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ANALYSIS OF A PERIODIC BACTERIA-IMMUNITY SYSTEM WITH
DELAYED QUORUM SENSING

ZHONGHUA ZHANG, JUAN ZHANG AND JIGENG P E N G

Based on the work of Fergola, Zhang and Cerasuolo, a bacteria-immunity model
with the mechanism of periodic quorum sensing is formulated, which describes the
competition between bacteria and immune cells. A discrete delay is introduced to
characterise the time between when bacteria receive signal molecules and then combat
with immune cells. In this paper, we focus on a subsystem of the bacteria-immunity
model and investigate the existence of a positively periodic solution, and then study
its global stability.

1. INTRODUCTION

All living organisms are continuously exposed to the substances that are capable of
causing them harm. Most organisms protect themselves against such substances in more
than one way for example, with physical barriers or chemicals). Vertebrates have these
types of general protective mechanisms, but they also have a more advanced protective
system called the immune system. The immune system is a complex network of organs
containing cells that recognise foreign substances in the body and destroy them. It
protects vertebrates against pathogens, or infectious agents, such as viruses, bacteria,
fungi, and other parasites.

There are two basic kinds of immunity [7, 6]: the innate immunity and the adaptive
one. The innate immunity is the first line of defence. It is nonspecific, that is, it is not
directed against specific invaders but against any pathogens that enter the body, and it
can suffice to clear the pathogens in most cases, but sometimes it is insufficient. In fact,
some pathogens may possess ways to overcome the innate immunity and successfully
colonise and infect the host. When the innate immunity fails, a completely different
cascade of events ensues leading to adaptive immunity. Unlike innate immunity, adaptive
immunity is specific; that is, it can recognise and destroy specific pathogen. The defensive
reaction of the adaptive immune system is called the immune response. Any substance
capable of generating such a response is called an antigen, or immunogen.
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Quorum sensing is a process that enables bacteria to communicate using secreted
signaling molecules called autoinducers [5, 10, 1]. This process enables a population
of bacteria to regulate gene expression collectively and, therefore control behaviour on
a community-wide scale. The quorum sensing mechanism was initially observed in the
marine bacterium Vibrio fisheri around 30 years ago [8, 2]. Recently, many other species
have been discovered to exhibit quorum sensing behaviour, including, importantly, major
human pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa.

In this paper, considering the periodic quorum sensing of bacteria in the competition
between bacteria and immunity system and introducing a discrete delay to describe the
time between when bacteria receive signal molecules and then combat with immune cells,
we formulate a bacteria-immunity model. Subsequently, we analyse the existence of a
positive periodic solution, and then discuss the global stability of periodic solution.

This paper is arranged as follows: Section 2 formulates the model, Section 3 analyses
the existence of periodic solution, Section 4 discuss the global stability of the periodic
solution, Section 5 makes the conclusions.

2. MODEL FORMULATION

In this section, considering periodic and delayed quorum sensing of bacteria, we
construct a mathematical model to describe the interaction between the immune cells
and bacteria.

Denote the concentrations at time t of uninfected target cells, infected target cells,
bacteria, innate cells and adaptive cells, as Xu{i), Xr(t), B(t), IR(t) and //i(t), respec-
tively. Suppose the dynamic relations among them are as the following: Uninfected
target cells have a natural turnover Su and half-life nXv and can become infected (mass-
action term a\XuB). Infected target cells can be cleared by the adaptive immune cells
(mass action term 012X11\) or half-life nxr Both innate and adaptive immune cells have
a source term and a half-life time. For innate immunity, the source term SiH, which
includes a wide range of cells involved in the first wave of defense of the host (such
as natural killer cells polymorphonuclear cells, macrophages and dendritic cells) and for
adaptive immunity, the source term SiA represents memory cells that are present, derived
from a previous infection (or vaccination), a zero source means the first infection with
this pathogen (that is, there are no memory cells). Both the numbers of innate immune
cell and adaptive immune cell are increased by the signals that we have captured by
means of bacteria load. The bacteria population has a net growth term, represented by a
logistic function a2o-B(l — (B/a)) and is also reduced by both of innate immunity (mass
action term CH^BIR) and adaptive immunity (mass action term a^BIA). We consider
a mechanism named quorum sensing for bacteria, by which the bacteria control their
growth rate or the expression of their genes in response to their own or the density of
other microorganisms, for example, bacteria, immune cells) in the environment. Further,

https://doi.org/10.1017/S0004972700039733 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039733


[3] Analysis of a periodic bacteria-immunity system 339

we introduce a discrete delay to describe the time between when bacteria receive single
molecules and then combat with immune cells. The model is governed by

(2.1)

= 020(1 + g(t)B(t - T) - - a3B(t)IR(t) - aAB{t)IA{t),

dXu(t)
dt

= SV- aiXu(t)B(t) -

= aiXu(t)B(t) - a2IA{t)Xt{t) -
dt

dlajt)
dt

dIA(t)
dt

where 0:20 is the effective reproductive rate of bacteria (the reproduction rate minus the
death rate), a the effective carrying capacity of the environment, a2oB(f)(l - (B(t)/cr))
the logistic growth of bacteria, a2Qg(t)B(t — r)B(t) the increased bacterial concentration
by the bacteria which receive the signal molecules r time units ago and then compete
with immune cells at time t, where g ^ 0 is a periodically continuous function with period
T in [—r, 00) and r ^ 0. Suppose all of parameters of system (2.1) are positive. The
initial values for system (2.1) are

B(s) = ip(s) G C([-T, 0],R) with V(0) > 0,4>(s) ^ 0,s G [-r,0);

(2.2) Xu(0) = XUo > 0, Xi(0) = Xh > 0, IR(0) = I^ > 0,7^(0) = IAo > 0,

where C([-r, 0],R) is the Banach space of continuous functions from [—r,0] to the
Euclidean space R.

In a similar fashion to [3, Lemma 1], we can prove that the solution of system (2.1)
remains positive whenever it exists.

3. THE EXISTENCE OF PERIODIC SOLUTION

It is clear that the equations for B(t),IR(t) and IA(t) are independent of the other
equations of system (2.1). In this paper, only the dynamical properties for B(t), /«(<)
and IA(t) are focused on. To the end, system (2.1) is reduced into the following subsystem
in positive cone R+ of the Euclidean space R3

(3.1)

= a2 0(l + g(t)B(t - r) - ^)B(t) - a3B(t)IR(t) - a4B(t)IA(t),

dIR(t)
dt

dIA(t)
dt
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Correspondingly, the initial values (2.2) are reduced to

B(s) = i/>(8) € C([-r,0],R) with V(0) > 0,tf(«) ^ 0,« 6 [ -T,0) ;

(3.2) Jfl(0) = /«„ > 0, /A(0) = /AO > 0.

In this section, on the basis of Gaines and Mawhin's continuation theorem of coin-
cidence degree theory, we discuss the existence of positive periodic solutions to system
(3.1) with initial conditions (3.2). For convenience, we summarise a few concepts and
results from [4] which will be used in this section.

Let X, Y be real Banach spaces, L : DomL c X -* Y a linear mapping, and
N : X —¥ Y a. continuous mapping. The mapping L is called a Predholm mapping of
index zero if dim Ker L = codimlmL < oo and ImL is closed in Y. If L is a Fredholm
mapping of index zero and there exist continuous projectors P : X -¥ X, and Q : Y ->• Y
such that ImP = KerL, KerQ = ImL = Im(I — Q), then the restriction Lp of L to
Dom L n Ker P : (I - P)X -+ ImL is invertible. Denote the inverse of LP by KP. If Cl is
an open bounded subset of X, the mapping N will be called L-compact on H if QN{Q.)
is bounded and Kp(I — Q)N : fi —> X is compact. Since ImQ is isomorphic to KerL,
there exists an isomorphism J : ImQ -t Ker L.

LEMMA 1. Let Q C X be an open bounded set. Let L be a Fredholm mapping
of index zero and N be L-compact on fl. Assume

1. for each A € (0,1), x e dSl n Dom L, Lx # XNx;

2. for each x € dQ n Ker L, QNx ^ 0;

3. deg{JQN,ilr\KerL,0}^0.

Then Lx = Nx at ieast has one solution in J2 D Dom L.

In the remainder of this section, we shall describe and prove our results on the
existence of the periodic solution of system (3.1). For convenance, we first introduced
some denotations:

9=^1 9(t)dt, ft.= mjn*W, 9
M = max

THEOREM 3 . 1 . If one of the following two assumptions is true,

9m > 1—~ ~ and 0:20 < +

9M <
"20

system (3.1) has at least one positive T-periodic solution.
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P R O O F : Let ui{t) = InB(t),u2(t) = \nIR(t) and u3(t) = \nIA(t). Consequently,
system (3.1) can be transformed into

it 20V a ) 3 4 ,dt

(3.3) p = 5/jtcat

1 = S,Ae—W
I dt

Let X = Y be the Banach space

| u = (ui(t), u2(t),u3(t)) e C (R ,R 3 ) | Ui(t + T) = Ui(t), i = l ,2 ,3 j

3

with the norm ||(ui,U2,U3)|| = 2 max|u<(t)|, where |.| is the Euclidean norm. Define

L : D o m L D X > y,L(u) = ^
at

and

' 0:20(1
(3.4) N:X^Y,N{u) =

where DomL = CX(R, R3) the Banach space of differential functions from R to R3.
Clearly,

Ker L = {u | u € X, u = h, h € R3},
fT

= {v\v£Y, v(t)dt = 0},
Jo

dim ker L = codimi rnL = 3, ImL is closed in Y. Therefore, L is a Fredholm mapping of
zero index.

Define P : X -t X and Q :Y -+Y as

1 fT

(3.5) Pu = Qu = 4; / «(*)*, u e X = K
•> J o

Obviously, P and Q are continuous projectors with ImP = Ker L and Ker Q = / m l =
7m(/ - Q). Then, the operator Lp which is the restriction of L to Dom£ n KerP :
(/ - P)X -¥ ImL is inverse, and the inverse Kp has the form

ft l rT ft
(3.6) Kp : ImL -> DomL n KerP, Kp(u) = / u(s)ds - - / u{s)dsdt.

Jo •* ^0 Jo
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Using (3.4-3.6), for any u G X, we get

/

T

QN(u) =
1 f (S

1 C

and

-Q)Nu= f N(u(t))dt-^ f f N{u(s))dsdt- (l=-t) f N(u(t))dt.
Jo l Jo Jo v^ ' Jo

Next, we need to search for an appropriately open and bounded subset fl in X. For
any A G (0,1) and u G Domlfl X, the system of L(u) = XN(u) is governed by

(3-7)
dt

Integrating (3.7) with respect to t from 0 to T yields

/ f a20 ( l + g(t)eUl('-T) - ^ - J - a3e
U2((» - a4e"3W J dt = 0,

rT
(3.8) / (S/Re-U2«> + ^ e " 1 ^ - " 2 ' " - W f i )dt = 0,

Jo

f (Sue-U3W + /32e
UlW-U3'() - M / J d i = 0,

Jo

and which together with (3.7) lead to

_ « w _

(3.9)

(3.10)

and

(3.11)

2a20T,

dt

(5/ i te—

where ||.||o is the maximum value norm C(R, R) the Banach space of continuous functions
from R to R.
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Multiplying the 2th and 3th equations of (3.7) with eU2W and eUsW, respectively,

and then integrating them with respect to t from 0 to T yields

(3.12) / ^f
MR JO MR

and
rp rp

(3.13) / eU3{t)dt=—[ e"l(t)dt+^-T.
Jo MA JO MA

Clearly, combing (3.8-3.12) with (3.13) leads to

fT
20 y^

~\- CK3 / 6 U 2 dt -{• CK4 / e '
Jo Jo

It follows from (3.14) that

(3.15)
MA > V MR M.

and

(3.16) f (aw9m - **. - ^ _ to)^)* < ̂  + ^ S ^ __ x
Jo v ^ A»/« M/x y V

 MR MA '

For the convenience of description, we denote

Ui(£i) = min u*(t) and U«(J?J) = max Uj(t), i = 1,2,3.

Firstly, we study the existence of periodic solutions of system (3.3) under the con-
dition

\o.i.() gm > ana

It follows from (3.15-3.16) that

- a2o
- {f>x<*z)lMR -

and

(3 19) e"l ( f t )
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Clearly, using Leibniz formula, we have

(3.20) «i(0 - «i(&) ^ f
JO

Combining 3.19 with 3.20 yields

(3.21) Ul(t) ^ In

dt < 2a20T,te [0,T].

(anSiA)/(mA) - a2o
— r- — — 2Ol20l , t € III, J J.

Similarly, by Leibniz formula, we have

(3.22) Ul(t) > mini) -

Substituting (3.15) into (3.22) yields

Let

t,t € [o,T).

a20g
M -

I —

J
telnn

, t t [U, J J.

= max

In

f 1 In< In

11
~ <**> \

- (oao/«r) -
+ 2Q!20-'

2°
As a result, for any t £ [0, T], we have

Substituting (3.21) into (3.12) yields

- a2o)
- (0:20/^) -

further, we obtain

(3 23) to(£o) < In(3.23) «,(&) ^

It follows from (3.12) that

which implies

(3.24)

- a2o)

)
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By Leibniz formula, we get the following inequalities

(3.25) u2(t) ^ ua(&) + f
Jo

and

(3.26)

It follows from (3.10) and (3.23-3.26) that

dt Ho

and

Let

i?2 =

M^lnR -

in (§1*. - a20)

Then, for all t 6 [0,T], we arrive at

Similarly, we have

|«2(*)|

- a20)

and

Therefore, for any t e [0,T],

where

R3 = max < In I 1—

h

+ *TiHA
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Note that Ri, i = 1,2,3 are independent A. Let K = R\ + R2 + R$ + RQ, where RQ
is a positive constant and sufficiently large such that the unique solution (a',/3',7*) of
the algebraic equations

(3.27)

-9 + - J e ° - a3e
0 - a4e

1' = -a2 0 ,

p,ReP = -SlR,

2e° - nlAey = -SiA,

satisfies ||(a*,/?*,7*)|| < K. As a result, all of solutions of (3.7) lie in the domain

Choosing Q = {u G ||u|| < K}, which implies that the operator equation
L(u) = XN(u) has no root on u G dCl D DomL and A G (0,1), that is, L(u) / XN(u) for
any u € dQ, D DomL and A e (0,1). Clearly, for any u G dQ D KerL, it is a constant
vector in R3 with ||u|| = K, further QN(u) ^ 0 holds. Therefore, the first and second
conditions of Lemma 1 are satisfied.

Let J = I: ImQ -» L, that is, Ju = u. Noticing gm ^ ~g and the conditions (3.17),
we derive

deg(JQ7V(u),QnKerL,0)=
JQN(u)=0,u€QnKerL

= sgn det

y Ae"* 0 — muiAe7'

(3.28) = 1,

where (a*,/3*,7*) is the unique solution of the algebra equations (3.27). Equation (3.28)

implies the third condition of Lemma 1 holds.

It is easy to derive that {KP(I — Q)N(u) \ u 6 fi} is equi-continuous and uniformly

bounded. Then, by means of the Arzela-Ascoli theorem, we obtain that KP(I - Q)N :

Q —y X is compact. Consequently, N is L- compact.

Then, Lemma 1 ensures that system (3.3) has at least one positive T-periodic solu-

tion onfiflDomL if

9m > ((a2o)/^ + {facts)/mR + UhaJ/niJotf

and

a20
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In the following, we shall investigate the existence of a T-periodic solution of system
(3.3) under the condition

(3.29) gM < and a2o > 1

Let u(t) € X solve system (3.7), by inequality (3.15), we get

Jo
- q 2 0

'

and further

Similarly, using (3.16), we obtain

Therefore,

In - a2o 2°
and

dux(t)\
dt Mo*

- a20 2° •
Let

(a4SlA)/(filA) -

- a 2 0

Obviously, for all t € [0,T], we have

|tti(t)| £Ri.

Similarly, we get

- a20)
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and

Easily, we obtain

u3(t) < In (-^-H

and

Let

R3 = max ^ | In f ^

Then, we derive

Similarly, we have

where

Z. Zhang, J. Zhang and J. Peng [12]

-a20) T\
(02(X4)/fJi) )

- a2o)

_ ^ _ ) +

3 _ _ _
Let A' = 23 ^» + ^o> where i?o is large enough such that the unique solution u* =

t=i (

(Q' , /?*,7*) of the algebraic equations (3.27). Let Q.' = {u 6 X \ \\u\\ < K). Obviously,
for any u e dQ' nKerL = dti D R3 = {u G R3, ||u|| = ~R), we have QN{u) ^ 0, u 6
dft' n KerL. Taking 7 = 7 : /mQ ^ KerL,u -> u. Then

= sgn

https://doi.org/10.1017/S0004972700039733 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039733


[13] Analysis of a periodic bacteria-immunity system 349

Under the condition (3.29), we arrive at deg{JQN(u),Q' n KerZ,,0) = - 1 . Therefore,
under the condition of (3.29), system (3.3) has at least one positive T-periodic solution
onfl fl Dom L.

Clearly, if {u\{t), Uj(t), u*3) € X is a positive continuous T-periodic solution of system
(3.3), (eui(t\eu2(t),eu3(t)) must be positive continuous T-periodic solution of system (3.1).
Hence, under the condition of (3.17) or (3.29), system (3.1) has at least one positive
continuous T-periodic solution. Q

4. STABILITY OF THE PERIODIC SOLUTION

Let {B'{t),rR{t)JX(t)) e X be a T-periodic solution of system (3.1). Clearly,
(B*(i), IR(t), IA{t)) is bounded on the interval [0, oo) in the Euclidean space R3. The fol-
lowing Lemma is basic for the subsequent discussion on the stability of (B*(t), IR(t), I'A{t)).

LEMMA 2 . [9, p. 123] Assume that f is a continuous differential function on [0, oo)
to R". If the limit lim f(t) exists and the derivative f'(t) is uniformly continuous on its

t—*oo
domain, then f'(t) -*0ast-too.

THEOREM 4 . 1 . If a20(g
M - (1/CT)) + ( A Q 3 ) / / / ; S + {02an)/tJ,lA < 0, the periodic

solution (B'{t),IR(t),IA(t)) € X of (3.1) is global asymptotically stable when it exists.

PROOF: Let (B{t),IR(t),IA(t)) e C^R^R3) be the positive solution of system
(3.1) with the initial value of (3.2). Define

V2(B(t),IR(t),IA(t)) = \\lR(t) - IR(t)\\0,

V3(B(t),IR(t),IA(t)) = \\lA(t)-rA(t)\\0

and

Vt{B{t),IR(t),IA{t)) = a20 f 9{S + T)\\B(S) - B'{8)\\0ds.
Jt-T

Then, the upper-right derivatives of Vu V2, V3 and V4 with respect to t are respectively

Z?+K(5W,/R(f),/x(«)) = sgn(fl(t) - B'(t)) (a2Og(t)(B(t - r) - B'(t - r ) )

-?f{B{t) - B'(t)) - a3{IR(t) - I'R
(4-1) -ai(lA(t)

(4.2) D+V2(B(t),IR(t), IA(t)) < A||BW - B'(t)\\0 - M / J / K W -

(4.3) D+V3{B(t),IR(t),IA(t)) 4 (h\\B(t) - S'(t)||0 - /i/JJxW - IA(t)\\0

and

D+V4(B(t),IR(t),IA(t)) = a20(g(t + r)\\B(t) - B'{t)\\0 - g(t)\\B(t - r)

(4.4) -£ ' (* - r ) | | o ) .
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Let

V(B(t),IR(t),IA(t)) = Vi(B(t),/«(«),/*(*)) + —V»{B(t),IR{t),IA{t))
MR

+^iV3{B(t),IR(t),IA(t)) + V4(B(t),IR(t),IA(t)).

By means of (4.1-4.4), the upper-right derivative of V(B(t), IR(t), IA(t)) with respect
to t satisfies

(4.5)D+V(B(t),IR(t),IA(t)) < (aJ9
M- ±) + ^ + ^ ) \\B(t) - B*(t)\\0.

Clearly, if a20(g
M - ±) + ( A ^ J / w , + {fa**)/l*iA < 0, then K(S(«),!«(«), /,*(*))

is non-increasing with respect to t. Noticing V(B(t),/«(<),/^(t)) is positive, we obtain
that, as t tends to oo, the limit of V(B(i),IR(t),IA(t)) exists. Hence, if

( M
0:201 9 ) + H

the solution of (3.1) has to be bounded on [0, oo), and further so does its derivative
(B'(t),l'R(t),l'A{t)) (for it is defined by (B(t),IR(t),IA(t)) in terms of (3.1)). The
boundedness of (B'(t),/^(t),/^(t)) implies (B(t),IR(t),IA(t)) is uniformly continu-
ous on [0, oo). Thus V(B(t),IR(t),IA(t)) is uniformly continuous on [0, oo). Con-
sequently, Lemma 2 ensures lim V'(B{t),IR(t),IA(t)) = 0. By (4.5), we get that

lim (B(t) - B'(t)) = 0.

Next, we shall prove lim (lR(t) - IR(t)) = 0 and lim (lA(t) - IA(t)) = 0. To that
t—too t—^oo

end, we define two new variables x(t) = IR(t) — IR[t) and y(t) = IA(t) — IA{t), which
satisfy

(4.6)

Noticing lim (B(t) - B*(t)) = 0, we get that all of solutions of (4.6) tend to origin, that

is, lim (lR(t) - IR(t)) = 0 and lim (lA(t) - I'A(t)) = 0.
t—*OQ t—fOO

Therefore, if a2o (9M - (1A0) + (A"3) /M/ H + {hon)/niA < 0, the periodic solution
of (3.1) is asymptotically stable when it exists. D

5. CONCLUSION AND DISCUSSION

In this paper, we incorporate T-period and a time delay into Zhang's [11] bacteria-
immunity system. Using Gaines and Mawhin's continuation theorem of coincidence de-
gree theory, sufficient conditions are obtained for the existence of positively periodic
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solution of system (3.1). Further, by Lemma 2 and constructing Lyapunov function, suf-
ficient conditions are gotten, and under which the positive periodic solution is globally
asymptotical stable for any nonnegative delay r.

REFERENCES

[1] K. Anguige, J.R. King, J.P. Ward and P. Williams, 'Mathematical modelling of therapies
targeted at bacterial quorum sensing', Math. Biosci. 192 (2004), 39-83.

[2] A. Eberhard, 'Inhibition and activation of bacterial liuciferase synthesis', J. Bacteriol.
109 (1972), 1101-1105.

[3] P. Fergola, E. Beretta and M. Cerasuolo, 'Some new results on an allelopathic competi-
tion model with quorum sensing and delayed toxicant production', Nonlinear Anal. Real
World Appl. 7 (2006), 1081-1095.

[4] R.I. Gaines and J.L. Mawhin, Coincidence degree, and nonlinear differential equations
(Springer-Verlag, Berlin, 1977).

[5] J.M. Henke and B.L. Bassler, 'Bacterial social engagements', Trends in Cell Biology 14
(2004), 648-656.

[6] J.A. Levy, 'The importance of the innate immune system in controlling HIV infection
and disease', Trends of Immunology 22 (2001), 312-316.

[7] R. Medzhitov and C.A. Janeway Jr., 'Innate immune recognition and control of adaptive
immune responses', Seminars in Immunology 10 (1998), 351-353.

[8] K.H. Nealson, T. Platt and J.W. Hastings, 'Cellular control of the syntesis and activity
of the bacterial luminescent system', J. Bacteriol 104 (1970), 313-322.

[9] J.J.E. Slotine and W. Li, Applied nonlinear contro (Prentice-Hall, Englewood Cliffs, NJ,
1991).

[10] P. Williams, 'Quorum sensing: an emerging target for antibacterial chemotherapy?',
Expert. Opin. Ther. Target 6 (2002), 257-274.

[11] J. Zhang, M. Cerasuolo, P. Fergola and Z. Ma, 'On the influence of quorum sensing in
the competition between bacteria and immune system' (to appear).

Department of Applied Mathematics
Xi'an Jiaotong University
Xi'an 710049
China
e-mail: wwwzhonghua@sohu.com

Department of Applied Mathematics
Xi'an Jiaotong University
Xi'an 710049
China

Research Center for Applied Mathematics
Xi'an Jiaotong University
Xi'an 710049
China

https://doi.org/10.1017/S0004972700039733 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039733

