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We propose a new approach to the semiparametric analysis of panel data binary
choice models with fixed effects and dynamics (lagged dependent variables). The
model under consideration has the same random utility framework as in Honoré
and Kyriazidou (2000, Econometrica 68, 839–874). We demonstrate that, with
additional serial dependence conditions on the process of deterministic utility and
tail restrictions on the error distribution, the (point) identification of the model can
proceed in two steps, and requires matching only the value of an index function of
explanatory variables over time, rather than the value of each explanatory variable.
Our identification method motivates an easily implementable, two-step maximum
score (2SMS) procedure – producing estimators whose rates of convergence, in
contrast to Honoré and Kyriazidou’s (2000, Econometrica 68, 839–874) methods,
are independent of the model dimension. We then analyze the asymptotic properties
of the 2SMS procedure and propose bootstrap-based distributional approximations
for inference. Evidence from Monte Carlo simulations indicates that our procedure
performs satisfactorily in finite samples.

1. INTRODUCTION

In this paper, we propose a two-step estimation method for panel data binary choice
models with fixed effects and dynamics. Specifically, we consider binary choice
models of the form

yit = 1
[
x′

itβ +γ yit−1 +αi − εit > 0
]
,i = 1, . . . ,n,t = 1, . . . ,T,1 (1.1)
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2 FU OUYANG AND THOMAS TAO YANG

where T is small and n is large, xit is a K ×1 vector of (time-varying) explanatory
variables,2 yit−1 is the lagged dependent variable, αi represents a time-invariant,
individual-specific (fixed) effect, and εit is an idiosyncratic error term. Both αi

and εit are unobservable to the econometrician. Following Honoré and Kyriazi-
dou (2000) (referred to as HK henceforth), we assume the strong exogeneity
that (xi1, . . . ,xiT) ⊥ (εi1, . . . ,εiT)|αi and that εit are independent and identically
distributed (i.i.d.) across t conditional on αi. Interest centers on estimating the
preference parameter θ ≡ (β ′,γ )′. yi0 is assumed to be observed, although the
model is not specified in the initial period 0. In the literature, the lagged terms
yit−1 and the fixed effect αi are referred to as the “state dependence” (see
Heckman, 1981a, 1981b) and the “unobservable heterogeneity,”respectively. The
co-existence of these two terms complicates the identification and estimation of θ ,
owing to the multiple sources of persistence in yit.

This paper resembles other panel data discrete response literature using fixed
effects methods, in that we impose no restrictions on the distribution of αi,
conditional on the observed explanatory variables. Arellano and Honoré (2001)
review early works on estimating β in model (1.1) with no state dependence (yit−1).
Chamberlain (2010) shows that, outside of the logistic case, these static binary
choice models have a zero information bound, and the identification requires that
at least one of the observed covariates have unbounded support. In the presence
of lagged dependent variables, various conditional maximum likelihood methods
have been developed for variants of model (1.1) with logistic errors and at least
four observations (T ≥ 3) per individual.3 Honoré and De Paula (2021) provide a
comprehensive review of this literature.4 Several new methods have been proposed
for dynamic Logit models based on moment conditions. Leading examples include
Honoré and Weidner (2020), Dobronyi, Gu, and Kim (2021), Kitazawa (2022), and
Dano (2023), among others.

HK is the first to consider the semiparametric identification and estimation
of model (1.1). They demonstrate that θ can be identified if, in addition to
assumptions analogous to those in Manski (1987), all explanatory variables are
strictly exogenous, εit’s are serially independent, and T ≥ 3. However, the rate of
convergence of their estimator decreases as the number of continuous regressors
increases, and is slower than the standard maximum score (MS) rate derived by
Kim and Pollard (1990).

There are several alternative fixed effects approaches to the semi- and non-
parametric analysis of dynamic binary choice models. Honoré and Lewbel (2002)
propose an identification strategy that requires an exclusion restriction (excluded
regressor). Chen, Khan, and Tang (2019) show that the exclusion restriction in
Honoré and Lewbel (2002) implicitly assumes (conditional) serial independence

2Any time-invariant covariates can be thought of as being part of the fixed effect αi.
3Throughout this paper, this means the data contain yi0 and (yi1,yi2,yi3,xi1,xi2,xi3) for each individual i.
4Works such as Bartolucci and Nigro (2010, 2012) and Al-Sadoon, Li, and Pesaran (2017) study the estimation of
model (1.1) under alternative specifications.
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DYNAMIC BINARY CHOICE 3

of the excluded regressor. Williams (2019) studies the nonparametric identification
of dynamic binary choice models that satisfy certain exclusion restrictions. In the
absence of excluded regressors, some recent works, such as Khan, Ponomareva,
and Tamer (2020) and Aristodemou (2021), characterize the (sharp) identified set
for θ under mild conditions. We refer interested readers to the survey article by
Honoré and De Paula (2021) and Chapter 7 in Hsiao (2022) for a detailed review
of this literature.

This paper takes one step in the direction of HK’s semiparametric estimator,
in the sense that we provide sufficient conditions under which model (1.1) can
be identified and estimated, without needing to match each of the explanatory
variables over time, provided we have at least five observations per individual are
observed (i.e., T ≥ 4).5 The key insight here is that the identification of θ can
proceed in two steps. First, β can be identified based on sequences of {yit}, for
which yis−1 = yit−1 and yis+1 = yit+1 for some 1 ≤ s < t ≤ T − 1 with t ≥ s + 2
(e.g., in the simplest case where T = 4, β is identified based on observations with
y0 = y2 = y4), if the distribution of explanatory variables xit satisfies certain serial
dependence and stochastic dominance restrictions. Then, using the identified β,
γ can be identified by simply matching x′

itβ over time. We propose an estimation
procedure for β and γ , establish the asymptotics for our estimators, and provide
an inference method that uses the bootstrap. We investigate their finite-sample
properties using Monte Carlo experiments.

As demonstrated by Honoré and Tamer (2006), matching exogenous utilities
over time seems to be essential for the point identification in “distribution-free”
dynamic discrete choice models.6 However, the approach proposed here involves
matching an identified linear combination of xit, rather than HK’s matching each
component of xit. Consequently, in contrast to the results presented by HK, the
rates of convergence of our proposed estimators are independent of the dimension
of the regressor space, making our approach particularly useful for models with a
higher-dimensional design.

It is known that panel data binary choice models with unobserved hetero-
geneity and dynamics can be estimated using the random effects or correlated
random coefficients approach. Examples include Arellano and Carrasco (2003),
Wooldridge (2005), and Honoré and Tamer (2006). In addition to preference
parameters, these approaches often allow the econometrician to calculate other
quantities of interest, such as choice probabilities and marginal effects. However,
these approaches require the specification of the statistical relation between the
explanatory variables and αi. Further, they require one to specify the distribution of
yi0, conditional on the observed explanatory variables and αi, which raises the so-
called initial condition problem. Conversely, the fixed effects approaches attempt

5That is, at least yi0 and (yi1,yi2,yi3,yi4,xi1,xi2,xi3,xi4) are observed for each individual i. This is a restriction on the
minimum panel length, which is satisfied for many longitudinal panel data sets.
6More precisely, Honoré and Tamer (2006) provided examples of point identification failure when it is impossible to
match xit over time.
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to estimate preference parameters without making these subtle specifications.
Finally, there is also literature exploring the identification and estimation of
various partial effects in panel data models (see, e.g., Altonji and Matzkin, 2005;
Chernozhukov et al., 2013, and more recent advancements by Torgovitsky, 2019;
Aguirregabiria and Carro, 2021; Dobronyi et al., 2021; Davezies, D’Haultfoeuille,
and Laage, 2022; Liu, Poirier, and Shiu, 2023, among others).

Dynamic binary choice models have a wide range of applications, including
the study of labor force participation (Damrongplasit, Hsiao, and Zhao, 2018),
poverty dynamics (Biewen, 2009)), health status (Halliday, 2008), educational
attainment (Cameron and Heckman, 1998, 2001), stock market participation
(Alessie, Hochguertel, and Soest, 2004), brand loyalty (Chintagunta, Kyriazidou,
and Perktold, 2001), welfare participation (Chay, Hoynes, and Hyslop, 1999), and
firm behavior (Kerr, Lincoln, and Mishra, 2014), among others. Most applications
typically employ parametric forms of the model (1.1), such as Logit and Probit, or
random effects assumptions. The robustness from the distribution-free and fixed
effects specification makes the approach proposed here a competitive alternative
to existing parametric and random effects methods. Note that the theoretical
validity of our approach relies on certain restrictions on the serial dependence of
explanatory variables. Thus, before applying our method, we suggest that applied
researchers detrend and seasonally adjust xit in a way that makes them resemble
“white noise” conditional on αi.7

The remainder of this paper is organized as follows: Section 2 establishes the
identification of θ under different sets of sufficient conditions, based on which, a
two-step maximum score (2SMS) procedure is proposed in Section 3. Sections
4 and 5 derive the asymptotic properties of the 2SMS estimator and propose
bootstrap-based inference methods, respectively. We present the results of Monte
Carlo experiments in Section 6 that examine the finite-sample performance of our
proposed method. Section 7 concludes the paper. We prove the main theorems
and present the main simulation results in the Appendixes. The Supplemen-
tary Material to this paper includes proofs of all technical lemmas, technical
details for the bootstrap inference, and results for supplementary simulation
studies.

For ease of reference, we next describe the notation maintained throughout this
paper.

Notation. All vectors are column vectors. Rp is a p-dimensional Euclidean
space equipped with the Euclidean norm ‖ · ‖2. We reserve the letter i ∈ N ≡
{1, . . . ,n} for indexing individuals, and the letters s,t ∈ T ≡ {1, . . . ,T} for indexing
time periods. An observation is indexed by (i,t). Vector xits denotes xit − xis. The
first element of xits is denoted by xits,1 and the sub-vector comprising its remaining
elements is denoted by x̃its. As is common in the panel data literature, we use

7Monte Carlo results show that relaxing these restrictions does not significantly affect our estimators’ finite-sample
performances (see Section 6 for a more detailed discussion).
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the notation ξ t to denote
(
ξ ′

1, . . . ,ξ
′
t

)′
. For example, suppressing the subscript i,

yt ≡ (y1, . . . ,yt)
′, a t × 1 vector. Fζ |· and fζ |· denote, respectively, the conditional

cumulative distribution function (CDF) and probability density function (PDF) of
a random vector ζ conditional on ·. For two random vectors, u and v, the notation

u
d= v|· means that u and v have identical distributions, conditional on ·, and u ⊥ v|·

means that u and v are independent, conditional on ·. We use P(·) andE[·] to denote
probability and expectation, respectively. Function 1[·] is an indicator function,
equal to one when the event in the brackets is true, and zero otherwise. Function
sgn(·) denotes the sign function, equal to 1 when · is positive, 0 when · is 0, and

−1 when · is negative. Symbols \, ′, ∝, ⇔,
d→, and

P→ represent set difference,
matrix transposition, proportionality, “if and only if,” convergence in distribution,
and convergence in probability, respectively. For any (random) positive sequences,
{an} and {bn}, an = O(bn) (OP(bn)) means that an/bn is bounded (bounded in

probability), and an = o(bn) (oP(bn)) means that an/bn → 0 (an/bn
P→ 0).

2. IDENTIFICATION

This section provides sufficient conditions for identifying the parameter θ with
no need to match observed covariates xit over time. Under these assumptions,
we derive a set of identification inequalities that can be taken to data for (point)
estimation and inference on the parameter θ .

To simplify the notation, we suppress the subscript i in the rest of this paper
whenever it is clear from the context that all variables relate to each individual.
Suppose that a random sample from a population of independent individuals8 is
observed for T +1 (= |T ∪{0}|) periods. Recall that, for all t ∈ T ,

yt = 1
[
x′

tβ +γ yt−1 +α − εt > 0
]

. (2.1)

Note that the model is incomplete, in the sense that it does not specify the
relationship between y0 and (xT,α,εT). This is known as the initial condition
problem in panel data literature. This paper uses a fixed effects approach, in
which we attempt to estimate θ = (β ′,γ )′ without making any assumptions on
the distribution of α, conditional on explanatory variables. This helps us to avoid
explicitly specifying the functional form of p0(xT,α) ≡ P(y0 = 1|xT,α), and thus
circumvents the initial condition problem.

As mentioned, we impose no restriction on Fα|xT , but place the following
restrictions on observed covariates xT and unobserved idiosyncratic errors εT .

Assumption A. For all α and s,t ∈ T ,

(a) (i) εT ⊥ (xT,y0)|α, (ii) εs ⊥ εt|α, and (iii) εs
d= εt|α.

(b) Fεt |α is absolutely continuous with PDF fεt |α and support R.

8Here, the term “independent individuals” refers to the assumption that (αi,yi0,xi1, . . . ,xiT,εi1, . . . ,εiT ) is indepen-
dently distributed across i.
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(c) (i) One of the regressors, without loss of generality (w.l.o.g.) xts,1, has almost
everywhere positive probability density on R, conditional on x̃ts and α, and (ii)
the coefficient β1 on xts,1 is nonzero.

(d) The support Xts of Fxts|α is not contained in any proper linear subspace of RK .
(e) θ = (β ′,γ )′ ∈ B× int(R), where B ≡ {b = (b1, . . . ,bK)′ ∈ R

K |‖b‖2 = 1} and
R is a compact subset of R with a non-empty interior.

Assumption A places the same set of restrictions on the joint distribution of
(xT,α,εT) as in HK. While not stated explicitly in their Theorem 4, HK use
Assumption A(a), the exogeneity of (xT,y0) and serial independence of {εt},
conditional on α, to derive the moment inequalities for the identification. Note that
Assumption A(a) implies that the fixed effects α pick up two types of dependence
in the model: the dependence over time in the unobservables, and the dependence
between explanatory variables and unobservables. As a result, in model (2.1), εt

is independent of
(
xT,yt−1

)
, conditional on α. Furthermore, Assumption A(a) is

a special case of the group homogeneity restriction, εs
d= εt|(xs,xt,α), imposed

in Manski (1987), Pakes and Porter (2016), and Shi, Shum, and Song (2018) for
identifying static discrete choice models (without controlling the lagged term yt−1

in the model). Thus, we can suppress the time subscript t in Fεt |α and fεt |α in the
rest of this paper without ambiguity. Assumption A(b) is a regularity condition that
ensures that both ys 
= yt and ys = yt occur with positive probabilities for all α and
s,t ∈ T .

It is known and documented in the relevant literature (see, e.g., Lemma 1 of
Manski, 1985) that to establish the point identification of the parameter θ in
a distribution-free setting, xt also needs to satisfy certain regularity conditions.
Assumption A(c) requires the existence of a relevant, continuous regressor, with
large support, which is a standard restriction imposed in MS-type estimators.
Assumption A(d) is the familiar full-rank condition. Assumptions A(c) and A(d)
are identical to Assumption 2 of Manski (1987).

Assumption A(e) is for scale normalization and parameter space. This is a
typical practice for discrete choice models, because the identification of θ is only
up to scale. In the semiparametric framework, where no parametric form of Fε|α
is specified, identification is often achieved by normalizing the magnitude of the
regression coefficients. Assumption A(e) assumes that β is on the unit circle and
has a nonzero first element β1.9

HK demonstrate that, if T ≥ 3 and xt has time-varying overlap support, θ can
be identified under Assumption A.10 Their proposed approach requires matching
all exogenous covariates over time, and results in an estimator with a rate that
declines as the number of exogenous covariates increases. The main contribution
of this paper is the provision of a set of supplementary conditions, under which the

9Our procedure identifies β and γ sequentially, so it is more convenient to normalize the scale of β, rather than that
of θ , as in HK.
10As is stated in HK, Assumption A is not sufficient for point identifying θ if T < 3.
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identification of θ can escape from the necessity of element-by-element matching.
Specifically, our approach is based on the following monotonic relationship
between a conditional choice probability and an index of the exogenous covariates:
For some s,t ∈ T such that t − s ≥ 2,

P(yt = 1|xs,xt,ys−1 = yt−1,ys+1 = yt+1,α) ≥ P(ys = 1|xs,xt,ys−1 = yt−1,ys+1 = yt+1,α)

⇔
x′

tβ ≥ x′
sβ. (2.2)

Note that (2.2) requires that there be at least five (T ≥ 4) observations per individual
observed by the econometrician (i.e., s = 1, t = 3, and s + 1 = t − 1 = 2). In the
simplest case with T = 4, (2.2) reduces to P(y3 = 1|x1,x3,y0 = y2 = y4,α) ≥ P(y1 =
1|x1,x3,y0 = y2 = y4,α) if and only if x′

3β ≥ x′
1β.

Result (2.2) states that the indices x′
sβ and x′

tβ rank order the (conditional)
probabilities of choosing 1 in periods s and t. To ensure this, conditioning on
ys−1 = yt−1 is obviously necessary. However, as t−1 > s, ys affects yt−1 through the
dynamics of the model (specifically, through the chain ys → ys+1 → ··· → yt−1).
Accordingly, we need to include ys+1 in the conditioning set to cut off such state
dependence, and further impose the restriction ys+1 = yt+1 to make the events
{ys = 1} and {yt = 1} have symmetric conditioning sets. Only with this symmetry
can we invoke time stationarity restrictions on xt to establish the equivalence
in (2.2).

In particular, to reach (2.2), we also need to address the following two concerns.
First, xs (xt) may affect the value of yt+1 (ys+1) via its serial dependence on xt+1

(xs+1). Second, the dependence between xt and yt+1 (via xt+1) may change dra-
matically over time. Both require additional restrictions to be placed on the serial
dependence of the stochastic process of xt. Otherwise, as shown in Appendix A,
x′

tβ is not the unique factor that can rank order the choice probabilities in (2.2).
The following condition, together with Assumption A, is sufficient to establish

(2.2), as shown in Appendix A.

Assumption SI. For all s,t ∈ T such that s 
= t, (a) xs ⊥ xt|α, and (b) xs
d= xt|α.

In Appendix A, we first prove (2.2) under Assumptions A and SI for a special
case of model (2.1) with T = 4 and γ < 0. This serves as a roadmap to help readers
understand the main ideas. The same arguments can be applied analogously to
prove the most general case (see Lemma A.4).

Assumption SI imposes a strong restriction on the dynamic process of the
covariate sequence, which requires the process {xt} to be serially independent and
strictly stationary, conditional on the individual-specific effects α. In a dynamic
fixed effects model, α collects all time-invariant covariates, as well as unobserved
individual preferences, abilities, or character traits. In such models, if xt includes
only observed individual characteristics naturally correlated with α, it may be
reasonable to further assume that the serial dependence in the process {xt} is
also derived from α. Assumption SI implies that we cannot accommodate time
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trends. We do allow random time effects λt that satisfy (λs,xs) ⊥ (λt,xt)|α, and

(λs,xs)
d= (λt,xt)|α.11

If xt contains covariates related to some institutional factors that lead to
exogenous variation in, for example, costs of participation, across individuals,
Assumption SI may be approximately satisfied by using the differencing,
demeaning, or de-trending transformation of these variables. This applies to cases
where {xt} exhibits some long-run equilibrium (either deterministic or stochastic
trend). The transformed regressor then measures the deviation of xt from its long-
run equilibrium (trend), which, in some cases, might be assumed to be a white noise
process affecting the short-run dynamics of the model.12 Note that such variable
transformation may involve model reparameterization. For example, when model
(2.1) is the reduced form derived from some structural model, one would need to
first reparameterize the structural model accordingly, so that the estimates of the
coefficient vector in model (2.1) with transformed covariates can be interpreted in
a meaningful way.

HK assume that the support of xt is overlapping over time, so the differences in
the regressors across different time periods have a positive density in a neighbor-
hood of zero. However, evidence presented in Honoré and Tamer (2006) implies
that some additional assumption is needed to achieve point identification without
performing an element-by-element match, as in HK. Indeed, Assumption SI is
the extra condition needed for our approach, compared with the semiparametric
estimator in HK.

Under Assumptions A and SI, the identification of θ proceeds in two steps.
Proposition 2.1 demonstrates that β can be identified based on moment inequality
(2.2), and Proposition 2.2 establishes the identification of γ by matching the value
of the index function x′

tβ in different periods.

Proposition 2.1 (Identification of β). Assume T ≥ 4. For all s,t ∈ T such that
t ≥ s+2, define

Q1(b) = E{[P(yt = 1|xs,xt,ys−1 = yt−1,ys+1 = yt+1)−P(ys = 1|xs,xt,ys−1 =
yt−1,ys+1 = yt+1)]× sgn(x′

tsb)}.
Suppose Assumptions A and SI hold. Then, Q1(β) > Q1(b), for all b ∈ B \ {β}.

The proof of Proposition 2.1 can be found in Appendix A. Note that our
identification strategy for β requires T = 4, as a minimum. In this case, t = s + 2
must hold with s = 1 and t = 3, and thus Q1(b) is

Q1(b) = E{[P(y3 = 1|x1,x3,y0 = y2 = y4)−P(y1 = 1|x1,x3,y0 = y2 = y4)] · sgn(x′
31b)}.

(2.3)

11We can apply essentially the same arguments used in Appendix A to establish a monotonic relationship analogous
to (2.2) for index λ+ x′

tβ, and identify β and γ similarly.
12For example, consider a case where {xt} is a random-walk-plus-drift process (i.e., xt = x0 + a0t +∑t

τ=1 eτ ).
Although {xt} violates Assumption SI, its first differencing �xt = xt − xt−1 = a0 + et is i.i.d. over time.
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Proposition 2.1 establishes the identification of β, which enables us to identify
γ , with β being treated as a known, constant vector. Then, the following proposi-
tion shows that γ can be identified by matching the deterministic utility wt ≡ x′

tβ

in different periods; the proof is presented in Appendix A. Because the key idea
for identifying γ uses the insight of Section 4.1 in HK, in what follows, we keep
the notation as close to that of HK as possible.

We define the event

A = {y0 = d0, . . . ,ys−1 = ds−1,ys = 0,ys+1 = ds+1, . . . ,yt−1 = dt−1,yt = 1,

yt+1 = dt+1, . . . ,yT = dT},
and its counterpart

B = {y0 = d0, . . . ,ys−1 = ds−1,ys = 1,ys+1 = ds+1, . . . ,yt−1 = dt−1,yt = 0,

yt+1 = dt+1, . . . ,yT = dT},
where dτ ∈ {0,1}, for 0 ≤ τ ≤ T . Note that y takes the same values other than at
time periods (s,t) for A and B: y switches from 0 to 1 at time s and t, respectively,
for A, and y switches from 1 to 0 at time s and t, respectively, for B.

We have two cases, based on whether s and t are adjacent. When s and t are
adjacent (t = s+1), we define the objective function

Q2(r;β) = E
{[

P(A|xT,wt = wt+1)−P(B|xT,wt = wt+1)
]

×sgn((wt −wt−1)+ r(dt+1 −dt−2))} .

For the case where s and t are not adjacent (t > s + 1), we define the objective
function

Q̃2(r;β) = E{[P(A|xT,ws+1 = wt+1,ys+1 = yt+1)−P(B|xT,ws+1 = wt+1,ys+1 = yt+1)]

× sgn((wt −ws)+ r(dt−1 −ds−1))}.
In the following proposition, we establish the identification of γ by showing that
γ uniquely maximizes both Q2(r;β) and Q̃2(r;β).

From the definitions of A,B, and Q2(r;β), we require T ≥ 3. In the simplest
case when T = 3, we have

A = {y0 = d0,y1 = 0,y2 = 1,y3 = d3} and B = {y0 = d0,y1 = 1,y2 = 0,y3 = d3},
and

Q2(r;β) = E

{[
P(A|xT,w2 = w3)−P(B|xT,w2 = w3)

]
sgn((w2 −w1)+ r(d3 −d0))

}
.

Q̃2(r;β) is not applicable for this case.

Proposition 2.2 (Identification of γ ). Suppose Assumption A holds. We have:

(i) Q2(γ ;β) > Q2(r;β) for all r ∈ R\ {γ }.
(ii) Q̃2(γ ;β) > Q̃2(r;β) for all r ∈ R\ {γ }.
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Remark 2.1. When T ≥ 4, any combination (s,t) of the elements of {1, . . . ,T −
1} taken two at a time can be used to construct the population objective function to
identify γ . For example, in the simplest case T = 4, feasible choices of (s,t) include
(1,2), (1,3), and (2,3). One can use any of these pairs to define the population
objective function, either Q2(·;β) or Q̃2(·;β). Clearly, any one (or combination,
e.g., by simply summing them up) of these objective functions can be used to
identify γ .

Propositions 2.1 and 2.2 outline a two-step procedure for identifying the pref-
erence parameters β and γ , of which Proposition 2.2 uses HK’s insight. Note that,
as Proposition 2.1 suggests, an additional assumption, SI, enables us to establish
the identification of β independently to that of γ in the first step. As a result, it
suffices to match the index x′

tβ, rather than each component of xt over time, as
in HK, when identifying γ in the second step. The benefit of doing so is that the
two-step procedure avoids the curse of dimensionality caused by matching many
explanatory variables (see Theorem 4.1 in Section 4). Our method is particularly
competitive when handling high-dimensional models.

The following theorem is an immediate result of Propositions 2.1 and 2.2.

Theorem 2.1 (Identification of θ ). Suppose T ≥ 4 and Assumptions A and SI
hold. Then, β is identified based on population objective function Q1(·), and γ is
identified based on either population objective function Q2(·;β) or Q̃2(·;β).

2.1. Alternative Sufficient Conditions for Identification

Here, we provide an alternative sufficient condition that permits limited depen-
dence of the covariates for the identification. We show in Lemma A.3 that
Assumptions A and SD (in below) are sufficient for the inequality in (2.2), which,
in turn, shows the identification. In this section, we present and discuss this
assumption.

Assumption SD. For all α and s,t ∈ T ,

(a) fε|α(·)/Fε|α(·) is a nonincreasing function, or equivalently, fε|α(·)/[1−Fε|α(·)]
is a nondecreasing function.

(b) Let wt ≡ x′
tβ. The joint PDF of wT conditional on α is exchangeable, that is,

fwT |α(ω1, . . . ,ωT) = fwT |α(ωπ(1), . . . ,ωπ(T))

for all permutations {π(1), . . . ,π(T)} defined on the set T .

Assumption SD(a) states that Fε|α has a decreasing inverse Mills ratio, which,
together with Assumption SD(b), guarantees the monotonic relation in (2.2),
as proved in Appendix A. Assumption SD(a) is satisfied by many common
continuous distributions, such as the Gaussian, logistic, Laplace, uniform, gamma,

https://doi.org/10.1017/S0266466624000057 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000057


DYNAMIC BINARY CHOICE 11

log-normal, Gumbel, and Weibull distributions.13 However, this property fails
if Fε|α has heavy tails (e.g., Student’s t-distribution and Cauchy distribution).14

Note that Assumption SD(a) is a key condition imposed in McFadden (1976) and
Silvapulle (1981) for both − logFε|α(·) and − log(1−Fε|α(·)) being convex, which
guarantees a unique solution for the MLE in cross-sectional models with errors that
follow a general distribution.

In model (2.1), the exogenous utility wt affects the value of yt+1 via yt and
its serial dependence with wt+1, conditioning on α. The former is explicitly
captured by the coefficient γ . For the latter, Assumption SD(b) restricts the serial
dependence of {wt}. Assumption SD(b) is weaker than Assumption SI. Under
Assumption SI, wt’s are i.i.d. over time, conditional on α. Then, wt’s have an
exchangeable joint PDF, as defined in Assumption SD(b). However, the other
direction is not always true. As noted in Fox (2007), a common example of
an exchangeable PDF for non-independent wt’s is a multivariate normal density
with E[wt] = μ, Var(wt) = σ 2, and Corr(ws,wt) = ρ, for all s,t ∈ {1, . . . ,T}.
More generally, if each wt can be expressed as wt = ϕ(ut,v), where ut’s are i.i.d.
random variables, v is a random variable independent of all ut’s, and ϕ(·,·) is some
measurable function, then wT satisfies Assumption SD(b), but not Assumption SI.
Similar exchangeability assumptions are imposed in Altonji and Matzkin (2005)
and Chen, Khan, and Tang (2018).

A few remarks are in order about how our identification conditions are related
to the existing literature.

Remark 2.2. Compared with HK, our approach relies on additional assump-
tions restricting the serial dependence of strictly exogenous regressors xt and
requires T ≥ 4. These conditions make identification without element-by-element
matching of xt possible. HK construct identifying inequalities similar to our (2.2).
To obtain point identification, HK use probabilities of specific sequences of yT

conditional on event {xs = xt}, for some s,t ∈ {1, . . . ,T}. Instead, our approach
matches yt in different time periods to construct identifying inequalities, allowing
for point identification without element-by-element matching of xt. However, as
discussed after the introduction of our key identifying condition (2.2), xt can
affect the choice probabilities in (2.2) through the utility index x′

tβ and its serial
dependence with x in other time periods. Assumptions SI and SD restrict this
dependence, ensuring that choice probabilities are solely rank-ordered by x′

tβ.
Additionally, our approach requires comparing x′

tβ in non-adjacent time periods

13In a mixture model, for example,

fε|α(e) =
M∑

m=1

πmfε|α(e;ϑm)

with mixing proportions πm,
∑M

m=1 πm = 1, where each component density has a different parameter vector ϑm,
Assumption SD(a) holds for Fεt |α(·) if it is satisfied by all component distributions Fε|α(·;ϑm).
14More precisely, Assumption SD(a) does not hold globally for these distributions. For example, it is not difficult to
find that this assumption holds for Student’s t and Cauchy on [−L,∞) for some positive L.
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(i.e., t > s+1 in (2.2)). As a result, we need observation of one more period for each
individual, compared with HK’s method, which can achieve point identification
using x′

tβ in adjacent time periods (t = s+1).

Remark 2.3. Second, our identification conditions are non-nested with those in
the literature, assuming exclusion restrictions, such as Honoré and Lewbel (2002),
Chen et al. (2018, 2019), and Williams (2019). Chen et al. (2019) show that Honoré
and Lewbel (2002) essentially require the serial independence of the excluded
regressor. Williams (2019) requires that the other strictly exogenous regressors
are conditionally independent of the past values of the excluded regressor. In
addition to specific restrictions on the dynamic process for the covariates, the
identification results of these studies rely on the existence of at least one “excluded
regressor” conditionally independent of the individual fixed effects α. Conversely,
our approach allows for arbitrary correlation between xt and α.

3. ESTIMATION

Applying the analogy principle, the identification results presented in Section 2
can be translated into a two-step estimation procedure. In the first step, we obtain
an MS estimator (with binary weights) β̂ of β. In the second step, γ is estimated
by a localized MS procedure matching the estimated index x′

tβ̂ over time. Each of
the two steps is described, in turn, below.

In Sections 3.1 and 3.2, we restrict our discussion to the model with T = 4 to
streamline exposition in subsequent sections. The same method can be applied,
with straightforward modification, to models with longer panels. We provide
objective functions for general cases with T ≥ 4 in Section 3.3.

3.1. Estimation of β with T = 4

Assuming a random sample of n individuals, we propose the following weighted
MS estimator β̂ of β, defined as the maximizer over the parameter space B:

β̂ = argmax
b∈B

Q1n(b), (3.1)

where

Q1n(b) = 1

n

n∑
i=1

1[yi0 = yi2 = yi4](yi3 − yi1) · sgn(x′
i31b). (3.2)

Because we restrict the search within a compact set B and the objective function
(3.2) is bounded and continuous, the maximizer β̂ of the maximization problem
(3.1) does exist. However, β̂ may not be unique because the objective function (3.2)
is essentially a step function for any finite samples. Nonetheless, as guaranteed by
Theorem 4.1 in Section 4, β̂ is in a small neighborhood of the true parameter β

with a high probability for a sufficiently large sample size.
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It is clear from expression (3.2) that only observations that satisfy yi1 
= yi3,
yi0 = yi2, and yi2 = yi4 are used in the estimation. That is, the objective function
uses only “switchers” with choice changes in periods 1 and 3, with the same
choices in their previous and subsequent periods, respectively. This feature reduces
the “effective” sample size for the estimator of β. HK’s estimator has a similar
problem, because it also uses only switchers, and needs to match xt over time. Our
estimator (3.1) is more applicable when the model has many regressors, especially
discrete regressors that must be matched exactly over time when applying HK’s
procedure.

3.2. Estimation of γ with T = 4

Proposition 2.2 motivates a localized MS estimator γ̂ of γ , defined here as the
maximizer over the parameter space R of the objective function15

Q2n(r;β) = 1

n

n∑
i=1

{1[x′
i2β = x′

i3β](yi2 − yi1) · sgn(x′
i21β + r(yi3 − yi0))

+1[x′
i3β = x′

i4β](yi3 − yi2) · sgn(x′
i32β + r(yi4 − yi1))}. (3.3)

Expression (3.3) is the sample analog of Q2(r;β) in Proposition 2.2 after taking the
union of events A and B for all possible values of d0,d1, . . . ,d4. As with objective
function (3.2), (3.3) also uses only data on switchers (i.e., satisfying A ∪ B) who
make different choices in the two periods compared. In addition, (3.3) also requires
a match in x′

tβ.
Note that this estimator is not feasible, because β is unknown, and it is of

probability zero to have exactly matched indices (x′
isβ = x′

itβ) in the presence
of continuous regressors. To resolve the first concern, we propose replacing the
unknown parameter β in expression (3.3) with the β̂ obtained from (3.1), which is
shown to be (cube-root n) consistent in Section 4.

For the second concern, we use kernel weights

Khn((xit − xis)
′b), for all s,t ∈ T and b ∈ B,

instead of 1[x′
isb = x′

itb]. Khn(·) is defined as h−1
n K(·/hn), where K(·) is a kernel

density function and hn is a bandwidth sequence that converges to zero as n → ∞.
The idea is to replace the binary weights for x′

isβ̂ = x′
itβ̂ with weights that depend

inversely on the magnitude of (xit −xis)
′β̂, giving more weight to observations with

(xit − xis)
′β̂ closer to zero. We discuss the choice of the tuning parameter hn with

illustrating examples in Section 6.2.
Then, we propose the following kernel-weighted MS estimator γ̂ of γ :

γ̂ = argmax
r∈R

QK
2n(r;β̂), (3.4)

15If one knew β, the estimation of γ requires only T = 3, that is, using the first line of (3.3) as the objective function.
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where

QK
2n(r;β̂) = 1

n

n∑
i=1

{Khn(x
′
i32β̂)(yi2 − yi1) · sgn(x′

i21β̂ + r(yi3 − yi0))

+Khn(x
′
i43β̂)(yi3 − yi2) · sgn(x′

i32β̂ + r(yi4 − yi1))}. (3.5)

Remark 3.1. Note that objective function (3.5) is associated with the population
objective function Q2(r;β) in Proposition 2.2, which uses only observations of
adjacent time periods. Applying the same idea to the population objective function
Q̃2(r;β) yields the following objective function, using observations that are not
adjacent:

Q̃K
2n(r;β̂) = 1

n

n∑
i=1

1[yi2 = yi4]Khn(x
′
i42β̂)(yi3 − yi1) · sgn(x′

i31β̂ + r(yi2 − yi0)).

In practice, to make full use of all observations, one can consider using QK
2n(r;β̂)+

Q̃K
2n(r;β̂) as the objective function for the estimation of γ .

Remark 3.2. Calculating the MS-type of estimators (3.1) and (3.4) is challeng-
ing, as it is for the semiparametric estimator of HK. Following Fox (2007) and
Yan and Yoo (2019), we suggest using a global optimization method called the
differential evolution (DE) algorithm. The DE algorithm, introduced by Storn and
Price (1997), is specifically designed to search the global optimum of a real-valued
function with real-valued parameters. Notably, it does not require the objective
function to be continuous or differentiable. The DE algorithm has been widely used
in engineering applications, and its performance as a global optimization algorithm
has been studied extensively (see, e.g., Price, Storn, and Lampinen, 2006). To
implement the DE algorithm, one can use the “DEoptim” package in R.16 The
following statement is quoted from the R documentation for the “DEoptim”
package, which provides a brief introduction. Interested readers are advised to
consult this documentation for more information on the implementation and usage
of this algorithm.

“Differential Evolution (DE) is a search heuristic introduced by Storn and
Price (1997). Its remarkable performance as a global optimization algorithm
on continuous numerical minimization problems has been extensively explored;
see Price et al. (2006). DE belongs to the class of genetic algorithms which use
biology-inspired operations of crossover, mutation, and selection on a population
in order to minimize an objective function over the course of successive gener-
ations. As with other evolutionary algorithms, DE solves optimization problems
by evolving a population of candidate solutions using alteration and selection
operators. DE uses floating-point instead of bit-string encoding of population
members, and arithmetic operations instead of logical operations in mutation. DE
is particularly well-suited to find the global optimum of a real-valued function of

16https://cran.r-project.org/web/packages/DEoptim/index.html.
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real-valued parameters, and does not require that the function be either continuous
or differentiable.”

Note that the 2SMS procedure described in (3.1), (3.2), (3.4), and (3.5) does
not require matching each covariate in xit over time, as it does in HK. As a result,
the rates of convergence of β̂ and γ̂ are independent of the number of continuous
covariates in xit, in contrast to the procedure of HK. In view of existing results
on the MS estimators (e.g., Manski, 1985, 1987; Kim and Pollard, 1990; Seo and
Otsu, 2018), we expect the limiting distributions of β̂ and γ̂ to be non-Gaussian
and their rates of convergence to be OP(n−1/3) and OP((nhn)

−1/3), respectively.
Section 4 states sufficient conditions under which these asymptotic properties can
be derived.

3.3. Estimation with T ≥ 4

A longer panel allows for more objective functions of similar form. Collectively,
these objective functions (by, e.g., summing them) can be used to obtain more
accurate estimates of θ for finite samples. For the case with T ≥ 4, estimators for
β and γ that best use the data can be obtained as follows. For β, we find β̂ by
maximizing

Q1n(b) = 1

n

n∑
i=1

∑
t>s+1

1[yis−1 = yit−1]1[yis+1 = yit+1](yit − yis)sgn
(
(xit − xis)

′b
)

.

Once β̂ is obtained, we estimate γ by maximizing

QK
2n(r;β̂)+ Q̃K

2n(r;β̂)

with respect to r, where

QK
2n(r;β̂) = 1

n

n∑
i=1

T−1∑
t=2

Khn ((xit+1 − xit)
′β̂)(yit − yit−1)sgn((xit − xit−1)

′β̂ + r(yit+1 − yit−2))

is for the case with t = s+1, and

Q̃K
2n(r;β̂) = 1

n

n∑
i=1

T−3∑
s=1

T−1∑
t=s+2

{1[yis+1 = yit+1]Khn((xit+1 − xis+1)
′β̂)

× (yit − yis)sgn((xit − xis)
′β̂ + r(yit−1 − yis−1))}

is for the case with t > s+1.

4. ASYMPTOTIC PROPERTIES

The estimators proposed in Section 3 are of the same structure and differ only
in that they each use a different fraction of observations in the sample. We
expect that they have similar asymptotic properties. Therefore, it suffices to show
the asymptotics for the estimators in Sections 3.1 and 3.2, for the case T = 4.
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The asymptotic properties of the estimators in Section 3.3 can be derived in a
similar way.

As is standard in the literature, such as Kim and Pollard (1990), we start
the analysis by introducing modified objective functions for β̂ and γ̂ . The new
objective functions are monotone (linear) transformations of (3.2) and (3.5),
respectively. As a result, working with them does not change the values of β̂ and
γ̂ , but can facilitate the derivation process.

Because adding terms not related to b will not affect the optimization over b, and
1[a > 0] = (sgn(a)+ 1)/2 for all a ∈ R, β̂ obtained from the following objective
function is identical to that from (3.2),

β̂ = argmax
b∈B

n−1
n∑

i=1

ξi (b),

where

ξi (b) ≡ 1[yi0 = yi2 = yi4](yi3 − yi1)
(
1
[
x′

i31b > 0
]−1

[
x′

i31β > 0
])

. (4.1)

For the same reason, γ̂ can be obtained equivalently from

γ̂ = argmax
r∈R

n−1
n∑

i=1

ςni(r,β̂),

where

ςni(r,β̂) ≡ Khn

(
x′

i32β̂
)
(yi2 − yi1)1

[
x′

i21β̂ + r (yi3 − yi0) > 0
]

(4.2)

+Khn

(
x′

i43β̂
)
(yi3 − yi2)1

[
x′

i32β̂ + r (yi4 − yi1) > 0
]

.

The following technical assumptions are needed for the asymptotics of β̂ and γ̂ .

Assumption 1. The vectors
(
xT

i ,y
T
i ,yi0

)′
with T ≥ 4 are i.i.d. across individuals.

Assumption 2. n−1∑n
i=1 ξi(β̂) ≥ maxb∈B n−1∑n

i=1 ξi (b) − oP
(
n−2/3

)
and

n−1∑n
i=1 ςni(γ̂ ,β̂) ≥ maxr∈R n−1∑n

i=1 ςni(r,β̂)−oP ((nhn)
−2/3).

Assumption 3. The joint density function for α, covariates xT , and εT are
continuously differentiable. The density function and its first-order derivatives are
uniformly bounded. Further,

f
(
εt|α,xT,ε1, . . . ,εt−1,εt+1, . . . ,εT

)
and f

(
xt|α,x1, . . . ,xt−1,xt+1, . . . ,xT,ε

T
)

are continuous differentiable with respect to all arguments. The conditional densi-
ties and their derivatives are uniformly bounded.

Assumption 4. The kernel functionK (u) is nonnegative, symmetric about zero,
continuous differentiable, has compact support, and satisfies

∫
R
K (u)du = 1.

Assumption 5. hn → 0,nhn → ∞, and nh4
n → 0 as n → ∞.
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Assumption 2 is standard in the literature and precisely defines our estimator.
Assumption 3 is for technical convenience; it ensures certain functions defined in
the proof of Theorem 4.1 are differentiable, so that V1 and V2 (defined in Theorem
4.1) have simple representations. In the case of discrete explanatory variables
which violates Assumption 3, V1 and V2 can be shown to be well defined, but
with more tedious calculations and notation. Assumption 4 collects some standard
restrictions on kernel functions. The symmetry of K (u) ensures that the bias term
is of the order h2

n. In Assumption 5, nhn → ∞ is standard, and nh4
n → 0 ensures

the bias term from the kernel estimation is asymptotically negligible.

Theorem 4.1. Suppose T ≥ 4 and Assumptions A, SI (or SD), and 1–5 hold.
Then,

1. β̂ −β = OP
(
n−1/3

)
, and

n1/3(β̂ −β)
d→ argmax

s∈RK
Z1 (s),

where Z1 (s) is a Gaussian process with continuous sample paths, expected
value 1

2 s′V1s, and covariance kernel H1 (s,t) . V1 and H1 are defined in expres-
sions (B.1) and (B.2), respectively.

2. γ̂ −γ = OP((nhn)
−1/3), and

(nhn)
1/3

(
γ̂ −γ

) d→ argmax
s∈R

Z2 (s),

where Z2 (s) is a Gaussian process with continuous path, expected value 1
2 V2s2,

and covariance kernel H2 (s,t) . V2 and H2 are defined in expressions (B.3) and
(B.4), respectively.

Kim and Pollard (1990) and Seo and Otsu (2018) derive the cube-root asymp-
totics for a class of estimators by means of empirical processes. For a compre-
hensive treatment of this technique, see van der Vaart and Wellner (1996). Our
estimators fall into this category. In particular, they are more closely related to
Seo and Otsu (2018). The main body of the proof for Theorem 4.1 verifies the
technical conditions in Seo and Otsu (2018), applies their asymptotics results to
our estimators, and calculates the technical terms needed for the asymptotics such
as V1,H1,V2, and H2.

Note that the asymptotics of γ̂ are the same as in the case where the true value of
β is used. Intuitively, β̂ converges to β faster than γ̂ does to γ, and the objective
function (4.2), after proper normalization, uniformly converges to the limit over
a compact set of

(
b′,r

)′
around

(
β ′,γ

)′
. The details can be found in the proof of

Theorem 4.1, which is presented in Appendix B.
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5. INFERENCE

The asymptotic distributions of β̂ and γ̂ are complicated and do not have an
analytical form. As a result, inference using the asymptotic distribution directly
is difficult to implement. One may consider smoothing the objective functions, in
the spirit of Horowitz (1992), to attain faster rates of convergence and asymptotic
normality.17 However, this requires selecting additional kernel functions and tun-
ing parameters, and then computing consistent estimates for asymptotic variances.
As an alternative, we seek to use more direct sampling methods (e.g., bootstrap).
Unfortunately, Abrevaya and Huang (2005) have proved the inconsistency of the
classic bootstrap for the MS estimators. We expect that the classic bootstrap does
not work for our estimators either.

For the ordinary MS estimator, valid inference can be conducted using
subsampling (Delgado, Rodríguez-Poo, and Wolf, 2001), m-out-of-n bootstrap
(Lee and Pun, 2006), the numerical bootstrap (Hong and Li, 2020), and a
model-based bootstrap procedure that analytically modifies the criterion function
(Cattaneo, Jansson, and Nagasawa, 2020), among other procedures.18 These
methods, with certain modifications, can be justified to be valid for our
estimators.

Monte Carlo evidence demonstrated in Hong and Li (2020) suggests that their
proposed approach outperforms the subsampling and the m-out-of-n bootstrap in
finite samples. Based on these results, we focus on the numerical bootstrap. We
provide a brief discussion on the classic bootstrap and the m-out-of-n bootstrap in
Appendix E of the Supplementary Material.19

We next introduce some additional notation. Let (yT∗′
j ,xT∗′

j )′,j = 1, . . . ,n, be a
random sample drawn with replacement from the collection of the sample values(
yT′

1 ,xT′
1

)′
,
(
yT′

2 ,xT′
2

)′
, . . . ,

(
yT′

n ,xT′
n

)′
. Let ξ ∗

j (b) denote ξ (b) evaluated at (yT∗′
j ,xT∗′

j )′,
specifically,

ξ ∗
j (b) ≡ 1

[
y∗

j0 = y∗
j2 = y∗

j4

](
y∗

j3 − y∗
j1

)(
1
[
x∗′

j31b > 0
]−1

[
x∗′

j31β > 0
])

.

Similarly, we define ς∗
nj (r,b) as

ς∗
nj (r,b) ≡ Khn

(
x∗′

j32b
)(

y∗
j2 − y∗

j1

)(
1
[
x∗′

j21b+ r
(

y∗
j3 − y∗

j0

)
> 0

]
−1

[
x∗′

j21β +γ
(

y∗
j3 − y∗

j0

)
> 0

])

+Khn

(
x∗′

j43b
)(

y∗
j3 − y∗

j2

)(
1
[
x∗′

j32b+ r
(

y∗
j4 − y∗

j1

)
> 0

]
−1

[
x∗′

j32β +γ
(

y∗
j4 − y∗

j1

)
> 0

])
.

17See also Kyriazidou (1997) and Charlier (1997).
18The case-specific, smooth bootstrap method proposed by Patra, Seijo, and Sen (2018) is also valid for the MS
estimator of Manski (1975, 1985). However, this method is difficult to generalize to our case.
19We show in Appendix E of the Supplementary Material that the classic bootstrap is not consistent for our estimators
(Appendix E.2 of the Supplementary Material), while the m-out-of-n bootstrap is still valid (Appendix E.3 of the
Supplementary Material). Note that we re-use some notation in this appendix for notational convenience. To avoid
confusion, all notation in each subsection is specific to the procedure discussed in that subsection.
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5.1. Numerical Bootstrap

Hong and Li (2020) develop a numerical bootstrap procedure for cases in which
the classic bootstrap does not work. They demonstrate that their method works for
a class of M-estimators that converge at rate na for some a ∈ (1/4,1]. The estimator
β̂ proposed in Section 3 fits their framework directly, but γ̂ does not. With a slight
modification of their proof, we show that the numerical bootstrap also works for γ̂ .

The numerically bootstrapped β̂∗ and γ̂ ∗ are constructed from

β̂∗ = argmax
b∈B

⎧⎨
⎩n−1

n∑
i=1

ξi (b)+ (nεn)
1/2 ·n−1

n∑
j=1

(
ξ ∗

j (b)−n−1
n∑

i=1

ξi (b)

)⎫⎬
⎭

(5.1)

and

γ̂ ∗ = argmax
r∈R

⎧⎨
⎩n−1

n∑
i=1

ςni

(
r,β̂

)
+ (nεn)1/2 ·n−1

n∑
j=1

⎛
⎝ς∗

nj

(
r,β̂

)
−n−1

n∑
i=1

ςni

(
r,β̂

)⎞⎠
⎫⎬
⎭,

(5.2)

where εn → 0,nεn → ∞, and (yT∗′
j ,xT∗′

j )′,j = 1, . . . ,n, are drawn independently

from the collection of the sample values
(
yT′

1 ,xT′
1

)′
,
(
yT′

2 ,xT′
2

)′
, . . . ,

(
yT′

n ,xT′
n

)′
, with

replacement. ε−1
n plays a similar role as the m in the m-out-of-n bootstrap proce-

dure. For γ̂ ∗, we additionally require ε−1
n hn → ∞ and ε−1

n h4
n → 0. Following the

same arguments as in the discussion below (3.2) for β̂, the maximizer β̂∗ exists,
but its uniqueness is not guaranteed due to the non-smoothness of its step objective
function. The second term in (5.1) can be shown to be oP(1). The first term, sharing
a similar structure to the objective function (3.2), dominates in (5.1). As a result,
we anticipate β̂∗ to be close to β as n → ∞. Similar arguments apply to γ̂ ∗.

We claim that

ε−1/3
n

(
β̂∗ − β̂

)
d→ argmax

s∈RK

(
1

2
s′V1s+W1 (s)

)

and(
ε−1

n hn
)1/3 (

γ̂ ∗ − γ̂
) d→ argmax

s∈R

(
1

2
V2s2 +W2 (s)

)
,

where W1 and W2 are mean zero Gaussian processes with covariance kernels H1

and H2, respectively. An outline of the proof of why the numerical bootstrap works
and the way to modify the proof in Hong and Li (2020) to accommodate γ̂ is
provided in Appendix E.1 of the Supplementary Material.

5.2. Procedures in Details

We investigate the finite-sample properties of the bootstrap method discussed in
Section 5.1 using Monte Carlo experiments in Section 6, and defer the discussion
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20 FU OUYANG AND THOMAS TAO YANG

on the choices of their tuning parameters to Section 6.2. Here, we provide the
algorithm for constructing the 95% confidence intervals (CIs) for β and γ .

The numerical bootstrap proceeds as follows:

1. Draw (yT∗′
j ,xT∗′

j )′,j = 1, . . . ,n, independently, with replacement, from the orig-
inal sample.

2. Obtain β̂∗ and γ̂ ∗ from equations (5.1) and (5.2).
3. Repeat Steps 1 and 2 for B times independently and obtain a sequence of

(β̂∗,γ̂ ∗), say, {(β̂∗(b),γ̂ ∗(b))}B
b=1.

4. Let Qβ̂∗ (τ ) denote the τ th quantile of {β̂∗(b)}B
b=1,0 ≤ τ ≤ 1. Define Qγ̂ ∗ (τ )

analogously. The 95% CIs for β and γ are constructed, respectively, as[
β̂ −n−1/3 · ε−1/3

n (Qβ̂∗ (0.975)− β̂), β̂ −n−1/3 · ε−1/3
n (Qβ̂∗ (0.025)− β̂)

]
and[
γ̂ −n−1/3 · ε−1/3

n

(
Qγ̂ ∗ (0.975)− γ̂

)
, γ̂ −n−1/3 · ε−1/3

n

(
Qγ̂ ∗ (0.025)− γ̂

)]
.

6. MONTE CARLO EXPERIMENTS

6.1. Simulation Setup

In this section, we investigate the finite-sample performance of the proposed
estimators by means of Monte Carlo experiments. We start by considering a
benchmark design similar to that used in HK. Specifically, this design (referred
to as Design 1 hereafter) is specified as follows:

yi0 = 1
[
β1xi0,1 +β2xi0,2 +αi − εi0 > 0

]
,

yit = 1
[
β1xit,1 +β2xit,2 +γ yit−1 +αi − εit > 0

]
, t ∈ {1,2,3,4},

where:

– β ≡ (β1,β2)
′ = (1,1)′ and γ = −1,

– xit,j =
√

15
4 uit,j + 1

4 uit,3,j = 1,2,
(
uit,1,uit,2,uit,3

) d∼ N (03×1,I3×3), and
(
uit,1,uit,2,

uit,3
)

are i.i.d. across i and t,20

– αi = (
xi0,2 + xi1,2 + xi2,2 + xi3,2 + xi4,2

)
/5,

– εit
d∼ (

π2/3
)−1/2 ·Logistic(0,1) and are i.i.d. across i and t, and

–
(
u·,1,u·,2,u·,3

)
and ε· are independent of each other.

In the second design (hereafter, Design 2), the model and the coefficients are
the same as in Design 1, but x·,1 and x·,2 are autocorrelated over time. Specifically,
we have:

20Note that all covariates are correlated with each other and have a standard deviation of one.
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– xi0,j =
√

15
4 ui0,j + 1

4 ui0,3,j = 1,2, and xit,j = 1
2 xit−1,j +

√
3

2

(√
15
4 uit,j + 1

4 uit,3

)
,

j = 1,2 for all t ≥ 1, where
(
uit,1,uit,2,uit,3

) d∼ N (03×1,I3×3) and
(
uit,1,uit,2,

uit,3
)

are i.i.d. across i and t,
–
(
u·,1,u·,2,u·,3

)
and ε· are independent of each other.

Note that the setup of Design 2 violates both Assumption SI and the exchange-
ability condition stated in Assumption SD. We conduct this Monte Carlo study to
develop insight into the practical consequences of the failure of these sufficient
(but not necessary) conditions. That is, we examine the extent to which serial
dependence in exogenous covariates may affect the identification.

In the third to fifth designs (Designs 3–5, respectively), the setup is the same as
that in Design 1, except that we add one, two, and three more covariates (in Designs
3–5, respectively) to examine how our estimators perform in higher-dimensional
designs. Specifically, in Design k,k = 3,4, and 5,

yi0 = 1
[
β1xi0,1 +β2xi0,2 +·· ·+βkxi0,k +αi − εi0 > 0

]
,

yit = 1
[
β1xit,1 +β2xit,2 +·· ·+βkxit,k +γ yit−1 +αi − εit > 0

]
, t ∈ {1,2,3,4},

where:

– β ≡ (β1,β2, . . . ,βk)
′ = (1,1, . . . ,1)′ and γ = −1,

– xit,j =
√

15
4 uit,j + 1

4 uit,k+1,j = 1,2, . . . ,k,
(
uit,1,uit,2, . . . ,uit,k+1

) d∼ N
(
0(k+1)×1,

I(k+1)×(k+1)

)
, and

(
uit,1,uit,2, . . . ,uit,k+1

)
are i.i.d. across i and t,

– αi = (
xi0,2 + xi1,2 + xi2,2 + xi3,2 + xi4,2

)
/5,

– εit
d∼ (

π2/3
)−1/2 ·Logistic(0,1) and are i.i.d. across i and t, and

–
(
u·,1,u·,2, . . . ,u·,k+1

)
and ε· are independent of each other.

We also explore the impact of the serial dependence of xit on the estimation
and inference for the models in Designs 3–5 in Appendix F of the Supplementary
Material. We adopt a similar method to Design 2 for this analysis, which offers
additional insights into the robustness and performance of our proposed method.

For the estimation of β, we adopt the objective function (3.2). To estimate γ , we
use the objective function (3.5) with the Epanechnikov kernel function. That is,

K (u) = 3

4

(
1−u2)1[|u| ≤ 1],

which satisfies Assumption 4 with a compact support. We discuss the choice of
bandwidth sequence hn in Section 6.2.

For inference, we investigate the finite-sample performance of the numerical
bootstrap (Section 5.1). The 95% CIs are obtained from B = 199 independent
draws and estimations (see Section 5.2 for the details of the implementation).

Recall that only the observations with {yi0 = yi2 = yi4 and yi1 
= yi3} are used
to estimate β. In all designs, the effective observations, which are useful for
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22 FU OUYANG AND THOMAS TAO YANG

estimating β, comprise about 14% of the whole sample. Similarly, for γ , only
observations with either {yi1 
= yi2 and yi0 
= yi3} or {yi2 
= yi3 and yi1 
= yi4} are
useful. In all designs, about 31% to 39% of the observations are effective for γ . For
each design, we consider sample sizes of 2,500, 5,000, 10,000, and 20,000. All the
estimation and inference results (based on 199 draws and estimation) presented in
this section are based on 1,000 replications of each design and each sample size.

Furthermore, we compare our method with the parametric (Logit) and semi-
parametric (distribution-free) estimators of HK. We use the objective functions
linked to these two estimators, as defined in Section 4.1 of HK (for panel data
where T > 3), to implement their methods. To facilitate the comparison, we apply
the same scale normalization, specified in Assumption A(e), to both HK’s two
estimators and our own. Specifically, we normalize the vector of β’s to have a
Euclidean norm of one. Note that HK’s Logit estimator does not require scale
normalization for the preference coefficients, because it assumes that the error
terms follow a standard logistic distribution. Therefore, if we choose to apply scale
normalization to β, we should also estimate a scale parameter in the Logit model to
regain one degree of freedom in the parameter space. For example, for two adjacent
time periods t and t+1 in Designs 1 and 2, the log-likelihood function is written as

n∑
i=1

1[yit + yit+1 = 1]σ−2
n K

(
xit+1,1 − xit+2,1

σn

)
K
(

xit+1,2 − xit+2,2

σn

)

× log

(
exp

([(
xit,1 − xit+1,1

)
b1 + (

xit,2 − xit+1,2
)

b2 + r (yit−1 − yit+2)
]
/s
)yit

1+ exp
([(

xit,1 − xit+1,1
)

b1 + (
xit,2 − xit+1,2

)
b2 + r (yit−1 − yit+2)

]
/s
)
)

,

where we impose restriction
√

b2
1 +b2

2 = 1 and add the scale parameter of the

logistic distribution, s > 0, to estimate.21

6.2. Tuning Parameters and Computation

There is only one tuning parameter used for estimation, namely, hn, in the objective
function (3.5). In Assumption 5, we restrict nh4

n → 0, so that the bias term (of
order h2

n) is a small order term of (nhn)
−2/3. Because the convergence rate of γ̂

is (nhn)
−1/3, the condition, nh4

n → 0, makes the bias term much smaller than the
convergence rate. To attain a faster convergence rate, we set hn as large as possible,
and thus set hn = n−1/4 (logn)−1.

For the numerical bootstrap, we have one additional tuning parameter εn. As
recommended in Hong and Li (2020), we set εn proportional to n−2/3 logn for
the inferences of β̂ and γ̂ . Apparently, εn of this order satisfies the additional
requirements for γ̂ ∗ that ε−1

n hn → ∞ and ε−1
n h4

n → 0. To check how sensitive the

21HK normalize s to one, but do not require (b1,b2) to be on the unit circle. Both methods of scale normalization are
equivalent.
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procedure is to the choice of εn, we conduct the procedure with εn = c ·n−2/3 logn
and c = 0.8,0.9,1.0,1.1, and 1.2.

Following the recommendation in HK, we adopt the bandwidth σn = c ·n−1/(4+k)

for HK’s estimators, where k is the dimension of xit. We conduct experiments with
c = 1,2,3,4, and report the simulation results corresponding to c = 3. For this
value, the HK estimators of γ exhibit the smallest bias and have relatively smaller
root mean squared errors among all tested values.

For all simulation designs, we employ the DE algorithm (using the DEoptim
package in R, see Remark 3.2) to compute our proposed estimators and those
of HK. To ensure efficient convergence and robustness, we set the lower and
upper bounds for searching each parameter to [−3,3], the maximum number
of iterations to 500, and the relative convergence tolerance to 10−8. The DE
algorithm does not require explicit initial values; instead, it randomly assigns
NP× (the number of parameters) initial values, where we adopt the default value
of NP = 10 in DEoptim. Additionally, we use the default settings for the other
algorithm controls. In all simulation runs for each estimator, we consistently
observe successful convergence of the algorithm. All estimators can be computed
very quickly for all sample sizes considered. Using an Intel® CoreTM i7-4790
processor, each replication takes only seconds to complete.

6.3. Simulation Results

We normalize the preference coefficients β on exogenous covariates to 1 in
Euclidean norm. Because of this normalization, we lose one degree of freedom in
the parameter space. As a result, we report only the results for (β2,γ ) in Designs
1 and 2 and the results for (β2, . . . ,βk,γ ) in Design k, for k = 3,4, and 5.

We report the mean bias (BIAS), the standard deviation (STD), the median
absolute deviation (MAD), and the root mean squared error (RMSE) for β̂ and γ̂ .
All results are expressed as percentages of the true values of the parameters, so that
the results are independent of how we normalize the parameters.22 For inference,
we report the coverage rates (COV) of the true values and lengths (LEN) of the
95% CIs for the numerical inference procedure for our method only. Furthermore,
we report the computation time (TIME) for one replication of each estimator for
Design 1, and omit this for other designs, owing to their similarity.

Results for Design 1 are reported in tables numbered “1,” and so on for other
designs. We report the performance of the estimators and the numerical bootstrap
procedure in tables labeled “A” and “B,” respectively. For example, Table C1A in
the Appendix C reports the performance of the estimators for Design 1. The results
for our estimator are denoted as “OY” in the tables (Tables C1B, C2A, and C2B).
The parametric and semiparametric estimators in HK are designated as “HK1”
and “HK2,” respectively. Due to space limitations, only the results of Designs 1
and 2 are presented in Appendix C (Tables C1A, C1B, and C1C for Design 1

22We thank the co-editor for this suggestion.
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and Tables C2A and C2B for Design 2). The results of Designs 3–5, along with
additional simulation studies, are reported in Appendix F of the Supplementary
Material. In what follows, we briefly summarize our findings.

The RMSEs of β̂ and γ̂ become smaller as the sample size increases in all
designs, with the RMSE of γ̂ slightly greater than that of β̂. This shows the
consistency of our estimators, though the rates of convergence are clearly slower
than

√
n. The numerical bootstrap inference procedures perform reasonably well in

all designs. In general, they yield shrinking CIs with coverage rates approaching
95% as the sample size grows. The coverage rates of these CIs are greater than
90%, but are slightly lower than 95% in most cases. The coverage rates of the CIs
for γ do not perform as well as those for β, which is not surprising, considering
the complication of using two tuning parameters. The inference procedure is not
very sensitive to the choice of tuning parameters.

Despite Design 2 not satisfying Assumption SI or SD, our proposed estimators
still perform reasonably well in this setting.23 Surprisingly, its performance is
similar to that of Design 1, where these assumptions are completely fulfilled. This
finding indicates that our method exhibits certain robustness, and can function
effectively even when the two sufficient identifying assumptions are not met.
Furthermore, the results from Designs 3–5 provide evidence supporting our
asymptotic analysis. In these designs, we observe that the convergence rates of
our estimators remain relatively stable as the dimension of the model increases.

The HK1 estimator (HK’s Logit estimator) performs the best for Designs 1 and
2, which is not surprising, because the error terms are scaled logistic. Our proposed
estimators exhibit higher RMSEs compared with those of HK1, approximately
more than twice for these designs. For Designs 1 and 2, the HK2 estimator demon-
strates finite-sample performance similar to our proposed method.24 However,
when the number of regressors increases in Design 3, our estimator outperforms
HK2, particularly in estimating the parameter γ . In this setting, the RMSEs
of our estimators become about 50% greater than those of HK1. In Design 4,
where there are two more regressors than in Design 1, our estimators’ RMSEs
are comparable with those of HK1 for all sample sizes considered. Notably, for
sample sizes of n = 10,000 and 20,000, our RMSEs are about 40% lower than
those of HK2, demonstrating the advantage of our method in high-dimensional
settings. In Design 5, with three more regressors than Design 1, our RMSEs are
slightly lower than those of HK1 and only half of HK2’s RMSEs for sample sizes
of n = 10,000 and 20,000. These findings highlight the favorable properties of our
method, particularly its resilience to the curse of dimensionality.

We also conduct additional simulations to assess how our estimators perform on
a relatively small sample size of n = 1,000 for Design 1. The results presented in
Table C1C in the Appendix C suggest that our estimators do not perform poorly

23These assumptions guarantee that the utility index x′
tβ rank orders the (conditional) probabilities in (2.2). Relaxing

them could potentially invalidate the “if and only if” result in equation (2.2) and cause bias.
24In particular, our method exhibits smaller RMSEs for γ , and larger RMSEs for β compared to HK2.
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in terms of parameter estimation. The RMSEs are 30%-35% of the true parameter
values, suggesting reasonable accuracy in estimation, despite the smaller sample
size. For inference, we report only the results for c = 1. We can see the CIs
have lower coverage of approximately 85%. In conclusion, our estimators perform
reasonably well for this sample size, but the CIs may be too short.

A final note is that the serial dependence of xit has limited impact on the
estimation and inference, as demonstrated by the results associated with Design
2 and additional simulation studies for higher-dimensional designs presented in
Appendix F of the Supplementary Material.

7. CONCLUSIONS

This paper presents new identification results for preference parameters in panel
data binary choice models that allow for both fixed effects (Heckman’s “spurious”
state dependence) and lagged dependent variables (“true” state dependence). The
same semiparametric random utility framework as in Honoré and Kyriazidou
(2000) is considered. A key innovation in this paper is the assertion that, given
additional restrictions on the dynamic process of observed covariates and the tail
behavior of the error distribution, the point identification no longer needs element-
by-element matching of regressors over time, in contrast to the method proposed
in Honoré and Kyriazidou (2000). Our approach requires a minimum panel length
of five (T ≥ 4), which fits in most empirical settings. Our identification arguments
motivate a two-step estimation procedure, adapting Manski’s MS estimator. The
proposed estimators are consistent with rates of convergence independent of the
model dimension, unlike the estimator proposed in Honoré and Kyriazidou (2000).
We further derive the limiting distributions of the proposed estimators, which
are non-Gaussian, aligning with existing literature. We justify the use of several
bootstrap procedures for conducting statistical inference. A Monte Carlo study
indicates that our estimators and inference procedures perform well in finite
samples.

This paper leaves some open questions for future research. For example, it might
be worthwhile extending the framework in this paper to study the identification
with more than one lag of the dependent variable or the identification in panel data
multinomial response models.

APPENDIXES

These appendixes are organized as follows: In Appendix A, we present proofs for iden-
tification, including those for Propositions 2.1 and 2.2, along with the necessary lemmas.
Additionally, we provide a roadmap for a key step in these proofs. In Appendix B, we
establish the asymptotic theory of our estimators, as summarized in Theorem 4.1, and
include the technical lemmas required for this proof in the same section. Appendix C
compiles tables summarizing simulation results for Designs 1 and 2.
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The Supplementary Material contains Appendixes D–F. In Appendix D of the Supple-
mentary Material, we prove all technical lemmas used in Appendixes A and B. In Appendix
E of the Supplementary Material, we provide technical details for Section 5. Appendix F of
the Supplementary Material presents simulation results for Designs 3–5 and supplementary
simulation studies (Designs 6–8).

A. Technical Lemmas and Main Proofs for Identification

Building on the results of Lemmas A.1 and A.2, Lemma A.3 establishes the identification
inequality (2.2) under Assumptions A and SD. Lemma A.4 shows that (2.2) also holds under
Assumptions A and SI. We present these lemmas below and leave their proofs to Appendix
D of the Supplementary Material. Based on these results, we prove Propositions 2.1 and
2.2. Throughout this appendix, we assume γ < 0. The proofs for the case with γ ≥ 0 are
symmetric. We omit them for conciseness.

A.1. Roadmap for Establishing Moment Inequality (2.2)
As indicated in the main text of the paper, the key is to establish the identifying inequality
(2.2). Here, we use the simplest case with T = 4 to illustrate how Assumption SI, together
with Assumption A, can ensure this inequality. The proof for the most general case is lengthy
but uses all analogous arguments. We defer it to subsequent sections.

Our proof will repeatedly use the following identities: For any events A,B, and C,

P(A|B∩C) = P(A∩B∩C)

P(B∩C)
= [P(A∩B∩C)/P(A∩C)] [P(A∩C)/P(C)]

P(B∩C)/P(C)

= P(B|A∩C)P(A|C)

P(B|C)
; (A.1)

if event A implies event B,

A ⊆ B and A∩B = A;
if A ⊥ B|C,

P(A|B∩C) = P(A|C) ; (A.2)

if A ⊆ B|C,

P(A∩B|C) = P(A|C) ; (A.3)

and for any partition {B1, . . . ,Bm} of the sample space,

P(A|C) =
m∑

k=1

P(A∩Bj|C) =
m∑

k=1

P(A|Bj ∩C)P(Bj|C). (A.4)

The following result is useful:(
xt+j,εt+j

) ⊥ yt|α,

holds for any j > 0, due to {xt,εt} ⊥ {xs,εs} |α for s 
= t and the fact that yt is a function of
current and previous periods of {xs,εs}.

We present the proof first and defer the explanations of
(·)= to the end.

https://doi.org/10.1017/S0266466624000057 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000057
https://doi.org/10.1017/S0266466624000057
https://doi.org/10.1017/S0266466624000057
https://doi.org/10.1017/S0266466624000057
https://doi.org/10.1017/S0266466624000057


DYNAMIC BINARY CHOICE 27

Consider the conditional probability P(y1 = 1|x1,x3,y0 = y2 = y4 = 1,α). We can write

P(y1 = 1|x1,x3,y0 = y2 = y4 = 1,α)

(i)= P(y4 = 1|x1,x3,y0 = y1 = y2 = 1,α)P(y1 = 1|x1,x3,y0 = y2 = 1,α)

P(y4 = 1|x1,x3,y0 = y2 = 1,α)

(ii)= P(y1 = 1|x1,x3,y0 = y2 = 1,α)

(iii)= P(y1 = 1|x1,y0 = y2 = 1,α). (A.5)

In what follows, we assume w.l.o.g. that γ < 0. The proof for the case γ ≥ 0 is symmetric.

We define a partition of the sample space:

E2,1 = {ε2 < x′
2β +γ +α},E2,2 = {x′

2β +γ +α ≤ ε2 < x′
2β +α},and E2,3 = {ε2 ≥ x′

2β +α}.
From the model, E2,1 implies {y2 = 1}, so E2,1 ⊆ {y2 = 1} and E2,1 ∩ {y2 = 1} = E2,1.
Similarly, E2,3 implies {y2 = 0}, so E2,3 ⊆ {y2 = 0} and E2,3 ∩{y2 = 0} = E2,3.

Then, we use this partition and (A.4) to write

P(y1 = 1|x1,y0 = y2 = 1,α)

=
3∑

k=1

P(y1 = 1|x1,y0 = y2 = 1,E2,k,α)P(E2,k|x1,y0 = y2 = 1,α)

(iv)= P(y1 = 1|x1,y0 = y2 = 1,E2,1,α)P(E2,1|x1,y0 = y2 = 1,α)

(v)= P(y1 = 1|x1,y0 = 1,E2,1,α)P(E2,1|x1,y0 = y2 = 1,α)

(vi)= P(y1 = 1|x1,y0 = 1,α)P(E2,1|x1,y0 = y2 = 1,α)

(vii)= Fε|α(x′
1β +γ +α)P(E2,1|x1,y0 = y2 = 1,α). (A.6)

Applying (A.4) to the term P(E2,1|x1,y0 = y2 = 1,α) gives

P(E2,1|x1,y0 = y2 = 1,α)

= P(E2,1 ∩{y1 = 1} |x1,y0 = y2 = 1,α)+P(E2,1 ∩{y1 = 0} |x1,y0 = y2 = 1,α)

(viii)= P(y1 = 1|x1,y0 = y2 = 1,α)+P(E2,1|x1,y0 = y2 = 1,y1 = 0,α)P(y1 = 0|x1,y0 = y2 = 1,α)

(ix)= P(y1 = 1|x1,y0 = y2 = 1,α)

+ P(E2,1 ∩{y2 = 1} |x1,y0 = 1,y1 = 0,α)

P(y2 = 1|x1,y0 = 1,y1 = 0,α)
[1−P(y1 = 1|x1,y0 = y2 = 1,α)]

(x)=P(y1 = 1|x1,y0 = y2 = 1,α)+ P(E2,1|x1,y0 = 1,y1 = 0,α)

P(y2 = 1|x1,y0 = 1,y1 = 0,α)
[1−P(y1 = 1|x1,y0 = y2 = 1,α)]

(xi)= P(y1 = 1|x1,y0 = y2 = 1,α)+ P(E2,1|α)

P(y2 = 1|y1 = 0,α)
[1−P(y1 = 1|x1,y0 = y2 = 1,α)] . (A.7)

If we set � = P(y1 = 1|x1,y0 = y2 = 1,α) as an unknown, (A.6) and (A.7) imply

� = Fε|α(x′
1β +γ +α)

[
�+ P(E2,1|α)

P(y2 = 1|y1 = 0,α)
(1−�)

]
.
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Solve � out and apply (A.5), we obtain

P(y1 = 1|x1,x3,y0 = y2 = y4 = 1,α)

= P(y1 = 1|x1,y0 = y2 = 1,α) = �

= P(E2,1|α)/P(y2 = 1|y1 = 0,α)

1/Fε|α(x′
1β +γ +α)+1−P(E2,1|α)/P(y2 = 1|y1 = 0,α)

. (A.8)

Furthermore, applying arguments for (A.5)–(A.7) to P(y3 = 1|x1,x3,y0 = y2 = y4 = 1,α)

yields

P(y3 = 1|x1,x3,y0 = y2 = y4 = 1,α)

= P(E4,1|α)/P(y4 = 1|y3 = 0,α)

1/Fε|α(x′
3β +γ +α)+1−P(E4,1|α)/P(y4 = 1|y3 = 0,α)

, (A.9)

with E4,1 = {
ε4 < x′

4β +γ +α
}
. Note that Assumptions A(a) and SI(b) imply P(E2,1|α)/

P(y2 = 1|y1 = 0,α) = P(E4,1|α)/P(y4 = 1|y3 = 0,α), and Assumption A(b) guarantees
the monotonicity of Fε|α(·). Then identifying inequality (2.2) follows by putting all these
results together and comparing (A.8) and (A.9).

To sum up, Assumption SI(a) eliminates the effects of xs on yt through its dependence
on xt for all t 
= s, and Assumption SI(b) is placed to ensure that the probabilities in (2.2)
do not have time-varying representations. Using similar arguments, inequality (2.2) can be
established for general cases.

We provide the explanations for
(·)= in the following.

Equality (i) in (A.5) follows from (A.1) by setting A = {y1 = 1},B = {y4 = 1}, and C =
{x1,x3,y0 = y2 = 1,α}.

Equality (ii) holds due to (A.2) and {y4 = 1} ⊥ {y1 = 1} | {x1,x3,y0 = y2 = 1,α} . To see
why this conditional independence holds, recall that by model (2.1)

y4 = 1
[
x′

4β +γ y3 +α − ε4 ≥ 0
]

= 1
[
x′

4β +γ 1
[
x′

3β +γ y2 +α − ε3 ≥ 0
]+α − ε4 ≥ 0

]
,

and so conditioning on {x1,x3,y0 = y2 = 1,α}, the random terms remained in y4 are

(x4,ε3,ε4). Then Assumptions A(a) and SI(a), where we assume εT ⊥
(

xT,y0

)
|α, and

{xt,εt} ⊥ {xs,εs} |α for s 
= t, imply

(x4,ε3,ε4) ⊥ {x1,x3,y0 = y2 = 1}, {y1 = 1} |α,

and thus

(x4,ε3,ε4) ⊥ {y1 = 1} | {x1,x3,y0 = y2 = 1,α},
implying

{y4 = 1} ⊥ {y1 = 1} | {x1,x3,y0 = y2 = 1,α} .

Equality (iii) follows by {y1 = 1} ⊥ x3| {x1,y0 = y2 = 1,α} which holds for the same reason
as above.

Equality (iv) is due to P(E2,3|x1,y0 = y2 = 1,α) = 0 (since E2,3 implies {y2 = 0} and
thus E2,3 ⊆ {y2 = 0}), and P(y1 = 1|x1,y0 = y2 = 1,E2,2,α) = 0 (since {y2 = 1} ∩ E2,2
implies {y1 = 0}) .

Equality (v) follows by E2,1 ⊆ {y2 = 1}.
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Equality (vi) holds because P(y1 = 1|x1,y0 = 1,E2,1,α) = P(y1 = 1|x1,y0 = 1,α)

implied by (A.2) (letting A = {y1 = 1}, B = E2,1, and C = {x1,y0 = 1,α}).
Equality (vii) holds because of Assumption A(a) that εT ⊥

(
xT,y0

)
|α.

Equality (viii) holds because conditional on {y2 = 1} and γ < 0, {y1 = 1} implies E2,1,

and thus {y1 = 1} ⊆ E2,1 conditional on {x1,y0 = y2 = 1,α}.
Equality (ix) holds due to fact that P(A|B∩C) = P(A∩B|C)/P(B|C).
Equality (x) holds since E2,1 implies {y2 = 1} and thus E2,1 ⊆ {y2 = 1}.
Equality (xi) follows by model (2.1), Assumption A(a), Assumption SI(a), and applying

(A.2) (letting A = E2,1, B = {x1,y0 = 1,y1 = 0}, and C = {α} for P(E2,1|x1,y0 = 1,
y1 = 0,α), and A = {y2 = 1}, B = {x1,y0 = 1}, and C = {y1 = 0,α} for P(y2 = 1|x1,

y0 = 1,y1 = 0,α)).

A.2. Technical Lemmas and Main Proofs for Identification
Now we rigorously prove our identification results (Propositions 2.1 and 2.2). Before that,
we first list necessary technical lemmas whose proofs are presented in Appendix D of
the Supplementary Material. For each t ∈ T , define the following partition of the sample
space:25

Et,1 = {εt < wt +γ +α},Et,2 = {wt +γ +α ≤ εt < wt +α},Et,3 = {εt ≥ wt +α}.

Lemma A.1. Let s,t ∈ T such that t ≥ s+2. Under Assumption A, the following equalities
hold for both τ = s and τ = t:

P(yτ = 1|wT,ys−1 = yt−1,ys+1 = yt+1 = 1,α)

= Fε|α(wτ +γ yτ−1 +α)P(Eτ+1,1|wT,ys−1 = yt−1,ys+1 = yt+1 = 1,α), (A.10)

and

P(yτ = 1|wT,ys−1 = yt−1,ys+1 = yt+1 = 0,α)

= P(Eτ+1,2|wT,ys−1 = yt−1,ys+1 = yt+1 = 0,α)

+Fε|α(wτ +γ yτ−1 +α)P(Eτ+1,3|wT,ys−1 = yt−1,ys+1 = yt+1 = 0,α). (A.11)

Lemma A.2. Let s,t ∈ T such that t ≥ s+2. Under Assumption A, the following equalities
hold for both τ = s and τ = t:

P(Eτ+1,1|wT,ys−1 = yt−1,ys+1 = yt+1 = 1,α)

= P(yτ = 1|wT,ys−1 = yt−1,ys+1 = yt+1 = 1,α)

+ Fε|α(wτ+1 +γ +α)

Fε|α(wτ+1 +α)
[1−P(yτ = 1|wT,ys−1 = yt−1,ys+1 = yt+1 = 1,α)], (A.12)

P(Eτ+1,2|wT,ys−1 = yt−1,ys+1 = yt+1 = 0,α)

= Fε|α(ws+1 +α)−Fε|α(ws+1 +γ +α)

1−Fε|α(ws+1 +γ +α)
P(yτ = 1|wT,ys−1 = yt−1,ys+1 = yt+1 = 0,α),

(A.13)

25For the case with γ ≥ 0, the proofs of Lemmas A.1–A.3 work through with the partition Et,1 = {εt < wt +α},Et,2 =
{wt +α ≤ εt < wt +γ +α}, and Et,3 = {εt ≥ wt +γ +α}.
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and

P(Eτ+1,3|wT,ys−1 = yt−1,ys+1 = yt+1 = 0,α)

= 1−Fε|α(wτ+1 +α)

1−Fε|α(wτ+1 +γ +α)
P(yτ = 1|wT,ys−1 = yt−1,ys+1 = yt+1 = 0,α)

+1−P(yτ = 1|wT,ys−1 = yt−1,ys+1 = yt+1 = 0,α). (A.14)

Lemma A.3. If Assumptions A and SD hold, then for all s,t ∈ T ,

P(yt = 1|ws,wt,ys−1 = yt−1,ys+1 = yt+1,α) ≥ P(ys = 1|ws,wt,ys−1 = yt−1,ys+1 = yt+1,α)

if and only if wt ≥ ws.

Lemma A.4. If Assumptions A and SI hold, then for all s,t ∈ T ,

P(yt = 1|ws,wt,ys−1 = yt−1,ys+1 = yt+1,α) ≥ P(ys = 1|ws,wt,ys−1 = yt−1,ys+1 = yt+1,α)

if and only if wt ≥ ws.

We next prove Propositions 2.1 and 2.2 in order.

Proof of Proposition 2.1. The monotonic relation established in either Lemma A.3
or Lemma A.4 implies that β maximizes Q1(·;α). The remaining task is to show the
uniqueness of β in B, that is, Q1(b;α) = Q1(β;α) implies b = β. Here, we assume β1 > 0
w.l.o.g. as the case β1 < 0 is symmetric.

First, note that for any b ∈ B such that Q1(b;α) = Q1(β;α), if

P([xts,1b1 + x̃′
tsb̃ < 0 < xts,1β1 + x̃′

tsβ̃]∪ [xts,1β1 + x̃′
tsβ̃ < 0 < xts,1b1 + x̃′

tsb̃]) > 0,

then β and b will yield different realized values of the sign function in Q1(·;α) with strictly
positive probability, and thus Q1(β;α) > Q1(b;α). It then follows that b1 > 0 must hold,
for otherwise by Assumption A(c), we have

P(xts,1b1 + x̃′
tsb̃ < 0 < xts,1β1 + x̃′

tsβ̃) = P(xts,1 > −x̃′
tsb̃/b1,xts,1 > −x̃′

tsβ̃/β1) > 0.

Then focusing on the case with b1 > 0, we can write

P([xts,1b1 + x̃′
tsb̃ < 0 < xts,1β1 + x̃′

tsβ̃]∪ [xts,1β1 + x̃′
tsβ̃ < 0 < xts,1b1 + x̃′

tsb̃])

= P([−x̃′
tsβ̃/β1 < xts,1 < −x̃′

tsb̃/b1]∪ [−x̃′
tsb̃/b1 < xts,1 < −x̃′

tsβ̃/β1]),

which implies that to make Q1(b;α) = Q1(β;α) hold we must have P(x̃′
tsβ̃/β1 =

x̃′
tsb̃/b1) = 1 by Assumption A(c).

However, whenever b is not a scalar multiple of β, P(x̃′
tsβ̃/β1 = x̃′

tsb̃/b1) = 1 implies
that X̃ts is contained in a proper linear subspace of R

K−1 almost everywhere, violating
Assumption A(d). As a result, we must have b as a scalar multiple of β, which leads to the
desired result b = β as ‖b‖2 = ‖β‖2 = 1 by the construction of the parameter space B in
Assumption A(e). �

Proof of Proposition 2.2. The proof uses the insight of HK. Here, we only prove case

(ii) of Proposition 2.2 for t > s+1 as the same method can be applied to case (i) where s and

t are adjacent. Note that it also suffices to prove that γ uniquely maximizes the following
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population objective function conditional on α:

Q2,2(γ ;β,α) ≡ E{[P(A|xT,ws+1 = wt+1,ys+1 = yt+1,α)−P(B|xT,ws+1 = wt+1,ys+1 = yt+1,α)]

× sgn((wt −ws)+ r(dt−1 −ds−1))|α}.
First, note that under Assumptions A(a) and A(b), we can write

P(A|xT,ws+1 = wt+1 = w,ys+1 = yt+1 = d,α)

= p0(xT,α)d0(1−p0(xT,α))1−d0 ×Fε|α(w1 +γ d0 +α)d1(1−Fε|α(w1 +γ d0 +α))1−d1

×·· ·× (1−Fε|α(ws +γ ds−1 +α))×Fε|α(w+α)d(1−Fε|α(w+α))1−d

×·· ·×Fε|α(wt +γ dt−1 +α)×Fε|α(w+γ +α)d(1−Fε|α(w+γ +α))1−d

×·· ·×Fε|α(wT +γ dT−1 +α)dT (1−Fε|α(wT +γ dT−1 +α))1−dT

for all w ∈ R and d ∈ {0,1}, and similarly,

P(B|xT,ws+1 = wt+1 = w,ys+1 = yt+1 = d,α)

= p0(xT,α)d0(1−p0(xT,α))1−d0 ×Fε|α(w1 +γ d0 +α)d1(1−Fε|α(w1 +γ d0 +α))1−d1

×·· ·×Fε|α(ws +γ ds−1 +α)×Fε|α(w+γ +α)d(1−Fε|α(w+γ +α))1−d

×·· ·× (1−Fε|α(wt +γ dt−1 +α))×Fε|α(w+α)d(1−Fε|α(w+α))1−d

×·· ·×Fε|α(wT +γ dT−1 +α)dT (1−Fε|α(wT +γ dT−1 +α))1−dT .

Then, we obtain

P(A|xT,ws+1 = wt+1 = w,ys+1 = yt+1 = d,α)

P(B|xT,ws+1 = wt+1 = w,ys+1 = yt+1 = d,α)

= (1−Fε|α(ws +γ ds−1 +α))×Fε|α(wt +γ dt−1 +α)

Fε|α(ws +γ ds−1 +α)× (1−Fε|α(wt +γ dt−1 +α))

× Fε|α(w+α)d(1−Fε|α(w+α))1−d ×Fε|α(w+γ +α)d(1−Fε|α(w+γ +α))1−d

Fε|α(w+γ +α)d(1−Fε|α(w+γ +α))1−d ×Fε|α(w+α)d(1−Fε|α(w+α))1−d

= (1−Fε|α(ws +γ ds−1 +α))×Fε|α(wt +γ dt−1 +α)

Fε|α(ws +γ ds−1 +α)× (1−Fε|α(wt +γ dt−1 +α))

and therefore,

P(A|xT,ws+1 = wt+1 = w,ys+1 = yt+1 = d,α) ≥ P(B|xT,ws+1 = wt+1 = w,ys+1 = yt+1 = d,α)

if and only if wt +γ dt−1 ≥ ws +γ ds−1, which implies that γ maximizes Q2,2(γ ;β,α).
The remaining task is to show that γ is unique in R. Suppose that there exists an

r ∈ R\ {γ } such that Q2,2 (r;β,α) = Q2,2 (γ ;β,α). Note that the value of r (and γ ) affects
Q2,2 (·;β,α) only when ds−1 
= dt−1. Here, we assume that dt−1 = 1 and ds−1 = 0 (the
case with dt−1 = 0 and ds−1 = 1 is symmetric). Then by Assumption A(c), the following
probability is nonzero:

P([−γ < wt −ws < −r]∪ [−r < wt −ws < −γ ]) .

Consequently, γ and r yield different realized values of the sign function in objective func-
tion Q2,2 (·;β,α) with strictly positive probability, and hence Q2,2 (r;β,α) < Q2,2 (γ ;β,α),
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a contradiction. Then we can conclude that Q2,2 (r;β,α) = Q2,2 (γ ;β,α) if and only if
r = γ , or equivalently γ uniquely maximizes Q2,2 (·;β,α) in R. �

B. Technical Lemmas and Main Proofs for Asymptotics

In this section, we define a few technical terms and a few more technical notations, present
some technical lemmas, and prove our main asymptotic theory, Theorem 4.1. The proofs
for the technical lemmas are relegated to Appendix D of the Supplementary Material.

The outline of the proof of Theorem 4.1 is as follows. Lemmas B.1 and B.2 verify the
technical conditions as required in Seo and Otsu (2018). Those conditions can ensure the
class of functions is manageable as in Kim and Pollard (1990). After that, the maximal
inequalities and asymptotics in Seo and Otsu (2018) can be readily applied to our estimator.
Lemma B.4 deals with the impact of using β̂ on estimating γ̂ , using maximal inequalities
established in Seo and Otsu (2018). Lemmas B.3 and B.5 obtain the technical terms for the
final asymptotics for β̂ and γ̂ .

Let c and C denote some constants that may vary from line to line. En denotes the
expectation conditional on observations being fixed. � denotes weakly convergence in the
sense of van der Vaart and Wellner (1996). Let

Gn (fni) ≡ n1/2
n∑

i=1

[fni −En (fn)],

for any fni. To facilitate calculation, occasionally we may decompose covariate x into
�β + xβ with a scalar � and xβ orthogonal to β.

We define the following technical terms used in lemmas:

Zn,1 (s) ≡ n2/3 ·n−1
n∑

i=1

ξi

(
β + sn−1/3

)
,

Zn,2 (s) ≡ (nhn)2/3 ·n−1
n∑

i=1

ςni

(
γ + s(nhn)−1/3 ,β

)
,

and

Ẑn,2 (s) ≡ (nhn)2/3 ·n−1
n∑

i=1

ςni

(
γ + s(nhn)−1/3 ,β̂

)
.

Note that the s in Zn,1 (s) is a K ×1 vector, and the s in Zn,2 (s) and Ẑn,2 (s) is a scalar.

Lemma B.1. Suppose Assumptions A, SI (or SD), and 3 hold. Then ξi (b) satisfies
Assumption M in Seo and Otsu (2018).

Lemma B.2. Suppose Assumptions A, SI (or SD) and 3–5 hold. Then ςni (r,b) satisfies
Assumption M in Seo and Otsu (2018).

Lemma B.3. Suppose Assumptions A and 3 hold. Then

lim
n→∞n2/3

E

(
ξi

(
β + sn−1/3

))
= 1

2
s′V1s,
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and

lim
n→∞n1/3

E

[
ξi

(
β + sn−1/3

)
ξi

(
β + tn−1/3

)]
= H1 (s,t) .

V1 is defined as

V1 = −
∫

1
[
x′

31β = 0
](∂κ (x31)

∂x31

′
β

)
fx31 (x31)x31x′

31dσ0, (B.1)

with σ0 being the surface measure on
{
x31 : x′

31β = 0
}

and

κ (x) = E {P(yi0 = yi2 = yi4|xi1,xi3){E [yi3|yi2 = yi4,xi3]−E [yi1|yi0 = yi2,xi1]} |xi31 = x} .

H1 (s,t) is defined as

H1 (s,t) = 1

2

∫
RK−1

ψ
(
xβ

)[∣∣∣x′
βs
∣∣∣+ ∣∣∣x′

β t
∣∣∣− ∣∣∣x′

β (s− t)
∣∣∣] fx31

(
xβ

)
dxβ, (B.2)

where s,t are K ×1 vectors,

ψ (x) = E {P(yi0 = yi2 = yi4|xi1,xi3) |E [yi3|yi2 = yi4,xi3]−E [yi1|yi0 = yi2,xi1]| |xi31 = x},
and xβ is orthogonal to β.

Lemma B.4. Suppose Assumptions A and 3–5 hold. Then

Ẑn,2 (s)−Zn,2 (s) = oP (1),

where the small order term holds uniformly over |s| ≤ C for any positive C.

Lemma B.5. Suppose Assumptions A and 3–5 hold. Then

lim
n→∞(nhn)2/3

E

(
ςni

(
γ + s(nhn)−1/3 ,β

))
= 1

2
V2s2,

and

lim
n→∞(nhn)1/3

E

(
hnςni

(
γ + s(nhn)−1/3 ,β

)
ςni

(
γ + t (nhn)−1/3 ,β

))
= H2 (s,t) .

V2 is defined as

V2 = −
∫
RK−1

∫
1
[
x′

21β +γ y30 = 0
](∂E

(
y21|x21,y30,x32 = xβ

)
∂
(
y30,x

′
21

)′
′(

γ

β

))
(B.3)

f
(
x21,y30|x32 = xβ

) |y30|dσ0fx32

(
xβ

)
dxβ

−
∫
RK−1

∫
1
[
x′

32β +γ y41 = 0
](∂E

(
y32|x32,y41,x43 = xβ

)
∂
(
y41,x

′
32

)′
′(

γ

β

))

f
(
x32,y41|x43 = xβ

) |y41|dσ0fx43

(
xβ

)
dxβ

with σ0 denoting the surface measure of
{(

x′
21,y30

)′∣∣∣x′
21β +γ y30 = 0

}
in the first integral

and the surface measure of
{(

x′
32,y41

)′∣∣∣x′
32β +γ y41 = 0

}
in the second integral. H2 (s,t)

is defined as
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H2 (s,t) (B.4)

= 1

2
(|s|+ |t|− |s− t|)K̄2

∫
RK−1

{E[|y21| |x′
21β = −γ,y30 = 1,x32 = xβ

]
f
(
y30 = 1,x′

21β = −γ |x32 = xβ

)
+E

[|y21| |x′
21β = γ,y30 = −1,x32 = xβ

]
f
(
y30 = −1,x′

21β = γ |x32 = xβ

)}fx32

(
xβ

)
dxβ

+ 1

2
(|s|+ |t|− |s− t|)K̄2

∫
RK−1

{E[|y32| |x′
32β = −γ,y41 = 1,x43 = xβ

]
f
(
y41 = 1,x′

32β = −γ |x43 = xβ

)
+E

[|y32| |x′
32β = γ,y41 = −1,x43 = xβ

]
f
(
y41 = −1,x′

32β = γ |x43 = xβ

)}fx43

(
xβ

)
dxβ,

where s,t are scalars, K̄2 = ∫
R
K (u)2 du, and xβ is orthogonal to β.

Note that y30 can only take values −1,0, or 1. We assume that y30 takes hypothetical
values in (−1− ε, −1+ ε), (−ε,ε), and (1 − ε,1 + ε) for a small ε > 0 when calculating

derivatives with respect to y30. For example, d�(y30)
dy30

∣∣∣
y30=1

= �′ (y30)
∣∣
y30=1 = �′ (1) for

any continuous differentiable �.

Proof of Theorem 4.1. We prove the first part of this theorem first.
Lemma B.1 verifies the key technical conditions needed for applying Theorem 1 in Seo

and Otsu (2018). β̂ − β = OP

(
n−1/3

)
by Assumption 2 and Lemma 1 in Seo and Otsu

(2018).
Notice that β̂ can be equivalently obtained from

argmax
b∈B

n2/3 ·n−1
n∑

i=1

ξi

(
β +n−1/3 ·n1/3 (b−β)

)
.

Intuitively, we get the asymptotics of n1/3
(
β̂ −β

)
if we can get the asymptotics of

Zn,1 (s) = n2/3 ·n−1
n∑

i=1

ξi

(
β + sn−1/3

)
.

Lemma B.3 calculates the mean and covariance kernel of Zn,1 (s) .ξi (b) is uniformly
bounded, so the Lindeberg condition for Zn,1 (s) is satisfied. Therefore, Zn,1 (s) is pointwise
asymptotically normal. With Assumption 2, Theorem 1 in Seo and Otsu (2018) implies the
equicontinuity of Zn,1 (s), and it yields Zn,1 (s)� Z1 (s), where Z1 (s) is a Gaussian Process

with continuous sample paths, expected value − 1
2 s′V1s, and covariance kernel H1 (s,t) that

can be calculated as in equation (B.2). As a result,

n1/3
(
β̂ −β

)
d→ arg max

s∈RK
Z1 (s),

by applying Theorem 1 in Seo and Otsu (2018).
We now prove the second part. The calculation of equation (D.31) in the proof of Lemma

B.5 shows,
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En

(
ςni

(
r,β̂

)
−ςni (γ,β)

)
= 1

2

(
r −γ,

(
β̂ −β

)′)
Ṽ2

(
r −γ

β̂ −β

)
(B.5)

+o

(∥∥∥∥
(

r −γ,
(
β̂ −β

)′)′∥∥∥∥
2

)
+o

(
(nhn)−2/3

)
,

where Ṽ2 is defined in equation (D.30).
The convergence rate of γ̂ is (nhn)−1/3 , which can be seen from

oP

(
(nhn)−2/3

)
≤ n−1

n∑
i=1

ςni

(
γ̂ ,β̂

)
−n−1

n∑
i=1

ςni

(
γ,β̂

)

= n−1
n∑

i=1

ςni

(
γ̂ ,β̂

)
−n−1

n∑
i=1

ςni (γ,β)+n−1
n∑

i=1

ςni (γ,β)−n−1
n∑

i=1

ςni

(
γ,β̂

)

≤ En

(
ςni

(
γ̂ ,β̂

)
−ςni (γ,β)

)
+ ε

((
γ̂ −γ

)2 +
∥∥∥β̂ −β

∥∥∥2

2

)
+OP

(
(nhn)−2/3

)

+En

(
ςni

(
γ,β̂

)
−ςni (γ,β)

)
+ ε

∥∥∥β̂ −β

∥∥∥2

2
+OP

(
(nhn)−2/3

)
≤ (−c+ ε)

((
γ̂ −γ

)2 +2
∥∥∥β̂ −β

∥∥∥2

2

)
+o

((
γ̂ −γ

)2 +
∥∥∥β̂ −β

∥∥∥2

2

)
+OP

(
(nhn)−2/3

)
,

for each ε > 0, where the first line holds by Assumption 2, the third to fourth lines hold by
applying Lemma 1 in Seo and Otsu (2018), the fifth line holds by equation (B.5). By noting∥∥∥β̂ −β

∥∥∥
2

= OP

(
n−1/3

)
= oP

(
(nhn)−1/3

)
, the inequality above implies

0 ≤ (−c+ ε)
(
γ̂ −γ

)2 +o
((

γ̂ −γ
)2
)

+OP

(
(nhn)−2/3

)
.

Taking an ε to satisfy ε << c yields that γ̂ −γ = OP

(
(nhn)−1/3

)
. So we only need to get

the limiting distribution of Ẑn,2 (s).

The analysis of Ẑn,2 (s) is complicated by including the first-stage estimator β̂. Lemma

B.4 shows that β̂ has no impact on the asymptotics of γ̂ . More specifically,

Ẑn,2 (s) = Zn,2 (s)+oP (1)

= n1/6h2/3
n Gn

(
ςni

(
γ + s(nhn)

−1/3 ,β
))

+ (nhn)
2/3

E

(
ςni

(
γ + s(nhn)

−1/3 ,β
))

+oP (1),

(B.6)

where Gn (ςni (r,b)) = n−1/2∑n
i=1 (ςni (r,b)−En (ςni (r,b))). As a result, the asymptotics

is established if the weak convergence of the leading term in equation (B.6) is proved.

Lemma B.5 calculates the the mean of (nhn)2/3
E

(
ςni

(
γ + s(nhn)−1/3 ,β

))
and

covariance kernel n1/6h2/3
n Gn

(
ςni

(
γ + s(nhn)−1/3 ,β

))
.

Note
n∑

i=1

(
(nhn)2/3 ·n−1

)2+δ
E

[∣∣∣ςni

(
γ + s(nhn)−1/3 ,β

)∣∣∣2+δ
]

= (nhn)−δ/3 · (nhn)1/3
E

[
h1+δ

n

∣∣∣ςni

(
γ + s(nhn)−1/3 ,β

)∣∣∣2+δ
]

→ 0
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for a small δ > 0, because (nhn)−δ/3 → 0 and (nhn)1/3
E

[
h1+δ

n

∣∣∣∣ςni

(
γ + s(nhn)−1/3 ,

β
)∣∣∣∣2+δ]

→ c for a finite c. This verifies the Lyapunov condition for n1/6h2/3
n Gn

(
ςni

(
γ +

s
(

nhn

)−1/3
,β
))

. Therefore, it converges to normal in distribution for each s. Lemma B.2

verifies the key technical conditions for applying Theorem 1 in Seo and Otsu (2018) to
Zn,2 (s). Together with Assumption 2, all technical conditions in Theorem 1 of Seo and
Otsu (2018) are satisfied for Zn,2 (s). That implies the stochastic equicontinuity of Zn,2 (s)
in s and

Zn,2 (s) � Z2 (s),

where Z2 (s) is a Gaussian process with continuous path, expected value 1
2 V2s2 and

covariance kernel H2 (s,t). Then, the following result follows by the continuous mapping
theorem:

(nhn)1/3 (γ̂ −γ
) d→ argmax

s∈R Z2 (s) . �

C. Simulation Results of Designs 1 and 2

TABLE C1A. Design 1, performance of β̂ and γ̂ .

n = 2,500 n = 5,000 n = 10,000 n = 20,000

β̂2 γ̂ β̂2 γ̂ β̂2 γ̂ β̂2 γ̂

OY BIAS 1.8% −0.9% 1.7% −0.3% 0.8% 1.5% 0.7% 0.5%

STD 20.2% 25.0% 14.7% 18.9% 11.4% 14.7% 9.1% 12.0%

MAD 15.9% 19.4% 11.7% 15.1% 9.0% 11.8% 7.3% 9.7%

RMSE 20.2% 25.0% 14.8% 18.9% 11.4% 14.8% 9.1% 12.0%

TIME 0.33 seconds 0.62 seconds 1.16 seconds 2.50 seconds

HK1 BIAS −0.4% 2.4% −0.0% 1.8% −0.2% 1.4% −0.1% 1.2%

STD 5.7% 15.5% 4.6% 11.6% 3.6% 8.8% 2.8% 6.8%

MAD 4.6% 12.3% 3.7% 9.2% 2.9% 7.2% 2.2% 5.5%

RMSE 5.7% 15.6% 4.6% 11.7% 3.6% 9.0% 2.8% 6.9%

TIME 4.27 seconds 7.68 seconds 14.01 seconds 30.02 seconds

HK2 BIAS −0.0% 2.0% 0.2% 1.5% −0.1% 2.8% 0.2% 1.2%

STD 12.1% 29.8% 10.0% 24.8% 8.8% 21.0% 7.4% 18.1%

MAD 9.6% 24.1% 8.2% 19.8% 7.0% 17.1% 5.9% 14.6%

RMSE 12.1% 29.9% 10.0% 24.8% 8.8% 21.2% 7.4% 18.1%

TIME 0.58 seconds 1.05 seconds 3.00 seconds 3.96 seconds
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TABLE C1B. Design 1, numerical bootstrap.

n = 2,500 n = 5,000 n = 10,000 n = 20,000

β̂2 γ̂ β̂2 γ̂ β̂2 γ̂ β̂2 γ̂

c = 0.8 COV 87.8% 89.8% 91.0% 90.7% 91.6% 93.3% 91.1% 92.5%

LEN 96.7% 99.1% 81.6% 83.2% 68.7% 68.4% 57.8% 54.7%

c = 0.9 COV 87.6% 89.8% 91.7% 91.5% 91.7% 94.1% 90.8% 93.5%

LEN 94.5% 97.3% 80.2% 82.5% 67.4% 68.2% 56.8% 55.1%

c = 1.0 COV 88.4% 90.1% 91.6% 91.1% 92.0% 93.5% 90.9% 93.2%

LEN 93.1% 96.3% 78.7% 81.8% 66.2% 68.0% 55.8% 55.5%

c = 1.1 COV 88.1% 89.9% 92.4% 90.9% 91.9% 93.9% 91.3% 93.2%

LEN 91.5% 94.7% 77.8% 81.1% 65.4% 67.7% 55.1% 55.7%

c = 1.2 COV 88.5% 89.8% 91.4% 90.6% 91.6% 93.5% 91.6% 94.1%

LEN 90.0% 93.0% 76.8% 80.0% 64.5% 67.5% 54.3% 55.7%

TABLE C1C. Design 1, n = 1,000.

BIAS STD MAD RMSE COV LEN

OY β̂2 6.4% 28.7% 22.5% 29.4% 83.5% 114.1%

γ̂ −4.2% 35.0% 27.0% 35.2% 85.5% 116.3%

HK1 β̂2 −0.2% 7.6% 6.1% 7.6% – –

γ̂ 2.5% 21.7% 17.2% 21.8% – –

HK2 β̂2 0.2% 14.4% 11.7% 14.4% – –

γ̂ 1.0% 36.9% 29.4% 36.9% – –

TABLE C2A. Design 2, performance of β̂ and γ̂ .

n = 2,500 n = 5,000 n = 10,000 n = 20,000

β̂2 γ̂ β̂2 γ̂ β̂2 γ̂ β̂2 γ̂

OY BIAS 2.2% 0.9% 1.9% 0.9% 0.3% 1.3% −0.1% 1.1%

STD 19.0% 22.9% 15.0% 17.7% 11.7% 14.7% 9.2% 11.2%

MAD 15.1% 18.5% 11.9% 14.1% 9.4% 11.9% 7.3% 9.0%

RMSE 19.2% 22.9% 15.1% 17.7% 11.7% 14.8% 9.2% 11.2%

HK1 BIAS −0.0% 2.9% 0.1% 2.6% −0.1% 2.0% −0.0% 1.8%

STD 5.8% 12.9% 4.2% 10.4% 3.5% 8.2% 2.7% 6.5%

MAD 4.7% 10.6% 3.4% 8.7% 2.8% 6.8% 2.2% 5.4%

RMSE 5.8% 13.3% 4.2% 10.8% 3.5% 8.5% 2.7% 6.8%

HK2 BIAS 0.2% 3.4% 0.2% 2.6% −0.2% 2.3% 0.3% 2.0%

STD 11.9% 26.4% 10.1% 23.5% 8.9% 19.1% 6.9% 16.2%

MAD 9.6% 21.3% 8.1% 19.0% 7.2% 15.4% 5.5% 12.9%

RMSE 11.9% 26.6% 10.1% 23.6% 8.9% 19.2% 6.9% 16.3%
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TABLE C2B. Design 2, numerical bootstrap.

n = 2,500 n = 5,000 n = 10,000 n = 20,000

β̂2 γ̂ β̂2 γ̂ β̂2 γ̂ β̂2 γ̂

c = 0.8 COV 89.4% 91.7% 90.1% 91.1% 89.2% 91.4% 91.2% 92.3%

LEN 97.2% 99.8% 81.5% 82.8% 68.8% 67.6% 57.9% 54.4%

c = 0.9 COV 89.8% 91.6% 90.5% 91.4% 89.7% 91.6% 91.6% 93.0%

LEN 95.2% 98.1% 80.3% 82.4% 67.5% 68.0% 57.0% 54.8%

c = 1.0 COV 89.6% 91.4% 91.7% 91.4% 89.0% 92.3% 92.2% 93.7%

LEN 93.4% 96.4% 78.7% 81.7% 66.5% 67.8% 56.1% 55.2%

c = 1.1 COV 89.1% 90.7% 91.0% 91.6% 89.0% 92.2% 91.6% 93.9%

LEN 92.0% 95.1% 77.7% 80.8% 65.4% 67.4% 55.2% 55.5%

c = 1.2 COV 88.8% 90.8% 91.0% 91.6% 89.4% 91.6% 91.9% 93.8%

LEN 90.5% 93.4% 76.6% 80.0% 64.6% 67.3% 54.5% 55.5%
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