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ANALYSIS OF A PERIODIC BACTERIA-IMMUNITY SYSTEM WITH
DELAYED QUORUM SENSING

ZHONGHUA ZHANG, JUAN ZHANG AND JIGENG PENG

Based on the work of Fergola, Zhang and Cerasuolo, a bacteria-immunity model
with the mechanism of periodic quorum sensing is formulated, which describes the
competition between bacteria and immune cells. A discrete delay is introduced to
characterise the time between when bacteria receive signal molecules and then combat
with immune cells. In this paper, we focus on a subsystem of the bacteria-immunity
model and investigate the existence of a positively periodic solution, and then study
its global stability.

1. INTRODUCTION

All living organisms are continuously exposed to the substances that are capable of
causing them harm. Most organisms protect themselves against such substances in more
than one way for example, with physical barriers or chemicals). Vertebrates have these
types of general protective mechanisms, but they also have a more advanced protective
system called the immune system. The immune system is a complex network of organs
containing cells that recognise foreign substances in the body and destroy them. It
protects vertebrates against pathogens, or infectious agents, such as viruses, bacteria,
fungi, and other parasites.

There are two basic kinds of immunity (7, 6]: the innate immunity and the adaptive
one. The innate immunity is the first line of defence. It is nonspecific, that is, it is not
directed against specific invaders but against any pathogens that enter the body, and it
can suffice to clear the pathogens in most cases, but sometimes it is insufficient. In fact,
some pathogens may possess ways to overcome the innate immunity and successfully
colonise and infect the host. When the innate immunity fails, a completely different
cascade of events ensues leading to adaptive immunity. Unlike innate immunity, adaptive
immunity is specific; that is, it can recognise and destroy specific pathogen. The defensive
reaction of the adaptive immune system is called the immune response. Any substance
capable of generating such a response is called an antigen, or immunogen.
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Quorum sensing is a process that enables bacteria to communicate using secreted
signaling molecules called autoinducers [5, 10, 1]. This process enables a population
of bacteria to regulate gene expression collectively and, therefore control behaviour on
a community-wide scale. The quorum sensing mechanism was initially observed in the
marine bacterium Vibrio fisheri around 30 years ago [8, 2]. Recently, many other species
have been discovered to exhibit quorum sensing behaviour, including, importantly, major
human pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa.

In this paper, considering the periodic quorum sensing of bacteria in the competition
between bacteria and immunity system and introducing a discrete delay to describe the
time between when bacteria receive signal molecules and then combat with immune cells,
we formulate a bacteria-immunity model. Subsequently, we analyse the existence of a
positive periodic solution, and then discuss the global stability of periodic solution.

This paper is arranged as follows: Section 2 formulates the model, Section 3 analyses
the existence of periodic solution, Section 4 discuss the global stability of the periodic
solution, Section 5 makes the conclusions.

2. MobpEL FORMULATION

In this section, considering periodic and delayed quorum sensing of bacteria, we
construct a mathematical model to describe the interaction between the immune cells
and bacteria.

Denote the concentrations at time ¢ of uninfected target cells, infected target cells,
bacteria, innate cells and adaptive cells, as Xy (t), X(t), B(t), Ir(t) and I4(t), respec-
tively. Suppose the dynamic relations among them are as the following: Uninfected
target cells have a natural turnover Sy and half-life ux,, and can become infected (mass-
action term a; Xy B). Infected target cells can be cleared by the adaptive immune cells
(mass action term o X;14) or half-life ux,. Both innate and adaptive immune cells have
a source term and a half-life time. For innate immunity, the source term S;,, which
includes a wide range of cells involved in the first wave of defense of the host (such
as natural killer cells polymorphonuclear cells, macrophages and dendritic cells) and for
adaptive immunity, the source term S;, represents memory cells that are present, derived
from a previous infection (or vaccination), a zero source means the first infection with
this pathogen (that is, there are no memory cells). Both the numbers of innate immune
cell and adaptive immune cell are increased by the signals that we have captured by
means of bacteria load. The bacteria population has a net growth term, represented by a
logistic function azB(1 — (B/c)) and is also reduced by both of innate immunity (mass
action term a3Blg) and adaptive immunity (mass action term ayBI,). We consider
a mechanism named quorum sensing for bacteria, by which the bacteria control their
growth rate or the expression of their genes in response to their own or the density of
other microorganisms, for example, bacteria, immune cells) in the environment. Further,
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we introduce a discrete delay to describe the time between when bacteria receive single
molecules and then combat with immune cells. The model is governed by

'iﬂ?% = ano(1+ 9(0OB(t ~ 7) = Z2) B1) - asBOIalt) - adBE)I(),
d_)_{_({(_tl =Sy — alXu(t)B(t) — pxy Xu(t),
dt
21) ¢ __‘”fi’t(t) = a1 Xu(t)B(t) — caTa(®) X1 (t) — px, X1 (2),
d’st(t) = 51, + BiB(t) — prnIr(2),
| 249 — 51, + BB - raLate),

where ayp is the effective reproductive rate of bacteria (the reproduction rate minus the
death rate), o the effective carrying capacity of the environment, axB(t)(1 — (B(t)/s))
the logistic growth of bacteria, c20g(t) B(t — 7)B(t) the increased bacterial concentration
by the bacteria which receive the signal molecules 7 time units ago and then compete
with immune cells at time ¢, where g 2> 0 is a periodically continuous function with period
T in {-7,00) and 7 > 0. Suppose all of parameters of system (2.1) are positive. The
initial values for system (2.1) are

B(s) =1(s) € C([—T, 0],R) with ¥(0) > 0,%(s) 2 0,s € [-7,0);
(2.2) Xu(O) = Xy, > O,XI(O) =X, > 0, IR(O) =Ig, > O,IA(O) =I4, >0,

" where C([-7,0],R) is the Banach space of continuous functions from [—7,0] to the
Euclidean space R.
In a similar fashion to [3, Lemma 1], we can prove that the solution of system (2.1)
remains positive whenever it exists.

3. THE EXISTENCE OF PERIODIC SOLUTION

It is clear that the equations for B(t), Ir(t) and I4(t) are independent of the other
equations of system (2.1). In this paper, only the dynamical properties for B(t), Ix(t)
and I 4(t) are focused on. To the end, system (2.1) is reduced into the following subsystem
in positive cone R? of the Euclidean space R3

%ﬁ” = a20(1 +g(t)B(t—T1) - %—Q)B(t) — a3B(t)Ir(t) — asB(t)1a(2),
61 {420 501 8B — wraate),
Y1) _ 51, + BB ~ wraLa®)
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Correspondingly, the initial values (2.2) are reduced to

B(s) = ¢(s) € C([-7,0},R) with %(0) > 0,%(s) > 0,s € [~T,0);
(3.2) In(0)=IR°>0,IA(0)=IA°>0.

In this section, on the basis of Gaines and Mawhin’s continuation theorem of coin-
cidence degree theory, we discuss the existence of positive periodic solutions to system
(3.1) with initial conditions (3.2). For convenience, we summarise a few concepts and
results from [4] which will be used in this section.

Let X,Y be real Banach spaces, L : DomL C X — Y a linear mapping, and
N : X — Y a continuous mapping. The mapping L is called a Fredholm mapping of
index zero if dimKer L = codim/mL < oo and I'mL is closed in Y. If L is a Fredholm
mapping of index zero and there exist continuous projectors P: X - X,and Q: Y - Y
such that ImP = Ker L, Ker @ = ImL = Im([ — Q), then the restriction Lp of L to
Dom LNKer P: (I — P)X — ImL is invertible. Denote the inverse of Lp by Kp. If Q is
an open bounded subset of X, the mapping N will be called L-compact on & if QN (1)
is bounded and Kp(I — Q)N : @ — X is compact. Since ImQ is isomorphic to Ker L,
there exists an isomorphism J : Im@Q — Ker L.

LEMMA 1. LetQ C X be an open bounded set. Let L be a Fredholm mapping
of index zero and N be L-compact on ). Assume
1. foreach A€ (0,1), z € 3QNDomL, Lz # ANz;
2. foreachz € 3QNKerL,QNz #0;
3. deg{JQN,QnNKerL,0} #0.
Then Lx = Nx at least has one solution in @ N Dom L.
In the remainder of this section, we shall describe and prove our results on the

existence of the periodic solution of system (3.1). For convenance, we first introduced
some denotations:

1 T
aq=— tdt, = i M= t).
g T/o g(t)dt, gm I%g(t), g tgf%y()

THEOREM 3.1. Ifone of the following two assumptions is true,
(a)/0 + (Bras)/mig + (Bacs)/(11,)

gm > and ag <

a3Sr, + aS1,

(a7 Brg wly’
ou < (aw)/o + (Bras)/pig + (Baca)/(141,) and ag > a3Sp, + 01451,4,
Qg Brg iy

system (3.1) has at least one positive T-periodic solution.
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PROOF: Let u;(t) = In B(t),uz(t) = InIg(t) and u3(t) = InIs(t). Consequently,
system (3.1) can be transformed into

evr(t)

dul(t) _ ur(t— ua(t) ua(t)

T = Qg (1 + g(t)e ) — a3€ — 4€ )
(33) d'u’;t(t) - S e—uz(t) +'Bleul(t)-“2(t) — WIg,

du;t(t) Sp,em0 4 Byem(-us®) _

Let X =Y be the Banach space

{v = (), wa(e),us(0) € C(RB?) | st +T) = wi(0), = 1,2,3}

with the norm ||(uy, ua, us)|| = E max |u.(t |, where |.| is the Euclidean norm. Define

L:DomLNX —=Y,L(u)= ﬂ

and

u1(t)

(1 + g(t)et-") — z o ) — aze™® — qqevs®
(34) N: X 2Y,N(u) = Sp e 4 B em®-w® _ 4 ,
SIAe-“S(t) + ﬂze“l(t)_“s(t) —_ p’IA

" where Dom L = C'(R, R3) the Banach space of differential functions from R to R3.
Clearly,

KerL = {u|u € X,u=h,h € R%,
T

ImL={v]|ve Y,/ v(t)dt = 0},
0

dimker L = codimImL = 3, ImL is closed in Y. Therefore, L is a Fredholm mapping of
zero index.
Define P: X > XandQ:Y oY as

T
(3.5) Pu=Qu= % / u(t)dt,u€ X =Y.
0
Obviously, P and @ are continuous projectors with /mP = Ker L and Ker@ = ImL =

Im(I — Q). Then, the operator L, which is the restriction of L to DomL N KerP :
(I - P)X — I'mlL is inverse, and the inverse K, has the form

t 1 T ot
(3.6) K,:ImL — DomLnNKerP, Ky(u)= / u(s)ds — T/ / u(s)dsdt.
0 0o Jo
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Using (3.4-3.6), for any u € X, we get

I ewi®
T/ (azo (1 + g(t) uilt=r) _ . ) — aze™?®) — a4e“3('))dt
0

:'r' (S,R + Bren 790y ) dt

/ SI e w4 Ba e (t)-us(t) _ Ll )d

i

QN(u)

and

K,N(I - Q)Nu = /OtN(u(t))dt - %/OT/; N (u(s))dsdt ~ (% ~ 1) /OTN(u(t))dt

Next, we need to search for an appropriately open and bounded subset 2 in X. For
any A € (0,1) and © € Dom L N X, the system of L(u) = AN(u) is governed by

ul(t)
dunlt) _ /\(azo (1 + g(t)enrt=n) — 2 ) — age"® — 046“3“)),
dt
(3.7) dL;’t(_tl = A(Spge® + BemU=au® _ Y,
dua(t
%(_) = A(S1,e™0 4 frem @l _ )

Integrating (3.7) with respect to ¢ from 0 to T yields

T eul(t)
/ (a2o<1 + g(t)e"‘(‘_’) - = ) - C¥36u2(t) — a4e“3(‘)) dt = 0,
0

T
(3.8) / (Stpe~2® + Bem O _ 1 Yt =,
0

T
/ (SIAe—ua(t) + ﬂZem(t)—ua(t) - #IA)dt =0,

0

and which together with (3.7) lead to
T
/ “dUI(t I dt € a20T+/
(3.9 <€ 2007,

t
(3.10) / “d‘”( “ dt < (Sipe™*® + Be OOt 4y T < 2Ty,

(g(t)e“‘(‘“’) - ——ul(t)) — aze™?® — gye¥st)
(22

dt

d
(3.11) / “ us(t | dt < (Spee™® + e O-uOVdt 4 1y T < 0Ty,

where ||.[|o is the maximum value norm C(R, R) the Banach space of continuous functions
from R to R.
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Multiplying the 2th and 3th equations of (3.7) with e*?{® and e*3(), respectively,
and then integrating them with respect to ¢t from 0 to T yields

(3.12) / gy = Pr / gy 4 Sl
0 Blg HBig
and
T ﬂ S
(3.13) / es gt = 2 / en®gt 4 ZIAT,
0 [N By

Clearly, combing (3.8-3.12) with (3.13) leads to

T
azT + as / g(t)em(t—r)dt
0

o

(3.14) = (.0.‘?9. + @ + &%) /Te“'(t)dt+ (QBSIR + a4SIA)T‘
g M M/ Jo Big Br,

It follows from (3.14) that

T
(3.15) f (QMM B a_;g _bBas é&)eu,mdt > (53_3_15 4951 azo)T
0

o T T T
=2 e 0dt + ay / e Odt + ay / e*3s(dt
0 0 0

Hig B, Big K1,
and
(3.16) / C20Gm — ..."2 - @E’_ - ﬁ"’a“)eul(t)dt < (% + gﬁ.'g_’_'i - Olzo)T-
Big MBI Kiy I3
For the convenience of description, we denote
ui(&) = tg[xox% u;(t) and ui(n) = zretfc%] uift), i1 =1,2,3.
Firstly, we study the existence of periodic solutions of system (3.3) under the con-
dition
(3.17) gm > (a20/0) + (Bras)/ 1y + (B2ca)/(b1,) and g < a3Sr, + 0451.4'
Q20 Urg i,
It follows from (3.15-3.16) that
(3.18) gn(m) > (@3S1a)/p1p + (2aS1,)/ 11, — a0
” angM ~ (an)/0 = (Bios)/ pig — (B2ca)/ 1,
and
(3.19) el ¢ (a3S1)/p1p + (4S1,)/ (p1,4) — Q20

ag09m — (020) /0 ~ (Braa)/ pir, = (Baca)/ a1,
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Clearly, using Leibniz formula, we have

3.20) w() - w(&) < / ” Idt 2030T, ¢ € [0, T.

Combining 3.19 with 3.20 yields

(3:21) wm(t) < ln( (@aS1a)/ tirg + (€451,)/(p1,) — cr20

az0gm — (@20)/0 — (Br03)/ p1a = (B20:)/ #14) + 20Tt € (0,71

Similarly, by Leibniz formula, we have
dul
(3.22) ui(t) > ui(m) — ” ”odt, t € [0,T].

Substituting (3.15) into (3.22) yields

(03513)/#15 + (a4SA)/(/*‘1A) — Q0 — %
ul(t) >In (azogM - (03)/0 - (Blas)/ﬂln - (ﬁza«;)/liu) 2ol t € [0’ T]'
Let
— n (a3SIn)//‘ln + (04514)/(/‘1,4) - Qo o
B = ma.x{ ! (azogm — (a20/0) = (Br0a)/ i1, — (ﬂ204)/#u) + 2anT),
o ((@sSr) iy + (@S (r) oz \ o
: (a209m — (a20/0) = (Bras)/ 1z — (/3204)/#1,4) 2eaoT }

As a result, for any ¢ € [0, T, we have
Iul(t)l <R
Substituting (3.21) into (3.12) yields

Sip + By ((a3S1z)/ m1p + (2aS1,)/(11,) — a20) e2exT
Bip  Mip(0209m — (20/0) — (Bros)/prg — (B2ca)/1,) '

further, we obtain

ev2(62) <

n % ﬂl((a3slg)//‘13 + (0451,4)/(/1'1,4) - a20) a20
(3.23) ) <o (e 4 TSl 2 o)/ ) o)),

It follows from (3.12) that

gatm) s St B ne

Hig Hig
which implies
S
(3.24) up(me) > In ( I”)
Hig
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By Leibniz formula, we get the following inequalities

(3.25) ualt) < ua(la) + / Hd’“(t | ¢
and
(3.26) s / ||d"2(t) “ dt.

It follows from (3.10) and (3.23-3.26) that

Sz Bi((3S15)/ 11a + (@aS1,)/(11,) — a20)
va(t) <l (MIR M B1p(Q209m — (@20)/0 ~ (Broa)/prg — (Baca)/pi1,)

Zaon) + 2Tﬂln
and

up(t) 2 In (%) —2p1,T.
Let
_ _SI_R /31((035'1&)//‘1)2 + (a4S1A)/(I“"IA) — a0)
Ry = max {l tn (ﬂln * prg(a209m — (a20)/0 - (Bras)/pig — (B2as)/ i1,

.m (%) - 2Tur, }
Kig

|u2(t)] < Ry

) 2oy,

Then, for all ¢t € [0, T, we arrive at

Similarly, we have

NEA Ba((a3S1s)/pi1g + (0aS1,) [ (B1g) — @20)  sapr
us(&s) <1 (MA * pis(0209m — (o20) /0 — (Bras) /by, — (Boa)pir,) )

uz(m) 2 In (i)
[N

|us(t)| < Rs,

and

Therefore, for any ¢t € [0, T,

where

=m n i 52((03‘9’&)/”‘111 + (a4SIA)/(p’IR) — 020)
Fs = ax{ll (#u T pia(00gm — (a20)]0 = (Bras)/ v, — (B2ca)/pi1,)

o () -
Hi,
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Note that R;,7 = 1, 2,3 are independent A. Let K = R; + R; + R3 + Ry, where R,
is a positive constant and sufficiently large such that the unique solution (a*, 8*,7*) of
the algebraic equations

1
—020(—§+ ;)e“ — azef — aue’ = —ag,
(3‘27) Blea - IJ’IReﬁ = —S’ﬂa
ﬂ2ea - #1,&7 = _SIAa

satisfies ||(e*,8°,7")]] < K. As a result, all of solutions of (3.7) lie in the domain
{ue CYR,RY) | ||lu|| < K}.

Choosing = {u € [jull < K}, which implies that the operator equation
L{u) = AN(u) has no root on u € 32 NDom L and X € (0,1), that is, L(u) # AN(u) for
any u € 0 NDomL and A € (0,1). Clearly, for any v € 82 N Ker L, it is a constant
vector in R? with |lu|| = K, further QN(u) # 0 holds. Therefore, the first and second
conditions of Lemma 1 are satisfied.

Let J =1:ImQ@Q — L, that is, Ju = u. Noticing g, € g and the conditions (3.17),

we derive
deg{(JQN(u),@NKerL,0) = Z sgn det (fd{i—(:l)
JQN(u)=0u€QNKer L
an(@—oY)e* —azef  —aue”
= sgndet Bre™” —pr,e? 0
Bre™ 0 —muy, e
= sgn(('g’— e Pros _ éwﬁ)e"'eﬂ'e'ru;,,uh‘
BiIg Hry,
(3.28) =1,

where (a*, #*,v") is the unique solution of the algebra equations (3.27). Equation (3.28)
implies the third condition of Lemma 1 holds.

It is easy to derive that {K,(/ — Q)N(u) | u € Q} is equi-continuous and uniformly
bounded. Then, by means of the Arzela-Ascoli theorem, we obtain that K,(I — Q)N :
Q — X is compact. Consequently, N is L- compact.

Then, Lemma 1 ensures that system (3.3) has at least one positive T-periodic solu-
tion on @ NDom L if

gm > ((a20)/0 + (Bros)/prn + (Baos)/ 11, ) 0z

and
o0 < (@aS1y)/p1g + (0aS1,)/ 1l 4.
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In the following, we shall investigate the existence of a T-periodic solution of system
(3.3) under the condition

(o) /0 + (Bras)/pig + (Baca)/(11,) and ag > a3Si, + @sS1,
a0 Kig pla

(3.29) am <

Let u(t) € X solve system (3.7), by inequality (3.15), we get

T
uy(t) (a3sfn)/ﬂ1n + (a4SIA)/(,"’IA) — Q0
/o edt < axn(gM — o71) — (bras)/prg — (ﬁ?SIA)/”‘IAT,

and further

(asSig)/ g + (@aS1,)/(11,) — a2
m@) <o (azo(gM o) — (Bras), iy — (ﬂzSu)/mA)'

Similarly, using (3.16), we obtain

( (03S1g)/p1g + (@4S1,)/ (p1,) — 20 )
a20(gm — 071) — (Bras)/p1, — (B2S1a) /11, )

ui(m) 2

Therefore,
wu(t) u / “d’“(t) H dt
(03513)//"’1}1 + (a4SIA)/(”IA) — Qg0 )
Sl (azo(!)M —071) — (bras)/ur, — (B2S1,)/ 114 + 20T
- and

w(t) > / “dul

(23S15)/ 11 + (a4S,A) /(i) — azo .
. (azo(g'" —07) = (Bras)/pig — (/325'“)/#“) 2ol
Let
R, = m n (a3SIR)//-LIR +(a4S,A)/(u,A) — Qo
e ax{ l (a”(gM —071) = (Bres)/p1p = (52-5'1,4)/#“) + 2ol

In ( (3S1g)/p1s + (24S1,)/ (11,) — a2
a0(gm — 071) — (Bras)/p1, — (B2S1,)/ b1,

Obviously, for all t € [0, T}, we have

) - 2020T

}

|U1(t)| <R
Similarly, we get

8"3(53) < i + ﬁ2((a3sln)/ﬂ'ln + (a4SIA)/(/“IA) - a20) _2a20T
S, pri(eng™ — (ax)/o — (Bias)/prg — (Bacs)/p1,)
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and

eusm) > §14
HIy

Easily, we obtain

Sy B2((a3Sr )/M + (@451,)/(11,) — a20) 2 T)
ty<ln{ =+ RV A—4 o0l | + 2Ty,
US( ) g (U'IA #IA(OtzogM - (0120)/¢7 - (51%)/#1,; - (ﬂzm)/uu) Hia
and
S1,
u3(t) > In—2 — 2T'yy,.
B,
Let

b

Ao

In (SIA + Bo((3S1s)/1i1g + (@4S1,)/ (k1,) — a20)

2aon
pra  pip(o20g™ — (an)/o — (Bios)pr, - (5204)/#1A) ) + 2T u,

S,

In2fa _ 2Tur, }
K1,
Then, we derive
IU3| < R:;,t € [0, T]
Similarly, weAhave

luz(t)l Ry, te(0,7),
where
B, = max{ Ste Br((3S1s)/ p1p + (24S1,)/ (p1,) — 020) + 2T,

e e B

}

_ 3 —_
Let K = 3 R; + Ro, where Ry is large enough such that the unique solution u* =
=1
(a*, 8%,7*) of the algebraic equations (3.27). Let 2 = {u € X | |Jul| < K}. Obviously,
for any u € 9 NKerL = 82 NR? = {uv € R3, ||ul| = K}, we have QN(u) # 0,u €

89 N Ker L. Taking J = I : ImQ — Ker L,u — u. Then

Siq
In—=£& - 2T
Lt Hig

deg(JQN (u), ¥ N Ker L,0)
=sgn {e"'*ﬁ'*'" Brgbi, ((§ -0 Ve — (Bros)/ b1, — (ﬁ204)/#1A) }
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Under the condition (3.29), we arrive at deg(JQN(u), 2 NKer L,0) = —1. Therefore,
under the condition of (3.29), system (3.3) has at least one positive T-periodic solution
on @ NDomL.

Clearly, if (uj(t), u3(t), u3) € X is a positive continuous T-periodic solution of system
(3.3), (e*i®, eu3(1) ¢¥3()) must be positive continuous T-periodic solution of system (3.1).
Hence, under the condition of (3.17) or (3.29), system (3.1) has at least one positive
continuous T-periodic solution. 1|

4. STABILITY OF THE PERIODIC SOLUTION

Let (B*(t),I(t),14(t)) € X be a T-periodic solution of system (3.1). Clearly,
(B*(t), I3(t), I3(t)) is bounded on the interval [0, c0) in the Euclidean space R3. The fol-
lowing Lemma is basic for the subsequent discussion on the stability of (B*(t), I5(t), I4(t)).

LEMMA 2. (9, p. 123] Assume that f is a continuous differential function on [0,00)
to R". If the limit tll’xg f(t) exists and the derivative f'(t) is uniformly continuous on its
domain, then f'(t) = 0 ast — oo.

THEOREM 4.1. Ifos (9™ - (1/0)) + (Bros)/ i, + (B20s)/p1, < 0, the periodic
solution (B*(t), Ix(t), I4(t)) € X of (3.1) is global asymptotically stable when it exists.

ProoF: Let (B(t), Ir(t), 1(t)) € C'(R', R®) be the positive solution of system
(3.1) with the initial value of (3.2). Define

Vi(B(t), Ir(t), 1a(t)) = ||In B(t) — ln B*(2)||,,
Va(B(t), Ir(t), 1a(t)) = || Ir(t) — In(2)],,
Va(B(t), Ir(t), 1a(t)) = ||1a(t) = i)l
and
Vi(B(t), Ir(t), 1a(t)) = an [_ g(s+ 7’)||B(s) - B‘(s)“ods.
Then, the upper-right derivatives of ¥}, V,, V3 and V} with respect to ¢ are respectively
D*vi(B(t), Ig(t),IA(t)) = sgn(B(t) - B*(t)) (azog(t) (B(t—7)—B(t- 7))
I =2 (B(t) - B*()) - ea(Ix(t) - a(t))
(4.1) —aq(Ialt) - Ig(t))) :

(4.2) D*Va(B(t), Ir(t), 1a(t)) < Bu||B(t) — B* ()|, — s1al| TR (E) — I (®) |,
(4.3) D*VA(B(), Ir(t), 14(1)) < Ba|| B(t) = B* (1)), = pra |l 1a®) = 2 (1),
and
D*Va(B(#), Ia(t), Ia(t)) = am(9(¢ + 7)[|B(t) - B*(®)llo - 9(8)| Bt - 7)
(44) ~B"(t-)lh).
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Let

V(B(t), Ir(t), Ia(t)) = Vi(B(t), In(t), La(2)) + ﬂ;asvz(B(t), In(t), 1a(2))

Ir
Prday (B(t), In(t), Ia() + Va(B(®), In(t), Ia(2))-

+
br

By means of (4.1-4.4), the upper-right derivative of V(B(t), Ir(t), I4(t)} with respect
to t satisfies

1
(4.5) D*V (B(2), In(t), Ia(t)) < (azo(gM -2)+ %Ii: + ﬂ—:;ﬁ) 1B - B* (1),

Clearly, if az(g¥ — L) + (Br0s)/p1, + (B20s) /11, < 0, then V(B(2), Ir(t), 1a(t))
is non-increasing with respect to t. Noticing V' (B(t), Ir(t), I4(t)) is positive, we obtain
that, as ¢ tends to oo, the limit of V (B(t), Ir(t), Ia(t)) exists. Hence, if

1
am(gu__)ﬁ_la_u?& <0,
4 Hig Hr,

the solution of (3.1) has to be bounded on [0,00), and further so does its derivative
(B'(t), I(t), I4(t)) (for it is defined by (B(t),Ir(t), Ia(t)) in terms of (3.1)). The
boundedness of (B'(t),Ix(t), I,(t)) implies (B(t),Ia(t),I4(t)) is uniformly continu-
ous on [0,00). Thus V'(B(t), Ir(t), 14(t)) is uniformly continuous on [0,00). Con-
sequently, Lemma 2 ensures lim V'(B(2),Ir(t), 1a(t)) = 0. By (4.5), we get that
Jim (B(t) - B*(t)) =0.

Next, we shall prove tl_iglo(ln(t) — I}(t)) =0 and tEIg(IA(t) - I5(t)) =0. To that
end, we define two new variables z(t) = Ig(t) — I%(t) and y(t) = I4(t) — I4(t), which

satisfy

da(t) _ Br(B(t) - B*(t)) — praz(t),
(4.6) dd(tt)

Z_t = B(B(t) - B*(t)) — pr,u(t)

Noticing tlim (B(t) — B*(t)) = 0, we get that all of solutions of (4.6) tend to origin, that
—00
is, tl_i'rg(lg(t) —I}(t)) = 0 and ,l_i,%‘o(IA(t) -I;(t) =0.
Therefore, if az (g™ — (1/0)) + (Bias)/p1g + (B2s)/p1, < O, the periodic solution
of (3.1) is asymptotically stable when it exists. 0

5. CONCLUSION AND DISCUSSION

In this paper, we incorporate T-period and a time delay into Zhang’s [11] bacteria-
immunity system. Using Gaines and Mawhin’s continuation theorem of coincidence de-
gree theory, sufficient conditions are obtained for the existence of positively periodic
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solution of system (3.1). Further, by Lemma 2 and constructing Lyapunov function, suf-
ficient conditions are gotten, and under which the positive periodic solution is globally
asymptotical stable for any nonnegative delay 7.
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