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ON THE QUADRATIC EXTENSIONS AND THE EXTENDED
WITT RING OF A COMMUTATIVE RING

TERUO KANZAKI

Let B be a ring and A a subring of B with the common identity
element 1. If the residue A-module B/A is inversible as an A-A-
bimodule, i.e. B/A ®,Hom, (B/A,A) =~ Hom, (B/A,A) ®,B/A = A, then
B is called a quadratic extension of A. In the case where B and A are
division rings, this definition coincides with in P. M. Cohn [2]. We can
see eagily that if B is a Galois extension of A with the Galois group G
of order 2, in the sense of [3], and if Tro(B) = {3 ,cqo(b):beB} = A, B
is a quadratic extension of A. A generalized crossed product 4(f, A, @,
@) of a ring A and a group G of order 2, in [4], is also a quadratic
extension of A.

In this note, we study the case of commutative quadratic extensions,
where A is a commutative ring and B is an A-algebra. Let A be a
commutative ring with the identity element 1. We shall say that B is
a quadratic extension of A if B is a ring extension of A with the com-
mon identity element and B is a finitely generated projective A-module
of rank 2 so that B is a commutative ring. We denote by Q(A) (resp.
Q.,(A)) the set of all A-algebra isomorphism classes of quadratic (resp.
separable quadratic) extensions of A. It is known that Q,4) forms a
group under a certain product, and in [1], [6] and [7], the group Q,(4)
is investigated. In this note, in §1, we define a product in Q(A), which
coincides with the product defined in [1], [6] and [7] in the subset Q,(A4).
Then, Q(A) forms an abelian semi-group containing the subsemi-group
Q,(A) which is a group, and an element [B] in Q(A) is contained in Q,(4)
if and only if [B]? = [BI[B] is the identity element of Q(4). In §2, we
give a generalization of a quadratic module and define A-isomorphisms
between them. Then, we can consider a category consisting of these
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extended quadratic modules and A-isomorphisms. From this category
we can construct a commutative ring W*(A). In §3, we shall show that
W*(A) is a commutative ring with the identity element, and there exists a
ring homomorphism of the Witt ring W(4) to W*(A) for which the image
is an ideal of W*(A). Especially, if 2 is inversible in A, then W(A)
and W*(4) are isomorphic. In §4, we shall give a group homomorphism
of Q,(4) to the unit group U(W*(A)) of W*(A).

1. Quadratic extension.

Let A be an arbitrary commutative ring with the identity element 1. A
commutative extension ring B of A is called a quadratic extension of A if B
is a finitely generated projective A-module of rank 2 and B has the same
identity element 1. If B is a quadratic extension of A, then there exist a
finitely generated projective A-module U of rank 1 and quadratic forms
q:U—A and ¢': U - U such that B=A® U and z* = q(x) + ¢'(x) for
all z in U.

LEMMA 1. Let U be a finitely generated projective A-module of rank
1, and ¢ : U — U a quadratic form. Then there exists an A-homomor-
phism f: U — A such that ¢'(x) = f(x)x for all xz in U.

Proof. For the quadratic form ¢': U — U, there exists a bilinear
form B:U X U— U such that ¢ () = B(z,z) for all z in U, (cf. (2.3)
in [2]). We may consider that B is an element in Hom, (U ®, U, U).
Then by the following natural isomorphisms; Hom, (U®,U,U) =
Hom,(U®,U,A)®,U~Hom,(U,A)®,Hom, (U,A)®,U =~ Hom, (U, A)
®4 A, there exist f;, in Hom, (U, A) and @, in 4,7=1,2, ---n such that
B, y) = >, filway for all  and y in U. Put f = >, a,f; in
Hom, (U, A), then we have ¢(#) = B(z,2) = f(x)x for all z in U.

LEMMA 2. Let U be a finitely genecrated projective A-module of
ronk 1, and f and g elements in Hom, (U, A). If f(x)x = g(@)z for all
x wm U, then f =g.

Proof. If f(x)x = g(x)x for all « in U, then we have also
FRI(x)x = g ®I(x)x for all x in U, =U® A4, and for every maximal
ideal m of A. For the local ring A, this lemma is clear, therefore we
get easily f = g.

D cf, p. 490 in [5].
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Thus, for a given quadratic extension B of A there exist a finitely
generated projective A-module U of rank 1, an A-homomorphism f:U—A
and a quadratic form q:U — A such that B=A® U and #* = f(x)x + q(x)
for all z in U. Conversely, if a finitely generated projective A-module U
of rank 1, A-homomorphism f:U -+ A and a quadratic form ¢q: U — A
are given, then a quadratic extension B=A®P U of A is constracted by
2* = f(®)x + q(x) for z in U. We denote such a quadratic extension of
A by B = (U, f, 9.

In general, we can define as follows:

DEFINITION. Let P be a finitely generated projective and faithful
A-module, f: P— A an A-homomorphism and ¢: P — A a quadratic form.
Let TP) =ADPPPR,PP--- be the tensor algebra of P over A. We
denote by (P, f, q) the residue ring T(P)/(x ® z — f(x)x — q(x); x e P) of
T(P) by the ideal generated from the set {x ® # — f(®¥)x — q(x); x € P}.?

PROPOSITION 1. Let (U, f,q) and (U’,f’,q") be quadratic extensions
of A. Then (U, f,q@ and (U, f’,q) are A-algebra-isomorphic if and only
if there exist an A-isomorphism ¢,: U — U’ and an A-homomorphism g: U
— A satisfying the following identities;

Qoo =f9+q—9°
f,°01:f_2gy

where fg, g* and q' o, are defined by fgx) = f(x)g(x), g¥x) = g(x)* and
¢ o0,(x) = ¢'(o(®)) for z in U.

Proof. Let o:(U,f,qQ) = ADPU - U, f,q) = APU be an A-
algebra-isomorphism. Then there exist an A-isomorphism ¢,: U — U’ and
an A-homomorphism ¢g: U — A such that o(x) = g(x) + o(x) for z in
U. Since ¢ satisfies o(x?) = o(x)? for x in U, we get the following identity

J@9@) + o(@) + f(@)o,(x) = g(@)* + ¢'(0,(®) + (f'(o:(x)) + 29(x))a,(2)
for all # in U. Therefore we have
J@9@) + q@) = 9(x)* + q’(o,(x)) (1)

F(@)ay(@) = (f'(0(®)) + 29(x))ay(x) (2)

?  The composition of natural homomorphisms AP U= T({U)-» TU)/(x @ = —
f@)x — q(x); € U) is an A-isomorphism as A-modules. For any quadratic extension

C =A@ U satisfying #? = f(x)x + qx) for all x e U, C = T(U)/(x ® = — f(x)x — q(x); x e Uy
as A-algebras.
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for all  in U. From (2) we have f(»)x = (f'(0,(®)) + 29(x))x for z in
U, and by Lemma 2, we get f(2) = f'(e,(x)) + 2¢9(x) for x in U. Thus,
we have the identities of this proposition. The converse is obvious.

LEMMA 3. Let (U, fi,q) and (U, fl,q) be A-algebra-isomorphic
quadratic extensions of A,i=1,2. Then (U,Q,U,, [i® [0, [F® @, + ¢, X f3
+2¢,Q4q) and (U, Q+ULARS B¢+ d®f + 20:® ¢3) are also
A-algebra-isomorphic, where f1® q, + ¢, ® f2 +2¢,®q, (@) = f,(2)*q,(¥)
+ a@ W) + 4@, 2R¢ + ¢ ®fF + 26 ¢, T 2, ®y) =
Dot (i@ ) (y) + 0@ fy)® + 4a(®)q(y,) + 2oics (fi(@) [i(@) B, (Y5, ¥5)
+ By (@, x) () f:(y) + 2By, (%, 2B, (¥i, ), (n>1), and [, f,
(Z?:l 2, @Y = 20 [1(®) fAYy) for P AP and 2@y in U, Q, U,
(cf. (2.8) in [B]).?

Proof. By Proposition 1, there exist A-isomorphisms ¢,: U, — Uj
and o,: U, — U}, and A-homomorphisms ¢,: U, - A and g,: U, — A such
that gleoe, = fi0, + @, — 9% fioay = f, — 29, and o0, = f29, + ¢, — 9,
fioa, = f, — 2g9,. By the computation, we get the following:

For any element 2®y in U,®,U,, (f*¥ ¢ + X F +2¢6iQ ¢3) o (6, a,)
@®y = (fi(®) — 20, (9.1 + () — 9.0 + (fi(@)g,(®) + ¢,(x) —
9:@)(f:(y) — 20, + 4(fi(@)9,(@) + ¢.(x) — 9,V (W) + ¢(y) —
9 = [il@) L@y + 9.0, — 20.@)9.(v) + (file) ey +
(@) () + 40,@) () — ([i(@)9:(y) + 9.(®) f,(y) — 29,(@) g, (W)’ = [(f, ® f»)
(i®9+60:.80,—20,00)+ (VG +0® [} +2¢.0¢) ~(/1Q ¢+ 9,Rf,
— 29, ® 9)1(x ® y). Using the identities

By (o, (), a(xy) = fil@)g(x) + fi(xpg,(x) + Bo (s, v) — 29,(x)g.(x;)
and B (0,(¥,), 0,(¥) = F:(¥)9.¥p) + fi(¥)9:(y) + Bo,(s, ¥5) — 29,(¥)9,(y,)
for z;®y; and z; ®y,; in U, ®,U,, we get as follows; f/(a\(x)) f{(o,(x,))
By (0;(¥), 0,(y)) + By a:(z), 0.(x)) f1(0:(y)) f1(o:(y)) + 2By (0,(x), a(z,)
By (0,(¥2), 0,(y) = (fi(@) — 29,@N(fi(x) — 20,@ )N, ¥)9.¥) + [(y)9:.(¥s)
+ qu(yi’ ?/j) — 292(?/1)92(?/;’)) + (fl(xi)gl(xj) + fl(xj)gl(xz—) -+ Bql(xi, x]—) —
20, )9, (@)D, — 20 N((y) — 29,(y)) + 2(f(x)g,(x)) + fi(z)g,(x)
+ By (@, 2) — 29,(x )9, @ )N(f[,¥)9:(v) + [:¥09:.(y) + Bo,(Wi, ) — 29,(y;)
9 = [i@) LS9y + 9x) f(w) — 20.(x)g.(y)) + fil@)fily,)
([1(@)9, (W) + 9:(x) [,(ys) — 20:(x)9:(¥:) + fi(x) f[i(@ DBy, (s, ¥5) + By (24, 25)

» f2®¢ and 2®q are defined by f2® ¢'(T x: @ ys) = T f@:)q'(ye) + Tic; /;(oci)f(xj)
By (yi, y3) and f2Q (X € @ ya) = D 2f(@:)2q'(ys) + Li<j Bra(wss DB g (ys, y5) for ¥ a; R ys
in M ®A M.
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S WD Y + 2B (s, 2)Bg,(¥s, ¥) — 2(/1(@)9:.(¥) + 9.(x) f,(y) — 29,(x)
9.9 ) () + f[il@)g,(y) — 29:(x)9.(y)).  Accordingly, we get
(f:z @‘A + q{ ®f2/2 + 2(]{ ® Q;) o (0'1 ® 02)(Z?=1 X ® yz) = [(fl ®fz)(f1 ® 9. +
98, —20.09) + (I® ¢ + 6 ®fF + 26,09 + (i ® 9, — 26, ® 9]
(ZLl x; ® y,) for all Z?;l 2y, inU,Q® U, PutG=/®g +9&f—
29, ® ¢;, then G is an A-homomorphism of U, ®, U, to A, ¢, ® g, is an
A-isomorphism of U, ®, U, to U,;®,U;, and these satisfy (f{*® q; +
ERfI+2¢0® ) (0, R0) = (iQfIG+ (1R @, + 0, X f2 +20,® ¢) + G,
and (f1,®f2/)°(0'1 ® a;) = L ®f, — 2G.

By Proposition 1, we have (U,®,Us, i ® fo, [1® ¢, + ¢, ® f3+2¢, ® q7)
and (U@, UL I [, [I'® ¢ + ¢ ® f* + 2¢; ® ¢3) are isomorphic as A-
algebras.

DEFINITION. We denote by Q(A) the set of all 4-algebra-isomorphism
classes [U, f, q] of quadratic extensions (U, f, q) of A.

PROPOSITION 2. Q(A) forms an abelian semi-group with unit ele-
ment [A, 1, 01 by the product [U, f, ql-IU, f, ¢1=UQR, U, R f,
PR +dR [+ 2R q'1, where (A,a,b) denotes a quadratic extension
A® Av such that v* =av + b, @ and b in A, i.e. f(v) =a, qw) = b.

Proof. By Lemma 3, the product in Q(A) is well defined. The as-
sociative law is easily seen as follows; (LU, f, qllU’, 1/, ¢DIU”, ", q"] =
[UR.U .U, fRFQf", /PR R® + PRIV [+ ¢® R [ +
20 ¢ " + ¢V f*®q¢" + fR®IR®C) + 4q® ¢ ®q"] = [U, f,4q]
aw, s, ", f, q"N.»

DEFINITION. Let P be a finitely generated projective and faithful
A-module, f:P— A an A-homomorphism and ¢q: P — A a quadratic form.
For the A-algebra (P,f,q) = T(P)/(x ® x — f(x)x — q(x); x € P), we con-
sider a symmetric bilinear form D, ,: P X P— A defined by D; (x,y) =
S@ W) + 2By(w,y) for », y in P, where B,(z,¥) = q(x + y) — q(x) — q(¥)
for z, ¥y in P. Then we shall call the bilinear A-module (P,D,,) the
discriminant of (P, f, Q).

Remark 1. If 2 is inversible in A, then we have that (P, f, ) is a
separable algebra over A if and only if (P,D;, is a non-degenerate
bilinear A-module, i.e. P — Hom, (P,A); x> D, (x,-) is an isomor-

phism.
Y @RIMRI=9R(PR ), PRR=BWQ®).
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Proof. d = f* + 4q is a quadratic form of P to A, and satisfies
d(x) = f(x)* + 2B,(x,2) = D, (x,x). In the tensor algebra T(P), we put
P={x—-Q0/2f(x)e A®PC T(P);xzecP}, then the map P—>P ;x> 2
—(@1/2)f(x) is an A-isomorphism. We denote by . the inverse isomor-
phism of it. For the ideal of T(P) generated by the set {x ® * — f(x)x
—q@);xePl={x®x—dh(x/2);xe P}, we have (P,f, Q) =TP)/(xQx
—f@z—q@);xeP)=TP)/(x®x — d(Mx)/2));x € P)=(P,0,d-(1/2)h),
since T'(P) = T(P’). But, (P’,0,d-(1/2)h) is a Clifford algebra Cl(P’,d-(1/2)h)
of a quadratic module (P/,do(1/2)k). It is known that Cl (P’,do(1/2)h) is
a separable algebra over A if and only if (P’,do(1/2)k) is non-degenerat-
ed. Since (P,d) and (P’,do(1/2)h) are isometric, we get this remark.

THEOREM 1. Let U be a finitely generated projective A-module of
rank 1, f: U— A an A-homomorphism, q: U— A a quadratic form, and
U, f,q) the quadratic extemsion of A. Then the following conditions
are equivalent:

1) (U, f, q) is a separable algebra over A.

2) (U,D, ) is a non-degenerate bilinear A-module.

3) [U,f,qF =1[4,1,0]

Proof. 1) 22): To prove the equivalence of the conditions 1) and
2), we may assume that A is a local ring. Let A be the local ring.
Then U = Awu and (U, f, q) =~ A[X]/(X?— aX — D), where a = f(w), b = q(u).
Hence, (U, f,q) is separable over A if and only if a® + 4b = f? + 4q(u)
= D; ,(u,u) is inversible in A. On the other hand, (U,D;, is non-
degenerated if and only if D, (u,u) is inversible in A. Therefore, we
obtain the equivalence.

2) —» 3): Assume that (U,D;, is non-degenerate. Then the A-
isomorphism U — Hom, (U, A) ; x -~ D/ (z,-) induces an A-isomorphism
D;,y:URU—A;2Qy~—> D, (x,y). Pute, =D;,and g=—B,. Then
we have Iog, =D, = f® f + 2B, = f® f — 29. Furthermore, we can
prove the following identity:

FRNI+(PP¥e+q® fP+2Rq¢ —g*=0.

Because, by the localizations of A and U by every maximal ideal m of
A, we can check that quadratic forms f?®q+q® f*— B, fQ f+:UR,U
— A, and 2¢®q —B::U®,U— A are equal to 0. Thus, by Proposi-
tion 1 we get [U,f,qF =[UQ,U, f®f, WI+ e +20®ql =
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[4,1,0].

3)—2): Let [U,f,qI?=1[4,1,0]. To prove the condition 2) it is
sufficient to show that for any maximal ideal m of A, D, (u,u) is in-
versible in A,, where U, = A, u. Now, we assume A is a local ring with
maximal ideal m and U = Au. We shall show D; (u,uw) = f(u)?* +
2B, (u,u) = f(w)* + 4qw) 2 m. From [U,f,ql* = [A,1,0], there exist an
A-homomorphism ¢g: U®, U — A and an A-isomorphism ¢,: U®,U — A
such that a(x®y) = fl@)f@¥) —29x®y) and 0= f@) /W9l ®y) +
J@Pq@W) + q(@) f () + 49@)q(y) + 9(x ®y)* for all zQye UK, U. Espe-
cially, taking x = y = u, we get

au®@uw = fw)! — 29(u @ wu) (3),

and
0= fwig(u @u + 2f(wqw) + 4q9u)* — glu @u) (4).

Eliminating f(#)* from (3) and (4), we get (o,(u @ u) + 29(u @ u))g(u Q u)
+ 2(0,(u @ u) + 29(u @ w)qw) + 4qw)* — glu ® u)* = 0, and so

(e ®@u) + gu @ u) + 2q(w)(glu @ w) + 2q(w)) = 0.

If glu @ u) + 2q(u) is contained in m, then from o, (u @ u)e m, o(u @ u)
+ g(u ® u) + 2q(u) is inversible in A. Therefore, we have gu @ u) +
2q(w) = 0, and D, (u,u) = fw)’ + 4qu) = f(u) — 29(u ® u) = 0,(u @ )
is inversible in A. If glu ®@u) + 2q(u) ¢ m, then o,u @ u) + glu @ u) +
2q(w) = 0. From (3) and 20,u@u) + 29(u @ u) + 4q(u) = 0, we get
o(u ®u) + f(w) + 49(w) = 0, accordingly, Dy (u,u) = f(u) + 4q(u) =
—o(u ®u) is inversible in A.

COROLLARY 1. The set Q,(A) of A-algebra-isomorphism classes of the
separable quadratic extensions of A forms an abelian group with expo-
nent 2.

PROPOSITION 3. Let (U,f,q) be o quadratic extension of A. The
map ;2 (U, [, — U, f,0;a+ x——>a+ fx) —x is an A-algebra-iso-
morphism such that <> =1. If (U,f,q@ aend (U, f’,q) are quadratic ex-
tensions of A and o: (U, f,q — (U, f',q) is an A-algebra-isomorphim,
then we have the following commutative diagram ;
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./, ', 1)
I 7y Q T
U, e (U, 1) -

Proof. From Proposition 1, there exist ¢ in Hom, (U, A) and A-
isomorphism ¢,: U — U’ such that ¢(z) = g(z) + o,(2) and f'(6,(x)) = f(x)
— 29(x) for all x in U. Therefore, }.(¢(x) = 9() + /.(0,()) = g(x) +
J(0,(@) — a(x) = 9@ + f(@) — 29@) — a;(®) = f(2) — (9@ + 0,(2)) =
f@) — o(@) = o(f(x) — ©) = o(r;(x)), for all z in U.

Remark 2.

1) In Proposition 3, if we take ¢ = I, then ¢, = 7.

2) If (U, f,q is a separable algebra over A, then ¢, is the unique
A-algebra-automorphism of (U, f,q) which is not the identity.

Let B=(U,f,q and B’ = (U, f/,q) be separable quadratic exten-
sions of A. Then G = {r,I} and G’ = {¢},,I} are the groups of auto-
morphisms of B over A and B’ over A, respectively. In [1], [3] and [4],
the product B+ B’ of quadratic extensions B and B’ was defined as the
fixed subalgebra (B® ,B)7® ={xeBQ®,B ;7,&(x) = 2} of B, B’
by 7, ®7},,. But this product coincides with our one.

ProrosITION 4. Let (U, f,q) and (U’, f',q) be separable quadratic
extensions of A. Then we have [(U,f,q) &, U, 1/, ¢)*®r] =1U,f,ql-
U, 1, 4'l in Q,(A).

Proof. For B = (U,f,q) and B’ = U, f’,q), B&®, B’ is expressed
as a direct sum BB =AQURU OUR,LU. PutV =3, flz)y; +
S Wor, — 20,0y, e URUDURLU’; forall >, 2;,®y,in UK, U’}. Then
V is an A-submodule of B ®, B’, which is A-isomorphic to U ®, U’ by
the isomorphism 6: UR, U - V;2Q ¥y —~—> f@)y + f/(Pxr — 22 Q@ y. It
is easily seen that the A-submodule C = A®V of BQ, B’ generated by
V and A is contained in B®,B’®% ., To show C = B®, B %}, we
shall prove first that the map ¢: (U, U, f® f, Q¢ + ¢ f* +
20R¢)=ARURU -C=ADV;a+2Qy—~—>0+ xRy is an A-
algebra-isomorphism. We can easily compute that for any x®y in
U U, 0@®y)? = (f@y + fDx — 22 Q@ y) = f@Y + f@x* +
1Y + 2f @) f'PN2 @Y — 4f @z QY — 4f/ NPy = f@(f'Wy +
aW) + fW(f@r + q@) + 4(f (@) + @) (WY + W) + 21 () f'(y)
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2QY—4f(@)x® (WY + W) — 4/ W@z + ¢@) @y = f() f'(W(f @)y
+ Wz — 22 y) + f(@ W + W) + @) @) = fQ flx @y’
@Ry + (*R¢ + (B + 2R ¢N@RY) = Ol ® faRWzr Ry +
(PR +qR 7+ ¢® N2 @] = ¢« ® ), and for , @y, x; ® ¥, in
UR U, 20(x, @y, O(x; ® yj) = 2(f(x)y; + [ W)r, — 22, ® yi)(f(xj)yj +
f/(yj)xj - 2951 ® 'I/j) = f(xL)f/(y’I,)(f(xj)yj + f/(yj)xj — zxj ® yj) + f(x])f/(?/j)
(f@y; + fydx, — 20, @ y) + S@) f@)By W, ¥ + W) f(y)B (2, x;) +
2B,(2:, 2)By (Y5, ¥;) = 0(fF@) f'W)e; ® y; + f@)f/Wpx, Ry, + f(@)f(x))
Bq'(yi7 Y + f’(yi)f,(yj)Bq(xi’ xj) + 2Bq(xi’ xj)Bq'(?/i’ DB

Therefore, we have ¢/'(C.; 2, Q¥,)* = 0(C; 2, @ y)H) for any 3,2, Q ¥,
in U®, U’. Accordingly, ¢ is an A-algebra isomorphism. Thus, C is
also a separable algebra over A. Since B®, B’ is a finitely generated
projective A-module, B®, B’ is also finitely generated projective over
C. Therefore, C is a direct summand of B®, B’, and hence also a
direct summand of B ®, B’®% as C-module. But, rank (C:A4) =
rank (B ®, B®%5: A) = 2, hence we have BR,B7®r =C=AQV =
URLU,fRQf, R ¢ +a® 1 + 2¢® ¢') as A-algebra.

2. Extended quadratic module.

In this section, we give a generalization of quadratic module. Let
A be an arbitrary commutative ring with unit element. Let M be an
A-module, f: M — A an A-homomorphism, and ¢: M —- A a quadratic
form. Then, we call the triple (M, f,q¢> an extended quadratic module

DEFINITION. Let (M, f,q> and {M’, f’,q"> be extended quadratic
modules. If there exist an A-isomorphism ¢: M — M’ and A-homomor-
phism g: M — A satisfying ¢’ooc=q + 2fg — 2¢* and f'o0 = f — 29,
then we call that (M, f,¢> and {M’, f/,q"> are A-isomorphic, and denote
by (0, 9): <M, f,a> —<M’, ', q¢"> the A-isomorphism of extended quadratic
modules, or simply <M, f,q¢> = <M, f', q">.

Then we have easily

1) (,0) is identity,

2) (o/,9)0,9) = (0’00,9 + g'00) and

3) (0,9 = (67", —goa™.

Thus, we can consider a category Qua* (4) in which objects are extended
quadratic modules and morphisms are A-isomorphisms of extended quad-
ratic modules. Then, Qua* (4) includes the category Qua (4) of the
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ordinaly quadratic modules as a sub-category. Because, (g, 9): <M,0, ¢>
—{M’,0,q¢’> is an A-isomorphism in Qua*(4) if and only if o: (M, q) —
(M',q) is an A-isomorphism in Qua (4), therefore we may regard as
<{M,0,q9>=(M,q) and (,0) = ¢ in Qua (A4).

DEFINITION. Let (M, f,q> be an extended quadratic module, and let
B;,: M X M — A be a symmetric bilinear form defined by B, ,(z,y) =
J@f(y + Byx,y) for x and ¥y in M. Then, we call the bilinear module
(M, B, ,) the associated bilinear module with <M, f,q>. If (M,B;,) is a

non-degenerate bilinear module, then (MM, f, ¢> is called a non-degenerate
extended quadratic module.

LEMMA 4. If (0,9): <M, f,q> - <M, f',q"> is an A-isomorphism in
Qua* (4), then we have By ..(o(x),0(y)) = By (x,y) for all z and y in
M, that is, o: (M,By,) — (M',B;. ) is an A-isomorphism of bilinear
modules.

Proof. Since the A-isomorphism ¢: M — M’ and the A-homomorphism
9: M — A sgatisfy floo=f—29 and ¢ oo =q+ 2fg — 29>, we have
By, (a(®), o(y)) = f'(0@)f"(e(¥) + By(o(2), o) = (f(@) — 29(@)N(f(y) —
29(y) + By(z,y) + 2(f(@)9(y) + f(W9(@) — 49(x)9(y) = f(@) f(y) + B,(z,y)
= By (x, ).

COROLLARY 2. If (M, f,¢> =M, f,q¢> and {M,f,q> is non-degen-
erate, then (M, f',q"> is also non-degenerate.

DEFINITION. Let {M,, f;,q,> and {M,, f,, q¢,> be extended quadratic
modules. We define the orthogonal sum | and the tensor product ® of
extended quadratic modules as follows:

<My, 11, Q1> 1 My for @y =<M, @My, fy 1 fosts 1 @a — i X o (5),
M, 11, @) @ {M,, 1y @

=<M1®M2:f1®f2’f12®%+Q1®f22+Q1®Q2> (6),
where f; | f, is defined by the A-homomorphism M, ® M, — A; x, D x,
> fi(x) + f(x), and f, X f, the quadratic form M, ® M, — A; x, @ «,
> fi(®) - fi(xy).

LEMMA 5. Let {M;, fi,q.> and (M, fl,q;> be extended quadratic
modules, and (a;, g9): <M, fiy @0 — <M, fi, @&y an A-isomorphism in
Qua* (A) for 1 =1,2. Then we have the following A-isomorphisms in
Qua* (4);
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(06,Da5 9, 1 92 <My, [y @y | <M, fo @2 —><M§,f1', q;> 1 <M, 1Y, q§> 7,
(0, R0, 1R 9, + 9. ® f, — 29, ® 9,): <My, fr, @) @ LM, [o, ¢z
_’<M§,f1/’ q;>®<M;’f2/; q;> (8) .

Proof. The proof of (7). We shall show that (6,®P o0, 9, | 9)):
Mi@M,, fy | forts L & — fi X foy > <Mi@ M, f{ | fi,ai 1l a—flXf)

is an A-isomorphism in Qua* (4). For 2, ® z, in M, ® M,, we have

(91 L a2 — fI X D o (0, D a) (@, D x,) = qi(0,(x) + q3(0(2)) — f1(0:(x) 13 (0:()
= q,(x) + 2f,(x)g,(x) — 29,(2)* + @(x) + 2F,(X)9:(%,) — 29,(,)* — (filz,) —
20, ))(fo(@) — 295(x)) = (@y L @ — fi X HH @D x) + 20/, L /(9 L 9)
@, @ ) — 2(9, | 9%z, @ x,), and

(fll_]_fz/)o(0'1®0'2) =f1,°0'1 J_le‘-"o'z = (fl —2¢9) | (fz — 29,
=L L) —2009,1 9.

The proof of (8) is obtained by similar computations the proof of Lemma
3. We omit this proof.

DEFINITION. We denote by B,, | B, , the associated bilinear form
with <M, f,q¢> | <M’, f’,q’>, and by B, ,® By , the associated bilinear
form with <M, f,¢> @ <M’, f',q’), that is, B;, | By, = By, qran-uxsm
and Bf,q ® Bf’,q’ = Bf®f’,f8§Q'+q®f'2+q®q'-

PROPOSITION 5. The orthogonal sum and the temsor product of ex-
tended quadratic modules {M,f,q> and {M’, f’,q"> induce the following
identities between the associated bilinear modules with them ;

M®M,Byq 1 Byy) =M,By) | (M',By.,q) (9,

t.e. Bsq | B (x®@a',y@Y) = By ox,y) + By o(&,y) for x@a’ and
YDy in M® M, and

(MQM',B,,®B,.,) = (M,B,) ® (M, By, ,.) ao ,

t.e. By q® By (i@ ®a, 209 QV) = 2015 Bro@is Yy) By o (X5, 97 for
Sz @l and 3y, QY in M M.

Proof. The proof of (9): By, | By (2@ 2, y®@Y)=(f 1 f'ea®x))
(f LSWDY)) + Bgion-usxm@ @2, yDy) = (f(@) + /@)@ + /@)
+ B @@, yOY) — By p (@2, yOY) = f@fW) + @) f' W) +
J @) f + f@f W)+ By, y) + Bo.(@, ) — (f@ f'W) + f) f@)) =
B; (@, y) + By, (2, y), for any @ 2’ and y®D Yy’ in M @ M.

https://doi.org/10.1017/5S0027763000015348 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015348

138 TERUO KANZAKI

The proof of (10): B; & B (30 2:Q%, 31;9;8U) =Bygs,ri%q: + a® 24000’
i, @, 3, Q@YD= ® f/CL 2 ®x) f R f' (X5 ¥ ®YD +Brigar v awrrawa
G ®al, 359, = (& f@) @) fWN S WD) + Bpge (2 2 i,
YY) + Bugso(Go w0, @2, Y, QU) + Begoe (X 2 Qi 25y, Q) =
2, F@)fUNf @ W) + f@)fW)IBe (i, y}) + Bo(as, yp)f @) f' ) +
By, Y)Bo (5, ¥7) = 34,5 By,o(@s, Y)By oo (@, ¥7), for 32, @] and 3y, Q)
in M® M.

COROLLARY 3. If (M, f,q> and {M’, f',q"> are mon-degenerate ex-
tended quadratic modules, then <M, f,q> | <M’, f',q"> is also non-degen-
erate. Furthermore, if M and M’ are finitely generated projective A-
modules, then {M,f,q> <M, f',q"> is non-degenerate.

Remark 3. If 2 is inversible in the ring A, then the category
Qua* (A) is equivalent to the category Qua (4), i.e. for any object <M, f, ¢>
in Qua* (4), M, f,q¢> = {(M,0,q + (1/2)f*.

Remark 4. Let {M,, fi, a.>, <M, f,, ¢,y and {M,, f;, q;> be extended
quadratic modules. Then we get the following natural isomorphisms in
Qua* (4);

D <My, f,a) 1 <M, f, Q) = {M,, f, @y | <My, fi, q,),

2) <M, fi, @) ® <My, 1), QZ> = (M, f, QZ> ® <M1, Ji Q1>,

3) (<M1’f1’ Q) 1 <Mz,fz: QZ>) 1 <M3,f3, Q3> = {My, fi, Q1> i (<M27f2, Q2>
1L <M, 1o @),

) KMy, 115 @0 Q My, [fo5 0:0) @ KMy, [y @5) = KMy, fos 1) @ KMy, [ @2
® <Ma’ Jas Q3>),

5 (M, 11, ) 1 <My, f2y @) @ KMy, [y @5) = KMy, Jrs @) @ KM, [, 5))
1 KMy, [ @) @ <M, [, 43,

6) My, fi,q.> ®LA,I, 0> =~ <My, 1 Q).

Proof. We shall show only 5). For the other isomorphisms, we can
see easily. To prove it, it is enough to show the identity

(/i _sz)2®% +@la— N sz)@f:f +@lae—nnxX fz)®q3 =
(B + @ fi+a®¢) | (i®e+ @ fi+6Q¢) —(fi®f) X ().
For any 3, (x; + ¥) ® 2, in (M, ® M) @ My, (f, L 'R+ (a1 ¢:— fL X [
@fa2 + (@ L =i XDRGC: (@ Dy)®z) = > [(filx) + (W) a(2) +
(@) + W) — [i@) L)) [o(2:) + 2(q(x) + (Y — fi(@) ¥ a:(2)] +
Zi<j [(filx) + fZ(yz))(fl(xj) + fz(yj))Bqa(zi; zj) + (Bql(xi, xj) + qu(yi, ’!/j) —
f1(xi)f2(yj) — fl(xj)fz(yz))fa(zz)fs(zj) + (Bql(xiy xj) + Bq,(?/z’: ?/j) - fl(xz)fZ(yj)
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—ﬁ(xj)fz(yz))qu(zi, 2] = 2 (@) (2D + oz fi(z)* + 2q,(x)as(z,)) +
(2(¥%0:(2) 0, (¥2) fo(2)* + 20(¥)45(2,)) — fi(@) f:(2) [(y0) ()] + Dy [(filx)
.fl(xj)Bq_a(zi’ zj) + Bql(xi, xj)fs(zi)fg(zj) + Bql(xi, xj)qu(zu zj)) -+ (fz(yz)fz(?/j)
qu(zi, zj) + Bq,(ym ?/j)fs(zi)fs(zj) + qu(yi: yj)qu(ziy zj)) — (ﬂ(xi)fs(zi)fz(?/j)
Joz) + Ji(x ) fo(25) (¥ f:(z))] = (7 @ q + q —®—f32 +q®q) | (f22® q; +
q: ®f32 + Qg — (i®f) X (:® [T (@, D y) ® z,).

DEFINITION. An extended quadratic module <{M,f,q> is called
hyperbolic if the associated bilinear module (M, B, with <M, f,¢> is
hyperbolic, i.e. there exists an A-module N such that M = N @ N’ for
some A-submodule N’, f(N) = q(N) =0 and N = Ni(= {xe M; B, ,(x,N)
= 0}).

From Proposition 5 and the well known properties on bilinear
modules, we get the following proposition.

PROPOSITION 6.

D If<M,f,q and (M, f',q"> are hyperbolic, then so is also {M, f, ¢>
L 1.

2) If M is a finitely generated projective A-module and <M, f, ¢
18 hyperbolic then {M, f,q> is non-degenerate.

3 If M, f,q> and M, f',q"> are non-degenerate and {M,f,q> is
hyperbolic, then <M, f,q¢> Q M, f',q’> is also hyperbolic.

3. Extended Witt ring W*(A).

From the argument in §2, we can construct a commutative ring
W*(A). Let Qua,* (A) be a full subcategory of Qua* (A) consisting of
non-degenerate extended quadratic modules with finitely generated pro-
jective modules. In the category Qua,* (4), as well as the construction
of the Witt ring W(A), we consider the full subcategory HQuap* (4)
consisting of hyperbolic extended quadratic modules. And, using the
notation of K-theory in [1], we define the extended Witt ring W*(4) by
W*(A) = Coker (K,(HQua,* (A)) — K(Qua,* (4))). Thus, it can be easily
checked that W*(4) is a commutative ring with sum and product induced
by orthogonal sum | and tensor product ®. We denote by [KP,f, ¢l
the class of (P, f,¢> in W*(A4).

THEOREM 2. The extended Witt ring W*(A) has always the identity
element [{A,I,0)], and there exists a ring homomorphism of the Witt
ring W(A) to W*(A). Then, the image of W(A) becomes an ideal of
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W*(A). If 2 is inversible in A, then it is an isomorphism; W(A) —
W*(A).

Proof. Let Qua, (4) be the full subcategory of Qua (4) consisting
of non-degenerate quadratic modules (P, q) with finitely generated pro-
jective A-module P, and HQua, (4) the full subcategory of Qua, (A)
whose objects are hyperbolic in Qua,(A4). Consider the functor
@: Qua, (A) — Qua,* (4); (P,q) —~—><P,0,¢q>, then we have the following
commutative diagram

K (HQua,* (4)) — K,(Qua,* (4)) — W*(4) — 0
TKO@) TKO@)
K(HQua, (4)) — K,(Qua, (4)) - W(4) —0

where two rows are exact.

Thus, the ring homomorphism K (@) induces a ring homomorphism
o: W(A) — W*(A). Then, Im o becomes an ideal of W*(A), for [KP, f, ¢>]
[KP,0,¢5] =[KPRP,0,q® ¢ + f*®¢'>] in W*(A). If 2 is inversible
in A, by Remark 3, K@) is an isomorphism, therefore, so is also
w: WA) — W*(A).

4. The unit group of W*(4) and Q. (4).

In this section, we consider a relation between the separable quad-
ratic extension group Q,(4) and the unit group U(W*(4)) of the extend-
ed Witt ring W*(A4).

THEOREM 3. There exists a group homomorphism of Q,(A) to
UW*(A));

6: Q4) —> UW*(A); [U, f, a1 —~— KU, 1,271 .

Proof. Let [U,f,q] be an element in Q,A4). By Theorem 1, the
bilinear module (U, D;,,), called the discriminant of [U, f,ql, is non-
degenerate. Since D, (x,y) = f(@)f(y) + 2B,(x,y) = f(@)f(y) + By, y)
= By (z,y) for any « and y in U, we have D;, = B;,,. Therefore,
U, f,2q¢) is in Qua,* (A). Now, we shall show that 6 is well defined:
If [U,f,ql =I[U,f,q1 is in Q,(A), then there exist an A-isomorphism
o:U — U’ and an A-homomorphism ¢g: U — A such that ¢’co0 =q + fg — ¢*
and f’oo = f —2g. Then, we get 2¢’c0 = 29 + 2f9 — 29° and f'o0o =
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J — 29, that is, <U, f,2¢> = <U’, f,2¢"> in Qua,* (4). Thus, the map
0:Q,A) — W*(A);I[U, f, ql —> KU, f,2¢>] is well defined. Furthermore,
we have

o(U, f, U, /D =6UR U, f® f, [*® ¢ + ¢® f* +29R ¢') =
KUQU,f®f, *®2¢ +2¢® [ +2q®2¢ 51 = KU, f,2¢>1- KU, f',2¢)],
and O([4,1,0]) = [CA,1,05]. Accordingly, Im @ is contained in U(W*(4))
and 0: Q,(A) — U(W*(A)) is a group homomorphism.

Remark 5.

1) if K is a field with the characteristic #2, then U(W*(4)) =
UWA) = UK)|UK), Q,K) =~ UK)/U(K)* and 6 is an isomorphism.

2) If K is a field with characteristic 2, then © is a zero homo-
morphism.
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