Numerical Ranges Arising from Simple Lie Algebras

Dedicated to Professor Y. H. Au-Yeung on the occasion of his retirement

Chi-Kwong Li and Tin-Yau Tam

Abstract. A unified formulation is given to various generalizations of the classical numerical range including the c-numerical range, congruence numerical range, q-numerical range and von Neumann range. Attention is given to those cases having connections with classical simple real Lie algebras. Convexity and inclusion relation involving those generalized numerical ranges are investigated. The underlying geometry is emphasized.

1 Introduction

The (classical) numerical range of $A \in \mathbb{C}^{n \times n}$ is defined by

$$
W(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

This concept and its many generalizations have been studied heavily in the last few decades because of their connections and applications to many pure and applied areas (see e.g. [10], [11], [14]). One of the interesting results, perhaps the most fascinating, about the classical numerical range is the celebrated Toeplitz-Hausdorff theorem [38], [12] asserting that the numerical range is always a convex subset of \mathbb{C}. In fact, the convexity has often been a concern when different generalizations are considered. For example, given $C \in \mathbb{C}^{n \times n}$ with $C=C^{*}$, Au-Yeung and Tsing [3] considered the (joint) C-numerical range of several Hermitian matrices $A_{1}, \ldots, A_{p} \in \mathbb{C}^{n \times n}$ defined by

$$
\begin{equation*}
W_{C}\left(A_{1}, \ldots, A_{p}\right)=\left\{\left(\operatorname{tr} C U^{*} A_{1} U, \ldots, \operatorname{tr} C U^{*} A_{p} U\right): U \in U(n)\right\} \tag{1}
\end{equation*}
$$

where $U(n)$ is the unitary group, and studied the convexity and several other related problems involving $W_{C}\left(A_{1}, \ldots, A_{p}\right)$. The C-numerical range embraces various generalizations of the classical numerical range including the joint numerical range $W\left(A_{1}, \ldots, A_{p}\right)$ considered by Brickman [5], the k-numerical range considered by Halmos and Berger [11], [4], and the c-numerical range considered by Westwick and Poon [41], [24]. (More results on the C-numerical range will be given in the next few sections.) Actually, Au-Yeung and Tsing [3] also studied the C-numerical range of A_{1}, \ldots, A_{p}, for real symmetric or real quaternion Hermitian matrices C, A_{1}, \ldots, A_{p}. In these cases, the set $U(n)$ in (1) is replaced by the set of $n \times n$ matrices X over the real field \mathbb{R} or the skew-field of real quaternions \mathbb{H} satisfying $X^{*} X=I_{n}$.

[^0]Inspired by the study of Au-Yeung and Tsing, we consider the C-numerical range in the following setting. (In most cases, we will not use new notation for the different kinds of C numerical range in the following discussion, but will make the definition clear in each case in the context). Let \mathbf{V} be a matrix space (or any finite dimensional linear space) equipped with a real inner product (X, Y) which is invariant under a compact group G of operators acting on \mathbf{V}, i.e., $(g X, g Y)=(X, Y)$ for all $g \in G$ and $X, Y \in \mathbf{V}$. For a given $C \in \mathbf{V}$, define the (joint) C-numerical range of $A_{1}, \ldots, A_{p} \in \mathbf{V}$ by

$$
\begin{equation*}
W_{C}\left(A_{1}, \ldots, A_{p}\right)=\left\{\left(\left(A_{1}, Z\right), \ldots,\left(A_{p}, Z\right)\right): Z \in G(C)\right\} \tag{2}
\end{equation*}
$$

where

$$
G(C)=\{g(C): g \in G\}
$$

is the orbit of C under G. Evidently, one can regard $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ as the image of the orbit $G(C)$ under the linear map $Z \mapsto\left(\left(A_{1}, Z\right), \ldots,\left(A_{p}, Z\right)\right)$. Since (X, Y) is G-invariant, one easily verifies that

$$
W_{C}\left(A_{1}, \ldots, A_{p}\right)=\left\{\left(\left(X_{1}, C\right), \ldots,\left(X_{p}, C\right)\right):\left(X_{1}, \ldots, X_{p}\right) \in G\left(A_{1}, \ldots, A_{p}\right)\right\}
$$

where $G\left(A_{1}, \ldots, A_{p}\right)=\left\{\left(g\left(A_{1}\right), \ldots, g\left(A_{p}\right)\right): g \in G\right\}$ is the joint orbit of A_{1}, \ldots, A_{p} under the group G. Thus, $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ can also be viewed as the image of a linear map on the joint orbit $G\left(A_{1}, \ldots, A_{p}\right)$. Furthermore, $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ covers many other types of generalized numerical ranges in the literature. We describe a few of them in the following.

Thompson [37] introduced the C-congruence numerical range of a complex $n \times n$ ma$\operatorname{trix} A$: $W_{C}^{T}(A)=\left\{\operatorname{tr} C U^{T} A U: U \in U(n)\right\}$, where C is a given $n \times n$ complex symmetric matrix. He proved that $W_{C}^{T}(A)$ is a circular disk centered at the origin when $n>1$ and is a circle when $n=1$. Then the complex skew symmetric case was studied in [26]. It is convex except for $n=2$ in which case the range is a circle (may be a point). Then Tam and Tsing [34] conjectured and Choi et al. [6] proved that $W_{C}^{T}(A)$ is convex whenever $n>2$ for general complex matrices A and C (the case $n=1$ is trivial). Clearly, $W_{C}^{T}(A)$ can be viewed as $W_{C^{*}}(A, i A)$ in (2) if we let $G(X)=\left\{U^{T} X U: U \in U(n)\right\}$ and $(X, Y)=\operatorname{Re} \operatorname{tr}\left(X Y^{*}\right)$ on $\mathbb{C}^{n \times n}$.

Next, let $G(X)=\{U X V: U, V \in U(n)\}$ and $(X, Y)=\operatorname{Retr}\left(X Y^{*}\right)$ on $\mathbb{C}^{n \times n}$. This setting covers two other generalizations of the classical numerical range. First, for any $n \times n$ complex matrices C and $A, W_{C^{*}}(A, i A)$ reduces to the set $\{\operatorname{tr} C U A V: U, V \in U(n)\}$ considered by von Neumann [22]. The von Neumann range is a circular disk centered at the origin when $n>1$ and hence convex; and it is a circle when $n=1$.

The q-numerical range of an $n \times n$ complex matrix $A, q \in \mathbb{C}$ satisfying $|q| \leq 1$, is the set $W(q: A)=\left\{y^{*} A x: x, y \in \mathbb{C}^{n}, x^{*} x=y^{*} y=1, y^{*} x=q\right\}$. Evidently, $W(1: A)=W(A)$. Tsing [39] proved that $W(q: A)$ is convex. See [19] for a shorter proof, and [20] for further results and references. One can obtain $W(q: A)$ by fixing the third and the fourth coordinates of the set $W_{C}(A,-i A, I,-i I)$, i.e., $\operatorname{Re} y^{*} x=\operatorname{Re} q$ and $\operatorname{Im} y^{*} x=\operatorname{Im} q$.

Our definition of $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ also covers the notion of numerical range in the context of compact connected Lie groups studied in [31] recently (see the next section for the definition and the convexity result). In this paper, we consider the study of $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ in connection to classical simple real Lie algebras. The convexity of $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ is our main concern.

Following Au-Yeung and Tsing [3] (see also [25], [31]), we relate the convexity problem to inclusion relations for $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ (see Section 3). The underlying geometry of the orbit $G(C)$ will be emphasized. Some Lie theory background will be given in Section 2. Connection between the convexity and inclusion relation together with some technical lemmas are given in Section 3. In Sections 4-11, we consider $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ arising from real classical simple Lie algebras. Some concluding remarks are given in Section 12.

2 The Formulations in Lie Setting

Let G be a semisimple compact connected Lie group, let \mathfrak{g} be its Lie algebra with the Killing form $B(\cdot, \cdot)$. For a given $C \in \mathfrak{g}$, we define the C-numerical range of $A_{1}, \ldots, A_{p} \in \mathfrak{g}$ by

$$
W_{C}\left(A_{1}, \ldots, A_{p}\right)=\left\{\left(B\left(A_{1}, Z\right), \ldots, B\left(A_{p}, Z\right)\right): Z \in O(C)\right\}
$$

where $O(C)=\{\operatorname{Ad}(g) C: g \in G\}$ is the orbit of C in \mathfrak{g} under the adjoint action of G. Since the Killing form is negative definite, one sees that up to a suitable scalar multiplication the C-numerical range associated with a compact connected Lie group G defined above can be viewed as a special case of the C-numerical range defined in (2). The Lie group numerical range was studied in [31] and the following result was proved.

Theorem 2.1 The Lie group numerical range $W_{C}\left(A_{1}, A_{2}\right)$ is convex.
Indeed Theorem 2.1 is true for general compact connected Lie groups. It is because for every compact connected Lie group G, G is the commuting product $G_{s} Z_{0}$ and $\mathfrak{g}=\mathfrak{g}_{s}+\mathfrak{\jmath}$ where G_{s} is the analytic subgroup of G with semisimple [13, p. 132] Lie algebra $\mathfrak{g}_{s}=[\mathfrak{g}, \mathfrak{g}]$ and Z_{0} is the identity component of the center Z of G, whose Lie algebra is 3 . Now $\operatorname{Ad}(Z)$ is trivial and $\operatorname{Ad}(G)$ acts trivially on $\mathfrak{3}$. So for any $X=X_{s}+Y$ where $X_{s} \in \mathfrak{g}_{s}, Y \in \mathfrak{z}$, $O_{G}(X)=O_{G_{s}}\left(X_{s}\right)+Y$ where $O_{G}(\cdot)$ denotes the orbit under the adjoint action of G.

We remark that Theorem 2.1 is very useful in handling the numerical ranges associated with the realifications of classical (exceptional as well) complex simple Lie algebras discussed in the next few sections. Here is another result that will be used in our later study.

Proposition 2.2 Let G_{1} and G_{2} be connected Lie groups such that $\psi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ is an isomorphism.

1. If $C \in \mathfrak{g}_{1}$, then $\psi\left(O_{1}(C)\right)=O_{2}(\psi(C))$, where $O_{i}(\cdot)$ denotes the adjoint orbit corresponding to $G_{i}, i=1,2$.
2. If $C, A_{1}, \ldots, A_{p} \in \mathfrak{g}_{1}$, then $W_{C}^{1}\left(A_{1}, \ldots, A_{p}\right)=W_{\psi(C)}^{2}\left(\psi\left(A_{1}\right), \ldots, \psi\left(A_{p}\right)\right)$, where W^{i} denotes the numerical range corresponding to $G_{i}, i=1,2$.

Proof (1) Suppose G_{1} is simply connected. Then there exists a homomorphism $\varphi: G_{1} \rightarrow$ G_{2} onto G_{2} such that $d \varphi_{e}=\psi\left[40\right.$, pp. 100-101]. Since $d \varphi_{e} \cdot \operatorname{Ad}(g)=\operatorname{Ad}(\varphi(g)) \cdot d \varphi_{e}$ for any $g \in G_{1}\left[13\right.$, p. 110, p. 127], $\psi\left(O_{1}(C)\right)=O_{2}(\psi(C))$.

If G_{1} is not simply connected, let G_{1}^{\prime} be a simply connected Lie group with the same Lie algebra \mathfrak{g}_{1}. Then we have $O_{1}(C)=O_{1}^{\prime}(C)$. In other words, the orbit is invariant under different choices of Lie groups with the same Lie algebra and we have the desired result.
(2) Notice that $\operatorname{ad}(\psi(C))=\psi$ ad $C \psi^{-1}$ for any $C \in \mathfrak{g}_{1}$. Thus for any $X, Y \in \mathfrak{g}_{1}$, $B_{1}(X, Y)=B_{2}(\psi(X), \psi(Y))$ and

$$
\begin{aligned}
W_{C}^{1}\left(A_{1}, \ldots, A_{p}\right) & =\left\{\left(B\left(A_{1}, Z\right), \ldots, B\left(A_{p}, Z\right)\right): Z \in O_{1}(C)\right\} \\
& =\left\{\left(B\left(\psi\left(A_{1}\right), \psi(Z)\right), \ldots, B\left(\psi\left(A_{p}\right), \psi(Z)\right)\right): \psi(Z) \in \psi\left(O_{1}(C)\right)\right\} \\
& =\left\{\left(B\left(\psi\left(A_{1}\right), \psi(Z)\right), \ldots, B\left(\psi\left(A_{p}\right), \psi(Z)\right)\right): \psi(Z) \in\left(O_{2}(\psi(C))\right)\right\} \\
& =W_{\psi(C)}^{2}\left(\psi\left(A_{1}\right), \ldots, \psi\left(A_{p}\right)\right) .
\end{aligned}
$$

While the Lie group numerical range embraces many types of generalized numerical ranges, and has nice convexity property (see [31]), it is not adequate to cover all kinds of generalized numerical ranges mentioned in the introduction. For instance, it does not cover the C-numerical range on real symmetric matrices A_{1}, \ldots, A_{p} considered by AuYeung and Tsing [2]. To correct this, we need to consider numerical ranges arising from real semi-simple Lie algebras.

Let G be an analytic group associated with the real semisimple Lie algebra \mathfrak{g}. Let $K \subset G$ (it is unique once we fix G [13, p. 112]) be the analytic group of \mathfrak{f}, and let $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ be a given Cartan decomposition of \mathfrak{g}, here \mathfrak{p} is the orthogonal complement of \mathfrak{f} in \mathfrak{g} with respect to the Killing form $B(\cdot, \cdot)$. For $A_{1}, \ldots, A_{p}, C \in \mathfrak{p}$, the C-numerical range of $\left(A_{1}, \ldots, A_{p}\right)$ is defined [31] as the following set in \mathbb{R}^{p} :

$$
W_{C}\left(A_{1}, \ldots, A_{p}\right)=\left\{\left(B\left(A_{1}, Z\right), \ldots, B\left(A_{p}, Z\right)\right): Z \in O(C)\right\}
$$

where $O(C)=\{\operatorname{Ad}(k) C: k \in K\}$ is the orbit of C in \mathfrak{p} under the adjoint action of K. In the following, we show that once we identify the Lie algebra \mathfrak{g}, the C-numerical range is independent of the choice of analytic group associated with it.

Proposition 2.3 Let $C \in \mathfrak{p}$. The orbit $O(C)$ is independent of the choice of the analytic group G and so is the C-numerical range.

Proof Let G^{\prime} be a simply connected Lie group whose Lie algebra is also \mathfrak{g}. Consider the trivial isomorphism id: $\mathfrak{g} \rightarrow \mathfrak{g}$. Then there is a unique analytic homomorphism $\pi: G^{\prime} \rightarrow$ $G[40, \mathrm{p} .101]$ such that $d \pi_{e}=\mathrm{id}$. Let $K^{\prime}(K)$ be the analytic subgroup of $G^{\prime}(G)$ with Lie algebra \mathfrak{f}. The group K is generated by the elements $\exp (Z), Z \in \mathfrak{f}$. Likewise, the group $\pi\left(K^{\prime}\right)$ is generated by $\pi(\exp Z)=\exp d \pi_{e}(Z)=\exp (Z), Z \in \mathfrak{f}$. It follows that $K=\pi\left(K^{\prime}\right)$. Now using $\operatorname{Ad}_{G}(\pi(k)) \cdot d \pi_{e}=d \pi_{e} \cdot \operatorname{Ad}_{G^{\prime}}(k), k \in K^{\prime}$, we have $O_{K}(C)=O_{K^{\prime}}(C), C \in \mathfrak{p}$.

By Proposition 2.3, we can choose any analytic group of \mathfrak{g} when we consider the corresponding numerical range associated with a given Cartan decomposition. Next, we show that there is a nice relation between the generalized numerical ranges arising from two isomorphic semisimple real Lie algebras, and hence one can transfer convexity (or nonconvexity) results between them. Let $\mathfrak{g}_{1}=\mathfrak{F}_{1}+\mathfrak{p}_{1}$ and $\mathfrak{g}_{2}=\mathfrak{F}_{2}+\mathfrak{p}_{2}$ be Cartan decompositions of two isomorphic semisimple real Lie algebras \mathfrak{g}_{1} and \mathfrak{g}_{2}. Let $\phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ be an
isomorphism. Thus $\mathfrak{g}_{2}=\phi\left(\mathfrak{f}_{1}\right)+\phi\left(\mathfrak{p}_{1}\right)$ is also a Cartan decomposition of \mathfrak{g}_{2}. There exists [13, p. 183] $\sigma \in \operatorname{Int}\left(\mathfrak{g}_{2}\right)$ satisfying $\sigma\left(\phi\left(\mathfrak{f}_{1}\right)\right)=\mathfrak{f}_{2}$ and $\sigma\left(\phi\left(\mathfrak{p}_{1}\right)\right)=\mathfrak{p}_{2}$.

Proposition 2.4 With the above notations, let $\varphi=\sigma \cdot \phi$.

1. For any $C \in \mathfrak{p}_{1}, \varphi\left(O_{K_{1}}(C)\right)=O_{K_{2}}(\varphi(C))$ where K_{i} is the analytic subgroup of G_{i} for \mathfrak{f}_{i}, $i=1,2$.
2. $W_{C}^{1}\left(A_{1}, \ldots, A_{p}\right)=W_{\varphi(C)}^{2}\left(\varphi\left(A_{1}\right), \ldots, \varphi\left(A_{p}\right)\right)$ where W^{i} denotes the numerical range corresponding to the given Cartan decomposition, $i=1,2$.

Proof Let G_{1} (we assume that G is simply connected because of Proposition 2.3) and G_{2} be analytic groups of \mathfrak{g}_{1} and \mathfrak{g}_{2} respectively. There is an analytic homomorphism $\pi: G_{1} \rightarrow G_{2}$ onto G_{2} such that $d \pi_{e}=\varphi$. Since $d \pi_{e} \cdot \operatorname{Ad}(k)=\operatorname{Ad}(\pi(k)) \cdot d \pi_{2}$, we have $\varphi\left(O_{K_{1}}(C)\right)=$ $O_{\pi\left(K_{1}\right)}(\varphi(C))$. Since [13, p. 110] $\pi\left(e^{k_{1}}\right)=e^{d \pi_{e} k_{1}}=e^{\varphi\left(k_{1}\right)}$ where $k_{1} \in K_{1}, \mathfrak{Ł}_{2}$ has $\pi\left(K_{1}\right) \subset G_{2}$ as an analytic subgroup which is K_{2} [13, p. 112]. So $\varphi\left(O_{K_{1}}(C)\right)=O_{K_{2}}(\varphi(C))$. The rest follows from a similar argument as in the proof of Proposition 2.2.

Thus we will fix a Cartan decomposition of \mathfrak{g} when we study $W_{C}\left(A_{1}, \ldots, A_{p}\right)$.
The classical real simple Lie algebras are isomorphic to one of the real forms $\mathfrak{h} \subset \mathfrak{g}$ and $\mathfrak{g}^{\mathbb{R}}$ (the realification of \mathfrak{g}) in [23, p. 233]. We will use the special isomorphisms between the classical real Lie algebras of different series [13, pp. 519-520], [23, p. 235].

Since the Cartan decomposition for a compact real form \mathfrak{b} is trivial, i.e., $\mathfrak{f}=\mathfrak{h}$ and $\mathfrak{p}=0$, the corresponding numerical range is trivial, i.e., $\{0\}$. For any classical complex simple Lie algebra \mathfrak{g}, if \mathfrak{h} is a compact real form of \mathfrak{g}, then $\mathfrak{g}^{\mathbb{R}}=\mathfrak{h}+i \mathfrak{h}$ is a Cartan decomposition. The corresponding numerical range is always convex by Theorem 2.1.

The Killing forms of the classical complex simple Lie algebras are well known [13, pp. 186-190] and that of $\mathfrak{g}^{\mathbb{R}}$ is given by $B_{\mathfrak{g}^{\mathbb{R}}}(X, Y)=2 \operatorname{Re} B_{\mathfrak{g}}(X, Y)$ for all $X, Y \in \mathfrak{g}$, and for the other real forms $\mathfrak{h}, B_{\mathfrak{h}}(X, Y)=B_{\mathfrak{g}}(X, Y)$ for all $X, Y \in \mathfrak{h}$ [13, p. 180].

As mentioned in Section 1, we will consider the convexity problem of $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ associated with noncompact classical simple Lie algebras.

3 Convexity and Inclusion Relation

Using the idea in [24] and [3] (see also [31]), we can prove the following result relating the convexity and inclusion relations for the generalized numerical ranges corresponding to a group G defined in (2).

Proposition 3.1 The C-numerical range $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ defined in (2) is convex if and only if $W_{D}\left(A_{1}, \ldots, A_{p}\right) \subset W_{C}\left(A_{1}, \ldots, A_{p}\right)$ for all $D \in \operatorname{conv} G(C)$.

Proof By the discussion after the definition of $W_{C}(A)$, where $A=\left(A_{1}, \ldots, A_{p}\right)$, we see that $W_{C}(A)$ is the image of $G(C)$ under the linear map $\phi: \mathbf{V} \rightarrow \mathbb{R}^{p}$ defined by $\phi(Z)=$ $\left(\left(A_{1}, Z\right), \ldots,\left(A_{p}, Z\right)\right)$. Thus, we have $\phi(G(C)) \subset \operatorname{conv}(\phi(G(C)))=\phi(\operatorname{conv}(G(C)))$. Consequently, $\phi(G(C))$ is convex if and only if $\phi(\operatorname{conv}(G(C))) \subset \phi(G(C))$, i.e., $W_{D}(A)=$ $\phi(G(D)) \subseteq \phi(G(C))=W_{C}(A)$ for any $D \in \operatorname{conv} G(C)$.

For $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ associated with a real semisimple Lie algebra \mathfrak{g} with the maximal abelian subalgebra \mathfrak{a}, we can further the result. It is known that $O(C) \cap \mathfrak{a}_{+} \neq \phi$ where \mathfrak{a}_{+}is \mathfrak{a} (closed) fundamental Weyl chamber of the maximal abelian subalgebra \mathfrak{a} in \mathfrak{p}. So we can assume that C and one of A_{i} 's are in \mathfrak{a}_{+}since the Killing form is G-invariant.

The famous Kostant's convexity theorem [16] asserts that the orthogonal projection of the orbit $O(C)$ onto \mathfrak{a} is the convex hull of the orbit of $C^{\prime} \in O(C) \cap \mathfrak{a}$ under the action of the Weyl group W of the pair $(\mathfrak{g}, \mathfrak{a})$. The orthogonal projection $\pi: \mathfrak{p} \rightarrow \mathfrak{a}$ can be thought as $\left(\pi_{1}, \ldots, \pi_{m}\right)$ (m is the dimension of \mathfrak{a}) where π 's are the components of π. Now $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ can be viewed as the collections of p-tuples of functional values of p arbitrary real linear functionals of \mathfrak{p} (represented by A_{1}, \ldots, A_{p}) acting on the orbit $O(C)$. Using the Kostant's convexity theorem and Proposition 3.1 we can deduce the following corollary (also see [33]).

Corollary 3.2 ([31]) Let X_{1}, \ldots, X_{p} be elements in \mathfrak{p} and let $Y \in \mathfrak{a}_{+}$. Then $W_{Y}\left(X_{1}, \ldots, X_{p}\right)$ is convex if and only if $W_{Z}\left(X_{1}, \ldots, X_{p}\right) \subset W_{Y}\left(X_{1}, \ldots, X_{p}\right)$ whenever $Z \in \operatorname{conv} W(Y)$ and $Z \in \mathfrak{a}_{+}$.

Corollary 3.2 is very useful for establishing convexity or nonconvexity of numerical range via inclusion relation. We will demonstrate this repeatedly in the forthcoming sections.

Next, we consider some more concepts and lemmas that are useful in studying the inclusion relations $W_{D}\left(A_{1}, \ldots, A_{p}\right) \subset W_{C}\left(A_{1}, \ldots, A_{p}\right)$ for $D \in \operatorname{conv} W(C)$. As we will see in later sections, the lemmas help us to reduce the proofs of the inclusion relations to low dimensions, e.g., $n=2$ or 3 .

Let $x, y \in \mathbb{R}^{n}$. We say that x is weakly majorized by y, denoted by $x \prec_{w} y$ if the sum of the k largest entries of x is not larger than that of y for $y=1, \ldots, n$. If in addition that the sum of the entries of x is the same as that of y, we say that x is majorized by y, denoted by $x \prec y$. The relation $Z \in \operatorname{conv} W(Y)$ is related to either $\prec\left[\right.$ for $\left.\mathfrak{s l}_{n}(\mathbb{F})\right]$ or \prec_{w} (for others classical simple Lie algebras, except the cases $\mathfrak{s o}_{n, n}$ and $\mathfrak{s v}(2 n)$ which are more difficult to deal with. In the latter cases, we need the Thompson's partial ordering $x \ll y$ requiring that x lying in the convex hull of the set $\{P y: P$ is a diagonal special orthogonal matrix $\}$, see [35] and [27] for details). A pinching matrix P is an $n \times n$ matrix such that for some $1 \leq i<j \leq n$,

$$
P[i, j \mid i, j]=\left(\begin{array}{cc}
\alpha & 1-\alpha \\
1-\alpha & \alpha
\end{array}\right)
$$

where $0 \leq \alpha \leq 1$, and the complementary submatrix $P(i, j \mid i, j)=I_{n-2}$.
Lemma 3.3 ([7]) Let $x, y \in \mathbb{R}^{n}$. Then $y \prec_{w} x$ if and only if $y \leq P_{1} \cdots P_{k} x$ for some pinching matrices P_{1}, \ldots, P_{k}. Hence, if $x, y \in \mathbb{R}_{+}^{n}$, then $y \prec_{w} x$ if and only if $y=\Gamma P_{1} \cdots P_{k} x$ for some pinching matrices P_{1}, \ldots, P_{k} and $\Gamma=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ with $0 \leq \gamma_{i} \leq 1, i=$ $1, \ldots, n$.

The following lemma is related to Question 2 of [30].
Lemma 3.4 Suppose $b \ll c$ be such that $b_{1} \geq \cdots \geq b_{n-1} \geq\left|b_{n}\right|$ and $c_{1} \geq \cdots \geq c_{n-1} \geq$ $\left|c_{n}\right|$, where $n \geq 4$. Then there exists a sequence of vectors $b=v_{n-2} \ll v_{n-3} \ll \cdots \ll v_{1} \ll$ $v_{0}=c$ in \mathbb{R}^{n} so that for $i=1, \ldots, n-3$,

1. v_{i} and v_{i+1} differ in at most 2 entries, and
2. one can remove $n-3$ common entries from both v_{i} and v_{i+1} to obtain $\tilde{v}_{i}, \tilde{v}_{i+1} \in \mathbf{R}^{3}$ so that $\tilde{v}_{i+1} \ll \tilde{v}_{i}$.

Proof One may assume that $c_{1} \geq \cdots \geq c_{n} \geq 0$. Otherwise, apply the arguments to the vectors $\left(c_{1}, \ldots, c_{n-1},-c_{n}\right)$ and $\left(b_{1}, \ldots, b_{n-1},-b_{n}\right)$, and change the signs of the entries with the smallest magnitude in v_{i} 's in the final step.

Our assertion follows from a careful study of the proof of Lemma 6 in [35]. Using the proof of Thompson, one can construct a sequence of vectors so that $v_{0}=c$, and for $i>1$,
(a) v_{i} is generated from v_{i-1} with by changing at most 2 entries such that condition 1 holds, and
(b) v_{i} has b_{1}, \ldots, b_{i} as entries.

For our purpose, we can stop after getting v_{n-3}, and set $v_{n-2}=b$. We need to prove that the vectors also satisfy condition 2 . To this end, let us take a close look at the construction from v_{0} to v_{1} using the idea in Lemma 6 of [35]. In Thompson's proof, one has to change c_{i} and c_{i+1} to b_{1} and t for a suitable construction of t, where i is the smallest integer satisfying $c_{i} \geq b_{i} \geq c_{i+1}$. To prove condition 2, we consider 2 cases. If $i=1$, then we keep the entries c_{1}, c_{2}, c_{3} in v_{1}, and keep the entries b_{1}, t, c_{3} in v_{2} so that $\left(b_{1}, t, c_{3}\right) \ll\left(c_{1}, c_{2}, c_{3}\right)$ by the construction. If $i>1$, we keep the entries c_{1}, c_{i}, c_{i+1} of v_{1} and c_{1}, b_{1}, t of v_{2} so that $\left(c_{1}, b_{1}, t\right) \ll\left(c_{1}, c_{i}, c_{i+1}\right)$ by the construction.

To prove condition 2 holds for $i=1$, we can focus on the $n-1$ entries v_{1} excluding b_{1}, and the entries b_{2}, \ldots, b_{n}, and proceed to construct v_{2}. Inductively, we get the desired conclusion.

The following geometrical result is clear (see e.g. [25], [31]).
Lemma 3.5 Let A be an $m \times n$ real matrix and let k be the rank of A. Let S^{n-1} be the unit sphere in \mathbb{R}^{n}.

1. If $k<n$, then $A\left(S^{n-1}\right)$ is a $(k-1)$-ellipsoid with the interior.
2. If $k=n(\leq m)$, then $A\left(S^{n-1}\right)$ is an $(n-1)$-ellipsoid.

4 The $\mathfrak{s l}_{n}(\mathbb{F})$ Case

The Cartan decomposition of $\mathfrak{s l}_{n}(\mathbb{F})$ is $\mathfrak{s l}_{n}(\mathbb{F})=\mathfrak{f}+\mathfrak{p}$ where \mathfrak{p} is the space of traceless (trace zero) real symmetric, Hermitian and quaternion Hermitian matrices, where $\mathbb{F}=\mathbb{R}$, \mathbb{C} and \mathbb{H} respectively. The group K is $\mathrm{SU}_{n}(\mathbb{F})$. Let $C \in \mathfrak{p}$. The C-numerical range of $A_{1}, \ldots, A_{p} \in \mathfrak{p}$, associated with $\mathfrak{s I}_{n}(\mathbb{F})$ (after a translation and disregarding the constant $4 n$ when $\mathbb{F}=(\mathbb{C} ; 2 n$ when $\mathbb{F}=\mathbb{R}$ or $\mathbb{H})$ is

$$
W_{C}^{\mathbb{F}}\left(A_{1}, \ldots, A_{p}\right)=\left\{\left(\operatorname{tr} C U^{*} A_{1} U, \ldots, \operatorname{tr} C U^{*} A_{p} U\right): U \in \mathrm{SU}_{n}(\mathbb{F})\right\}
$$

where C, A_{1}, \ldots, A_{p} are real symmetric, Hermitian, and quaternion Hermitian matrices when $\mathbb{F}=\mathbb{R}$, \mathbb{C}, and \mathbb{H} respectively. This is the c-numerical range of $\left(A_{1}, \ldots, A_{p}\right)$ when $C=\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$ and c^{\prime} 's are real. It is a well-studied object and we summarize the result in the following (see [3], [2], [8], [25], [41] for details).

Theorem 4.1 Let $\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}$. Suppose C, A_{1}, A_{2}, A_{3} are $n \times n$ matrices over \mathbb{F} such that $C=C^{*}, A_{i}=A_{i}^{*}, i=1,2,3$.

1. Unless $\mathbb{F}=\mathbb{R}$ and $n=2, W_{C}^{\mathbb{F}}\left(A_{1}, A_{2}\right)$ is convex. When $n=2, W_{C}^{\mathbb{R}}\left(A_{1}, \ldots, A_{p}\right)$ is an ellipse satisfying conv $W_{C}^{\mathbb{R}}\left(A_{1}, A_{2}\right)=W_{C}^{\mathbb{C}}\left(A_{1}, A_{2}\right)$.
2. If $n>2$ and $\mathbb{F} \neq \mathbb{R}$, then $W_{C}^{\mathbb{F}}\left(A_{1}, A_{2}, A_{3}\right)$ is convex. When $n=2, W_{C}^{\mathbb{C}}\left(A_{1}, A_{2}, A_{3}\right)$ is an ellipsoid in \mathbb{R}^{3}.

The above results are best possible in the sense that $W_{C}^{\mathbb{F}}\left(A_{1}, \ldots, A_{p}\right)$ fails to be convex if
(i) $p>3$ or $(n, p)=(2,3)$ when $\mathbb{F}=\mathbb{C}$ or $\mathbb{H H}[1],[25]$; or
(ii) $p>2$ or $(n, p)=(2,2)$ when $\mathbb{F}=\mathbb{R}$. One may see [25] for a unified treatment of the above three numerical ranges and related results.

Often times $\mathfrak{s l}_{n}(\mathbb{H I})$ is identified with $\mathfrak{s u}^{*}(2 n)$ via the standard isomorphism $H^{n} \rightarrow \mathbb{C}^{2 n}$ [15, pp. 26-27]. There $K=\operatorname{Sp}(n)$ and

$$
\mathfrak{p}=\left\{\left(\begin{array}{cc}
X & Y \\
-\bar{Y} & \bar{X}
\end{array}\right): X^{*}=X, \operatorname{tr} X=0, Y^{T}=-Y\right\} .
$$

Then the C-numerical range of $A_{1}, \ldots, A_{p} \in \mathfrak{p}$ will be written in the form:

$$
W_{C}\left(A_{1}, \ldots, A_{p}\right)=\left\{\left(\operatorname{tr} C W^{*} A_{1} W, \ldots, \operatorname{tr} C W^{*} A_{p} W\right): W \in \operatorname{Sp}(n)\right\} .
$$

5 The $\mathfrak{s u}_{p, q}$ Case

It is known that

$$
\begin{gathered}
K=\operatorname{SU}(p, q)=\left\{\left(\begin{array}{cc}
U & 0 \\
0 & V
\end{array}\right): U \in U(p), V \in U(q), \operatorname{det} U \operatorname{det} V=1\right\}, \\
\mathfrak{p}=\left\{\left(\begin{array}{cc}
0 & Y \\
Y^{*} & 0
\end{array}\right): Y \in \mathbb{C}^{p \times q}\right\}, \quad \mathfrak{a}=\bigoplus_{1 \leq j \leq p} \mathbb{R}\left(E_{j, p+j}+E_{p+j, j}\right) .
\end{gathered}
$$

The range associated with $\mathfrak{s u}_{p, q}$ (after disregarding a suitable constant) is

$$
W_{C}\left(A_{1}, \ldots, A_{m}\right)=\left\{\left(\operatorname{Re} \operatorname{tr} C^{*} U A_{1} V, \ldots, \operatorname{Retr} C^{*} U A_{m} V\right): U \in U(p), V \in U(q)\right\}
$$

where C, A_{1}, \ldots, A_{m} are given $p \times q$ complex matrices and is symmetric about the origin.

Proposition 5.1 Let C, A_{1}, A_{2}, A_{3} be $p \times q$ complex matrices and suppose $\min \{p, q\} \geq 2$. Then $W_{B}\left(A_{1}, A_{2}, A_{3}\right) \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ if $b \prec c$ where b and c denote the vectors of singular values of B and C respectively.

Proof We may assume that $p \leq q$. It is sufficient to consider the case [2] that $\left(b_{1}, b_{2}\right) \prec$ $\left(c_{1}, c_{2}\right)$ and $b_{i}=c_{i}, i=3, \ldots, p$. In order to avoid trivial case, we assume $\left|c_{1}-c_{2}\right|>$
$\left|b_{1}-b_{2}\right|$. Let $\left(r_{1}, r_{2}, r_{3}\right)=\left(\operatorname{Re} \sum_{i=1}^{p} b_{i} y_{i}^{*} A_{1} x_{i}, \operatorname{Re} \sum_{i=1}^{p} b_{i} y_{i}^{*} A_{2} x_{i}, \operatorname{Re} \sum_{i=1}^{p} b_{i} y_{i}^{*} A_{3} x_{i}\right) \in$ $W_{B}\left(A_{1}, A_{2}, A_{3}\right)$. For any $\theta, \phi \in[0,2 \pi]$, define

$$
\begin{array}{cl}
u_{1}=e^{-i \phi} \cos \theta x_{1}+e^{i \phi} \sin \theta x_{2}, & v_{1}=e^{-i \phi} \cos \theta y_{1}+e^{i \phi} \sin \theta y_{2} \\
u_{2}=-e^{-i \phi} \sin \theta x_{1}+e^{i \phi} \cos \theta x_{2}, & v_{2}=-e^{-i \phi} \sin \theta y_{1}+e^{i \phi} \cos \theta y_{2}
\end{array}
$$

and $u_{i}=x_{i}, i=3, \ldots, q$ and $v_{i}=y_{i}, i=3, \ldots, p$. Since $c_{1}+c_{2}=b_{1}+b_{2}$,

$$
\begin{aligned}
& \operatorname{Re} \sum_{i=1}^{p} b_{i} v_{i}^{*} A_{j} u_{i}=\frac{1}{2}\left(b_{1}-b_{2}\right)\left[p_{j} \cos 2 \theta+\sin 2 \theta\left(q_{j} \cos 2 \phi+s_{j} \sin 2 \phi\right)\right] \\
&+\frac{1}{2}\left(c_{1}+c_{2}\right) \operatorname{Re}\left(y_{1}^{*} A_{j} x_{1}+y_{2}^{*} A_{j} x_{2}\right)+\operatorname{Re} \sum_{i=3}^{p} c_{i} y_{i}^{*} A_{j} x_{i}
\end{aligned}
$$

where for $i=1,2,3$,
$p_{j}=\operatorname{Re}\left(y_{1}^{*} A_{j} x_{1}-y_{2}^{*} A_{j} x_{2}\right), \quad q_{j}=\operatorname{Re}\left(y_{2}^{*} A_{j} x_{1}+y_{1}^{*} A_{j} x_{2}\right), \quad s_{j}=\operatorname{Im}\left(y_{2}^{*} A_{j} x_{1}-y_{1}^{*} A_{j} x_{2}\right)$.
As θ and ϕ vary from 0 to 2π, we have an ellipsoid $E_{x, y, b}$ centered at 0 . Now $\left(r_{1}, r_{2}, r_{3}\right) \in$ $E_{x, y, b} \subset \operatorname{conv} E_{x, y, c}$ since $c_{1}+c_{2}=b_{1}+b_{2}$ and $\left|c_{1}-c_{2}\right|>\left|b_{1}-b_{2}\right|$. If $E_{x, y, c}$ is degenerated, we have $\left(r_{1}, r_{2}, r_{3}\right) \in E_{x, y, c} \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$. So we assume that it is not degenerated. For any 2×2 complex matrix A, there exist $U, V \in U(2)$ such that $U A V=\operatorname{diag}\left(i s_{1}, i s_{2}\right)$ where s_{1} and s_{2} are singular values of A. This implies that we can find orthonormal $y_{1}^{\prime}, y_{2}^{\prime}$ in the span of y_{1} and y_{2} and orthonormal $x_{1}^{\prime}, x_{2}^{\prime}$ in the span of x_{1} and x_{2} such that the corresponding $p_{1}^{\prime}=q_{1}^{\prime}=s_{1}^{\prime}=0$. Set $x_{i}^{\prime}=x_{i}, i=3, \ldots, q, y_{i}^{\prime}=y_{i}, i=3, \ldots, p$. In other words, the ellipsoid $E_{x^{\prime}, y^{\prime}, c}$ is degenerated.

Now, consider a continuous map $t \mapsto(x(t), y(t))$ with $t \in[0,1]$, where $x(t)=$ $\left(x_{1}(t), x_{2}(t)\right)$ (resp., $y(t)=\left(y_{1}(t), y_{2}(t)\right)$) is an orthonormal pair of vectors in the span of $\left\{x_{1}, x_{2}\right\}$ (resp. $\left\{y_{1}, y_{2}\right\}$), so that $x(0)=\left(x_{1}, x_{2}\right), x(1)=\left(x_{1}^{\prime}, x_{2}^{\prime}\right), y(0)=\left(y_{1}, y_{2}\right)$ and $y(1)=\left(y_{1}^{\prime}, y_{2}^{\prime}\right)$. Then $E_{x(t), y(t), c}$ will change continuously from $E_{x, y, c}$ to $E_{x^{\prime}, y^{\prime}, c}$. Thus, $\left(r_{1}, r_{2}, r_{3}\right)$ will be included in one of the $E_{x(t), y(t), c}$.

We remark that the continuity argument in the above proof has been used in [2] and [25], and will be used repeatedly in the next few sections.

Proposition 5.2 Let C, A_{1}, \ldots, A_{m} be $p \times q$ complex matrices where $\min \{p, q\}=1$. Let $r=\max \{p, q\}$ and let $k=\operatorname{rank} A$ where A is the $m \times 2 r$ real matrix

$$
A=\left(\begin{array}{ccccc}
\operatorname{Re} a_{11} & -\operatorname{Im} a_{11} & \cdots & \operatorname{Re} a_{1 r} & -\operatorname{Im} a_{1 r} \\
\operatorname{Re} a_{21} & -\operatorname{Im} a_{21} & \cdots & \operatorname{Re} a_{2 r} & -\operatorname{Im} a_{2 r} \\
& \cdots & \cdots & \cdots & \cdots \\
\operatorname{Re} a_{m 1} & -\operatorname{Im} a_{m 1} & \cdots & \operatorname{Re} a_{m r} & -\operatorname{Im} a_{m r}
\end{array}\right)
$$

and

$$
A_{j}=\left\{\begin{array}{ll}
\left(a_{j 1} \cdots a_{j q}\right) & \text { if } p=1 \\
\left(a_{j 1} \cdots a_{j p}\right)^{T} & \text { if } q=1,
\end{array} \quad j=1, \ldots, m\right.
$$

The numerical range $W_{C}\left(A_{1}, \ldots, A_{m}\right)$ is

1. an $(k-1)$-ellipsoid with the interior embedding in \mathbb{R}^{m} when $k<2 r$ and hence convex;
2. an $(2 r-1)$-ellipsoid embedding in \mathbb{R}^{m} when $k=2 r$.

Proof Assume $p=1$ for definiteness. We may further assume that $C=(c 0 \cdots 0)$ where $c \geq 0$. Let $A_{j}=\left(a_{j 1} \cdots a_{j q}\right)$. Then

$$
W_{C}\left(A_{1}, \ldots, A_{m}\right)=\left\{\left(\operatorname{Re} c\left(a_{11} \cdots a_{1 q}\right) u, \ldots, \operatorname{Re} c\left(a_{m 1} \cdots a_{m q}\right) u\right): u \in \mathbb{C}^{q}, u^{*} u=1\right\}
$$

which is the image of the sphere $c S^{2 q-1}$ under the map A. By Lemma 3.5, we are done.
Corollary 5.3 Let C, A_{1}, A_{2}, A_{3} be $1 \times q$ complex matrices, where $q=2,3,4$. Then the numerical range

$$
\begin{aligned}
& W_{C}\left(A_{1}, A_{2}, A_{3}\right) \\
& \quad=\left\{\left(\operatorname{Re} \operatorname{tr} C^{*} U A_{1} V, \operatorname{Re} \operatorname{tr} C^{*} U A_{2} V, \operatorname{Re} \operatorname{tr} C^{*} U A_{3} V\right): U \in U(1), V \in U(q)\right\}
\end{aligned}
$$

is an ellipsoid with interior in \mathbb{R}^{3}.
Proof By Proposition 5.2 and the fact that $k \leq m=3<4 \leq 2 r$.
Theorem 5.4 Let $C, A_{1}, A_{2}, A_{3}, A_{4}$ be $p \times q$ complex matrices such that $p \neq q$. Then $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is convex. Moreover, $W_{C}\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ is not convex in general.

Proof By Proposition 5.2, it suffices to consider the case $\min \{p, q\} \geq 2$. Assume $p<q$ for definiteness. By Proposition 5.1, it remains to show that $W_{B}\left(A_{1}, A_{2}, A_{3}\right) \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ if $0 \leq b_{1}<c_{1}$ and $b_{i}=c_{i}, i=2, \ldots, p$. Let

$$
\left(r_{1}, r_{2}, r_{3}\right)=\left(\operatorname{Re} \sum_{i=1}^{p} b_{i} y_{i}^{*} A_{1} x_{i}, \operatorname{Re} \sum_{i=1}^{p} b_{i} y_{i}^{*} A_{2} x_{i}, \operatorname{Re} \sum_{i=1}^{p} b_{i} y_{i}^{*} A_{3} x_{i}\right) \in W_{B}\left(A_{1}, A_{2}, A_{3}\right) .
$$

For $U \in U(2)$, set $\left(u_{1} u_{q}\right)=U\left(x_{1} x_{q}\right)$ and $u_{i}=x_{i}, i=2, \ldots, q-1$, i.e., u_{1} and u_{q} are orthonormal pair from the span of x_{1} and x_{q}. Now $\operatorname{Re} \sum_{i=1}^{p} b_{i} y_{i}^{*} A_{j} u_{i}=\operatorname{Re} b_{1} y_{1}^{*} A_{j} u_{1}+$ $\operatorname{Re} \sum_{i=2}^{p} c_{i} y_{i}^{*} A_{j} x_{i}$. Then the locus of the above point in \mathbb{R}^{3} is an ellipsoid E_{b} with the interior when U varies over $U(2)$ by Corollary 5.3. Clearly $\left(r_{1}, r_{2}, r_{3}\right) \in E_{b} \subset E_{c} \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ since $b_{1}<c_{1}$.

Assume $p<q, B=[\hat{B} \mid 0]$ where $\hat{B}=I_{p-2} \oplus 3 I_{2}$ and $C=\left[\begin{array}{ll}\hat{C} \mid 0\end{array}\right]$ where $\hat{C}=$ $I_{p-2} \oplus \operatorname{diag}(4,2)$. Let $A_{i}=\left[\hat{A}_{i} \mid 0\right]$ for $i=1,2,3,4$, such that
$\hat{A}_{1}=I_{p}, \quad \hat{A}_{2}=I_{p-2} \oplus \operatorname{diag}(1,-1), \quad \hat{A}_{3}=I_{p-2} \oplus\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad \hat{A}_{4}=I_{p-2} \oplus\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$.
Then $(p+4, p-2, p-2, p-2) \in W_{B}\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash W_{C}\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ because of the following reason. If $\operatorname{tr} B^{*} U^{*} A_{1} V=\operatorname{tr} C^{*} U^{*} A_{1} V=p+4$, then by extremal properties the first ($p-2$) columns of U (resp. V) must be the left (resp. right) singular vectors of A_{1} corresponding to the singular values 1 , and the $p-1$ and p-th columns of U (respectively, of V) must be the singular vectors of A_{1} corresponding to the singular values 3 . Thus U is of the form $U_{1} \oplus U_{2} \in U(p)$, where $U_{2} \in U(2)$, and V is of the form $U_{1} \oplus U_{2} \oplus V_{3} \in U(q)$. However $\left(\operatorname{Re} \operatorname{tr} C^{*} U^{*} A_{2} V, \operatorname{Re} \operatorname{tr} C^{*} U^{*} A_{3} V, \operatorname{Re} \operatorname{tr} C^{*} U^{*} A_{4} V\right)$ cannot be $(p-2, p-2, p-2)$. Thus the inclusion relation fails, and hence $W_{C}\left(A_{1}, \ldots, A_{4}\right)$ is not convex.

Theorem 5.5 Let C, A_{1}, A_{2}, A_{3} be $n \times n$ complex matrices. Then $W_{C}\left(A_{1}, A_{2}\right)$ is convex if $n>1$. It is an ellipse if $n=1$. Moreover, $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex in general.

Proof Suppose $n>1$. Then $W_{C}\left(A_{1}, A_{2}\right)$ is equal to the set

$$
\left\{\left(\operatorname{Re} \sum_{i=1}^{n} c_{i} y_{i}^{*} A_{1} x_{i}, \operatorname{Re} \sum_{i=1}^{n} c_{i} y_{i}^{*} A_{2} x_{i}\right):\left(x_{1} \cdots x_{n}\right),\left(y_{1} \cdots y_{n}\right) \in U(p)\right\}
$$

By Corollary 3.2 and Lemma 3.3, it suffices to prove $W_{B}\left(A_{1}, A_{2}\right) \subset W_{C}\left(A_{1}, A_{2}\right)$ when

Case $10 \leq b_{1}<c_{1}$, and $b_{i}=c_{i}, i=1, \ldots, n$.
Let $\left(r_{1}, r_{2}\right)=\left(\operatorname{Re} \sum_{i=1}^{n} b_{i} y_{i}^{*} A_{1} x_{i}, \operatorname{Re} \sum_{i=1}^{n} b_{i} y_{i}^{*} A_{2} x_{i}\right) \in W_{B}\left(A_{1}, A_{2}\right)$. For any $\theta \in$ $[0,2 \pi]$, we consider $x_{1}^{\prime}=e^{i \theta} x_{1}$ and $x_{i}^{\prime}=x_{i}, i=1, \ldots, n$. Then for $j=1,2$, we have

$$
\operatorname{Re} \sum_{i=1}^{n} b_{i} y_{i}^{*} A_{j} x_{i}^{\prime}=b_{1}\left(\cos \theta \operatorname{Re} y_{1}^{*} A_{j} x_{1}-\sin \theta \operatorname{Im} y_{1}^{*} A_{j} x_{1}\right)+\operatorname{Re} \sum_{i=2}^{n} b_{i} y_{i}^{*} A_{j} x_{i}
$$

As θ varies in $[0,2 \pi]$, the locus of the point $\left(\operatorname{Re} \sum_{i=1}^{n} b_{i} y_{i}^{*} A_{1} x_{i}^{\prime}, \operatorname{Re} \sum_{i=1}^{n} b_{i} y_{i}^{*} A_{2} x_{i}^{\prime}\right)$ traces out an ellipse $E_{X, b}$, where X denotes the unitary matrix $\left(x_{1} \cdots x_{n}\right)$. Similarly we have $E_{X, c}$ and obviously $E_{X, b} \subset \operatorname{conv} E_{X, c}\left(0 \leq b_{1}<c_{1}\right)$. If $E_{X, c}$ is degenerated, then $\left(r_{1}, r_{2}\right) \in$ conv $E_{X, c}=E_{X, c}$. So we assume that $E_{X, c}$ is not degenerated. Let $u_{1} \in \mathbb{C}^{n}$ be a unit vector such that $y_{1}^{*} A_{1} u_{1}=0$. Extend u_{1} to an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ of \mathbb{C}^{n}. Evidently $E_{U, c}$ is a line segment or a point. Let H_{U} and H_{X} be the skew Hermitian matrices such that $\exp \left(H_{U}\right)=U$ and $\exp \left(H_{X}\right)=X$ respectively. Now consider the curve $f:[0,1] \rightarrow U(n)$ defined by $f(t)=\exp \left(t H_{U}+(1-t) H_{X}\right)$. So $E_{X, c}=E_{f(1), c}$ and $E_{U, c}=E_{f(0), c}$. Now $\left(r_{1}, r_{2}\right) \in E_{X, b} \subset \operatorname{conv} E_{X, c}$. By continuity, there is $0 \leq t<1$ such that $\left(r_{1}, r_{2}\right) \in E_{f(t), c} \subset$ $W_{C}\left(A_{1}, A_{2}\right)$.

Case $2 b \prec c$. It follows from Proposition 5.1 by setting $A_{3}=0$.
When $n=1$, the image of the unit sphere in \mathbb{R}^{2} (the unit circle) is clearly an ellipse. This is just a special case of the second part of Proposition 5.2. However, $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is an ellipsoid in \mathbb{R}^{3} by Proposition 5.2 and hence not convex in general.

Let $B=I_{n-1} \oplus(1 / 3), C=I_{n-1} \oplus(1 / 2), A_{1}=I_{n-1} \oplus(0), A_{2}=I_{n-1} \oplus(i), A_{3}=I_{n}$. Then we claim that $W_{B}\left(A_{1}, A_{2}, A_{3}\right)$ is not a subset of $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ and hence $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex. Now $(n-1, n-1, n-1+1 / 3)=\left(\operatorname{Re} \operatorname{tr} B A_{1}, \operatorname{Re} \operatorname{tr} B A_{2}, \operatorname{Re} \operatorname{tr} B A_{3}\right) \in$ $W_{B}\left(A_{1}, A_{2}, A_{3}\right)$ and we claim that this point does not belong to $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$. Suppose $(n-1, n-1, x) \in W_{C}\left(A_{1}, A_{2}, A_{3}\right)$. Then $\operatorname{Re} \operatorname{tr} C U^{*} A_{1} V=n-1$ for some unitary U, V, and the sum of the first $n-1$ diagonal entries of $U^{*} A_{1} V$ is $n-1$, which is the sum of the $n-1$ singular values of the matrix $U^{*} A_{1} V$. It follows from Corollary 3.2 in [17] that $U^{*} A_{1} V=$ A_{1}. Thus the first $n-1$ columns of U are identical to those of V and the last columns of U and V are scalar multiple to each other, i.e., $u_{n}=e^{i \theta} v_{n}$. Now $\operatorname{Re} \operatorname{tr} C U^{*} A_{2} V=n-1$. So $e^{i \theta}= \pm 1$. Hence Retr $C U^{*} A_{3} V$ cannot be $n-1+1 / 3$. Thus, the inclusion relation fails though $s(B) \prec_{w} s(C)$, and so $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex.

Corollary 5.6 The set $\{\operatorname{tr} C U A V: U, V \in U(n)\}$ is a circular disk centered at the origin when $n>1$ and is a circle when $n=1$.

Now we consider $C=\operatorname{diag}(1,0, \ldots, 0)$. Convexity will then be established for the corresponding numerical range.

Theorem 5.7 Let $C=\operatorname{diag}(1,0, \ldots, 0)$ and let $A_{1}, A_{2}, A_{3} \in \mathbb{C}^{n \times n}$, where $n \geq 2$. Then the numerical range $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is convex.

Proof By Corollary 3.2, Lemma 3.3 and Proposition 5.1, it is sufficient to show that $W_{B}\left(A_{1}, A_{2}, A_{3}\right) \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ when $B=\operatorname{diag}(\beta, 0, \ldots, 0), 0 \leq \beta \leq 1$. Let $r=$ $\left(r_{1}, r_{2}, r_{3}\right) \in W_{B}\left(A_{1}, A_{2}, A_{3}\right)$, i.e., $r_{j}=\beta y^{*} A_{j} x$ where $x, y \in \mathbb{C}^{n}$ are unit vectors. Consider $r^{\prime}=\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}\right)$ where $r_{j}^{\prime}=\beta y^{*} A_{j} u, j=1,2,3$. As u runs over the unit sphere of \mathbb{C}^{n}, the locus of r^{\prime} is then $E_{\beta}=W_{B^{\prime}}\left(A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}\right)$ where $A_{j}^{\prime}=y^{*} A_{j} \in \mathbb{C}^{1 \times n}$ and $B^{\prime}=(\beta 0 \cdots 0) \in \mathbb{C}^{1 \times n}$. Hence by Proposition $5.2(m=3, r=n, k<4 \leq 2 r), E_{\beta}$ is an ellipsoid with interior centered at the origin and clearly $r \in E_{\beta} \subset E_{1} \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$.

Corollary 5.8 Let $A_{1}, A_{2} \in \mathbb{C}^{n \times n}$, and let $q \in \mathbb{C}$ satisfy $|q| \leq 1$. Then

$$
\left\{\left(\operatorname{Re} y^{*} A_{1} x, \operatorname{Re} y^{*} A_{2} x, \operatorname{Re} y^{*} x\right): x, y \in \mathbb{C}^{n}, x^{*} x=y^{*} y=1\right\}
$$

and

$$
\left\{y^{*} A_{1} x: x, y \in \mathbb{C}^{n}, \operatorname{Re} y^{*} x=q\right\}=\bigcup\left\{W\left(q^{\prime}: A_{1}\right): q^{\prime} \in \mathbb{C}, \operatorname{Re} q^{\prime}=q\right\}
$$

are convex.

6 The $\mathfrak{s o}_{n}(\mathbb{C})$ Case

The range of $A_{1}, \ldots, A_{p} \in \mathfrak{5 0}_{n}$, after disregarding a suitable constant is

$$
W_{C}\left(A_{1}, \ldots, A_{p}\right)=\left\{\left(\operatorname{tr} C O^{T} A_{1} O, \ldots, \operatorname{tr} C O^{T} A_{p} O\right): O \in \mathrm{SO}(n)\right\}
$$

which is symmetric about the origin when n is odd but it is not true for the even case.

Theorem $6.1([31]) \quad$ Let C, A_{1}, A_{2} be $n \times n$ real skew symmetric matrices. Then the numerical range $W_{C}\left(A_{1}, A_{2}\right)=\left\{\left(\operatorname{tr} C O^{T} A_{1} O, \operatorname{tr} C O^{T} A_{2} O\right): O \in \mathrm{SO}(n)\right\}$ is convex.

The following result settles Question 1 in [30].
Theorem 6.2 Let $C, A_{1}, A_{2}, A_{3}, A_{4}$ be $n \times n$ real skew symmetric matrices.

1. If $n \geq 5$, then $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is always convex in \mathbb{R}^{3}. Moreover, $W_{C}\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ is not convex in general.
2. If $n=4, C, A_{1}, A_{2}, A_{3}$ are 4×4 real skew symmetric matrices, then $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is generally not convex.
3. If $n=3$, then $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is an ellipsoid (perhaps degenerated) in \mathbb{R}^{3}.
4. If $n=2$, then $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is a point in \mathbb{R}^{3}.

Proof (1) Due to [30], it is sufficent to consider the even case $2 n \times 2 n$. Given a $2 n \times 2 n$ real skew-symmetric matrix X with singular values $s_{1}=s_{1} \geq s_{2}=s_{2} \geq \cdots \geq s_{n}=s_{n}$, let $s(X)=\left(s_{1}, \ldots, s_{n}\right)$.

Suppose $n=3$. It is known [13, p. 521] $\mathfrak{s u}_{4} \cong \mathfrak{s o}(6)$. By Proposition 2.2 and Theorem 4.1, $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is convex when $n=3$, and equivalently, $W_{B}\left(A_{1}, A_{2}, A_{3}\right) \subset$ $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ whenever $b \ll c$ where $b=s(B)$ and $c=s(C)$. Now, suppose $n \geq 4$. We can assume that B and C are in canonical form and $s(B) \ll s(C)$. By Lemma 3.4, we can construct $b=b_{n-1} \ll \cdots \ll b_{1}=c$ satisfying the two conditions of the lemma. Let B_{j} be the real skew symmetric matrices corresponding to $b_{j}, j=1, \ldots, n-1\left(B_{1}=C\right.$ and $\left.B_{n-1}=B\right)$ in cannocial form and the 2×2 blocks can be permuted as we please. If $\left(x_{1}, x_{2}, x_{3}\right) \in W_{B_{j}}\left(A_{1}, A_{2}, A_{3}\right), j=2, \ldots, k$, then there exists $O \in \operatorname{SO}(2 n)$ such that $x_{i}=\operatorname{tr} B_{j} O^{T} A_{i} O, i=1,2,3$. Let $B_{j}=P \oplus R$ and $B_{j-1}=Q \oplus R$ where P and Q are 6×6 such that $s(P) \ll s(Q)$. Now let D_{i} be the leading 6×6 submatrix of $O^{T} A_{i} O, i=1,2,3$. Thus we can find a $2 n \times 2 n$ real orthogonal matrix of the form $U=O\left(U_{1} \oplus I_{n-6}\right)$ so that $\left(x_{1}, x_{2}, x_{3}\right)=\left(\operatorname{tr} B_{j} U^{T} A_{1} U, \operatorname{tr} B_{j} U^{T} A_{2} U, \operatorname{tr} B_{j} U^{T} A_{3} U\right) \in W_{B_{j-1}}\left(A_{1}, A_{2}, A_{3}\right)$. So we have the inclusions $W_{B}\left(A_{1}, A_{2}, A_{3}\right) \subset \cdots \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ and hence the convexity.

The result for the odd case is best possible in the sense that if $p>3$, there are $(2 n+1) \times$ $(2 n+1)(n \geq 2)$ real skew symmetric matrices C, A_{1}, \ldots, A_{p} such that $W_{C}\left(A_{1}, \ldots, A_{p}\right)$ is not convex [31]. The example in [31] also works for even case.
(2) Notice that [13, p. 240] $\mathfrak{s u}_{2} \oplus \mathfrak{s u}_{2} \cong \mathfrak{s v}(4)$. This yields that $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is generally not convex when $C, A_{1}, A_{2}, A_{3} \in \mathfrak{s v}(4)$. The result follows from Proposition 2.2 and an example in [1] or Theorem 4.1.
(3) The isomorphism $\mathfrak{s p}(3) \cong \mathfrak{s u}(2)$ explains the common ellipsoid phenomenon for the numerical ranges associated with $\mathfrak{s l}_{2}(\mathbb{C})^{\mathbb{R}}$ and $\mathfrak{s n}_{3}(\mathbb{C})^{\mathbb{R}}$ when $p=3$ (see Theorem 4.1).
(4) It is trivial.

Remark 6.3 If $\mathrm{SO}(k)$ is replaced by $O(k)$, denote the corresponding set by $\tilde{W}_{C}\left(A_{1}, \ldots, A_{p}\right)$. When $k=2 n+1, \tilde{W}_{C}\left(A_{1}, \ldots, A_{p}\right)=W_{C}\left(A_{1}, \ldots, A_{p}\right)$. However, if $k=2 n$, then

$$
\tilde{W}_{C}\left(A_{1}, \ldots, A_{p}\right)=W_{C}\left(A_{1}, \ldots, A_{p}\right) \cup W_{C^{\prime}}\left(A_{1}, \ldots, A_{p}\right)
$$

where $C^{\prime}=D C D$ and $D=\operatorname{diag}(1, \ldots, 1,-1)$. If C is singular, i.e., the rank of C is less than or equal to $2(n-1)$, then $\tilde{W}_{C}\left(A_{1}, \ldots, A_{p}\right)=W_{C}\left(A_{1}, \ldots, A_{p}\right)$. When $p=2$, and suppose C is nonsingular, then $\tilde{W}_{C}\left(A_{1}, A_{2}\right)$ is the union of two convex sets [31] and is not convex in general. We have the following example: Let

$$
X=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad C=A_{1}=X \oplus \cdots \oplus X, \quad A_{2}=X \oplus \cdots \oplus X \oplus(-X)
$$

Then $(-2 n,-2 n-4)$ and $(-2 n+4,-2 n) \in \tilde{W}_{C}\left(A_{1}, A_{2}\right)$ and the midpoint of the two points is $(-2 n+2,-2 n+2)$. If it were in $\tilde{W}_{C}\left(A_{1}, A_{2}\right)$, then there would exist $U \in O(2 n)$ such that $\operatorname{tr} A_{1} U^{T} C U=\operatorname{tr} A_{2} U^{T} C U=-2 n+2$. Let $B=U^{T} C U$. So $\sum_{i=1}^{n} b_{2 i-1,2 i}=$ $\sum_{i=1}^{n-1} b_{2 i-1,2 i}-b_{2 n-1,2 n}=n-1$. Thus $n-1=\sum_{i=1}^{n-1} b_{2 i-1,2 i}$ and $b_{2 n-1,2 n}=0$. However, we have $n-1=\left|\sum_{i=1}^{n-1} b_{2 i-1,2 i}\right| \leq \sum_{i=1}^{n-1}\left|b_{2 i-1,2 i}\right|=\sum_{i=1}^{n-1}\left|b_{2 i-1,2 i}\right|-\left|b_{2 n-1,2 n}\right| \leq n-2$ according to a result in [27]. It is a contradiction.

7 The $\mathfrak{s p}_{2 n}(\mathbb{C})$ Case

The Cartan decomposition is $\mathfrak{s p}_{2 n}(\mathbb{C})^{\mathbb{R}}=\mathfrak{s p}(n)+i \mathfrak{s p}(n)$ where K is the symplectic group

$$
\operatorname{Sp}(n)=\left(\begin{array}{cc}
U & -\bar{V} \\
V & \bar{U}
\end{array}\right) \in U(2 n) .
$$

The C-numerical range of $A_{1}, \ldots, A_{p} \in \mathfrak{p}$ will then take the form (after disregarding the constant $-2(n+1)$):

$$
\left\{\left(\operatorname{tr} C W^{*} A_{1} W, \ldots, \operatorname{tr} C W^{*} A_{p} W\right): W \in \operatorname{Sp}(n)\right\}
$$

where $C, A_{1}, \ldots, A_{p} \in \mathfrak{s p}(n)$. Suppose

$$
\begin{gathered}
W=\left(\begin{array}{cc}
U & -\bar{V} \\
V & \bar{U}
\end{array}\right) \in \operatorname{Sp}(n), \quad A_{j}=\left(\begin{array}{cc}
A_{j 1} & -\bar{A}_{j 2} \\
A_{j 2} & \bar{A}_{j 1}
\end{array}\right) \in \mathfrak{s p}(n), \quad j=1, \ldots, p, \\
C=\left(\begin{array}{cc}
C_{1} & -\bar{C}_{2} \\
C_{2} & \bar{C}_{1}
\end{array}\right),
\end{gathered}
$$

then

$$
\begin{aligned}
\operatorname{tr} C W^{*} A_{j} W= & 2 \operatorname{Re} \operatorname{tr} C_{1}\left[U^{*} A_{j 1} U-U^{*} \bar{A}_{j 2} V+V^{*} A_{j 2} U+V^{*} \bar{A}_{j 1} V\right] \\
& -2 \operatorname{Re} \operatorname{tr} \bar{C}_{2}\left[-V^{T} \bar{A}_{j 1} U+V^{T} \bar{A}_{j 2} V+U^{T} A_{j 2} U+U^{T} \bar{A}_{j 1} V\right] .
\end{aligned}
$$

If $C \in \mathfrak{s p}(n)$, then there exists $U \in \operatorname{Sp}(n)$ such that $U^{*} A U=$ $i \operatorname{diag}\left(c_{1}, \ldots, c_{n},-c_{1}, \ldots,-c_{n}\right)$, where $c_{i} \geq 0, i=1, \ldots, n$. Denote by c the vector $\left(c_{1}, \ldots, c_{n}\right)$. Hence the j-th component of the numerical range is of the form $2 \operatorname{Re}\left[\operatorname{tr} C U^{*} A_{j 1} U+\operatorname{tr} C V^{*} \bar{A}_{j 1} V\right]-4 \operatorname{Im} \operatorname{tr} C U^{*} \bar{A}_{j 2} V$ (since $A_{j 2}^{T}=A_{j 2}$) where $C=$ $i \operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$, i.e., $-2 \operatorname{Im} \sum_{i=1}^{n} c_{i}\left(u_{i}^{*} A_{j 1} u_{i}+v_{i}^{*} \bar{A}_{j 1} v_{i}\right)-4 \operatorname{Re} \sum_{i=1}^{n} c_{i} u_{i}^{*} \bar{A}_{j 2} v_{i}$. The numerical range is also symmetric about the origin. Since $\operatorname{Sp}(n)$ is compact connected, by Theorem 2.1 we have

Theorem $7.1([31]) \quad$ Let $C, A_{1}, A_{2} \in \mathfrak{s p}(n)$. Then $W_{C}\left(A_{1}, A_{2}\right)$ is convex.
Proposition 7.2 Let $C, A_{1}, A_{2}, A_{3}, A_{4} \in \mathfrak{s p}(2)$. Then $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is convex. Moreover, $W_{C}\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ is not convex in general.

Proof Since $\mathfrak{s p}(2) \cong \mathfrak{s p}(5)$, the result follows from Proposition 2.4 and Theorem 6.2 (1).

Proposition 7.3 Let $C, A_{1}, A_{2}, A_{3} \in \mathfrak{s p}(n)$ where $n \geq 2$. If $b \prec c$, then $W_{B}\left(A_{1}, A_{2}, A_{3}\right) \subset$ $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$.

Proof Assume that B and C are in diagonal form, i.e., $C=i \operatorname{diag}\left(c_{1}, \ldots, c_{n},-c_{1}, \ldots,-c_{n}\right)$, $c_{i} \geq 0$. It is sufficient to handle the case that $\left(b_{1}, b_{2}\right) \prec\left(c_{1}, c_{2}\right)$ and $c_{i}=b_{i}, i=3, \ldots, n$. For $j=1,2,3$, let A_{j} be of the form

$$
\left(\begin{array}{cc}
A_{j 1} & -\bar{A}_{j 2} \\
A_{j 2} & \bar{A}_{j 1}
\end{array}\right) \in \mathfrak{s p}(n) .
$$

So the elements of $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ are of the form $\left(x_{1}, x_{2}, x_{3}\right)$ where

$$
x_{j}=-2 \operatorname{Im} \sum_{i=1}^{n} c_{i}\left(u_{i}^{*} A_{j 1} u_{i}+v_{i}^{*} \bar{A}_{j 1} v_{i}\right)-4 \operatorname{Re} \sum_{i=1}^{n} c_{i} u_{i}^{*} \bar{A}_{j 2} v_{i},
$$

and u 's are the columns of U and v 's are the columns of V in

$$
W=\left(\begin{array}{cc}
U & -\bar{V} \\
V & \bar{U}
\end{array}\right) \in \operatorname{Sp}(n)
$$

For any $\theta, \phi \in[0,2 \pi]$, define

$$
\begin{array}{cl}
u_{1}^{\prime}=e^{-i \phi} \cos \theta u_{1}+e^{i \phi} \sin \theta u_{2}, & v_{1}^{\prime}=e^{-i \phi} \cos \theta v_{1}+e^{i \phi} \sin \theta v_{2} \\
u_{2}^{\prime}=-e^{-i \phi} \sin \theta u_{1}+e^{i \phi} \cos \theta u_{2}, & v_{2}^{\prime}=-e^{-i \phi} \sin \theta v_{1}+e^{i \phi} \cos \theta v_{2}
\end{array}
$$

and $u_{i}^{\prime}=u_{i}, i=3, \ldots, n$ and $v_{i}^{\prime}=v_{i}, i=3, \ldots, n$. Since $b_{1}+b_{2}=c_{1}+c_{2}$, for $j=1,2,3$, we have

$$
\begin{aligned}
y_{j}= & -2 \operatorname{Im} \sum_{i=1}^{n} c_{i}\left(u_{i}^{\prime *} A_{j 1} u_{i}^{\prime}+v_{i}^{\prime *} \bar{A}_{j 1} v_{i}^{\prime}\right)-4 \operatorname{Re} \sum_{i=1}^{n} c_{i} u_{i}^{\prime *} \bar{A}_{j 2} v_{i}^{\prime} \\
= & \left(c_{1}+c_{2}\right)\left[-\operatorname{Im}\left(u_{1}^{*} A_{j 1} u_{1}+u_{2}^{*} A_{j 1} u_{2}+v_{1}^{*} \bar{A}_{j 1} v_{1}+v_{2}^{*} \bar{A}_{j 1} v_{2}\right)-2 \operatorname{Re}\left(u_{1}^{*} \bar{A}_{j 2} v_{1}+u_{2}^{*} \bar{A}_{j 2} v_{2}\right)\right] \\
& +\left(c_{1}-c_{2}\right)\left[p_{j} \cos 2 \theta+\sin 2 \theta\left(q_{j} \cos 2 \phi+s_{j} \sin 2 \phi\right)\right] \\
& -2 \operatorname{Im} \sum_{i=3}^{n} c_{i}\left(u_{i}^{*} A_{j 1} u_{i}+v_{i}^{*} \bar{A}_{j 1} v_{i}\right)-4 \operatorname{Re} \sum_{i=3}^{n} c_{i} u_{i}^{*} \bar{A}_{j 2} v_{i}
\end{aligned}
$$

where

$$
\begin{gathered}
p_{j}=-\operatorname{Im}\left(u_{1}^{*} A_{j 1} u_{1}-u_{2}^{*} A_{j 1} u_{2}+v_{1}^{*} \bar{A}_{j 1} v_{1}-v_{2}^{*} \bar{A}_{j 1} v_{2}\right)-2 \operatorname{Re}\left(u_{1}^{*} \bar{A}_{j 2} v_{1}-u_{2}^{*} \bar{A}_{j 2} v_{2}\right), \\
q_{j}=-2 \operatorname{Im} u_{1}^{*} A_{j 1} u_{2}-2 \operatorname{Im} v_{1}^{*} \bar{A}_{j 1} v_{2}-2 \operatorname{Re}\left(u_{1}^{*} \bar{A}_{j 2} v_{2}+u_{2}^{*} \bar{A}_{j 2} v_{1}\right), \\
s_{j}=-2 \operatorname{Re} u_{1}^{*} A_{j 1} u_{2}-2 \operatorname{Re} v_{1}^{*} \bar{A}_{j 1} v_{2}-2 \operatorname{Im}\left(u_{2}^{*} \bar{A}_{j 2} v_{1}-v_{1}^{*} \bar{A}_{j 2} u_{2}\right),
\end{gathered}
$$

$j=1,2,3$. The locus of $\left(y_{1}, y_{2}, y_{3}\right)$ is an ellipsoid $E_{c, W}$ when ϕ and θ vary on $[0,2 \pi]$. So for any $x \in W_{B}\left(A_{1}, A_{2}, A_{3}\right)$, there is $W \in \operatorname{Sp}(n)$ and $x \in E_{b, W} \subset \operatorname{conv} E_{c, W}$ since $\left|b_{1}-b_{2}\right| \leq$ $\left|c_{1}-c_{2}\right|$ and $b_{1}+b_{2}=c_{1}+c_{2}$. We notice that the matrix $R(\theta, \phi) \oplus I_{n-2} \oplus \bar{R}(\theta, \phi) \oplus I_{n-2}$ is an element of $\operatorname{Sp}(n)$ for any θ and ϕ where

$$
R(\theta, \phi)=\left(\begin{array}{cc}
e^{-i \phi} \cos \theta & e^{i \phi} \sin \theta \\
-e^{-i \phi} \sin \theta & e^{i \phi} \cos \theta
\end{array}\right) .
$$

In particular, $R(\theta, \phi) \oplus \bar{R}(\theta, \phi) \in \operatorname{Sp}(2)$. By Proposition 7.2, conv $E_{c, W} \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ so that $x \in W_{C}\left(A_{1}, A_{2}, A_{3}\right)$. This completes the proof.

Theorem 7.4 Let $C, A_{1}, A_{2}, A_{3}, A_{4} \in \mathfrak{s p}(n)$. Then $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is convex if $n>1$, and is an ellipsoid (perhaps degenerated) centered at the origin if $n=1$. In general, $W_{C}\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ is not convex.

Proof First we establish the simplest cases. When $n=1, \mathrm{Sp}(1)=\mathrm{SU}(2)$ and hence by Theorem 4.1, $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is an ellipsoid (perhaps degenerate) centered at the origin.

It is sufficient to show that $W_{B}\left(A_{1}, A_{2}, A_{3}\right) \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ when $0 \leq b_{1}<c_{1}$ and $c_{i}=b_{i}, i=1, \ldots, n$. The elements of $W_{B}\left(A_{1}, A_{2}, A_{3}\right)$ are of the form $\left(x_{1}, x_{2}, x_{3}\right)$ where

$$
\begin{aligned}
x_{j}= & -2 \operatorname{Im} \sum_{i=1}^{n} b_{i}\left(u_{i}^{*} A_{j 1} u_{i}+v_{i}^{*} \bar{A}_{j 1} v_{i}\right)-4 \operatorname{Re} \sum_{i=1}^{n} b_{i} u_{i}^{*} \bar{A}_{j 2} v_{i} \\
= & -2 \operatorname{Im} b_{1}\left(u_{1}^{*} A_{j 1} u_{1}+v_{1}^{*} \bar{A}_{j 1} v_{1}\right)-4 \operatorname{Re} b_{1} u_{1}^{*} \bar{A}_{j 2} v_{1} \\
& -2 \operatorname{Im} \sum_{i=2}^{n} c_{i}\left(u_{i}^{*} A_{j 1} u_{i}+v_{i}^{*} \bar{A}_{j 1} v_{i}\right)-4 \operatorname{Re} \sum_{i=2}^{n} c_{i} u_{i}^{*} \bar{A}_{j 2} v_{i},
\end{aligned}
$$

$j=1,2,3$. Let $\left(u_{1}^{\prime} v_{1}^{\prime}\right)=U\left(u_{1} v_{1}\right)$ where $U \in \operatorname{Sp}(1)$ and set $u_{i}^{\prime}=u_{i}, v_{i}^{\prime}=v_{i}, i=2, \ldots, n$. Similar to the previous treatment, we have an ellipsoid $E_{u, v, b_{1}}$ as U runs over $\operatorname{Sp}(1)$, by using $n=1$ case. So we deduce that a point $x \in W_{B}\left(A_{1}, A_{2}, A_{3}\right)$ is contained in $E_{b_{1}, u, v} \subset$ $\operatorname{conv} E_{c_{1}, u, v}$ since $b_{1}<c_{1}$. Thus $x \in \operatorname{conv} E_{c_{1}, u, v} \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ by Proposition 7.2.

Now we construct nonconvex examples for the more general case. Let

$$
\begin{gathered}
B=I_{n-2} \oplus 3 I_{2} \oplus\left(-I_{n-2}\right) \oplus\left(-3 I_{2}\right), \\
C=I_{n-2} \oplus \operatorname{diag}(4,2) \oplus\left(-I_{n-2}\right) \oplus \operatorname{diag}(-4,-2) \\
A_{1}=I_{n} \oplus\left(-I_{n}\right), \quad A_{2}=I_{n-2} \oplus \operatorname{diag}(1,-1) \oplus\left(-I_{n-2}\right) \oplus \operatorname{diag}(-1,1) \\
A_{3}=I_{n-2} \oplus\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \oplus\left(-I_{n-2}\right) \oplus\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right), \\
A_{4}=I_{n-2} \oplus\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) \oplus\left(-I_{n-2}\right) \oplus\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)
\end{gathered}
$$

We are going to show that

$$
(2(n-2)+12,2(n-2), 2(n-2), 2(n-2)) \in W_{B}\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \backslash W_{C}\left(A_{1}, A_{2}, A_{3}, A_{4}\right)
$$

Consider a set which is larger than $W_{C}\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$:

$$
\begin{aligned}
& W_{C}^{\prime}\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \\
& \quad=\left\{\left(\operatorname{tr} C U^{*} A_{1} U, \operatorname{tr} C U^{*} A_{2} U, \operatorname{tr} C U^{*} A_{3} U, \operatorname{tr} C U^{*} A_{3} U\right): U \in U(2 n)\right\}
\end{aligned}
$$

Indeed the set is the C-numerical range of $\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ associated with $\mathfrak{g l}(2 n, \mathbb{C})$. Applying the reasoning in the first example of the proof of Theorem 5.4, then $(2(n-2)+$ $12,2(n-2), 2(n-2), 2(n-2)) \notin W_{C}^{\prime}\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$.

8 The $\mathfrak{s p}_{2 n}(\mathbb{R})$ Case

It is known that

$$
\begin{gathered}
K=\left\{\left(\begin{array}{cc}
A & B \\
-B & A
\end{array}\right): A^{T} A+B^{T} B=I, A^{T} B=B^{T} A, A, B \in \mathbb{R}^{n \times n}\right\}, \\
\mathfrak{p}=\left\{\left(\begin{array}{cc}
X & Y \\
Y & -X
\end{array}\right): Y^{T}=Y, X^{T}=X, X, Y \in \mathbb{R}^{n \times n}\right\}, \quad \mathfrak{a}=\bigoplus_{1 \leq j \leq n} \mathbb{R}\left(E_{j j}-E_{n+j, n+j}\right) .
\end{gathered}
$$

Notice that

$$
\left(\begin{array}{cc}
A & B \\
-B & A
\end{array}\right) \in K
$$

if and only if $A+i B \in U(n)$. Hence we identify K with $U(n)$. Similarly we identify \mathfrak{f} with $\mathfrak{u}(n)$. Now we identify \mathfrak{p} with the space of $n \times n$ complex symmetric matrices via the map

$$
\left(\begin{array}{cc}
X & Y \\
Y & -X
\end{array}\right) \mapsto X+i Y, \quad X, Y \in \mathbb{R}^{n \times n}, X^{T}=X, Y^{T}=Y
$$

Hence \mathfrak{a} is identified with the space of real diagonal matrices. So the corresponding C numerical range, after disregarding the constant $2(n+1)$, takes the form

$$
W_{C}\left(A_{1}, \ldots, A_{p}\right)=\left\{\left(\operatorname{Re} \operatorname{tr} C U^{T} A_{1} U, \ldots, \operatorname{Re} \operatorname{tr} C U^{T} A_{p} U\right): U \in U(n)\right\}
$$

Clearly the numerical range is symmetric about the origin. We can assume that $C=$ $\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$ where c 's are the singular values of C. When $p=1$, the set $W_{C}(A)$ is a closed interval [32]. We have the following convexity result when $p=2$.

Theorem 8.1 Let C, A_{1}, A_{2}, A_{3} be $n \times n$ complex symmetric matrices. Then $W_{C}\left(A_{1}, A_{2}\right)$ is convex if $n>1$. It is an ellipse (perhaps degenerated) in \mathbb{R}^{2} if $n=1$. Moreover, $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex in general.

Proof The second assertion is trivial since the numerical range is just the image of the unit circle under a linear map from \mathbb{R}^{2} to \mathbb{R}^{2}. Let $n>1$. We need to consider the following two cases.

Case $10 \leq b_{1}<c_{1}$, and $b_{i}=c_{i}, i=2, \ldots, n$.
Let $\left(r_{1}, r_{2}\right)=\left(\operatorname{Re} \sum_{i=1}^{n} b_{i} x_{i}^{T} A_{1} x_{i}, \operatorname{Re} \sum_{i=1}^{n} b_{i} x_{i}^{T} A_{2} x_{i}\right) \in W_{B}\left(A_{1}, A_{2}\right)$. For any $\theta \in[0,2 \pi]$ we consider $x_{1}^{\prime}=e^{i \theta} x_{1}$ and $x_{i}^{\prime}=x_{i}, i=2, \ldots, n$. Then for $j=1,2$, we have

$$
\operatorname{Re} \sum_{i=1}^{n} b_{i} x_{i}^{\prime T} A_{j} x_{i}^{\prime}=b_{1}\left(\cos 2 \theta \operatorname{Re} x_{1}^{T} A_{j} x_{1}-\sin 2 \theta \operatorname{Im} x_{1}^{T} A_{j} x_{1}\right)+\operatorname{Re} \sum_{i=2}^{n} b_{i} x_{i}^{T} A_{j} x_{i}
$$

As θ varies on $[0,2 \pi]$, the locus of the point $\left(\operatorname{Re} \sum_{i=1}^{p} b_{i} x_{i}^{\prime T} A_{1} x_{i}^{\prime}, \operatorname{Re} \sum_{i=1}^{p} b_{i} x_{i}^{T} A_{2} x_{i}^{\prime}\right)$ traces out an ellipse $E_{X, b}$, where X denotes the unitary matrix $\left(x_{1} \cdots x_{n}\right)$. Similarly we have $E_{X, c}$ and obviously $E_{X, b} \subset \operatorname{conv} E_{X, c}$. If $E_{X, c}$ is degenerated, then $\left(r_{1}, r_{2}\right) \in \operatorname{conv} E_{X, c}=E_{X, c}$. So
we assume that $E_{X, c}$ is not degenerated. Let $u_{1} \in \mathbb{C}^{n}$ be unit vector such that $u_{1}^{T} A_{1} u_{1}=0$ (see Lemma 3 of Thompson [36]). Extend u_{1} to an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$. Hence the ellipse $E_{U, c}$ is degenerated. Using the continuity argument, we are done.

Case 2 Suppose $\left(b_{1}, b_{2}\right) \prec\left(c_{1}, c_{2}\right)$ and $b_{i}=c_{i}, i=3, \ldots, n$. Let

$$
\left(r_{1}, r_{2}\right)=\left(\operatorname{Re} \sum_{i=1}^{p} b_{i} x_{i}^{T} A_{1} x_{i}, \operatorname{Re} \sum_{i=1}^{p} b_{i} x_{i}^{T} A_{2} x_{i}\right) \in W_{B}\left(A_{1}, A_{2}\right)
$$

For any $\theta \in[0,2 \pi]$, define $y_{1}=\cos \theta x_{1}+\sin \theta x_{2}, y_{2}=-\sin \theta x_{1}+\cos \theta x_{2}$, and $y_{i}=x_{i}$, $i=3, \ldots, n$. Then

$$
\begin{aligned}
\operatorname{Re} \sum_{i=1}^{n} c_{i} y_{i}^{T} A_{j} y_{i}= & \frac{1}{2}\left(c_{1}+c_{2}\right) \operatorname{Re}\left(x_{1}^{T} A_{j} x_{1}+x_{2}^{T} A_{j} x_{2}\right) \\
& +\frac{1}{2}\left(c_{1}-c_{2}\right)\left(p_{j} \cos 2 \theta+q_{j} \sin 2 \theta\right)+\operatorname{Re} \sum_{i=3}^{n} c_{i} x_{i}^{T} A_{j} x_{i},
\end{aligned}
$$

where $p_{j}=\operatorname{Re}\left(x_{1}^{T} A_{j} x_{1}-x_{2}^{T} A_{j} x_{2}\right)$ and $q_{j}=\operatorname{Re}\left(x_{2}^{T} A_{j} x_{1}-x_{1}^{T} A_{j} x_{2}\right)$. As θ varies from 0 to 2π, we get an ellipse E_{c}. Now $\left(r_{1}, r_{2}\right) \in E_{b} \subset$ conv E_{c}. The ellipse E_{c} can also be viewed as the image of a loop in $\mathrm{SU}(2)$ under the above continuous function, namely, the set of rotation matrices. By the simple connectedness of $\operatorname{SU}(2)$, conv $E_{c} \subset W_{C}\left(A_{1}, A_{2}\right)$. Hence $\left(r_{1}, r_{2}\right) \in W_{C}\left(A_{1}, A_{2}\right)$.

The example in the proof of Theorem 5.4 works for this case and the computation is similar.

Corollary 8.2 ([37]) Let C and A be $n \times n$ complex matrices such that $C=C^{T}$. Then the congruence numerical range $W_{C}(A)=\left\{\operatorname{tr} C U^{T} A U: U \in U(n)\right\}$ is a circular disk if $n>1$.

9 The $\mathfrak{s p}_{p, q}$ Case

We may assume that $p \leq q$. It is known that

$$
\begin{gathered}
\mathfrak{p}=\left\{\left(\begin{array}{cccc}
0 & X_{12} & 0 & X_{14} \\
X_{12}^{*} & 0 & X_{14}^{T} & 0 \\
0 & \bar{X}_{14} & 0 & -\bar{X}_{12} \\
X_{14}^{*} & 0 & -X_{12}^{T} & 0
\end{array}\right)\right\} \\
\mathfrak{a}=\bigoplus_{1 \leq j \leq p} \mathbb{R}\left(E_{j, p+j}+E_{p+j, j}-E_{p+q+j, 2 p+q+j}-E_{2 p+q+j, p+q+j}\right), \\
K=\left\{\left(\begin{array}{cccc}
U_{1} & 0 & -\bar{V}_{1} & 0 \\
0 & U_{2} & 0 & -\bar{V}_{2} \\
V_{1} & 0 & \bar{U}_{1} & 0 \\
0 & V_{2} & 0 & \bar{U}_{2}
\end{array}\right):\left(\begin{array}{cc}
U_{1} & -\bar{V}_{1} \\
V_{1} & \bar{U}_{1}
\end{array}\right) \in \operatorname{Sp}(p),\left(\begin{array}{cc}
U_{2} & -\bar{V}_{2} \\
V_{2} & \bar{U}_{2}
\end{array}\right) \in \operatorname{Sp}(q)\right\}
\end{gathered}
$$

Given $C \in \mathfrak{s p}_{p, q}$, there exists $W \in \operatorname{Sp}(p, q)$ such that $W^{*} C W$ is of the form:

$$
\left(\begin{array}{cc}
0 & C_{1} \\
C_{1}^{T} & 0
\end{array}\right) \oplus\left(\begin{array}{cc}
0 & -C_{1} \\
-C_{1}^{T} & 0
\end{array}\right),
$$

where $C_{1}=c_{1} E_{11} \oplus \cdots \oplus c_{p} E_{p p}$ with $c_{i} \geq 0$ for all $i=1, \ldots, p$. Now the (12)-block of an element of $O\left(A_{j}\right)\left(A_{j} \in \mathfrak{p}\right)$ has the form of the (12)-block of the matrix

$$
Q=\left(\begin{array}{cccc}
U_{1} & 0 & -\bar{V}_{1} & 0 \\
0 & U_{2} & 0 & -\bar{V}_{2} \\
V_{1} & 0 & \bar{U}_{1} & 0 \\
0 & V_{2} & 0 & \bar{U}_{2}
\end{array}\right) *\left(\begin{array}{cccc}
0 & A_{12}^{j} & 0 & A_{14}^{j} \\
A_{12}^{j} & 0 & A^{j}{ }_{14}^{T} & 0 \\
0 & \bar{A}_{14}^{j} & 0 & -\bar{A}_{12}^{j} \\
A_{14}^{j} & 0 & 0 & -A_{12}^{j} T \\
\hline
\end{array}\right)\left(\begin{array}{cccc}
U_{1} & 0 & -\bar{V}_{1} & 0 \\
0 & U_{2} & 0 & -\bar{V}_{2} \\
V_{1} & 0 & \bar{U}_{1} & 0 \\
0 & V_{2} & 0 & \frac{U_{2}}{2}
\end{array}\right),
$$

namely, $Q_{12}=U_{1}^{*} A_{12}^{j} U_{2}+U_{1}^{*} A_{14}^{j} V_{2}+V_{1}^{*} \bar{A}_{14}^{j} U_{2}-V_{1}^{*} \bar{A}_{12}^{j} V_{2}$. Hence the j-th component of the numerical range is $\operatorname{Re} \operatorname{tr} C^{T} Q_{12}+\operatorname{Re} \operatorname{tr} C Q_{12}^{*}+\operatorname{Re} \operatorname{tr} C Q_{12}^{T}+\operatorname{Re} \operatorname{tr} C^{T} \bar{Q}_{12}=4 \operatorname{Re} \operatorname{tr} C^{T} Q_{12}$, where $C=c_{1} E_{11} \oplus \cdots \oplus c_{p} E_{p p}$. In other words, the j-th component is of the form

$$
4 \operatorname{Re} \sum_{i=1}^{p} c_{i}\left[u_{1 i}^{*} A_{12}^{j} u_{2 i}+u_{1 i}^{*} A_{14}^{j} v_{2 i}+v_{1 i}^{*} \bar{A}_{14}^{j} u_{2 i}-v_{1 i}^{*} \bar{A}_{12}^{j} v_{2 i}\right]
$$

where $U_{1}=\left(u_{11} \cdots u_{1 p}\right), V_{1}=\left(v_{11} \cdots v_{1 p}\right), U_{2}=\left(u_{21} \cdots u_{2 q}\right), V_{2}=\left(v_{21} \cdots v_{2 q}\right)$ form an element of K. The numerical range is also symmetric about the origin. By Remark 11.1, we have

Proposition 9.1 Let $C, A_{1}, A_{2}, A_{3} \in \mathfrak{s p}_{1,1}$. Then $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is an ellipsoid with interior centered at the origin in \mathbb{R}^{3} and hence is convex.

Proposition 9.2 Let $C, A_{1}, A_{2}, A_{3} \in \mathfrak{s p}_{p, q}$. If $\min \{p, q\}>1$ and $b \prec c W_{B}\left(A_{1}, A_{2}, A_{3}\right) \subset$ $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$.

Proof It is sufficient to consider the case $\left(b_{1}, b_{2}\right) \prec\left(c_{1}, c_{2}\right), b_{i}=c_{i}, i=3, \ldots, p$. Let $\left(x_{1}, x_{2}, x_{3}\right) \in W_{B}\left(A_{1}, A_{2}, A_{3}\right)$, i.e., $x_{j}=4 \operatorname{Re} \sum_{i=1}^{p} b_{i}\left[u_{1 i}^{*} A_{12}^{j} u_{2 i}+u_{1 i}^{*} A_{14}^{j} v_{2 i}+v_{1 i}^{*} \bar{A}_{14}^{j} u_{2 i}-\right.$ $\left.v_{1 i}^{*} \bar{A}_{12}^{j} v_{2 i}\right], j=1,2,3$. For any $\theta \in[0,2 \pi]$ and $\phi \in[0,2 \pi], k=1,2$, define

$$
\begin{array}{cl}
u_{k 1}^{\prime}=e^{-i \phi} \cos \theta u_{k 1}+e^{i \phi} \sin \theta u_{k 2}, & v_{k 1}^{\prime}=e^{-i \phi} \cos \theta v_{k 1}+e^{i \phi} \sin \theta v_{k 2} \\
u_{k 2}^{\prime}=-e^{-i \phi} \sin \theta u_{k 1}+e^{i \phi} \cos \theta u_{k 2}, & v_{k 2}^{\prime}=-e^{-i \phi} \sin \theta v_{k 1}+e^{i \phi} \cos \theta v_{k 2}
\end{array}
$$

Since $b_{1}+b_{2}=c_{1}+c_{2}$, for $j=1,2,3$, we have

$$
\begin{aligned}
& y_{j}=4 \operatorname{Re} \sum_{i=1}^{p} b_{i}\left[u_{1 i}^{\prime *} A_{12}^{j} u_{2 i}^{\prime}+u_{1 i}^{\prime *} A_{14}^{j} v_{2 i}^{\prime}+v_{1 i}^{\prime *} \bar{A}_{14}^{j} u_{2 i}^{\prime}-v_{1 i}^{\prime *} \bar{A}_{12}^{j} v_{2 i}^{\prime}\right] \\
& =2\left(c_{1}+c_{2}\right) \operatorname{Re}\left[u_{11}^{*} A_{12}^{j} u_{21}+u_{12}^{*} A_{12}^{j} u_{22}+u_{11}^{*} A_{14}^{j} v_{21}+u_{12}^{*} A_{14}^{j} v_{22}\right. \\
& \left.\quad+v_{11}^{*} \bar{A}_{14}^{j} u_{21}+v_{12}^{*} \bar{A}_{14}^{j} u_{22}-v_{11}^{*} \bar{A}_{12}^{j} v_{21}-v_{12}^{*} \bar{A}_{12}^{j} v_{22}\right] \\
& \\
& +2\left(b_{1}-b_{2}\right)\left[p_{j} \cos 2 \theta+\left(q_{j} \cos 2 \phi+r_{j} \sin 2 \phi\right) \sin 2 \theta\right] \\
& \\
& \quad+4 \operatorname{Re} \sum_{i=3}^{p} c_{i}\left[u_{1 i}^{*} A_{12}^{j} u_{2 i}+u_{1 i}^{*} A_{14}^{j} v_{2 i}+v_{1 i}^{*} \bar{A}_{14}^{j} u_{2 i}-v_{1 i}^{*} \bar{A}_{12}^{j} v_{2 i}\right]
\end{aligned}
$$

where

$$
\begin{gathered}
p_{j}=2 \operatorname{Re}\left[u_{11}^{*} A_{12}^{j} u_{21}-u_{12}^{*} A_{12}^{j} u_{22}+u_{11}^{*} A_{14}^{j} v_{21}-u_{12}^{*} A_{14}^{j} v_{22}\right. \\
\left.+v_{11}^{*} \bar{A}_{14}^{j} u_{21}-v_{12}^{*} \bar{A}_{14}^{j} u_{22}-v_{11}^{*} \bar{A}_{12}^{j} v_{21}+v_{12}^{*} \bar{A}_{12}^{j} v_{22}\right] \\
q_{j}=2 \operatorname{Re}\left[u_{11}^{*} A_{12}^{j} u_{22}+u_{12}^{*} A_{12}^{j} u_{21}+u_{11}^{*} A_{14}^{j} v_{22}+u_{12}^{*} A_{14}^{j} v_{21}\right. \\
\left.+v_{11}^{*} \bar{A}_{14}^{j} u_{22}+v_{12}^{*} \bar{A}_{14}^{j} u_{21}-v_{11}^{*} \bar{A}_{12}^{j} v_{22}-v_{12}^{*} \bar{A}_{12}^{j} v_{21}\right] \\
r_{j}=2 \operatorname{Im}\left[-u_{11}^{*} A_{12}^{j} u_{22}+u_{12}^{*} A_{12}^{j} u_{21}-u_{11}^{*} A_{14}^{j} v_{22}+u_{12}^{*} A_{14}^{j} v_{21}\right. \\
\left.\quad-v_{11}^{*} \bar{A}_{14}^{j} u_{22}+v_{12}^{*} \bar{A}_{14}^{j} u_{21}+v_{11}^{*} \bar{A}_{12}^{j} v_{22}-v_{12}^{*} \bar{A}_{12}^{j} v_{21}\right] .
\end{gathered}
$$

The map which sends u 's and v 's to $u^{\prime \prime}$ s and $v^{\prime \prime}$'s is in $\gamma(\operatorname{Sp}(1) \times \operatorname{Sp}(1)) \subset K$ where γ denotes the imbedding from $\operatorname{Sp}(p) \times \operatorname{Sp}(q) \rightarrow K$ [13, p .455$]$. As θ and ϕ vary on [$0,2 \pi$], the locus of $\left(y_{1}, y_{2}, y_{3}\right)$ is an ellipsoid E_{b} with interior by Proposition 9.1. Since $\left|b_{1}-b_{2}\right| \leq\left|c_{1}-c_{2}\right|$, we have $x \in E_{b} \subset E_{c} \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$. By a continuity argument, we are done.

Theorem 9.3 Let $C, A_{1}, A_{2}, A_{3} \in \mathfrak{s p}_{p, q}$. When $\min \{p, q\}>1, W_{C}\left(A_{1}, A_{2}\right)$ is convex. Furthermore, $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex in general.

Proof We may assume that $1<p \leq q$. It suffices to show that $W_{B}\left(A_{1}, A_{2}\right) \subset W_{C}\left(A_{1}, A_{2}\right)$ when $0 \leq b_{1}<c_{1}, b_{i}=c_{i}, i=2, \ldots, p$. Let $\left(x_{1}, x_{2}\right) \in W_{B}\left(A_{1}, A_{2}\right)$, i.e., for $j=1,2$, $x_{j}=4 \operatorname{Re} \sum_{i=1}^{p} b_{i}\left[u_{1 i}^{*} A_{12}^{j} u_{2 i}+u_{1 i}^{*} A_{14}^{j} v_{2 i}+v_{1 i}^{*} \bar{A}_{14}^{j} u_{2 i}-v_{1 i}^{*} \bar{A}_{12}^{j} v_{2 i}\right]$. For any $\theta \in[0,2 \pi]$, let $u_{11}^{\prime}=e^{i \theta} u_{11}$ and $v_{11}^{\prime}=e^{i \theta} v_{11}, u_{1 i}^{\prime}=u_{1 i}, v_{1 i}^{\prime}=v_{1 i}, i=2, \ldots, p ; u_{2 i}^{\prime}=u_{2 i}, v_{2 i}^{\prime}=v_{2 i}$, $i=1, \ldots, q$. Then for $j=1,2$,

$$
\begin{aligned}
y_{j}= & 4 \operatorname{Re} \sum_{i=1}^{p} b_{i}\left[u_{1 i}^{\prime *} A_{12}^{j} u_{2 i}^{\prime}+u_{1 i}^{\prime *} A_{14}^{j} v_{2 i}^{\prime}+v_{1 i}^{\prime *} \bar{A}_{14}^{j} u_{2 i}^{\prime}-v_{1 i}^{\prime *} \bar{A}_{12}^{j} v_{2 i}^{\prime}\right] \\
= & 4 b_{1}\left[p_{j} \cos \theta+q_{j} \sin \theta\right] \\
& +4 \operatorname{Re} \sum_{i=2}^{p} c_{i}\left[u_{1 i}^{*} A_{12}^{j} u_{2 i}+u_{1 i}^{*} A_{14}^{j} v_{2 i}+v_{1 i}^{*} \bar{A}_{14}^{j} u_{2 i}-v_{1 i}^{*} \bar{A}_{12}^{j} v_{2 i}\right]
\end{aligned}
$$

where $p_{j}=\operatorname{Re}\left[u_{11}^{*} A_{12}^{j} u_{21}+u_{11}^{*} A_{14}^{j} v_{21}+v_{11}^{*} \bar{A}_{14}^{j} u_{21}-v_{11}^{*} \bar{A}_{12}^{j} v_{21}\right], q_{j}=-\operatorname{Im}\left[u_{11}^{*} A_{12}^{j} u_{21}+\right.$ $\left.u_{11}^{*} A_{14}^{j} v_{21}+v_{11}^{*} \bar{A}_{14}^{j} u_{21}-v_{11}^{*} \bar{A}_{12}^{j} v_{21}\right]$. The matrix $\operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right)$ belongs to $\operatorname{Sp}(1)$ and thus $\gamma\left(\operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right) \oplus I_{p-2}, I_{q}\right) \in K$. As θ varies on [$0,2 \pi$], the locus of $\left(y_{1}, y_{2}\right)$ is an ellipse E_{b}. Since $0 \leq b_{1}<c_{1}$ and $\mathrm{Sp}(1)$ is simply connected, we have $\left(x_{1}, x_{2}\right) \in E_{b} \in \operatorname{conv} E_{c} \in$ $W_{C}\left(A_{1}, A_{2}\right)$.

The convexity result is best possible. We will work out the $p=q$ case and the $p \neq q$ case is similar. Let $\hat{B}=I_{n-1} \oplus(1 / 3), \hat{C}=I_{n-1} \oplus(1 / 2), \hat{A}_{1}=I_{n-1} \oplus(0), \hat{A}_{2}=I_{n-1} \oplus(i)$, $\hat{A}_{3}=I_{n}$. Set

$$
X=\left(\begin{array}{cc}
0 & \hat{X} \\
\hat{X}^{*} & 0
\end{array}\right) \oplus\left(\begin{array}{cc}
0 & -\hat{\hat{X}} \\
-\hat{X}^{T} & 0
\end{array}\right)
$$

where $X=B, C, A_{i}, i=1,2,3$. We claim that $W_{B}\left(A_{1}, A_{2}, A_{3}\right) \not \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ and hence $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex. Notice that

$$
4(n-1, n-1, n-1+1 / 3)=\left(\operatorname{Re} \operatorname{tr} B A_{1}, \operatorname{Re} \operatorname{tr} B A_{2}, \operatorname{Re} \operatorname{tr} B A_{3}\right) \in W_{B}\left(A_{1}, A_{2}, A_{3}\right)
$$

and we are going to show that this point does not belong to the set

$$
\left.W_{C}^{\prime}\left(A_{1}, A_{2}, A_{3}\right)=\left\{\operatorname{tr} C U^{*} A_{1}, U, \operatorname{tr} C U^{*} A_{2} U, \operatorname{tr} C U^{*} A_{3} U\right): U \in U(4 p)\right\}
$$

and $W_{C}\left(A_{1}, A_{2}, A_{3}\right) \subset W_{C}^{\prime}\left(A_{1}, A_{2}, A_{3}\right)$. Suppose $4(n-1, n-1, x) \in W_{C}\left(A_{1}, A_{2}, A_{3}\right)$. Then $\operatorname{Re} \operatorname{tr} C U^{*} A_{1} V=n-1$. Then using the reasoning in the second example of the proof of Theorem 5.4, we see that $4(n-1, n-1, n-1+1 / 3) \notin W_{C}^{\prime}\left(A_{1}, A_{2}, A_{3}\right)$. Hence inclusion relation fails when $s(B) \prec_{w} s(C)$. Thus $W_{C}^{\prime}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex.

10 The $\mathfrak{s o}^{*}(2 n)$ Case

It is known that

$$
\begin{gathered}
K=\left\{\left(\begin{array}{cc}
A & B \\
-B & A
\end{array}\right): A^{T} A+B^{T} B=I, A^{T} B=B^{T} A, A, B \in \mathbb{R}^{n \times n}\right\}, \\
\mathfrak{p}=\left\{\left(\begin{array}{cc}
X & Y \\
Y & -X
\end{array}\right): X^{T}=-X, Y^{T}=-Y, X, Y \in i \mathbb{R}^{n \times n}\right\} \\
\mathfrak{a}= \\
i \mathbb{R}\left(\left(E_{12}-E_{21}\right)-\left(E_{n+1, n+2}-E_{n+2, n+1}\right)\right) \\
\quad \oplus i \mathbb{R}\left(\left(E_{23}-E_{32}\right)-\left(E_{n+2, n+3}-E_{n+3, n+2}\right)\right) \oplus \cdots
\end{gathered}
$$

Analogously to $\mathfrak{s p}_{2 n}(\mathbb{R})$ case, we identify K with the unitary group $U(n)$ and the subspace \mathfrak{p} with the space of complex skew symmetric matrices respectively. Then \mathfrak{a} is identified with $i \oplus_{1 \leq j \leq[n / 2]} \mathbb{R}\left(E_{2 j-1,2 j}-E_{2 j, 2 j-1}\right)$. Then the group K acts on \mathfrak{p} such that $A \rightarrow U A U^{T}$. So the C-numerical range of the complex skew symmetric matrices $A_{1}, \ldots, A_{p} \in \mathfrak{p}$ is

$$
W_{C}\left(A_{1}, \ldots, A_{p}\right)=\left\{\left(\operatorname{Re} \operatorname{tr} C U^{T} A_{1} U, \ldots, \operatorname{Re} \operatorname{tr} C U^{T} A_{p} U\right): U \in U(n)\right\} .
$$

The set is symmetric about the origin.
Since $\mathfrak{s u}_{1,3} \cong \mathfrak{s o}^{*}(6)$, by Corollary 5.3, we have the following result and one can give a more geometric proof by identifying $O(C)$ with a 5 -sphere.

Theorem 10.1 Let C, A_{1}, \ldots, A_{p} be 3×3 complex skew symmetric matrices. When $1 \leq$ $p \leq 5, W_{C}\left(A_{1}, \ldots, A_{p}\right)$ is an ellipsoid with the interior in \mathbb{R}^{p} and hence a convex set.

Corollary 10.2 Let $n \geq 3$ be an odd integer. Suppose B and C are complex skew symmetric matrices with vectors of singular values (nonincreasing order) b and c, respectively such that $c-b \geq 0$. Then $W_{B}\left(A_{1}, \ldots, A_{p}\right) \subset W_{C}\left(A_{1}, \ldots, A_{p}\right)$ if $1 \leq p \leq 5$.

Theorem 10.3 Let $C, B, A_{1}, A_{2}, A_{3}$ be $n \times n$ complex skew symmetric matrices. Let $n \geq$ 4 and b and c be the vectors of singular values of B and C respectively. If $b \prec c$, then $W_{B}\left(A_{1}, A_{2}, A_{3}\right) \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$.

Proof It is sufficient to consider the case $\left(b_{1}, b_{2}\right) \prec\left(c_{1}, c_{2}\right)$ and $b_{i}=c_{i}, i=3, \ldots, n$. Suppose $x=\left(x_{1}, x_{2}, x_{3}\right) \in W_{B}\left(A_{1}, A_{2}, A_{3}\right)$, i.e., there exist $e_{1}, e_{2}, \ldots, e_{n}$ orthonormal vectors in $\left(\mathbb{C}^{n}\right.$ such that for $i=1,2,3$,

$$
x_{i}=-\operatorname{Re}\left[\left(b_{1}+b_{2}\right)\left(e_{1}^{T} A_{i} e_{2}+e_{3}^{T} A_{i} e_{4}\right)-\left(b_{1}-b_{2}\right)\left(e_{1}^{T} A_{i} e_{2}-e_{3}^{T} A_{i} e_{4}\right)-2 \sum_{j=3}^{[n / 2]} b_{j} e_{2 j-1}^{T} A_{i} e_{2 j}\right] .
$$

Let f_{1}, f_{2}, f_{3} and $f_{4} \in \mathbb{C}^{n}$ be the vectors defined by [30]

$$
\begin{array}{clll}
f_{1}=\cos \phi \cos \theta e_{1} & -\sin \phi \cos \theta e_{2} & -\cos \phi \sin \theta e_{3} & +\sin \phi \sin \theta e_{4} \\
f_{2}=\sin \phi \cos \theta e_{1} & +\cos \phi \cos \theta e_{2} & -\sin \phi \sin \theta e_{3} & -\cos \phi \sin \theta e_{4} \\
f_{3}=\cos \phi \sin \theta e_{1} & +\sin \phi \sin \theta e_{2} & +\cos \phi \cos \theta e_{3} & +\sin \phi \cos \theta e_{4} \\
f_{4}=-\sin \phi \sin \theta e_{1} & +\cos \phi \sin \theta e_{2} & -\sin \phi \cos \theta e_{3} & +\cos \phi \cos \theta e_{4}
\end{array}
$$

The matrix which sends $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ to $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ is an element of $\operatorname{SO}(4)$. So f_{1}, f_{2}, $f_{3}, f_{4} \in \mathbb{C}^{n}$ are orthonormal vectors. Direct computation leads to

$$
\begin{gathered}
\operatorname{Re}\left(f_{1}^{T} A_{j} f_{2}+f_{3}^{T} A_{j} f_{4}\right)=e_{1}^{T} A_{j} e_{2}+e_{3}^{T} A_{j} e_{4}, \\
\operatorname{Re}\left(f_{1}^{T} A_{j} f_{2}-f_{3}^{T} A_{j} f_{4}\right)=p_{j} \cos 2 \theta+\sin 2 \theta\left(q_{j} \sin 2 \phi+s_{j} \cos 2 \phi\right), \quad j=1,2,3,
\end{gathered}
$$

where

$$
p_{j}=\operatorname{Re}\left(e_{1}^{T} A_{j} e_{2}-e_{3}^{T} A_{j} e_{4}\right), \quad q_{j}=\operatorname{Re}\left(e_{1}^{T} A_{j} e_{3}-e_{2}^{T} A_{j} e_{4}\right), \quad s_{j}=\operatorname{Re}\left(-e_{2}^{T} A_{j} e_{3}+e_{1}^{T} A_{j} e_{4}\right)
$$

Then for $i=1,2,3, y_{i}$ is just the real part of the number

$$
\begin{aligned}
& \left(b_{1}-b_{2}\right)\left[p_{j} \cos 2 \theta+\sin 2 \theta\left(q_{j} \sin 2 \phi+s_{j} \cos 2 \phi\right)\right] \\
& \quad-\left(c_{1}+c_{2}\right)\left(e_{1}^{T} A_{i} e_{2}+e_{3}^{T} A_{i} e_{4}\right)+2 \sum_{j=3}^{[n / 2]} b_{j} e_{2 j-1}^{T} A_{i} e_{2 j}
\end{aligned}
$$

As θ and ϕ vary in \mathbb{R}, the locus of the point $\left(y_{1}, y_{2}, y_{3}\right)$ in \mathbb{R}^{3} is an ellipsoid (compare [2]) which will be denoted by $E_{b, E}$. Here $E=\left(e_{1} \cdots e_{n}\right) \in U(n)$. Notice that $\left|c_{1}-c_{2}\right| \geq\left|b_{1}-b_{2}\right|$ and hence $\left(x_{1}, x_{2}, x_{3}\right) \in E_{b, E} \subset \operatorname{conv} E_{c, E} \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$.

Now, given a 4×4 complex skew symmetric matrix A, there exists $U \in U(4)$ such that

$$
U^{T} A U=\left(\begin{array}{cc}
0 & i s_{1} \\
-i s_{1} & 0
\end{array}\right) \oplus\left(\begin{array}{cc}
0 & i s_{2} \\
-i s_{2} & 0
\end{array}\right)
$$

where $s_{1}, s_{1}, s_{2}, s_{2}$ are singular values of A. This implies that we can find orthonormal vectors $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}$ in the span of $e_{1}, e_{2}, e_{3}, e_{4}$ such that $E_{c, E^{\prime}}$ is degenerated where $E^{\prime}=$ $\left(e_{1}^{\prime} e_{2}^{\prime} e_{3}^{\prime} e_{4}^{\prime} e_{5} \cdots e_{n}\right) \in U(n)$. By a continuity argument, the result follows.

Theorem 10.4 Let C, A_{1}, A_{2}, A_{3} be $n \times n$ complex skew symmetric matrices.

1. Then $W_{C}\left(A_{1}, A_{2}\right)=\left\{\left(\operatorname{Retr} C U^{T} A_{1} U, \operatorname{Retr} C U^{T} A_{2} U\right): U \in U(n)\right\}$ is convex when $n>2$. It is an ellipse (perhaps degenerated) if $n=2$.
2. If n is even, then $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex in general. If $n \geq 3$ is odd, then $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is convex.

Proof Suppose $n>2$. (1) We notice that $W_{C}\left(A_{1}, A_{2}\right)$ is equal to the set

$$
\left\{-2\left(\operatorname{Re} \sum_{i=1}^{[n / 2]} c_{i} x_{2 i-1}^{T} A_{1} x_{2 i}, \operatorname{Re} \sum_{i=1}^{[n / 2]} c_{i} x_{2 i-1}^{T} A_{2} x_{2 i}\right):\left(x_{1} \cdots x_{n}\right) \in U(n)\right\} .
$$

By Lemma 3.3, Corollary 3.2 and Theorem 10.3, it is sufficient to consider that case that $0 \leq b_{1}<c_{1}$ and $b_{i}=c_{i}, i=2, \ldots,[n / 2]$. Suppose $x=\left(x_{1}, x_{2}\right) \in W_{B}\left(A_{1}, A_{2}\right)$, i.e., there exist $e_{1}, e_{2}, \ldots, e_{n} \in \mathbb{C}^{n}$ such that

$$
x_{i}=-2 \operatorname{Re}\left(b_{1} e_{1}^{T} A_{i} e_{2}+\sum_{j=2}^{[n / 2]} b_{j} e_{2 j-1}^{T} A_{i} e_{2 j}\right), \quad i=1,2
$$

Define $f_{1}=e^{i \theta} e_{1}$ and $f_{i}=e_{i}, i=2, \ldots, n$. Then for $i=1,2$,

$$
\begin{aligned}
y_{i} & =-2 \operatorname{Re}\left(b_{1} f_{1}^{T} A_{i} f_{2}+\sum_{j=2}^{[n / 2]} b_{j} f_{2 j-1}^{T} A_{i} f_{2 j}\right) \\
& =-2\left(b_{1}\left[\cos \theta \operatorname{Re} e_{1}^{T} A_{i} e_{2}-\sin \theta \operatorname{Im} e_{1}^{T} A_{i} e_{2}\right]+\operatorname{Re} \sum_{j=2}^{[n / 2]} b_{j} e_{2 j-1}^{T} A_{i} e_{2 j}\right) .
\end{aligned}
$$

The locus of the point $\left(y_{1}, y_{2}\right)$ traces out an ellipse which is denoted by $E_{e, b}$. Now $\left(x_{1}, x_{2}\right) \in$ $E_{e, b} \subset \operatorname{conv} E_{e, c}$. There are orthonormal vectors u_{1}, u_{2} such that $u_{1}^{T} A_{1} u_{2}=0([29], n>2)$. Extend u_{1}, u_{2} to an orthonormal basis of $\mathbb{C}^{n},\left\{u_{1}, \ldots, u_{n}\right\}$. The corresponding ellipse is degenerated. By continuity argument, we are done.

Suppose $n=2$. The orbit $O(C)$ is

$$
\left\{U^{T}\left(\begin{array}{cc}
0 & -c \\
c & 0
\end{array}\right) U: U \in U(n)\right\}=\left\{e^{i \theta}\left(\begin{array}{cc}
0 & -c \\
c & 0
\end{array}\right): \theta \in[0,2 \pi]\right\}
$$

by considering the determinant of $U^{T} C U$, where $C=\left(\begin{array}{cc}0 & -c \\ c & 0\end{array}\right)$. Let

$$
A_{1}=\left(\begin{array}{cc}
0 & -a_{1} \\
a_{1} & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
0 & -a_{2} \\
a_{2} & 0
\end{array}\right)
$$

Then

$$
W_{C}\left(A_{1}, A_{2}\right)=\left\{\left(\operatorname{Re} c a_{1} \cos \theta-\operatorname{Im} c a_{1} \sin \theta, \operatorname{Re} c a_{2} \cos \theta-\operatorname{Im} c a_{2} \sin \theta\right): \theta \in[0,2 \pi]\right\}
$$

is an ellipse.

The following example shows that the first part, when n is even, is best possible. Let $X=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Let $B=X \oplus \cdots \oplus X \oplus X / 3, C=X \oplus \cdots \oplus X \oplus X / 2, A_{1}=X \oplus \cdots \oplus X \oplus O_{2}$, $A_{2}=X \oplus \cdots \oplus X \oplus i X, A_{3}=X \oplus \cdots \oplus X \oplus X$, where each matrix is of size $2 n \times 2 n$. Then we claim that $W_{B}\left(A_{1}, A_{2}, A_{3}\right)$ is not a subset of $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$.

Notice that $(-2(n-1),-2(n-1),-2(n-1)-2 / 3)=\left(\operatorname{Re} \operatorname{tr} B A_{1}, \operatorname{Re} \operatorname{tr} B A_{2}, \operatorname{Re} \operatorname{tr} B A_{3}\right) \in$ $W_{B}\left(A_{1}, A_{2}, A_{3}\right)$. Now if $(-2(n-1),-2(n-1), x) \in W_{C}\left(A_{1}, A_{2}, A_{3}\right)$, then $\operatorname{Re} \operatorname{tr} C U^{T} A_{1} U=$ $-2(n-1)$ and by extremal properties, we have $U^{T} A_{1} U=A_{1}$. So $U=U_{1} \oplus U_{2}$ where U_{2} is a 2×2 unitary matrix. Now $\operatorname{Re} \operatorname{tr} C U^{T} A_{2} U=-2(n-1)$ implies that $U_{2}^{T} X U_{2}= \pm X$. Thus $\operatorname{Re} \operatorname{tr} C U^{T} A_{3} U$ cannot be $-2(n-1)-2 / 3$. Hence the inclusion relation fails though $s(B) \prec_{w} s(C)$. So $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex.
(2) Let $n=2 m+1$. Similarly, we show that $W_{B}\left(A_{1}, A_{2}, A_{3}\right) \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ where $b_{1}<c_{1}$ and $b_{i}=c_{i}, i=2, \ldots, n$. Suppose $x=\left(x_{1}, x_{2}, x_{3}\right) \in W_{B}\left(A_{1}, A_{2}, A_{3}\right)$, i.e., there exist orthonormal vectors $e_{1}, e_{2}, \ldots, e_{2 m+1} \in \mathbb{C}^{2 m+1}$ such that $x_{i}=-2\left(b_{1} e_{1}^{T} A_{i} e_{2}+\right.$ $\left.\sum_{j=2}^{m} b_{j} e_{2 j-1}^{T} A_{i} e_{2 j}\right), i=1,2,3$.

The point $\gamma=-2 b_{1}\left(e_{1}^{T} A_{1} e_{2}, e_{1}^{T} A_{2} e_{2}, e_{1}^{T} A_{3} e_{2}\right)$ belongs to $W_{B^{\prime}}\left(A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}\right)$ which is the ellipsoid with interior and centered at the origin by Theorem 10.1. Here

$$
A_{i}^{\prime}=\left(E^{T} A_{i} E\right)[1,2,2 m+1 \mid 1,2,2 m+1], \quad i=1,2,3,
$$

are 3×3 skew symmetric matrices, and $A[\alpha \mid \beta]$ denotes the submatrix of A lying in the rows and columns indexed by the sequence α and β, respectively, and

$$
B^{\prime}=\left(\begin{array}{cc}
0 & b_{1} \\
-b_{1} & 0
\end{array}\right) \oplus 0
$$

The ellipsoid with interior is denoted by $C_{e, b_{1}}$. Since the 5-sphere $b_{1} S^{5}$ centered at the origin and with radius b_{1} in \mathbb{R}^{6} is contained in the interior of the larger sphere $c_{1} S^{5}$ with radius c_{1} $\left(0 \leq b_{1}<c_{1}\right),\left(x_{1}, x_{2}, x_{3}\right) \in C_{e, b_{1}} \subset C_{e, c_{1}} \subset W_{C}\left(A_{1}, A_{2}, A_{3}\right)$.

Remark 10.5 The $n=2$ case follows from the isomorphism $\mathfrak{s o}^{*}(4) \cong \mathfrak{s u}(2) \oplus \mathfrak{s l}_{2}(\mathbb{R})$. The numerical range associated with $\mathfrak{s u}(2) \oplus \mathfrak{s l}_{2}(\mathbb{R})$ is indeed the numerical range associated with $\mathfrak{s l}_{2}(\mathbb{R})$ since $\mathfrak{s u}(2)$ is a compact form. Also $\mathfrak{s o}^{*}(8) \cong \mathfrak{s o}_{2,6}$ and see Theorem 11.4.

Corollary 10.6 ([26]) Let C be a complex $n \times n$ skew symmetric matrix and let A be an $n \times n$ complex matrix. Then the congruence numerical range $W_{C}(A)=\left\{\operatorname{tr} C U^{T} A U: U \in U(n)\right\}$ is a circular disk centered at the origin when $n>2$ or $n=1$. When $n=2$, it is a circle centered at the origin.

11 The $\mathfrak{s o}_{p, q}$ Case

Now

$$
K=\mathrm{SO}(p) \times \mathrm{SO}(q), \quad \mathfrak{p}=\left\{\left(\begin{array}{cc}
0 & Y \\
Y^{T} & 0
\end{array}\right): Y \in \mathbb{R}_{p \times q}\right\}, \quad \mathfrak{a}=\bigoplus_{1 \leq j \leq p} \mathbb{R}\left(E_{j, p+j}+E_{p+j, j}\right)
$$

The corresponding C-numerical range of $p \times q$ matrices A_{1}, \ldots, A_{m}, after disregarding the constant $2(p+q-2)$, is

$$
W_{C}\left(A_{1}, \ldots, A_{m}\right)=\left\{\left(\operatorname{tr} C^{T} U A_{1} V, \ldots, \operatorname{tr} C^{T} U A_{m} V\right): U \in \mathrm{SO}(p), V \in \mathrm{SO}(q)\right\}
$$

where C, A_{1}, \ldots, A_{m} are $p \times q$ real matrices. It is clear that when $p \neq q$, say $p<q$, the special orthogonal groups can be replaced by the orthogonal groups and hence the set is symmetric about the origin. It is also symmetric when $p=q=2 n$.

When $m=1$, the set $W_{C}(A)$ is evidently a line segment and is fully known [21] and [28]. Let $m=2$. When $(p, q)=(1,1)$, the numerical range is a singleton set. When $(p, q)=$ $(1,2)$ or $(2,1)$, the numerical range $W_{C}\left(A_{1}, A_{2}\right)$ is then the image of the circle centered at the origin under a linear map from \mathbb{R}^{2} to \mathbb{R}^{2}, i.e., an ellipse and hence not convex. This is certainly the case since $\mathfrak{s o}_{1,2} \cong \mathfrak{s l}_{2}(\mathbb{R})$.

Remark 11.1 When $p=1$ and $q \geq 3, W_{C}\left(A_{1}, A_{2}\right)$ is the image of the unit sphere S^{q-1} in \mathbb{R}^{q} under a linear map from \mathbb{R}^{q} to \mathbb{R}^{2}. It is an elliptical disk and hence is convex. We already learned the special cases $q=3$ and $q=5$ from the isomorphisms $\mathfrak{s o}_{1,3} \cong \mathfrak{s l}_{2}(\mathbb{C})^{\mathbb{R}}$ and $\mathfrak{s o}_{1,5} \cong \mathfrak{s l}_{2}(\mathbb{H})$. Similarly, if $p=1$ and $q \geq 4, W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is the image of the unit sphere S^{q-1} in \mathbb{R}^{q} under a linear map from \mathbb{R}^{q} to \mathbb{R}^{3}. It is an ellipsoid with interior and hence convex. We then conclude that the numerical range $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is an ellipsoid with interior centered at the origin in \mathbb{R}^{3} for $\mathfrak{s p}_{1,1}$ since $\mathfrak{s p}_{1,1} \cong \mathfrak{s o}_{1,4}$.

When $(p, q)=(2,2)$ we have the following example.
Example 11.2 The numerical range $W_{C}\left(A_{1}, A_{2}\right)$ is not convex when

$$
C=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Proof Clearly the points $(1,0)$ and $(-1,0)$ belong to $W_{C}\left(A_{1}, A_{2}\right)$. We want to show that their midpoint is not in $W_{C}\left(A_{1}, A_{2}\right)$. Suppose $(0, x) \in W_{C}\left(A_{1}, A_{2}\right)$, i.e., there exist $P, Q \in$ $\mathrm{SO}(2)$ such that $P Q=P A_{1} Q=\left(\begin{array}{cc}0 & \alpha \\ \beta & \gamma\end{array}\right)$. By Theorem 2 of [35], $\gamma=0$. Since the matrices have the same determinant, i.e., $\operatorname{det} I_{2}=\operatorname{det} P Q=1$ and they have the same singular values, i.e., $\alpha=-\beta$ and $\beta= \pm 1$, we conclude that $P Q=A_{2}$ or $-A_{2}$. Let

$$
P=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right), \quad Q=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right) .
$$

Direct computation on $P Q= \pm A_{2}$ leads to $\cos (\theta+\phi)=0$ and $\sin (\theta+\phi)= \pm 1$. This implies that $P A_{2} Q=-I_{2}$ and I_{2} respectively. In other words, $x= \pm 1$ and hence $W_{C}\left(A_{1}, A_{2}\right)$ does not contain the origin.

Remark 11.3 The orbit of $C=\operatorname{diag}(1,0)$ is merely a part of the sphere $S^{3} \subset \mathbb{R}^{4}$. The real linear map $C^{\prime} \mapsto\left(\operatorname{tr} C^{\prime} A_{1}, \operatorname{tr} C^{\prime} A_{2}\right)$ does not send $O(C)$ onto an elliptical disk in \mathbb{R}^{2}.

Indeed, by Proposition 2.4 one can deduce the nonconvexity from the isomorphism $\mathfrak{s i}_{2,2} \cong \mathfrak{s l}_{2}(\mathbb{R}) \oplus \mathfrak{s l}_{2}(\mathbb{R})$. The numerical range corresponding to $\mathfrak{s l}_{2}(\mathbb{R}) \oplus \mathfrak{S I}_{2}(\mathbb{R})$ is the sum (pointwise) of two ellipses, i.e., the locus traced by one of the ellipses when its center
is moving on the boundary of the other ellipse (when the directions of the axes of the moving ellipse do not change). The figure is then the region between the outer and inner envelopes. In particular, if the two ellipses are circles, we have an annulus. If the two ellipses are degenerated, e.g., two line segments centered at the origin, the numerical range is then a parallelogram with interior and hence convex.

Proposition 11.4 Let C, A_{1}, A_{2} be $p \times q$ real matrices. If
(i) $\min \{p, q\} \geq 2$ and $p \neq q$, or
(ii) $p=q \geq 3$, then $W_{B}\left(A_{1}, A_{2}\right) \subset W_{C}\left(A_{1}, A_{2}\right)$ when $b \prec c$.

Proof For definiteness we assume $p \leq q$. Let $\left(r_{1}, r_{2}\right) \in W_{B}\left(A_{1}, A_{2}\right)$, i.e., there exist $x_{1}, x_{2} \in$ \mathbb{R}^{q} and $y_{1}, y_{2} \in \mathbb{R}^{p}$ such that for $j=1,2$,

$$
\begin{aligned}
r_{j} & =\sum_{i=1}^{p} b_{i} y_{i}^{T} A_{j} x_{i} \\
& =\frac{1}{2}\left(b_{1}+b_{2}\right)\left(y_{1}^{T} A_{j} x_{1}+y_{2}^{T} A_{j} x_{2}\right)+\frac{1}{2}\left(b_{1}-b_{2}\right)\left(y_{1}^{T} A_{j} x_{i}-y_{2}^{T} A_{j} x_{2}\right)+\sum_{i=3}^{p} b_{i} y_{i}^{T} A_{j} x_{i} .
\end{aligned}
$$

Let

$$
\begin{array}{cl}
u_{1}=\cos \theta x_{1}+\sin \theta x_{2}, & v_{1}=\cos \theta y_{1}+\sin \theta y_{2} \\
u_{2}=-\sin \theta x_{1}+\cos \theta x_{2}, & v_{2}=-\sin \theta y_{1}+\cos \theta y_{2}
\end{array}
$$

and $u_{i}=x_{i}$ and $v_{i}=y_{i}, i=3, \ldots, n$. Then

$$
\begin{gathered}
\sum_{i=1}^{p} b_{i} v_{i}^{T} A_{j} u_{i}=\frac{1}{2}\left(b_{1}+b_{2}\right)\left(y_{1}^{T} A_{j} x_{1}+y_{2}^{T} A_{j} x_{2}\right)+\frac{1}{2}\left(b_{1}-b_{2}\right)\left[\cos 2 \theta\left(y_{1}^{T} A_{j} x_{1}-y_{2}^{T} A_{j} x_{2}\right)\right. \\
\\
\left.+\sin 2 \theta\left(y_{2}^{T} A_{j} x_{1}+y_{1}^{T} A_{j} x_{2}\right)\right]+\sum_{i=3}^{p} b_{i} y_{i}^{T} A_{j} x_{i}
\end{gathered}
$$

Let $E_{b, x, y}$ denotes the ellipse which is the locus of the above expressioin as θ varies on $[0,2 \pi]$.
(i) We consider three cases:
(a) If $q>p \geq 3$, then there is a unit vector x_{1}^{\prime} in the null space of A_{1}, i.e., $A_{1} x_{1}^{\prime}=0$. Then choose a unit vector $x_{2}^{\prime} \in \mathbb{R}^{q}$ which is orthogonal to $x_{1}^{\prime} \in \mathbb{R}^{q}$, and choose the orthonormal vectors y_{1}^{\prime} and y_{2}^{\prime} in \mathbb{R}^{p} such that they are orthogonal to $A_{1} x_{2}^{\prime} \in \mathbb{R}^{p}$.
(b) If $q \geq p+2$, and $q>p \geq 2$, then take $x_{1}^{\prime}, x_{2}^{\prime}$ in the null space of A_{1} and set $y_{1}^{\prime}=y_{1}, y_{2}^{\prime}=y_{2}$.
(c) It remain to consider $(p, q)=(2,3)$. Given any $A \in \mathbb{R}_{2 \times 3}$, there exist $U \in \mathrm{SO}(2)$ and $V \in \mathrm{SO}(3)$ such that

$$
U A V=\left(\begin{array}{lll}
0 & a & 0 \\
b & 0 & 0
\end{array}\right)
$$

where $a \geq b \geq 0$ are the singular values of A. Now choose $W=1 \oplus R(\theta) \in \mathrm{SO}(3)$ where $R(\theta)$ is a rotation matrix such that

$$
U A V W=\left(\begin{array}{ccc}
0 & -b & c \\
b & 0 & 0
\end{array}\right)
$$

and $b^{2}+c^{2}=a^{2}$. This implies that there exist $x_{1}^{\prime}, x_{2}^{\prime} \in \mathbb{R}^{3}$ and $y_{1}^{\prime}, y_{2}^{\prime} \in \mathbb{R}^{2}$ such that $y_{1}^{\prime} A_{1} x_{1}^{\prime}=y_{2}^{\prime} A_{1} x_{2}^{\prime}=0$ and $y_{2}^{\prime} A_{1} x_{1}^{\prime}=-y_{1}^{\prime} A_{1} x_{2}^{\prime}$.
(ii) We consider two cases:
(a) If $p=q \geq 4$, then obviously we can choose two orthonormal vectors $x_{1}^{\prime}, x_{2}^{\prime} \in \mathbb{R}^{p}$, and two orthonormal vectors $y_{1}^{\prime}, y_{2}^{\prime} \in \mathbb{R}^{p}$ such that $y_{i}^{\prime T} A_{1} x_{j}^{\prime}=0$, where $i, j=$ 1,2 .
(b) Suppose $(p, q)=(3,3)$. Let $A \in \mathbb{R}_{3 \times 3}$. There exist $U, V \in \mathrm{SO}(3)$ such that $U A V=\operatorname{diag}\left(s_{2}, s_{1}, \delta s_{3}\right)$ where δ is the sign of $\operatorname{det} A$ and $s_{1} \geq s_{2} \geq s_{3} \geq 0$ are the singular values of A. Let $R(\theta)$ be a rotation. Then there exists $\theta \in \mathbb{R}$ such that the $(1,1)$ entry of $R^{-1}(\theta) \operatorname{diag}\left(s_{1}, \delta s_{3}\right) R(\theta)$ is s_{2}. This implies that there exist $x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime} \in \mathbb{R}^{3}$ such that $y_{1}^{\prime} A_{1} x_{1}^{\prime}=y_{2}^{\prime} A_{1} x_{2}^{\prime}$ and $y_{2}^{\prime} A_{1} x_{1}^{\prime}=y_{1}^{\prime} A_{1} x_{2}^{\prime}=0$.

Extend $\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\}$ and $\left\{y_{1}^{\prime}, y_{2}^{\prime}\right\}$ to orthonormal bases $\left\{x_{1}^{\prime}, \ldots, x_{p}^{\prime}\right\}$ and $\left\{y_{1}^{\prime}, \ldots, y_{q}^{\prime}\right\}$ of \mathbb{R}^{p} and \mathbb{R}^{q} respectively. So the corresponding $E_{x^{\prime}, y^{\prime}, b}$ is a line segment or a point. By continuity argument, the inclusion relation follows.

Theorem 11.5 Let C, A_{1}, A_{2}, A_{3} be $p \times q$ real matrices. If $\min \{p, q\} \geq 2$ and $p \neq q$, then $W_{C}\left(A_{1}, A_{2}\right)$ is convex. Moreover, $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex in general.

Proof It is sufficient to show that $W_{B}\left(A_{1}, A_{2}\right) \subset W_{C}\left(A_{1}, A_{2}\right)$ if $0 \leq b_{1}<c_{1}$ in view of (i) of Proposition 11.4. Let $\left(r_{1}, r_{2}\right)=\left(\sum_{i=1}^{p} b_{i} y_{i}^{T} A_{1} x_{i}, \sum_{i=1}^{p} b_{i} y_{i}^{T} A_{1} x_{i}\right) \in W_{C}\left(A_{1}, A_{2}\right)$. Let $x_{1}^{\prime}=\cos \theta x_{1}+\sin \theta x_{q}$ and $x_{q}^{\prime}=-\sin \theta x_{1}+\cos \theta x_{q}, x_{i}^{\prime}=x_{i}, i=2, \ldots, q-1$. Then for $j=1,2$,

$$
\sum_{i=1}^{p} b_{i} y_{i}^{T} A_{j} x_{i}^{\prime}=b_{1}\left(y_{1}^{T} A_{j} x_{1} \cos \theta+y_{1}^{T} A_{j} x_{q} \sin \theta\right)+\sum_{i=2}^{p} b_{i} y_{i}^{T} A_{j} x_{i}
$$

The locus of the point ($\sum_{i=1}^{p} b_{i} y_{i}^{T} A_{1} x_{i}^{\prime}, \sum_{i=1}^{p} b_{i} y_{i}^{T} A_{2} x_{i}^{\prime}$) is an ellipse as θ varies on $[0,2 \pi]$, denoted by $E_{x, y, b}$. We have $E_{x, y, b} \subset$ conv $E_{x, y, c}$ since $0 \leq b_{1}<c_{1}$. Let u_{1} be a unit vector in the null space of A_{1} and extend it to an orthonormal basis $\left\{u_{1}, \ldots, u_{q}\right\}$ of \mathbb{R}^{q}. Then choose a unit vector $v_{1} \in \mathbb{R}^{p}$ which is perpendicular to $A_{1} u_{2} \in \mathbb{R}^{p}(p \geq 2)$ and then extend it to an orthonormal basis $\left\{v_{1}, \ldots, v_{p}\right\}$ of \mathbb{R}^{p}. Then $E_{u, v, c}$ is a line segment or a point. Applying the continuity argument will finish the proof.

The convexity is best possible because of the following example. Assume $p<q$ without loss of generality, $B=[\hat{B} \mid 0]$ where $\hat{B}=I_{p-2} \oplus 3 I_{2}$ and $C=[\hat{C} \mid 0]$ where $\hat{C}=$ $I_{p-2} \oplus \operatorname{diag}(4,2)$. Let $A_{i}=\left[\hat{A}_{i} \mid 0\right]$ for $i=1,2,3$, such that

$$
\hat{A}_{1}=I_{p}, \quad \hat{A}_{2}=I_{p-2} \oplus \operatorname{diag}(1,-1), \quad \hat{A}_{3}=I_{p-2} \oplus\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Then $(p+4, p-2, p-2) \in W_{B}\left(A_{1}, A_{2}, A_{3}\right) \backslash W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ because of the following reason. If $\operatorname{tr} B^{T} U^{T} A_{1} V=\operatorname{tr} C^{T} U^{T} A_{1} V=p+4$, then by the same argument in the proof of Theorem $5.4 U$ is of the form $U_{1} \oplus U_{2} \in \mathrm{SO}(p)$, where $U_{2} \in \mathrm{SO}(2)$, and V is of the form $U_{1} \oplus U_{2} \oplus V_{3} \in \mathrm{SO}(q)$. Now $V C^{T} U^{T}=[D \mid 0]^{T}$ where

$$
D=I_{p-2} \oplus\left(\begin{array}{ll}
a & c \\
c & d
\end{array}\right)
$$

If ($\left.\operatorname{Retr} C^{T} U^{T} A_{1} V, \operatorname{Re} \operatorname{tr} C^{T} U^{T} A_{2} V, \operatorname{Retr} C^{T} U^{T} A_{3} V\right)$ were $(p+4, p-2, p-2)$, then $a+b=$ $6, a-b=0, c=0$, implying that $a=b=3$ and $c=0$ which is impossible. Thus inclusion does not hold, and $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex.

Remark 11.6 By Proposition 2.4 the convexity result for $\mathfrak{s o}_{2,3}, \mathfrak{s o}_{2,4}$, and $\mathfrak{s o}_{2,6}$ can also be deduced from those of $\mathfrak{s p}_{4}(\mathbb{R}), \mathfrak{s u}_{2,2}$, and $\mathfrak{s o}^{*}(8)$ respectively, since $\mathfrak{s o}_{2,3} \cong \mathfrak{s p}_{4}(\mathbb{R})$, $\mathfrak{s o}_{2,4} \cong \mathfrak{s u}_{2,2}$, and $\mathfrak{s o}_{2,6} \cong \mathfrak{s o}^{*}(8)$.

The above technique does not apply for the $n \times n$ case ($n \geq 3$) since the condition $Z \in \operatorname{conv} W(Y)$ is not equivalent to \prec_{w} nor \prec. It is Thompson's partial ordering \ll. Nevertheless we have the following result.

Theorem 11.7 Let C, A_{1}, A_{2}, A_{3} be $n \times n$ real matrices where $n \geq 3$. Then $W_{C}\left(A_{1}, A_{2}\right)$ is convex. Moreover, $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex in general if $n \geq 2$.

Proof The proof is similar to Theorem 6.2. From the isomorphism $\mathfrak{s o}_{3,3} \cong \mathfrak{s l}_{4}(\mathbb{R})$ and Theorem 4.1, $W_{C}\left(A_{1}, A_{2}\right)=\left\{\left(\operatorname{tr} C U A_{1} V, \operatorname{tr} C U A_{2} V\right): U, V \in S O(3)\right\}$ is convex for any 3×3 real matrices C, A_{1}, A_{2}. Then apply the arguments in the proof of Theorem 6.2 to finish the proof.

Let $C=I_{n-2} \oplus \operatorname{diag}(1,0), A_{1}=I_{n-2} \oplus O_{2}, A_{2}=I_{n-2} \oplus\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $A_{3}=I_{n}$. Then we claim that $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex. It is clear that the points ($n-2, n-2, n-2 \pm 1 / 2$) are in $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$. We are going to show that the mid-point $(n-2, n-2, n-2)$ is not inside. If $(n-2, n-2, n-2)=\left(\operatorname{tr} C U^{T} A_{1} V, \operatorname{tr} C U^{T} A_{2} V, \operatorname{tr} C U^{T} A_{3} V\right) \in W_{C}\left(A_{1}, A_{2}, A_{3}\right)$, then by extremal properties [17], we have $U^{T} A_{1} V=A_{1}$ and hence $U=W \oplus U_{1}$ and $V=W \oplus V_{1}$, where $U_{1}, V_{1} \in \mathrm{SO}(2)$. Then consider $\operatorname{tr} C U^{T} A_{2} V$ and $\operatorname{tr} C U^{T} A_{3} V$. It will then reduce to the computation of Example 11.2. So $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ is not convex.

Remark 11.8 If $S O(n)$ is replaced by $O(n)$ in the above setting, then we have $\tilde{W}_{C}\left(A_{1}, A_{2}\right)$ $=\left\{\left(\operatorname{tr} C U A_{1} V, \operatorname{tr} C U A_{2} V\right): U, V \in O(n)\right\}$. It is the union of the convex sets $W_{C}\left(A_{1}, A_{2}\right)$ and $W_{C^{\prime}}\left(A_{1}, A_{2}\right)$ where $C^{\prime}=D C$ and $D=\operatorname{diag}(1, \ldots, 1,-1)$. Clearly $\tilde{W}_{C}\left(A_{1}, A_{2}\right)=$ $W_{C}\left(A_{1}, A_{2}\right)$ when the rank of C is less than n. However the set $\tilde{W}_{C}\left(A_{1}, A_{2}\right)$ is not convex in
general and we have the following example. Let $C=A_{1}=I_{n}, A_{2}=D$. Evidently ($n, n-2$) and $(n-2, n) \in \tilde{W}_{C}\left(A_{1}, A_{2}\right)$. If the midpoint $(n-1, n-1)$ were in $\tilde{W}_{C}\left(A_{1}, A_{2}\right)$, then we would have $U, V \in O(n)$ such that $\operatorname{tr} A_{1} U C V=\operatorname{tr} A_{2} U C V=n-1$. Let d_{1}, \ldots, d_{n} be the diagonal elements of $U C V$. So $\sum_{i=1}^{n} d_{i}=\sum_{i=1}^{n-1} d_{i}-d_{n}=n-1$. Hence $d_{n}=0$ and $\sum_{i=1}^{n-1} d_{i}=n-1$. Then $n-1=\left|\sum_{i=1}^{n-1} d_{i}\right| \leq \sum_{i=1}^{n-1}\left|d_{i}\right|=\sum_{i=1}^{n-1}\left|d_{i}\right|-\left|d_{n}\right| \leq n-2$, by Thompson's inequalities [35]. It is absurd.

12 Conclusion

We conclude that $\mathfrak{s l}_{2}(\mathbb{R})$ is the only one giving nonconvex $W_{C}\left(A_{1}, A_{2}\right)$ among simple classical real Lie algebras (up to isomorphism). Concerning the convexity of $W_{C}\left(A_{1}, A_{2}, A_{3}\right)$ we make the following table.

$$
\begin{array}{rc}
\mathfrak{g}=\mathfrak{s l}_{n}(\mathbb{C}), n \geq 2 \\
\mathfrak{h}=\mathfrak{s l}_{n}(\mathbb{R}) & \text { Yes if } n>2 \text { (best possible) } \\
\mathfrak{h}=\mathfrak{s l}_{m}(\mathbb{H}), n=2 m & \text { No } \\
\mathfrak{h}=\mathfrak{s u}_{p, q}(p=0,1, \ldots,[n / 2], p+q=n) & \text { Yes if } n>2 \text { (best possible) } \\
\mathfrak{g}=\mathfrak{s o}_{2 n+1}(\mathbb{C}), n \geq 2 & \text { Yes if } p \neq q \text { (best possible). } \\
\mathfrak{h}=\mathfrak{s o}_{p, q}(p=0,1, \ldots, n, p+q=2 n+1) & \text { Ye if } p=q \\
\mathfrak{g}=\mathfrak{s p}_{n}(\mathbb{C}), n=2 m, m \geq 3 & \\
\mathfrak{h}=\mathfrak{s p}_{n}(\mathbb{R}), n=2 m & \text { Yes (best possible) } \\
\left.\mathfrak{h}=\mathfrak{s p}_{p, q} \mathfrak{N}=0,1, \ldots,[m / 2], p+q=m\right) & \text { No } \\
\mathfrak{g}=\mathfrak{s o s}_{2 n}(\mathbb{C}), n \geq 4 & \text { No } \\
\mathfrak{h}=\mathfrak{s o}_{p, q},(p=0,1, \ldots, n, p+q=2 n) & \text { No } \\
\mathfrak{h}=\mathfrak{s o}^{*}(2 n) & \text { No if } n \text { is even. Yes if } n \text { is odd. }
\end{array}
$$

The following is the only case in the above list we have no answer.
Problem For the case $\mathfrak{s o}^{*}(2 n)$ with an odd integer n, what is the largest $m \geq 3$ so that $W_{C}\left(A_{1}, \ldots, A_{m}\right)$ is always convex?

From the proof of Theorem 10.1, we see that $m \leq 5$.

Remark 12.1 The exceptional simple Lie algebras are [23]: 3 for $\mathfrak{g}_{2} ; 4$ for $\mathfrak{f}_{4} ; 6$ for \mathfrak{e}_{6}; 5 for \mathfrak{e}_{7} and 4 for \mathfrak{e}_{8}. The total number of cases is 22 . Among them 5 are compact Lie algebras and the corresponding numerical ranges are trivial. For those 5 complex simple Lie algebras of exceptional type when we consider them as real Lie algebras, Theorem 2.1 yields the convexity of $W_{C}\left(A_{1}, A_{2}\right)$. Hence 12 cases are left.

References

[1] Y. H. Au-Yeung and Y. T. Poon, A remark on the convexity and positive definiteness concerning Hermitian matrices. Southeast Asian Bull. Math. 3(1979), 85-92.
[2] Y. H. Au-Yeung and N. K. Tsing, An extension of the Hausdorff-Toeplitz theorem. Proc. Amer. Math. Soc. 89(1983), 215-218.
[3] \longrightarrow, Some theorems on the numerical range. Linear and Multilinear Algebra 15(1984), 215-218.
[4] C. A. Berger, Normal Dilations. Ph. D. dissertation, Cornell University, 1963.
[5] L. Brickman, On the field of values of a matrix. Proc. Amer. Math. Soc. 12(1961), 61-66.
[6] M. D. Choi, C. Laurie, H. Radjavi and P. Rosenthal, On the congruence numerical range and related functions of matrices. Linear and Multilinear Algebra 22(1987), 1-5.
[7] K. M. Chong, An induction theorem for rearrangements. Canad. J. Math. 28(1976), 154-160.
[8] C. Davis, The Toeplitz-Haudorff theorem explained. Canad. Math. Bull. 14(1971), 245-246.
[9] M. Goldberg and E. G. Straus, Elementary inclusion relations for generalized numerical ranges. Linear Algebra Appl. 18(1977), 1-24.
[10] K. E. Gustafson and D. K. M. Rao, Numerical Range: the field of values of linear operators and matrices. Springer, New York, 1997.
[11] P. Halmos, A Hilbert Space Problem Book. Springer-Verlag, New York, 1982.
[12] F. Hausdorff, Der Wertvorrat einer Bilinearform. Math Z. 3(1919), 314-316.
[13] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York, 1978.
[14] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
[15] A. W. Knapp, Representation Theory of Semisimple Groups. Princeton University Press, New Jersey, 1986.
[16] B. Kostant, On convexity, the Weyl group and Iwasawa decomposition. Ann. Sci. Ecole Norm. Sup. (4) 6(1973), 413-460.
[17] C. K. Li, Matrices with some extremal properties. Linear Algebra Appl. 101(1988), 255-267.
\qquad , C-numerical ranges and C-numerical radii. Linear and Multilinear Algebra 37(1994), 51-82.
[19] \longrightarrow Some convexity theorems for the generalized numerical ranges. Linear and Multilinear Algebra 40(1996), 235-240.
[20] C. K. Li and H. Nakazato, Some results on the q-numerical range. Linear and Multilinear Algebra 43(1998), 385-410.
[21] H. Miranda and R. C. Thompson, A supplement to the von Neumann trace inequality for singular values. Linear Algebra Appl. 248(1994), 61-66.
[22] J. von Neumann, Some matrix-inequalities and metrization of matrix-space. Tomsk. Univ. Rev. 1(1937), 286-300. In: Collected Works, Pergamon, New York, 1962, Vol. 4, 205-219.
[23] A. L. Onishchik and E. B. Vinberg, Lie groups and algebraic groups. Springer-Verlag, Berlin, 1990.
[24] Y. T. Poon, Another proof of a result of Westwick. Linear and Multilinear Algebra 9(1980), 35-37.
[25] \longrightarrow, Generalized numerical ranges, joint positive definiteness and multiple eigenvalues. Proc. Amer. Math. Soc. 125(1997), 1625-1634.
[26] T. Y. Tam, Note on a paper of Thompson: the congruence numerical range. Linear and Multilinear Algebra 17(1985), 107-115.
[27] , Kostant's convexity theorem and the compact classical groups. Linear and Multilinear Algebra 43(1997), 87-113.
[28] \longrightarrow Miranda and Thompson's trace inequality and a log convexity result. Linear Algebra Appl. 262(1997), 307-325.
[29] \longrightarrow Partial superdiagonal elements and singular values of a complex skew symmetric matrix. SIAM J. Matrix Anal. Appl. 19(1998), 737-754.
[30] An extension of a convexity theorem of the generalized numerical range associated with $\mathrm{SO}(2 n+1)$. Proc. Amer. Math. Soc. (1) 127(1999), 35-44.
[31] \qquad Generalized numerical ranges, numerical radii, and Lie groups. Manuscript, 1996.
[32] \longrightarrow A Lie theoretic approach of Thompson's theorems on singular values-diagonal elements and some related results. J. London Math. Soc., to appear.
[33] , Group majorization, Eaton triples and numerical range. Linear and Multilinear Algebra, to appear.
[34] T. Y. Tam and N. K. Tsing, Research problem: the congruence numerical range. Linear and Multilinear Algebra 19(1986), 405.
[35] R. C. Thompson, Singular values, diagonal elements and convexity. SIAM J. Appl. Math. 32(1977), 39-63.
[36] \longrightarrow Singular values and diagonal elements of complex symmetric matrices. Linear Algebra Appl. 26(1979), 65-106.
[37] \longrightarrow The congruence numerical range. Linear and Multilinear Algebra 8(1980), 197-206.
[38] O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejér. Math. Z. 2(1918), 187-197.
[39] N. K. Tsing, The constrainted bilinear form and the C-numerical range. Linear Algebra Appl. 56(1984), 195206.
[40] F. Warmer, Foundation of Differentiable manifolds and Lie Groups. Scott Foresman and Company, 1971.
[41] R. Westwick, A theorem on numerical range. Linear and Multilinear Algebra 2(1975), 311-315.

Department of Mathematics
College of William and Mary
P.O. Box 8795

Williamburg, VA 23187-8795
USA
email: chkli@math.wm.edu
website: http://www.math.wm.edu/~ckli

Department of Mathematics
Auburn University
Auburn, AL 36849-5310
USA
email: tamtiny@mail.auburn.edu
website: http://www.auburn.edu/ - tamtiny

[^0]: Received by the editors March 12, 1998; revised October 14, 1999.
 Research of the first author was partially supported by an NSF grant.
 AMS subject classification: 15A60, 17B20.
 Keywords: numerical range, convexity, inclusion relation.
 (C)Canadian Mathematical Society 2000.

