes
a rational map without ¢xed component by assumption.

---

---

---
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From the resolution, we see that the Hilbert series of R=I is

1ÿ �n� 1�ts � �n� 1�ts�1 ÿ ts�3

�1ÿ t�n�1 ;

where s is the common degree of the generators of I . Since I has codimension at least
2 by (iii) then it has codimension exactly 2 ([2, Theorem 2.1]), it follows that I has
codimension 2. Therefore, the Hilbert series has a pole of order n� 1ÿ 2 �
nÿ 1 at t � 1, hence s � nÿ 2, as required (cf. [14, Proof of Lemma 4.7] for a similar
computation). &

Remark 3.2. A word about the assumptions of Proposition 3.1. The requirement
(ii) that the quadric obtained as the image of q be smooth is essential as easily con-
structed examples show. The torsionfreeness requirement in (iii) can be
circumvented by killing the torsion of coker�Rn�1 ÿ!y

t

Rn�1�, i.e., by directly looking
at the ideal generated by the maximal minors of an n� �n� 1� submatrix of yt

divided by their gcd. However, the free resolution of this ideal will not have the
same data as (5) and the resulting Cremona map will conceivably no longer be
of type �nÿ 2; nÿ 2�. Finally, condition (i) is obviously necessary for the map to
be birational onto Pn. It is however conceivable that this falls off a stronger con-
dition on the codimension of the remaining Fitting ideals of y.

Next we give some examples to illustrate the method. We note that if the
assumptions of the proposition hold then the ideal generated by the quadrics q
necessarily has codimension at least 3.

EXAMPLE 3.3. Let q be the 2� 2 minors of the catalecticant

x0 x1 x2 x3
x2 x3 x4 x5

� �
In this range, the image of the rational mapP5 P5 is the Grassmann variety of lines
in P3, de¢ned by the known Plu« cker relation, hence of maximal rank. Condition (ii)
of the Proposition can be veri¢ed directly or by using Macaulay. The coordinates
of the resulting Cremona map cut a reduced base locus which is not smooth in
codimension one.

EXAMPLE 3.4 ([13, Example 1.7]). Consider the following quadrics in k�x0; . . . ; x5�:

x2x4 � x0x5; x1x3 � x2x5; x0x1 ÿ x1x4 � x2x4 ÿ x4x5;

x0x2 � x0x3 � x3x4 � x0x5; x1x2 � x1x5 ÿ x2x5 � x25; x
2
2 � x2x3 � x2x5 ÿ x3x5;

A computation with the aid of Macaulay tells us that these quadrics ¢ll in all the
conditions of Proposition 3.1. We note that the given quadrics cut ideal-theoretically
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a smooth arithmetically Cohen^Macaulay surface of degree 4. However, the
Cremona transformation obtained is far from being special in the terminology
of [4].

4. Birational Maps Coming from Catalecticant Matrices

In this section we will consider rational maps de¢ned by minors of catalecticant
matrices. We recall their de¢nition for the reader's convenience.

DEFINITION 4.1. Fix integers r;mX 1. Let m� 1 �Pr
i�1 ai be an r-partition of

m� 1, with a1; . . . ; ar integers such that 1W a1 W . . . W ar. The generic catalecticant
matrix of type �a1; . . . ; ar� is the 2� �m� 1� matrix consisting of Hankel blocks as
follows:

X�a1; . . . ; ar� � x1;0 . . . x1;a1ÿ1
x1;1 . . . x1;a1

���� x2;0 . . . x2;a2ÿ1
x2;1 . . . x2;a2

���� . . .
. . .

���� xr;0 . . . xarÿ1
xr;1 . . . xar

� �
:

The 2� 2 minors of X�a1; . . . ; ar� de¢ne ideal theoretically a smooth algebraic
variety S�a1; . . . ; ar� � Pm�r of dimension r and degree d �Pr

i�1 ai � m� 1, that
happens to be a rational normal scroll (generated by the r rational normal curves
Ci � Pai de¢ned each by a Hankel block). A classical result of Bertini and Del Pezzo
shows that, besides the Veronese surface in P5, the rational normal scrolls are the
only smooth varieties of minimal degree (see [5, Theorem 1] for a modern account
on these varieties).

The following two statements reformulate classical results of Semple (see [9], [15]
and also [1]). The reason for their insertion here is that they ¢t the general pattern
of the results. In particular, the inverse map is given by the coordinates of a jacobian
dual.

PROPOSITION 4.2 (char k � 0). Let F :Pm�r P
m�1
2� �ÿ1 denote the rational map

de¢ned by the minors of the generic catalecticant matrix X�a1; . . . ; ar� as introduced
above. Assume that mX 3 and that rXmÿ 2. Then:

(i) The image of F is the Plu« cker embedding into P
m�1
2� �ÿ1 of the Grassmannian

G�1;m� of lines of Pm.
(ii) The general ¢ber of F is a linear space of dimension rÿm� 2W 3; in particular, F

is birational if and only if r � mÿ 2. Moreover, this is the case if and only if
�a1; . . . ; amÿ2� is one amongst �1; . . . ; 1; 4�, �1; . . . ; 1; 2; 3� and �1; . . . ; 1; 2; 2; 2�.

(iii) If F is birational, the type of F is �2; 2� and the inverse is given by the coordinates ofa
(uniquely determined) Jacobian dual vector.

Proof. SinceX�a1; . . . ; ar� is a specialization of the generic 2� �m� 1�matrix, the
image of F is contained in G�1;m� � P

m�1
2� �ÿ1. Equivalently, for a point P 2 Pm�r

outside S�a1; . . . ; ar� the matrix X�a1; . . . ; ar� evaluated in P has rank 2 and F

---
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contracts its orbit under SL�2; k� to a point representing the corresponding
2-dimensional subspace of km�1.

We deal with the case r � mÿ 2. The cases r > mÿ 2 are similarly treated. In this
situation dim G�1;m� � dimPm�r, so it suf¢ces to show that F is generically 1ÿ 1.
For that, we have to show that a general point of G�1;m� (i.e., a general line of
Pm) is the image by F of a unique point of P2mÿ2. To translate this condition in
terms of 2� �m� 1� matrices with entries in k, we let SL�2; k� act onto the set
of these matrices by left multiplication. Then the question becomes whether, given
a general 2-rowed matrix A with entries in k, say,

a0 . . . am
a00 . . . a0m

� �
;

there exists a unique matrix L 2 SL�2; k� such that LA has the form of a (special)
catalecticant matrix of type �a1; . . . ; amÿ2� with entries in k. Now, sincePmÿ2

i�1 ai � m� 1, then
Pmÿ2

i�1 �ai ÿ 1� � m� 1ÿm� 2 � 3, hence the only possible
catalecticant matrices in this case are of type �1; . . . ; 1; 4�, �1; . . . ; 1; 2; 3� (mX 4)
and �1; . . . ; 1; 2; 2; 2� (mX 5).

Therefore, the above claim is equivalent to, given general A as above, ¢nding
unique l; l0; m; m0 2 k such that lm0 ÿ l0m � 1, satisfying, respectively, the following
sets of equalities

mamÿ3 � m0a0mÿ3 � lamÿ2 � l0a0mÿ2;
mamÿ2 � m0a0mÿ2 � lamÿ1 � l0a0mÿ1;
mamÿ1 � m0a0mÿ1 � lam � l0a0m;

mamÿ4 � m0a0mÿ4 � lamÿ3 � l0a0mÿ3;
mamÿ2 � m0a0mÿ2 � lamÿ1 � l0a0mÿ1;
mamÿ1 � m0a0mÿ1 � lam � l0a0m;

or

mamÿ5 � m0a0mÿ5 � lamÿ4 � l0a0mÿ4;
mamÿ3 � m0a0mÿ3 � lamÿ2 � l0a0mÿ2;
mamÿ1 � m0a0mÿ1 � lam � l0a0m:

This is an easy exercise in linear algebra, by noting that for general A any solution
matrix

L � l l0

m m0

� �
lies in GL�2; k�. Thus, we have shown that F is birational onto G�1;m�.

Finally, we prove (iii). First note that the ideal I has linear presentation because it
is a specialization of the ideal generated by the 2-minors of a generic 2� �m� 1�
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matrix (alternatively, cutting the variety de¢ned by I by a general m-dimensional
linear subspace L ' Pm yields m� 1 points in linear general position in Pm). On
the other hand, since Grassmannians are arithmetically factorial in their Plu« cker
embedding, the inverse map is liftable. It follows from Theorem 1.4 that I has
the strong rank property and the inverse map is given by a Jacobian dual vector
of I .

It remains to show that the coordinates of the jacobian dual vector are quadrics.
For this sake, the argument of [4, Proposition 2.3] can be applied (see also
Lemma 5.1 below), to wit, if F is a birational transformation of Pmÿ2 onto
G�1;m� of type �2; d� with smooth base locus X , then the secant variety to X in
P2mÿ2 is a hypersurface of degree 2d ÿ 1. Since the secant variety to a rational nor-
mal scroll S�a1; . . . ; amÿ2� � P2mÿ2 is a cubic hypersurface, it follows that Fÿ1 is
given by the restriction to G�1;m� of quadratic forms (a geometric proof of this
fact actually appears in [9, p. 205], where it is shown that the total transform of
a general line L � G�1;m� by Fÿ1 is a conic, which is clearly equivalent to saying
that Fÿ1 is de¢ned by quadratic forms). &

There is a version in which the base locus is a degenerate Segre manifold.

PROPOSITION 4.3 (char k � 0). Let F :P2mÿ2 P
m�1
2� �ÿ1 denote the rational map

de¢ned by the maximal minors of the 2� �m� 1� matrix

x0 . . . xmÿ2
xmÿ1 . . . x2mÿ3

���� 0 x2mÿ2
x2mÿ2 0

� �
:

Assume that mX 3. Then:

(i) The image of F is the the PlÏcker embedding of G�1;m� into P
m�1
2� �ÿ1

(ii) The base locus of F is the Segre embeddingofP1 �Pmÿ2 as a degenerate subvariety
contained in the hyperplane x2mÿ2 � 0.

(iii) The map F is birational of type �2; 1�; in particular, its inverse is the restriction to
G�1;m� of a linear projection. Moreover, the center of this projection is de¢ned
by the coordinates of a (uniquely determined) Jacobian dual vector.

Proof. The proof of (i) is similar to the previous one, hence will be omitted.
For (ii), one notes that the saturation of the ideal I generated by the 2� 2 minors

of the given matrix is generated by the maximal minors of its initial 2� �mÿ 1�
submatrix and the variable x2mÿ2. This clearly shows the contention of this item.

The argument to the effect that I has the strong rank property and the inverse map
is given by a Jacobian dual vector of I is the same as the one given in the proof of
Proposition 4.2. To ¢nd the degree of its coordinates we still argue as in the proof
of Proposition 4.2: since the secant variety to the Segre variety is the hyperplane
x2mÿ2 � 0, one has 2d ÿ 1 � 1, i.e., d � 1. (A geometric argument to ¢nd the center
of the projection can be found in [9, p. 213].) &

---
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The previous result can be generalized to matrices of the following form.

X �

x0 x1 . . . xm
xr x1�r . . . xm�r
x2r x1�2r . . . xm�2r
..
. ..

. ..
.

xnr x1�nr . . . xm�nr

0BBBBB@

1CCCCCA
Such an �n� 1� � �m� 1� matrix is called a generic r-catalecticant matrix.

PROPOSITION 4.4. For sX 1, the �s� 1�-minors of the generic �mÿ sÿ 1�-
catalecticant matrix X of size �s� 1� � �m� 1� de¢ne a birational map of type
�s� 1; s� 1�

F :P�mÿs��s�1� G�s;m� � P
m�1
s�1� �ÿ1;

whose image is the Grassmannian of s-spaces in Pm.
Proof. The proof is exactly the same as for s � 1. For a general choice of s� 1

points P0; . . . ;Ps, generating a s-plane given by a general �s� 1� � �m� 1� matrix
A, there exists a unique matrix L 2 SL�s� 1; k� such that LA is an r-catalecticant
matrix with entries in k.

The birational transformation is seen to be of type �s� 1; s� 1� (see [9]) and, as in
the proof of Proposition 4.2, the inverse map is given by the Jacobian dual of the
ideal generated by the minors of order s� 1 of the matrix. We leave the details
to the reader. &

5. A Classi¢cation Result

In [4] quadro-quadric special Cremona transformations (those whose base locus is
smooth and connected) were characterized as the maps given by the systems of
quadrics through Severi varieties. By a well known result of Zak, there are just four
of these.

In the previous section we have seen that, for every mX 3, there exist special
quadro-quadric birational maps P2mÿ2 P

m�1
2� �ÿ1 with image G�1;m�, given by

the 2� 2 minors of the 2� �m� 1� generic catalecticant matrix X�a1; . . . ; amÿ2�,
where �a1; . . . ; amÿ2� is one of the following: �1; . . . ; 1; 4�; �1; . . . ; 1; 2; 3� or
�1; . . . ; 1; 2; 2; 2�:

Here, by appealing to a recent result of Zak ([19]), we characterize special
quadro-quadric birational transformations P2mÿ2 P

m�1
2� �ÿ1 with image G�1;m�

as the maps given by the systems of quadrics through �mÿ 2�-dimensional smooth
varieties of minimal degree in Pmÿ2, that is to say, smooth rational normal scrolls
of dimension mÿ 2 and degree m� 1. Equivalently, these will be the maps de¢ned
by the 2� 2 minors of a 2� �m� 1� generic catalecticant matrix of type
�a1; . . . ; amÿ2� with

Pmÿ2
i�1 ai � m� 1.

---

---

---
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Thus, let F :P2mÿ2 P
m�1
2� �ÿ1 be a birational map with image G�1;m�, of type

�d1; d2�, and let X be the base locus of F . Let g:Y � BlX �P2mÿ2� ! P2mÿ2 stand
for the structural map. There is a canonical diagram

Y
g. & f

P2mÿ2 G�1;m� � P
m�1
2� �ÿ1

;

where f is the projection onto the second factor.
Let Z denote the base locus of Fÿ1, E1 � gÿ1�X � and E2 � f ÿ1�Z�. Take

H1 2 jg��OP2mÿ2 �1��j, H2 2 jf ��OG�1;m��1��j and let T1 and T2 stand, respectively,
for the strict transform on Y of a general line of P2mÿ2 and of a general line of
G�1;m�. Let NT2=Y be the normal bundle of T2 in Y . Then Pic�Y � '
Z�H1� �Z�H2� and L2mÿ3NT2=Y � OP1 �am�, for some am 2 Z.

Let us recall that, given a subvarietyW � Pn and an integer sX 2, an s-secant line
to W is a line in Pn not contained in W and intersecting W in at least s points
(counted multiplicities). The closure Secs�W � � Pn of the union of all s-secant lines
to W is called the sth secant variety of W . Of course, Sec2�W � is the ordinary secant
variety of W .

The following lemma is based on a clever result of [4].

LEMMA 5.1. Let notations be as above. Then

(i) H2 � d1H1 ÿ E1, H1 � d2H2 ÿ E2, and T1 �H2 � d1, T2 �H1 � d2, E1 � T2 �
E2 � T1 � d1d2 ÿ 1.

(ii) �d1d2 ÿ 1��2mÿ 3ÿdim�X �� � d2�1ÿ 2m� � am � 2 � 0.
(iii) g�E2� � Secd1�X � is a hypersurface of degree d1d2 ÿ 1.

Proof. The proof of (i) and (iii) are exactly the ones given in [4, Lemma 2.4,2.3],
hence will be omitted. To obtain (ii), consider the adjunction formula
OP1 �ÿ2� � oT2 � L2mÿ3NT2=Y 
 oY and the equality oY � �ÿ2m� 1�H1�
�2mÿ 3ÿ dimX �E1. From these, using (i), we see that

am � d2�1ÿ 2m� � �d1d2 ÿ 1��2mÿ 3ÿ dimX � � �amH2 � �ÿ2m� 1�H1

��2mÿ 3ÿ dimX �E1� � T2 � 2

This proves the contention of the lemma. &

THEOREM 5.2. Let F :P2mÿ2 G�1;m� � P
m�1
2� �ÿ1 be a birational map of type �2; 2�

having smooth irreducible base locus. Then F is given by the 2� 2minors of a generic
catalecticant matrix X�a1; . . . ; amÿ2�, where �a1; . . . ; amÿ2� is one of the following

�1; . . . ; 1; 4�; �1; . . . ; 1; 2; 3�; �1; . . . ; 1; 2; 2; 2�;

Proof. By Lemma 5.1 (ii), dimX satis¢es a linear equation whose coef¢cients
depend on the ¢xed integers d1; d2;m. This equation has therefore a unique solution
in rational numbers. This solution, if it happens to be an integer, must return
dimX as the base locus X depends only on F . But, we have seen in

---

---F

---
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Proposition 4.2 that, for every mX 3 and d1 � d2 � 2, the integer mÿ 2 is a solution
of the afore-mentioned equation. It therefore follows that the base locus X of F has
dimension mÿ 2, hence is of codimension m in P2mÿ2; the variety X is
non-degenerated because Sec2�X � is a hypersurface of degree 3 by Lemma 5.1(iii).
Since X is cut by m�1

2

ÿ �
quadrics, it is a variety of minimal degree (cf. [19, Corollary

5.8]). However, a smooth variety of dimension mÿ 2 and minimal degree m� 1
in P2mÿ2 is a rational normal scroll and the latter is de¢ned by the ideal generated
by the 2� 2 minors of a 2� �m� 1� generic catalecticant matrix of type
�a1; . . . ; amÿ2� with

Pmÿ2
i�1 ai � m� 1. This proves the theorem. &

One can in the same fashion classify the special birational maps
P2mÿ2 G�1;m� � P

m�1
2� �ÿ1 of type �2; 1�.

THEOREM 5.3. Let F :P2mÿ2 P
m�1
2� �ÿ1 be a birational map of type �2; 1� with image

G�1;m� and smooth irreducible base locus. Then F is given by the 2� 2 minors of a
2� �m� 1� matrix of the form

x0 . . . xmÿ2
xmÿ1 . . . x2mÿ3

���� 0 x2mÿ2
x2mÿ2 0

� �
:

Proof. By Lemma 5.1 (ii), dimX satis¢es a linear equation whose coef¢cients
depend on the ¢xed integers d1; d2;m. This equation has therefore a unique solution
in rational numbers. This solution, if it happens to be an integer, must return
dimX as the base locus X depends only on F . But, we have seen in Proposition
4.3 that, for every mX 3 and d1 � 2, d2 � 1 the integer mÿ 1 is a solution of
the aforementioned equation. It therefore follows that the base locus X of F has
dimension mÿ 1, hence is of codimension m in P2mÿ2; the variety X is degenerated
because Sec2�X � is a hyperplane H in P2mÿ2 by Lemma 5.1(iii) and X spans this
P2mÿ3. Since X is cut by m�1

2

ÿ �
quadrics in P2mÿ2, then X is cut by

m�1
2

ÿ �ÿ 2m� 1 � mÿ1
2

ÿ �
quadrics in H. Since X has codimension mÿ 2 in H, it is

a variety of minimal degree (cf. [19, Corollary 5.8]). However, a smooth variety
of dimension mÿ 1 and minimal degree mÿ 1 in P2mÿ3 is a rational normal scroll
of type �a1; . . . ; amÿ1� � �1; . . . ; 1� and the latter is de¢ned by the ideal generated
by the 2� 2 minors of a 2� �mÿ 1� generic catalecticant matrix of type
�1; . . . ; 1�. This proves the theorem. &

6. Other Examples

Birational maps de¢ned by quadrics that generate ideals having the strong rank
property abound in the classical literature.

The earliest examples of this sort cases were the maps de¢ned by quadrics through
a rational normal curve of degree 4, whose image is G�1; 3� � P5 (see Proposition
4.2) and by quadrics trough the normal elliptic curves of degree 5 ^ the quadro-cubic

---

---
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Cremona transformation of P4 (cf. also Remark 2.6). Other classical examples are
given by quadrics through the Veronese surface inP5, by quadrics through the Segre
variety P2 �P2 � P8, which de¢ne an involutive Cremona transformation of P5,
respectively P8, or by the maps described in Proposition 4.2. One easily sees that
the varieties which are the base locus of these examples are smooth varieties in
Pr of codimension s, degree less than or equal to 2s-1 and with Sec�X � � Pr; more-
over they are scheme theoretically de¢ned by the quadrics containing them.

This has been generalized in the following way.

THEOREM 6.1 ([1]). Let X � Pr be a smooth linearly normal variety. Assume that

(a) Sec�X � 6� Pr,
(b) h1�OX � � 0 if dim(X �X 2.

If degX W 2codX ÿ 1, then the quadrics through X de¢ne a rational map F fromPr

to P�H0�IX �2���, which is birational onto the image and whose base locus is X.

In order to obtain examples of such birational maps F de¢ned by ideals I with the
strong rank property, one ought to verify that F is liftable. This is the case for quite
many arithmetically Cohen Macaulay varieties. Moreover, also quite often I will
have linear presentation as it will have the same Betti numbers as the ideal de¢ning
d � degX W 2sÿ 1 (s � codX ) points in Ps in linear general position. As is well
known, the latter proliferate.

For yet a different class of examples, consider the quadrics through a linearly
normal smooth curve C of genus g, embedded in Pg�s with degree d � 2g� s,
sX 3, g� sX 4. These de¢ne birational maps onto the image by the above theorem.
If C � Pg�s is a linearly normal curve embedded by a line bundle of degree
d � 2g� s and if sX 2, then the ideal I de¢ning C is generated by quadrics. Further,
if sX 3 then I has linear presentation (see [6]).
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