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Numerical Ranges Arising from Simple
Lie Algebras
Dedicated to Professor Y. H. Au-Yeung on the occasion of his retirement

Chi-Kwong Li and Tin-Yau Tam

Abstract. A unified formulation is given to various generalizations of the classical numerical range including
the c-numerical range, congruence numerical range, q-numerical range and von Neumann range. Attention is
given to those cases having connections with classical simple real Lie algebras. Convexity and inclusion relation
involving those generalized numerical ranges are investigated. The underlying geometry is emphasized.

1 Introduction

The (classical) numerical range of A ∈ Cn×n is defined by

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}.

This concept and its many generalizations have been studied heavily in the last few decades
because of their connections and applications to many pure and applied areas (see e.g.
[10], [11], [14]). One of the interesting results, perhaps the most fascinating, about the
classical numerical range is the celebrated Toeplitz-Hausdorff theorem [38], [12] asserting
that the numerical range is always a convex subset of C. In fact, the convexity has often been
a concern when different generalizations are considered. For example, given C ∈ Cn×n

with C = C∗, Au-Yeung and Tsing [3] considered the (joint) C-numerical range of several
Hermitian matrices A1, . . . ,Ap ∈ Cn×n defined by

WC (A1, . . . ,Ap) = {(tr CU ∗A1U , . . . , tr CU ∗ApU ) : U ∈ U (n)},(1)

where U (n) is the unitary group, and studied the convexity and several other related prob-
lems involving WC (A1, . . . ,Ap). The C-numerical range embraces various generalizations
of the classical numerical range including the joint numerical range W (A1, . . . ,Ap) consid-
ered by Brickman [5], the k-numerical range considered by Halmos and Berger [11], [4],
and the c-numerical range considered by Westwick and Poon [41], [24]. (More results on
the C-numerical range will be given in the next few sections.) Actually, Au-Yeung and Ts-
ing [3] also studied the C-numerical range of A1, . . . ,Ap, for real symmetric or real quater-
nion Hermitian matrices C,A1, . . . ,Ap. In these cases, the set U (n) in (1) is replaced by the
set of n×n matrices X over the real field R or the skew-field of real quaternions H satisfying
X∗X = In.
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Inspired by the study of Au-Yeung and Tsing, we consider the C-numerical range in the
following setting. (In most cases, we will not use new notation for the different kinds of C-
numerical range in the following discussion, but will make the definition clear in each case
in the context). Let V be a matrix space (or any finite dimensional linear space) equipped
with a real inner product (X,Y ) which is invariant under a compact group G of operators
acting on V, i.e., (gX, gY ) = (X,Y ) for all g ∈ G and X,Y ∈ V. For a given C ∈ V, define
the (joint) C-numerical range of A1, . . . ,Ap ∈ V by

WC (A1, . . . ,Ap) = {
(
(A1,Z), . . . , (Ap,Z)

)
: Z ∈ G(C)},(2)

where
G(C) = {g(C) : g ∈ G}

is the orbit of C under G. Evidently, one can regard WC (A1, . . . ,Ap) as the image of the
orbit G(C) under the linear map Z �→

(
(A1,Z), . . . , (Ap,Z)

)
. Since (X,Y ) is G-invariant,

one easily verifies that

WC (A1, . . . ,Ap) = {
(
(X1,C), . . . , (Xp,C)

)
: (X1, . . . ,Xp) ∈ G(A1, . . . ,Ap)},

where G(A1, . . . ,Ap) = {
(
g(A1), . . . , g(Ap)

)
: g ∈ G} is the joint orbit of A1, . . . ,Ap

under the group G. Thus, WC (A1, . . . ,Ap) can also be viewed as the image of a linear map
on the joint orbit G(A1, . . . ,Ap). Furthermore, WC (A1, . . . ,Ap) covers many other types of
generalized numerical ranges in the literature. We describe a few of them in the following.

Thompson [37] introduced the C-congruence numerical range of a complex n× n ma-
trix A: W T

C (A) = {tr CU TAU : U ∈ U (n)}, where C is a given n × n complex symmetric
matrix. He proved that W T

C (A) is a circular disk centered at the origin when n > 1 and
is a circle when n = 1. Then the complex skew symmetric case was studied in [26]. It is
convex except for n = 2 in which case the range is a circle (may be a point). Then Tam and
Tsing [34] conjectured and Choi et al. [6] proved that W T

C (A) is convex whenever n > 2 for
general complex matrices A and C (the case n = 1 is trivial). Clearly, W T

C (A) can be viewed
as WC∗(A, iA) in (2) if we let G(X) = {U TXU : U ∈ U (n)} and (X,Y ) = Re tr(XY ∗) on
Cn×n.

Next, let G(X) = {U XV : U ,V ∈ U (n)} and (X,Y ) = Re tr(XY ∗) on Cn×n. This
setting covers two other generalizations of the classical numerical range. First, for any n×n
complex matrices C and A, WC∗(A, iA) reduces to the set {tr CUAV : U ,V ∈ U (n)}
considered by von Neumann [22]. The von Neumann range is a circular disk centered at
the origin when n > 1 and hence convex; and it is a circle when n = 1.

The q-numerical range of an n× n complex matrix A, q ∈ C satisfying |q| ≤ 1, is the set
W (q : A) = {y∗Ax : x, y ∈ Cn, x∗x = y∗y = 1, y∗x = q}. Evidently, W (1 : A) = W (A).
Tsing [39] proved that W (q : A) is convex. See [19] for a shorter proof, and [20] for
further results and references. One can obtain W (q : A) by fixing the third and the fourth
coordinates of the set WC (A,−iA, I,−iI), i.e., Re y∗x = Re q and Im y∗x = Im q.

Our definition of WC (A1, . . . ,Ap) also covers the notion of numerical range in the con-
text of compact connected Lie groups studied in [31] recently (see the next section for the
definition and the convexity result). In this paper, we consider the study of WC (A1, . . . ,Ap)
in connection to classical simple real Lie algebras. The convexity of WC (A1, . . . ,Ap) is our
main concern.
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Following Au-Yeung and Tsing [3] (see also [25], [31]), we relate the convexity prob-
lem to inclusion relations for WC (A1, . . . ,Ap) (see Section 3). The underlying geometry
of the orbit G(C) will be emphasized. Some Lie theory background will be given in Sec-
tion 2. Connection between the convexity and inclusion relation together with some tech-
nical lemmas are given in Section 3. In Sections 4–11, we consider WC (A1, . . . ,Ap) arising
from real classical simple Lie algebras. Some concluding remarks are given in Section 12.

2 The Formulations in Lie Setting

Let G be a semisimple compact connected Lie group, let g be its Lie algebra with the Killing
form B(·, ·). For a given C ∈ g, we define the C-numerical range of A1, . . . ,Ap ∈ g by

WC (A1, . . . ,Ap) = {
(
B(A1,Z), . . . ,B(Ap,Z)

)
: Z ∈ O(C)},

where O(C) = {Ad(g)C : g ∈ G} is the orbit of C in g under the adjoint action of G. Since
the Killing form is negative definite, one sees that up to a suitable scalar multiplication the
C-numerical range associated with a compact connected Lie group G defined above can be
viewed as a special case of the C-numerical range defined in (2). The Lie group numerical
range was studied in [31] and the following result was proved.

Theorem 2.1 The Lie group numerical range WC (A1,A2) is convex.

Indeed Theorem 2.1 is true for general compact connected Lie groups. It is because for
every compact connected Lie group G, G is the commuting product GsZ0 and g = gs + z

where Gs is the analytic subgroup of G with semisimple [13, p. 132] Lie algebra gs = [g, g]
and Z0 is the identity component of the center Z of G, whose Lie algebra is z. Now Ad(Z)
is trivial and Ad(G) acts trivially on z. So for any X = Xs + Y where Xs ∈ gs, Y ∈ z,
OG(X) = OGs (Xs) + Y where OG(·) denotes the orbit under the adjoint action of G.

We remark that Theorem 2.1 is very useful in handling the numerical ranges associated
with the realifications of classical (exceptional as well) complex simple Lie algebras dis-
cussed in the next few sections. Here is another result that will be used in our later study.

Proposition 2.2 Let G1 and G2 be connected Lie groups such that ψ : g1 → g2 is an isomor-
phism.

1. If C ∈ g1, then ψ
(
O1(C)

)
= O2

(
ψ(C)

)
, where Oi(·) denotes the adjoint orbit correspond-

ing to Gi, i = 1, 2.
2. If C,A1, . . . ,Ap ∈ g1, then W 1

C (A1, . . . ,Ap) = W 2
ψ(C)

(
ψ(A1), . . . , ψ(Ap)

)
, where W i

denotes the numerical range corresponding to Gi, i = 1, 2.

Proof (1) Suppose G1 is simply connected. Then there exists a homomorphism ϕ : G1 →
G2 onto G2 such that dϕe = ψ [40, pp. 100–101]. Since dϕe · Ad(g) = Ad

(
ϕ(g)

)
· dϕe for

any g ∈ G1 [13, p. 110, p. 127], ψ
(
O1(C)

)
= O2

(
ψ(C)

)
.

If G1 is not simply connected, let G ′1 be a simply connected Lie group with the same Lie
algebra g1. Then we have O1(C) = O ′1(C). In other words, the orbit is invariant under
different choices of Lie groups with the same Lie algebra and we have the desired result.
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(2) Notice that ad
(
ψ(C)

)
= ψ ad Cψ−1 for any C ∈ g1. Thus for any X,Y ∈ g1,

B1(X,Y ) = B2

(
ψ(X), ψ(Y )

)
and

W 1
C (A1, . . . ,Ap) = {

(
B(A1,Z), . . . ,B(Ap,Z)

)
: Z ∈ O1(C)}

=
{(

B
(
ψ(A1), ψ(Z)

)
, . . . ,B

(
ψ(Ap), ψ(Z)

))
: ψ(Z) ∈ ψ

(
O1(C)

)}
=

{(
B
(
ψ(A1), ψ(Z)

)
, . . . ,B

(
ψ(Ap), ψ(Z)

))
: ψ(Z) ∈

(
O2

(
ψ(C)

))}
=W 2

ψ(C)

(
ψ(A1), . . . , ψ(Ap)

)
.

While the Lie group numerical range embraces many types of generalized numerical
ranges, and has nice convexity property (see [31]), it is not adequate to cover all kinds
of generalized numerical ranges mentioned in the introduction. For instance, it does not
cover the C-numerical range on real symmetric matrices A1, . . . ,Ap considered by Au-
Yeung and Tsing [2]. To correct this, we need to consider numerical ranges arising from
real semi-simple Lie algebras.

Let G be an analytic group associated with the real semisimple Lie algebra g. Let K ⊂ G
(it is unique once we fix G [13, p. 112]) be the analytic group of k, and let g = k+p be a given
Cartan decomposition of g, here p is the orthogonal complement of k in g with respect to
the Killing form B(·, ·). For A1, . . . ,Ap,C ∈ p, the C-numerical range of (A1, . . . ,Ap) is
defined [31] as the following set in Rp:

WC (A1, . . . ,Ap) = {
(
B(A1,Z), . . . ,B(Ap,Z)

)
: Z ∈ O(C)},

where O(C) = {Ad(k)C : k ∈ K} is the orbit of C in p under the adjoint action of K. In
the following, we show that once we identify the Lie algebra g, the C-numerical range is
independent of the choice of analytic group associated with it.

Proposition 2.3 Let C ∈ p. The orbit O(C) is independent of the choice of the analytic
group G and so is the C-numerical range.

Proof Let G ′ be a simply connected Lie group whose Lie algebra is also g. Consider the
trivial isomorphism id : g → g. Then there is a unique analytic homomorphism π : G ′ →
G [40, p. 101] such that dπe = id. Let K ′ (K) be the analytic subgroup of G ′ (G) with Lie
algebra k. The group K is generated by the elements exp(Z), Z ∈ k. Likewise, the group
π(K ′) is generated by π(exp Z) = exp dπe(Z) = exp(Z), Z ∈ k. It follows that K = π(K ′).
Now using AdG

(
π(k)

)
· dπe = dπe · AdG ′(k), k ∈ K ′, we have OK(C) = OK ′(C), C ∈ p.

By Proposition 2.3, we can choose any analytic group of g when we consider the corre-
sponding numerical range associated with a given Cartan decomposition. Next, we show
that there is a nice relation between the generalized numerical ranges arising from two
isomorphic semisimple real Lie algebras, and hence one can transfer convexity (or non-
convexity) results between them. Let g1 = k1 + p1 and g2 = k2 + p2 be Cartan decompo-
sitions of two isomorphic semisimple real Lie algebras g1 and g2. Let φ : g1 → g2 be an
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isomorphism. Thus g2 = φ(k1) + φ(p1) is also a Cartan decomposition of g2. There exists
[13, p. 183] σ ∈ Int(g2) satisfying σ

(
φ(k1)

)
= k2 and σ

(
φ(p1)

)
= p2.

Proposition 2.4 With the above notations, let ϕ = σ · φ.

1. For any C ∈ p1, ϕ
(
OK1 (C)

)
= OK2

(
ϕ(C)

)
where Ki is the analytic subgroup of Gi for ki ,

i = 1, 2.
2. W 1

C (A1, . . . ,Ap) = W 2
ϕ(C)

(
ϕ(A1), . . . , ϕ(Ap)

)
where W i denotes the numerical range

corresponding to the given Cartan decomposition, i = 1, 2.

Proof Let G1 (we assume that G is simply connected because of Proposition 2.3) and G2 be
analytic groups of g1 and g2 respectively. There is an analytic homomorphism π : G1 → G2

onto G2 such that dπe = ϕ. Since dπe · Ad(k) = Ad
(
π(k)

)
· dπ2, we have ϕ

(
OK1 (C)

)
=

Oπ(K1)

(
ϕ(C)

)
. Since [13, p. 110] π(ek1 ) = edπek1 = eϕ(k1) where k1 ∈ K1, k2 has π(K1) ⊂ G2

as an analytic subgroup which is K2 [13, p. 112]. So ϕ
(
OK1 (C)

)
= OK2

(
ϕ(C)

)
. The rest

follows from a similar argument as in the proof of Proposition 2.2.

Thus we will fix a Cartan decomposition of g when we study WC (A1, . . . ,Ap).
The classical real simple Lie algebras are isomorphic to one of the real forms h ⊂ g and

gR (the realification of g) in [23, p. 233]. We will use the special isomorphisms between the
classical real Lie algebras of different series [13, pp. 519–520], [23, p. 235].

Since the Cartan decomposition for a compact real form h is trivial, i.e., k = h and p = 0,
the corresponding numerical range is trivial, i.e., {0}. For any classical complex simple Lie
algebra g, if h is a compact real form of g, then gR = h + ih is a Cartan decomposition. The
corresponding numerical range is always convex by Theorem 2.1.

The Killing forms of the classical complex simple Lie algebras are well known [13,
pp. 186–190] and that of gR is given by BgR (X,Y ) = 2 Re Bg(X,Y ) for all X,Y ∈ g, and
for the other real forms h, Bh(X,Y ) = Bg(X,Y ) for all X,Y ∈ h [13, p. 180].

As mentioned in Section 1, we will consider the convexity problem of WC (A1, . . . ,Ap)
associated with noncompact classical simple Lie algebras.

3 Convexity and Inclusion Relation

Using the idea in [24] and [3] (see also [31]), we can prove the following result relating the
convexity and inclusion relations for the generalized numerical ranges corresponding to a
group G defined in (2).

Proposition 3.1 The C-numerical range WC (A1, . . . ,Ap) defined in (2) is convex if and
only if WD(A1, . . . ,Ap) ⊂WC (A1, . . . ,Ap) for all D ∈ conv G(C).

Proof By the discussion after the definition of WC (A), where A = (A1, . . . ,Ap), we see
that WC (A) is the image of G(C) under the linear map φ : V → Rp defined by φ(Z) =(
(A1,Z), . . . , (Ap,Z)

)
. Thus, we have φ

(
G(C)

)
⊂ conv

(
φ
(
G(C)

))
= φ

(
conv

(
G(C)

))
.

Consequently,φ
(
G(C)

)
is convex if and only ifφ

(
conv

(
G(C)

))
⊂ φ

(
G(C)

)
, i.e., WD(A) =

φ
(
G(D)

)
⊆ φ

(
G(C)

)
=WC (A) for any D ∈ conv G(C).
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For WC (A1, . . . ,Ap) associated with a real semisimple Lie algebra g with the maximal
abelian subalgebra a, we can further the result. It is known that O(C)∩ a+ �= φ where a+ is
a (closed) fundamental Weyl chamber of the maximal abelian subalgebra a in p. So we can
assume that C and one of Ai ’s are in a+ since the Killing form is G-invariant.

The famous Kostant’s convexity theorem [16] asserts that the orthogonal projection of
the orbit O(C) onto a is the convex hull of the orbit of C ′ ∈ O(C) ∩ a under the ac-
tion of the Weyl group W of the pair (g, a). The orthogonal projection π : p → a can
be thought as (π1, . . . , πm) (m is the dimension of a) where π’s are the components of π.
Now WC (A1, . . . ,Ap) can be viewed as the collections of p-tuples of functional values of p
arbitrary real linear functionals of p (represented by A1, . . . ,Ap) acting on the orbit O(C).
Using the Kostant’s convexity theorem and Proposition 3.1 we can deduce the following
corollary (also see [33]).

Corollary 3.2 ([31]) Let X1, . . . ,Xp be elements in p and let Y ∈ a+. Then WY (X1, . . . ,Xp)
is convex if and only if WZ(X1, . . . ,Xp) ⊂ WY (X1, . . . ,Xp) whenever Z ∈ conv W (Y ) and
Z ∈ a+.

Corollary 3.2 is very useful for establishing convexity or nonconvexity of numerical
range via inclusion relation. We will demonstrate this repeatedly in the forthcoming sec-
tions.

Next, we consider some more concepts and lemmas that are useful in studying the in-
clusion relations WD(A1, . . . ,Ap) ⊂ WC (A1, . . . ,Ap) for D ∈ conv W (C). As we will see
in later sections, the lemmas help us to reduce the proofs of the inclusion relations to low
dimensions, e.g., n = 2 or 3.

Let x, y ∈ Rn. We say that x is weakly majorized by y, denoted by x ≺w y if the sum of
the k largest entries of x is not larger than that of y for y = 1, . . . , n. If in addition that the
sum of the entries of x is the same as that of y, we say that x is majorized by y, denoted by
x ≺ y. The relation Z ∈ conv W (Y ) is related to either ≺ [for sln(F)] or ≺w (for others
classical simple Lie algebras, except the cases son,n and so(2n) which are more difficult to
deal with. In the latter cases, we need the Thompson’s partial ordering x � y requiring
that x lying in the convex hull of the set {Py : P is a diagonal special orthogonal matrix},
see [35] and [27] for details). A pinching matrix P is an n × n matrix such that for some
1 ≤ i < j ≤ n,

P[i, j | i, j] =

(
α 1− α

1− α α

)
,

where 0 ≤ α ≤ 1, and the complementary submatrix P(i, j | i, j) = In−2.

Lemma 3.3 ([7]) Let x, y ∈ Rn. Then y ≺w x if and only if y ≤ P1 · · ·Pkx for some
pinching matrices P1, . . . , Pk. Hence, if x, y ∈ Rn

+, then y ≺w x if and only if y = ΓP1 · · ·Pkx
for some pinching matrices P1, . . . , Pk and Γ = diag(γ1, . . . , γn) with 0 ≤ γi ≤ 1, i =
1, . . . , n.

The following lemma is related to Question 2 of [30].

Lemma 3.4 Suppose b � c be such that b1 ≥ · · · ≥ bn−1 ≥ |bn| and c1 ≥ · · · ≥ cn−1 ≥
|cn|, where n ≥ 4. Then there exists a sequence of vectors b = vn−2 � vn−3 � · · · � v1 �
v0 = c in Rn so that for i = 1, . . . , n− 3,
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1. vi and vi+1 differ in at most 2 entries, and
2. one can remove n− 3 common entries from both vi and vi+1 to obtain ṽi , ṽi+1 ∈ R3 so that

ṽi+1 � ṽi .

Proof One may assume that c1 ≥ · · · ≥ cn ≥ 0. Otherwise, apply the arguments to the
vectors (c1, . . . , cn−1,−cn) and (b1, . . . , bn−1,−bn), and change the signs of the entries with
the smallest magnitude in vi ’s in the final step.

Our assertion follows from a careful study of the proof of Lemma 6 in [35]. Using the
proof of Thompson, one can construct a sequence of vectors so that v0 = c, and for i > 1,

(a) vi is generated from vi−1 with by changing at most 2 entries such that condition 1
holds, and

(b) vi has b1, . . . , bi as entries.

For our purpose, we can stop after getting vn−3, and set vn−2 = b. We need to prove that
the vectors also satisfy condition 2. To this end, let us take a close look at the construction
from v0 to v1 using the idea in Lemma 6 of [35]. In Thompson’s proof, one has to change ci

and ci+1 to b1 and t for a suitable construction of t , where i is the smallest integer satisfying
ci ≥ bi ≥ ci+1. To prove condition 2, we consider 2 cases. If i = 1, then we keep the
entries c1, c2, c3 in v1, and keep the entries b1, t, c3 in v2 so that (b1, t, c3) � (c1, c2, c3) by
the construction. If i > 1, we keep the entries c1, ci, ci+1 of v1 and c1, b1, t of v2 so that
(c1, b1, t)� (c1, ci, ci+1) by the construction.

To prove condition 2 holds for i = 1, we can focus on the n − 1 entries v1 excluding
b1, and the entries b2, . . . , bn, and proceed to construct v2. Inductively, we get the desired
conclusion.

The following geometrical result is clear (see e.g. [25], [31]).

Lemma 3.5 Let A be an m × n real matrix and let k be the rank of A. Let Sn−1 be the unit
sphere in Rn.

1. If k < n, then A(Sn−1) is a (k− 1)-ellipsoid with the interior.
2. If k = n (≤ m), then A(Sn−1) is an (n− 1)-ellipsoid.

4 The sln(F) Case

The Cartan decomposition of sln(F) is sln(F) = k + p where p is the space of traceless
(trace zero) real symmetric, Hermitian and quaternion Hermitian matrices, where F = R,
C and H respectively. The group K is SUn(F). Let C ∈ p. The C-numerical range of
A1, . . . ,Ap ∈ p, associated with sln(F) (after a translation and disregarding the constant 4n
when F = C; 2n when F = R or H) is

W F
C (A1, . . . ,Ap) = {(tr CU ∗A1U , . . . , tr CU ∗ApU ) : U ∈ SUn(F)},

where C , A1, . . . ,Ap are real symmetric, Hermitian, and quaternion Hermitian matrices
when F = R, C, and H respectively. This is the c-numerical range of (A1, . . . ,Ap) when
C = diag(c1, . . . , cn) and c’s are real. It is a well-studied object and we summarize the result
in the following (see [3], [2], [8], [25], [41] for details).
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Theorem 4.1 Let F = R, C, H. Suppose C,A1,A2,A3 are n × n matrices over F such that
C = C∗, Ai = A∗i , i = 1, 2, 3.

1. Unless F = R and n = 2, W F
C (A1,A2) is convex. When n = 2, W R

C (A1, . . . ,Ap) is an
ellipse satisfying conv W R

C (A1,A2) =W C
C (A1,A2).

2. If n > 2 and F �= R, then W F
C (A1,A2,A3) is convex. When n = 2, W C

C (A1,A2,A3) is an
ellipsoid in R3.

The above results are best possible in the sense that W F
C (A1, . . . ,Ap) fails to be convex if

(i) p > 3 or (n, p) = (2, 3) when F = C or H [1], [25]; or
(ii) p > 2 or (n, p) = (2, 2) when F = R. One may see [25] for a unified treatment of the

above three numerical ranges and related results.

Often times sln(H) is identified with su∗(2n) via the standard isomorphism Hn → C2n

[15, pp. 26–27]. There K = Sp(n) and

p =

{(
X Y
−Y X

)
: X∗ = X, tr X = 0,Y T = −Y

}
.

Then the C-numerical range of A1, . . . ,Ap ∈ p will be written in the form:

WC (A1, . . . ,Ap) = {(tr CW ∗A1W, . . . , tr CW ∗ApW ) : W ∈ Sp(n)}.

5 The sup,q Case

It is known that

K = SU(p, q) =

{(
U 0
0 V

)
: U ∈ U (p),V ∈ U (q), det U det V = 1

}
,

p =

{(
0 Y

Y ∗ 0

)
: Y ∈ Cp×q

}
, a =

⊕
1≤ j≤p

R(E j,p+ j + Ep+ j, j).

The range associated with sup,q (after disregarding a suitable constant) is

WC (A1, . . . ,Am) = {(Re tr C∗UA1V, . . . ,Re tr C∗UAmV ) : U ∈ U (p),V ∈ U (q)},

where C,A1, . . . ,Am are given p × q complex matrices and is symmetric about the origin.

Proposition 5.1 Let C,A1,A2,A3 be p × q complex matrices and suppose min{p, q} ≥ 2.
Then WB(A1,A2,A3) ⊂WC (A1,A2,A3) if b ≺ c where b and c denote the vectors of singular
values of B and C respectively.

Proof We may assume that p ≤ q. It is sufficient to consider the case [2] that (b1, b2) ≺
(c1, c2) and bi = ci , i = 3, . . . , p. In order to avoid trivial case, we assume |c1 − c2| >
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|b1 − b2|. Let (r1, r2, r3) = (Re
∑p

i=1 bi y∗i A1xi ,Re
∑p

i=1 bi y∗i A2xi,Re
∑p

i=1 bi y∗i A3xi) ∈
WB(A1,A2,A3). For any θ, φ ∈ [0, 2π], define

u1 = e−iφ cos θx1 + eiφ sin θx2, v1 = e−iφ cos θy1 + eiφ sin θy2,

u2 = −e−iφ sin θx1 + eiφ cos θx2, v2 = −e−iφ sin θy1 + eiφ cos θy2,

and ui = xi , i = 3, . . . , q and vi = yi , i = 3, . . . , p. Since c1 + c2 = b1 + b2,

Re

p∑
i=1

biv
∗
i A jui =

1

2
(b1 − b2)[p j cos 2θ + sin 2θ(q j cos 2φ + s j sin 2φ)]

+
1

2
(c1 + c2) Re(y∗1 A jx1 + y∗2 A jx2) + Re

p∑
i=3

ci y∗i A jxi,

where for i = 1, 2, 3,

p j = Re(y∗1 A jx1 − y∗2 A jx2), q j = Re(y∗2 A jx1 + y∗1 A jx2), s j = Im(y∗2 A jx1 − y∗1 A jx2).

As θ and φ vary from 0 to 2π, we have an ellipsoid Ex,y,b centered at 0. Now (r1, r2, r3) ∈
Ex,y,b ⊂ conv Ex,y,c since c1 +c2 = b1 +b2 and |c1−c2| > |b1−b2|. If Ex,y,c is degenerated, we
have (r1, r2, r3) ∈ Ex,y,c ⊂WC (A1,A2,A3). So we assume that it is not degenerated. For any
2 × 2 complex matrix A, there exist U ,V ∈ U (2) such that UAV = diag(is1, is2) where s1

and s2 are singular values of A. This implies that we can find orthonormal y ′1, y ′2 in the span
of y1 and y2 and orthonormal x ′1, x

′
2 in the span of x1 and x2 such that the corresponding

p ′1 = q ′1 = s ′1 = 0. Set x ′i = xi , i = 3, . . . , q, y ′i = yi , i = 3, . . . , p. In other words, the
ellipsoid Ex ′,y ′,c is degenerated.

Now, consider a continuous map t �→
(
x(t), y(t)

)
with t ∈ [0, 1], where x(t) =(

x1(t), x2(t)
)

(resp., y(t) =
(

y1(t), y2(t)
)

) is an orthonormal pair of vectors in the span
of {x1, x2} (resp. {y1, y2}), so that x(0) = (x1, x2), x(1) = (x ′1, x

′
2), y(0) = (y1, y2) and

y(1) = (y ′1, y ′2). Then Ex(t),y(t),c will change continuously from Ex,y,c to Ex ′,y ′,c. Thus,
(r1, r2, r3) will be included in one of the Ex(t),y(t),c.

We remark that the continuity argument in the above proof has been used in [2] and
[25], and will be used repeatedly in the next few sections.

Proposition 5.2 Let C,A1, . . . ,Am be p × q complex matrices where min{p, q} = 1. Let
r = max{p, q} and let k = rank A where A is the m× 2r real matrix

A =




Re a11 − Im a11 · · · Re a1r − Im a1r

Re a21 − Im a21 · · · Re a2r − Im a2r

· · · · · · · · · · · ·
Re am1 − Im am1 · · · Re amr − Im amr




and

A j =

{
(a j1 · · · a jq) if p = 1

(a j1 · · · a j p)T if q = 1,
j = 1, . . . ,m.

The numerical range WC (A1, . . . ,Am) is
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1. an (k− 1)-ellipsoid with the interior embedding in Rm when k < 2r and hence convex;
2. an (2r − 1)-ellipsoid embedding in Rm when k = 2r.

Proof Assume p = 1 for definiteness. We may further assume that C = (c 0 · · · 0) where
c ≥ 0. Let A j = (a j1 · · · a jq). Then

WC (A1, . . . ,Am) = {
(
Re c(a11 · · · a1q)u, . . . ,Re c(am1 · · · amq)u

)
: u ∈ Cq, u∗u = 1},

which is the image of the sphere cS2q−1 under the map A. By Lemma 3.5, we are done.

Corollary 5.3 Let C,A1,A2,A3 be 1 × q complex matrices, where q = 2, 3, 4. Then the
numerical range

WC (A1,A2,A3)

= {(Re tr C∗UA1V,Re tr C∗UA2V,Re tr C∗UA3V ) : U ∈ U (1),V ∈ U (q)}

is an ellipsoid with interior in R3.

Proof By Proposition 5.2 and the fact that k ≤ m = 3 < 4 ≤ 2r.

Theorem 5.4 Let C,A1,A2,A3,A4 be p × q complex matrices such that p �= q. Then
WC (A1,A2,A3) is convex. Moreover, WC (A1,A2,A3,A4) is not convex in general.

Proof By Proposition 5.2, it suffices to consider the case min{p, q} ≥ 2. Assume p < q for
definiteness. By Proposition 5.1, it remains to show that WB(A1,A2,A3) ⊂WC (A1,A2,A3)
if 0 ≤ b1 < c1 and bi = ci , i = 2, . . . , p. Let

(r1, r2, r3) =
(

Re
p∑

i=1

bi y∗i A1xi ,Re
p∑

i=1

bi y∗i A2xi ,Re
p∑

i=1

bi y∗i A3xi

)
∈WB(A1,A2,A3).

For U ∈ U (2), set (u1 uq) = U (x1 xq) and ui = xi , i = 2, . . . , q − 1, i.e., u1 and uq

are orthonormal pair from the span of x1 and xq. Now Re
∑p

i=1 bi y∗i A jui = Re b1 y∗1 A ju1 +
Re

∑p
i=2 ci y∗i A jxi . Then the locus of the above point in R3 is an ellipsoid Eb with the interior

when U varies over U (2) by Corollary 5.3. Clearly (r1, r2, r3) ∈ Eb ⊂ Ec ⊂WC (A1,A2,A3)
since b1 < c1.

Assume p < q, B = [B̂ | 0] where B̂ = Ip−2 ⊕ 3I2 and C = [Ĉ | 0] where Ĉ =
Ip−2 ⊕ diag(4, 2). Let Ai = [Âi | 0] for i = 1, 2, 3, 4, such that

Â1 = Ip, Â2 = Ip−2 ⊕ diag(1,−1), Â3 = Ip−2 ⊕

(
0 1
1 0

)
, Â4 = Ip−2 ⊕

(
0 i
−i 0

)
.

Then (p + 4, p− 2, p− 2, p− 2) ∈WB(A1,A2,A3,A4) \WC (A1,A2,A3,A4) because of the
following reason. If tr B∗U ∗A1V = tr C∗U ∗A1V = p + 4, then by extremal properties the
first (p − 2) columns of U (resp. V ) must be the left (resp. right) singular vectors of A1

corresponding to the singular values 1, and the p − 1 and p-th columns of U (respectively,
of V ) must be the singular vectors of A1 corresponding to the singular values 3. Thus U is
of the form U1⊕U2 ∈ U (p), where U2 ∈ U (2), and V is of the form U1⊕U2⊕V3 ∈ U (q).
However (Re tr C∗U ∗A2V,Re tr C∗U ∗A3V,Re tr C∗U ∗A4V ) cannot be (p−2, p−2, p−2).
Thus the inclusion relation fails, and hence WC (A1, . . . ,A4) is not convex.
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Theorem 5.5 Let C,A1,A2,A3 be n × n complex matrices. Then WC (A1,A2) is convex if
n > 1. It is an ellipse if n = 1. Moreover, WC (A1,A2,A3) is not convex in general.

Proof Suppose n > 1. Then WC (A1,A2) is equal to the set

{(
Re

n∑
i=1

ci y∗i A1xi ,Re
n∑

i=1

ci y∗i A2xi

)
: (x1 · · · xn), (y1 · · · yn) ∈ U (p)

}
.

By Corollary 3.2 and Lemma 3.3, it suffices to prove WB(A1,A2) ⊂WC (A1,A2) when

Case 1 0 ≤ b1 < c1, and bi = ci , i = 1, . . . , n.
Let (r1, r2) = (Re

∑n
i=1 bi y∗i A1xi ,Re

∑n
i=1 bi y∗i A2xi) ∈ WB(A1,A2). For any θ ∈

[0, 2π], we consider x ′1 = eiθx1 and x ′i = xi , i = 1, . . . , n. Then for j = 1, 2, we have

Re
n∑

i=1

bi y∗i A jx
′
i = b1(cos θ Re y∗1 A jx1 − sin θ Im y∗1 A jx1) + Re

n∑
i=2

bi y∗i A jxi .

As θ varies in [0, 2π], the locus of the point (Re
∑n

i=1 bi y∗i A1x ′i ,Re
∑n

i=1 bi y∗i A2x ′i ) traces
out an ellipse EX,b, where X denotes the unitary matrix (x1 · · · xn). Similarly we have EX,c

and obviously EX,b ⊂ conv EX,c (0 ≤ b1 < c1). If EX,c is degenerated, then (r1, r2) ∈
conv EX,c = EX,c . So we assume that EX,c is not degenerated. Let u1 ∈ Cn be a unit vector
such that y∗1 A1u1 = 0. Extend u1 to an orthonormal basis {u1, . . . , un} of Cn. Evidently
EU ,c is a line segment or a point. Let HU and HX be the skew Hermitian matrices such that
exp(HU ) = U and exp(HX) = X respectively. Now consider the curve f : [0, 1] → U (n)
defined by f (t) = exp

(
tHU + (1 − t)HX

)
. So EX,c = E f (1),c and EU ,c = E f (0),c. Now

(r1, r2) ∈ EX,b ⊂ conv EX,c . By continuity, there is 0 ≤ t < 1 such that (r1, r2) ∈ E f (t),c ⊂
WC (A1,A2).

Case 2 b ≺ c. It follows from Proposition 5.1 by setting A3 = 0.
When n = 1, the image of the unit sphere in R2 (the unit circle) is clearly an ellipse.

This is just a special case of the second part of Proposition 5.2. However, WC (A1,A2,A3) is
an ellipsoid in R3 by Proposition 5.2 and hence not convex in general.

Let B = In−1⊕(1/3), C = In−1⊕(1/2), A1 = In−1⊕(0), A2 = In−1⊕(i), A3 = In. Then
we claim that WB(A1,A2,A3) is not a subset of WC (A1,A2,A3) and hence WC (A1,A2,A3)
is not convex. Now (n − 1, n − 1, n − 1 + 1/3) = (Re tr BA1,Re tr BA2,Re tr BA3) ∈
WB(A1,A2,A3) and we claim that this point does not belong to WC (A1,A2,A3). Suppose
(n−1, n−1, x) ∈WC (A1,A2,A3). Then Re tr CU ∗A1V = n−1 for some unitary U , V , and
the sum of the first n− 1 diagonal entries of U∗A1V is n− 1, which is the sum of the n− 1
singular values of the matrix U ∗A1V . It follows from Corollary 3.2 in [17] that U ∗A1V =
A1. Thus the first n− 1 columns of U are identical to those of V and the last columns of U
and V are scalar multiple to each other, i.e., un = eiθvn. Now Re tr CU ∗A2V = n − 1. So
eiθ = ±1. Hence Re tr CU ∗A3V cannot be n − 1 + 1/3. Thus, the inclusion relation fails
though s(B) ≺w s(C), and so WC (A1,A2,A3) is not convex.

Corollary 5.6 The set {tr CUAV : U ,V ∈ U (n)} is a circular disk centered at the origin
when n > 1 and is a circle when n = 1.
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Now we consider C = diag(1, 0, . . . , 0). Convexity will then be established for the
corresponding numerical range.

Theorem 5.7 Let C = diag(1, 0, . . . , 0) and let A1,A2,A3 ∈ Cn×n, where n ≥ 2. Then the
numerical range WC (A1,A2,A3) is convex.

Proof By Corollary 3.2, Lemma 3.3 and Proposition 5.1, it is sufficient to show that
WB(A1,A2,A3) ⊂ WC (A1,A2,A3) when B = diag(β, 0, . . . , 0), 0 ≤ β ≤ 1. Let r =
(r1, r2, r3) ∈ WB(A1,A2,A3), i.e., r j = βy∗A jx where x, y ∈ Cn are unit vectors. Con-
sider r ′ = (r ′1, r

′
2, r
′
3) where r ′j = βy∗A ju, j = 1, 2, 3. As u runs over the unit sphere

of Cn, the locus of r ′ is then Eβ = WB ′(A ′1,A
′
2,A

′
3) where A ′j = y∗A j ∈ C1×n and

B ′ = (β 0 · · · 0) ∈ C1×n. Hence by Proposition 5.2 (m = 3, r = n, k < 4 ≤ 2r), Eβ is an
ellipsoid with interior centered at the origin and clearly r ∈ Eβ ⊂ E1 ⊂ WC (A1,A2,A3).

Corollary 5.8 Let A1,A2 ∈ Cn×n, and let q ∈ C satisfy |q| ≤ 1. Then

{(Re y∗A1x,Re y∗A2x,Re y∗x) : x, y ∈ Cn, x∗x = y∗y = 1}

and
{y∗A1x : x, y ∈ Cn,Re y∗x = q} =

⋃
{W (q ′ : A1) : q ′ ∈ C,Re q ′ = q}.

are convex.

6 The son(C) Case

The range of A1, . . . ,Ap ∈ son, after disregarding a suitable constant is

WC (A1, . . . ,Ap) = {(tr COTA1O, . . . , tr COTApO) : O ∈ SO(n)},

which is symmetric about the origin when n is odd but it is not true for the even case.

Theorem 6.1 ([31]) Let C,A1,A2 be n× n real skew symmetric matrices. Then the numer-
ical range WC (A1,A2) = {(tr COTA1O, tr COTA2O) : O ∈ SO(n)} is convex.

The following result settles Question 1 in [30].

Theorem 6.2 Let C,A1,A2,A3,A4 be n× n real skew symmetric matrices.

1. If n ≥ 5, then WC (A1,A2,A3) is always convex in R3. Moreover, WC (A1,A2,A3,A4) is not
convex in general.

2. If n = 4, C,A1,A2,A3 are 4 × 4 real skew symmetric matrices, then WC (A1,A2,A3) is
generally not convex.

3. If n = 3, then WC (A1,A2,A3) is an ellipsoid (perhaps degenerated) in R3.
4. If n = 2, then WC (A1,A2,A3) is a point in R3.
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Proof (1) Due to [30], it is sufficent to consider the even case 2n × 2n. Given a 2n × 2n
real skew-symmetric matrix X with singular values s1 = s1 ≥ s2 = s2 ≥ · · · ≥ sn = sn, let
s(X) = (s1, . . . , sn).

Suppose n = 3. It is known [13, p. 521] su4
∼= so(6). By Proposition 2.2 and The-

orem 4.1, WC (A1,A2,A3) is convex when n = 3, and equivalently, WB(A1,A2,A3) ⊂
WC (A1,A2,A3) whenever b � c where b = s(B) and c = s(C). Now, suppose n ≥ 4.
We can assume that B and C are in canonical form and s(B) � s(C). By Lemma 3.4, we
can construct b = bn−1 � · · · � b1 = c satisfying the two conditions of the lemma. Let
B j be the real skew symmetric matrices corresponding to b j , j = 1, . . . , n − 1 (B1 = C
and Bn−1 = B) in cannocial form and the 2 × 2 blocks can be permuted as we please.
If (x1, x2, x3) ∈ WB j (A1,A2,A3), j = 2, . . . , k, then there exists O ∈ SO(2n) such that
xi = tr B jOTAiO, i = 1, 2, 3. Let B j = P ⊕ R and B j−1 = Q⊕ R where P and Q are 6× 6
such that s(P) � s(Q). Now let Di be the leading 6 × 6 submatrix of OTAiO, i = 1, 2, 3.
Thus we can find a 2n× 2n real orthogonal matrix of the form U = O(U1 ⊕ In−6) so that
(x1, x2, x3) = (tr B jU TA1U , tr B jU TA2U , tr B jU TA3U ) ∈ WB j−1 (A1,A2,A3). So we have
the inclusions WB(A1,A2,A3) ⊂ · · · ⊂WC (A1,A2,A3) and hence the convexity.

The result for the odd case is best possible in the sense that if p > 3, there are (2n + 1)×
(2n + 1) (n ≥ 2) real skew symmetric matrices C,A1, . . . ,Ap such that WC (A1, . . . ,Ap) is
not convex [31]. The example in [31] also works for even case.

(2) Notice that [13, p. 240] su2 ⊕ su2
∼= so(4). This yields that WC (A1,A2,A3) is

generally not convex when C,A1,A2,A3 ∈ so(4). The result follows from Proposition 2.2
and an example in [1] or Theorem 4.1.

(3) The isomorphism so(3) ∼= su(2) explains the common ellipsoid phenomenon for
the numerical ranges associated with sl2(C)R and so3(C)R when p = 3 (see Theorem 4.1).

(4) It is trivial.

Remark 6.3 If SO(k) is replaced by O(k), denote the corresponding set by
W̃C (A1, . . . ,Ap). When k = 2n + 1, W̃C (A1, . . . ,Ap) = WC (A1, . . . ,Ap). However, if
k = 2n, then

W̃C (A1, . . . ,Ap) =WC (A1, . . . ,Ap) ∪WC ′(A1, . . . ,Ap),

where C ′ = DCD and D = diag(1, . . . , 1,−1). If C is singular, i.e., the rank of C is less
than or equal to 2(n − 1), then W̃C (A1, . . . ,Ap) = WC (A1, . . . ,Ap). When p = 2, and
suppose C is nonsingular, then W̃C (A1,A2) is the union of two convex sets [31] and is not
convex in general. We have the following example: Let

X =

(
0 1
−1 0

)
, C = A1 = X ⊕ · · · ⊕ X, A2 = X ⊕ · · · ⊕ X ⊕ (−X).

Then (−2n,−2n − 4) and (−2n + 4,−2n) ∈ W̃C (A1,A2) and the midpoint of the two
points is (−2n + 2,−2n + 2). If it were in W̃C (A1,A2), then there would exist U ∈ O(2n)
such that tr A1U TCU = tr A2U TCU = −2n + 2. Let B = U TCU . So

∑n
i=1 b2i−1,2i =∑n−1

i=1 b2i−1,2i − b2n−1,2n = n− 1. Thus n− 1 =
∑n−1

i=1 b2i−1,2i and b2n−1,2n = 0. However,

we have n− 1 = |
∑n−1

i=1 b2i−1,2i| ≤
∑n−1

i=1 |b2i−1,2i| =
∑n−1

i=1 |b2i−1,2i | − |b2n−1,2n| ≤ n− 2
according to a result in [27]. It is a contradiction.
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7 The sp2n(C) Case

The Cartan decomposition is sp2n(C)R = sp(n) + isp(n) where K is the symplectic group

Sp(n) =

(
U −V
V U

)
∈ U (2n).

The C-numerical range of A1, . . . ,Ap ∈ p will then take the form (after disregarding the
constant−2(n + 1)):

{(tr CW ∗A1W, . . . , tr CW ∗ApW ) : W ∈ Sp(n)},

where C,A1, . . . ,Ap ∈ sp(n). Suppose

W =

(
U −V
V U

)
∈ Sp(n), A j =

(
A j1 −A j2

A j2 A j1

)
∈ sp(n), j = 1, . . . , p,

C =

(
C1 −C2

C2 C1

)
,

then

tr CW ∗A jW = 2 Re tr C1[U ∗A j1U −U ∗A j2V + V ∗A j2U + V ∗A j1V ]

− 2 Re tr C2[−V TA j1U + V TA j2V + U TA j2U + U TA j1V ].

If C ∈ sp(n), then there exists U ∈ Sp(n) such that U∗AU =
i diag(c1, . . . , cn,−c1, . . . ,−cn), where ci ≥ 0, i = 1, . . . , n. Denote by c the vector
(c1, . . . , cn). Hence the j-th component of the numerical range is of the form
2 Re[tr CU ∗A j1U + tr CV ∗A j1V ] − 4 Im tr CU ∗A j2V (since AT

j2 = A j2) where C =

i diag(c1, . . . , cn), i.e., −2 Im
∑n

i=1 ci(u∗i A j1ui + v∗i A j1vi) − 4 Re
∑n

i=1 ciu∗i A j2vi . The nu-
merical range is also symmetric about the origin. Since Sp(n) is compact connected, by
Theorem 2.1 we have

Theorem 7.1 ([31]) Let C,A1,A2 ∈ sp(n). Then WC (A1,A2) is convex.

Proposition 7.2 Let C,A1,A2,A3,A4 ∈ sp(2). Then WC (A1,A2,A3) is convex. Moreover,
WC (A1,A2,A3,A4) is not convex in general.

Proof Since sp(2) ∼= so(5), the result follows from Proposition 2.4 and Theorem 6.2 (1).

Proposition 7.3 Let C,A1,A2,A3 ∈ sp(n) where n ≥ 2. If b ≺ c, then WB(A1,A2,A3) ⊂
WC (A1,A2,A3).
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Proof Assume that B and C are in diagonal form, i.e., C = i diag(c1, . . . , cn,−c1, . . . ,−cn),
ci ≥ 0. It is sufficient to handle the case that (b1, b2) ≺ (c1, c2) and ci = bi , i = 3, . . . , n.
For j = 1, 2, 3, let A j be of the form(

A j1 −A j2

A j2 A j1

)
∈ sp(n).

So the elements of WC (A1,A2,A3) are of the form (x1, x2, x3) where

x j = −2 Im
n∑

i=1

ci(u∗i A j1ui + v∗i A j1vi)− 4 Re
n∑

i=1

ciu
∗
i A j2vi ,

and u’s are the columns of U and v’s are the columns of V in

W =

(
U −V
V U

)
∈ Sp(n).

For any θ, φ ∈ [0, 2π], define

u ′1 = e−iφ cos θu1 + eiφ sin θu2, v ′1 = e−iφ cos θv1 + eiφ sin θv2,

u ′2 = −e−iφ sin θu1 + eiφ cos θu2, v ′2 = −e−iφ sin θv1 + eiφ cos θv2,

and u ′i = ui , i = 3, . . . , n and v ′i = vi , i = 3, . . . , n. Since b1 + b2 = c1 + c2, for j = 1, 2, 3,
we have

y j = −2 Im
n∑

i=1

ci(u ′∗i A j1u ′i + v ′∗i A j1v ′i )− 4 Re
n∑

i=1

ciu
′∗
i A j2v ′i

= (c1 + c2)[− Im(u∗1 A j1u1 + u∗2 A j1u2 + v∗1 A j1v1 + v∗2 A j1v2)− 2 Re(u∗1 A j2v1 + u∗2 A j2v2)]

+ (c1 − c2)[p j cos 2θ + sin 2θ(q j cos 2φ + s j sin 2φ)]

− 2 Im
n∑

i=3

ci(u∗i A j1ui + v∗i A j1vi)− 4 Re
n∑

i=3

ciu
∗
i A j2vi

where

p j = − Im(u∗1 A j1u1 − u∗2 A j1u2 + v∗1 A j1v1 − v∗2 A j1v2)− 2 Re(u∗1 A j2v1 − u∗2 A j2v2),

q j = −2 Im u∗1 A j1u2 − 2 Im v∗1 A j1v2 − 2 Re(u∗1 A j2v2 + u∗2 A j2v1),

s j = −2 Re u∗1 A j1u2 − 2 Re v∗1 A j1v2 − 2 Im(u∗2 A j2v1 − v∗1 A j2u2),

j = 1, 2, 3. The locus of (y1, y2, y3) is an ellipsoid Ec,W when φ and θ vary on [0, 2π]. So
for any x ∈WB(A1,A2,A3), there is W ∈ Sp(n) and x ∈ Eb,W ⊂ conv Ec,W since |b1−b2| ≤
|c1 − c2| and b1 + b2 = c1 + c2. We notice that the matrix R(θ, φ)⊕ In−2 ⊕ R(θ, φ)⊕ In−2

is an element of Sp(n) for any θ and φ where

R(θ, φ) =

(
e−iφ cos θ eiφ sin θ
−e−iφ sin θ eiφ cos θ

)
.

In particular, R(θ, φ) ⊕ R(θ, φ) ∈ Sp(2). By Proposition 7.2, conv Ec,W ⊂WC (A1,A2,A3)
so that x ∈WC (A1,A2,A3). This completes the proof.
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Theorem 7.4 Let C,A1,A2,A3,A4 ∈ sp(n). Then WC (A1,A2,A3) is convex if n > 1,
and is an ellipsoid (perhaps degenerated) centered at the origin if n = 1. In general,
WC (A1,A2,A3,A4) is not convex.

Proof First we establish the simplest cases. When n = 1, Sp(1) = SU(2) and hence by
Theorem 4.1, WC (A1,A2,A3) is an ellipsoid (perhaps degenerate) centered at the origin.

It is sufficient to show that WB(A1,A2,A3) ⊂ WC (A1,A2,A3) when 0 ≤ b1 < c1 and
ci = bi , i = 1, . . . , n. The elements of WB(A1,A2,A3) are of the form (x1, x2, x3) where

x j = −2 Im
n∑

i=1

bi(u∗i A j1ui + v∗i A j1vi)− 4 Re
n∑

i=1

biu
∗
i A j2vi

= −2 Im b1(u∗1 A j1u1 + v∗1 A j1v1)− 4 Re b1u∗1 A j2v1

− 2 Im
n∑

i=2

ci(u∗i A j1ui + v∗i A j1vi)− 4 Re
n∑

i=2

ciu
∗
i A j2vi ,

j = 1, 2, 3. Let (u ′1v ′1) = U (u1v1) where U ∈ Sp(1) and set u ′i = ui , v ′i = vi , i = 2, . . . , n.
Similar to the previous treatment, we have an ellipsoid Eu,v,b1 as U runs over Sp(1), by
using n = 1 case. So we deduce that a point x ∈ WB(A1,A2,A3) is contained in Eb1,u,v ⊂
conv Ec1,u,v since b1 < c1. Thus x ∈ conv Ec1,u,v ⊂WC (A1,A2,A3) by Proposition 7.2.

Now we construct nonconvex examples for the more general case. Let

B = In−2 ⊕ 3I2 ⊕ (−In−2)⊕ (−3I2),

C = In−2 ⊕ diag(4, 2)⊕ (−In−2)⊕ diag(−4,−2),

A1 = In ⊕ (−In), A2 = In−2 ⊕ diag(1,−1)⊕ (−In−2)⊕ diag(−1, 1),

A3 = In−2 ⊕

(
0 1
1 0

)
⊕ (−In−2)⊕

(
0 −1
−1 0

)
,

A4 = In−2 ⊕

(
0 i
−i 0

)
⊕ (−In−2)⊕

(
0 i
−i 0

)
.

We are going to show that

(
2(n− 2) + 12, 2(n− 2), 2(n− 2), 2(n− 2)

)
∈WB(A1,A2,A3,A4) \WC (A1,A2,A3,A4).

Consider a set which is larger than WC (A1,A2,A3,A4):

W ′
C (A1,A2,A3,A4)

= {(tr CU ∗A1U , tr CU ∗A2U , tr CU ∗A3U , tr CU ∗A3U ) : U ∈ U (2n)}.

Indeed the set is the C-numerical range of (A1,A2,A3,A4) associated with gl(2n,C). Ap-
plying the reasoning in the first example of the proof of Theorem 5.4, then

(
2(n − 2) +

12, 2(n− 2), 2(n− 2), 2(n− 2)
)
/∈W ′

C (A1,A2,A3,A4).
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8 The sp2n(R) Case

It is known that

K =

{(
A B
−B A

)
: ATA + BTB = I,ATB = BTA,A,B ∈ Rn×n

}
,

p =

{(
X Y
Y −X

)
: Y T = Y,XT = X,X,Y ∈ Rn×n

}
, a =

⊕
1≤ j≤n

R(E j j − En+ j,n+ j).

Notice that (
A B
−B A

)
∈ K

if and only if A + iB ∈ U (n). Hence we identify K with U (n). Similarly we identify k with
u(n). Now we identify p with the space of n× n complex symmetric matrices via the map

(
X Y
Y −X

)
�→ X + iY, X,Y ∈ Rn×n,XT = X,Y T = Y.

Hence a is identified with the space of real diagonal matrices. So the corresponding C-
numerical range, after disregarding the constant 2(n + 1), takes the form

WC (A1, . . . ,Ap) = {(Re tr CU TA1U , . . . ,Re tr CU TApU ) : U ∈ U (n)}.

Clearly the numerical range is symmetric about the origin. We can assume that C =
diag(c1, . . . , cn) where c’s are the singular values of C . When p = 1, the set WC (A) is a
closed interval [32]. We have the following convexity result when p = 2.

Theorem 8.1 Let C,A1,A2,A3 be n × n complex symmetric matrices. Then WC (A1,A2)
is convex if n > 1. It is an ellipse (perhaps degenerated) in R2 if n = 1. Moreover,
WC (A1,A2,A3) is not convex in general.

Proof The second assertion is trivial since the numerical range is just the image of the unit
circle under a linear map from R2 to R2. Let n > 1. We need to consider the following two
cases.

Case 1 0 ≤ b1 < c1, and bi = ci , i = 2, . . . , n.
Let (r1, r2) = (Re

∑n
i=1 bixT

i A1xi,Re
∑n

i=1 bixT
i A2xi) ∈WB(A1,A2). For any θ ∈ [0, 2π]

we consider x ′1 = eiθx1 and x ′i = xi , i = 2, . . . , n. Then for j = 1, 2, we have

Re
n∑

i=1

bix
′T
i A jx

′
i = b1(cos 2θ Re xT

1 A jx1 − sin 2θ Im xT
1 A jx1) + Re

n∑
i=2

bix
T
i A jxi.

As θ varies on [0, 2π], the locus of the point (Re
∑p

i=1 bix ′Ti A1x ′i ,Re
∑p

i=1 bixT
i A2x ′i ) traces

out an ellipse EX,b, where X denotes the unitary matrix (x1 · · · xn). Similarly we have EX,c

and obviously EX,b ⊂ conv EX,c . If EX,c is degenerated, then (r1, r2) ∈ conv EX,c = EX,c . So
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we assume that EX,c is not degenerated. Let u1 ∈ Cn be unit vector such that uT
1 A1u1 = 0

(see Lemma 3 of Thompson [36]). Extend u1 to an orthonormal basis {u1, . . . , un}. Hence
the ellipse EU ,c is degenerated. Using the continuity argument, we are done.

Case 2 Suppose (b1, b2) ≺ (c1, c2) and bi = ci , i = 3, . . . , n. Let

(r1, r2) =
(

Re
p∑

i=1

bix
T
i A1xi ,Re

p∑
i=1

bix
T
i A2xi

)
∈WB(A1,A2).

For any θ ∈ [0, 2π], define y1 = cos θx1 + sin θx2, y2 = − sin θx1 + cos θx2, and yi = xi ,
i = 3, . . . , n. Then

Re
n∑

i=1

ci yT
i A j yi =

1

2
(c1 + c2) Re(xT

1 A jx1 + xT
2 A jx2)

+
1

2
(c1 − c2)(p j cos 2θ + q j sin 2θ) + Re

n∑
i=3

cix
T
i A jxi,

where p j = Re(xT
1 A jx1 − xT

2 A jx2) and q j = Re(xT
2 A jx1 − xT

1 A jx2). As θ varies from 0 to
2π, we get an ellipse Ec. Now (r1, r2) ∈ Eb ⊂ conv Ec. The ellipse Ec can also be viewed
as the image of a loop in SU(2) under the above continuous function, namely, the set of
rotation matrices. By the simple connectedness of SU(2), conv Ec ⊂ WC (A1,A2). Hence
(r1, r2) ∈WC (A1,A2).

The example in the proof of Theorem 5.4 works for this case and the computation is
similar.

Corollary 8.2 ([37]) Let C and A be n × n complex matrices such that C = CT. Then the
congruence numerical range WC (A) = {tr CU TAU : U ∈ U (n)} is a circular disk if n > 1.

9 The spp,q Case

We may assume that p ≤ q. It is known that

p =







0 X12 0 X14

X∗12 0 XT
14 0

0 X14 0 −X12

X∗14 0 −XT
12 0




 ,

a =
⊕

1≤ j≤p

R(E j,p+ j + Ep+ j, j − Ep+q+ j,2p+q+ j − E2p+q+ j,p+q+ j),

K =







U1 0 −V 1 0
0 U2 0 −V 2

V1 0 U 1 0
0 V2 0 U 2


 :

(
U1 −V 1

V1 U 1

)
∈ Sp(p),

(
U2 −V 2

V2 U 2

)
∈ Sp(q)


 .
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Given C ∈ spp,q, there exists W ∈ Sp(p, q) such that W ∗CW is of the form:(
0 C1

CT
1 0

)
⊕

(
0 −C1

−CT
1 0

)
,

where C1 = c1E11 ⊕ · · · ⊕ cpEpp with ci ≥ 0 for all i = 1, . . . , p. Now the (12)-block of an
element of O(A j) (A j ∈ p) has the form of the (12)-block of the matrix

Q =

(
U1 0 −V 1 0
0 U2 0 −V 2

V1 0 U 1 0
0 V2 0 U 2

)∗
0 A j

12 0 A j
14

A j
12
∗

0 A j T
14 0

0 A
j
14 0 −A

j
12

A j
14
∗

0 −A j
12

T
0




(
U1 0 −V 1 0
0 U2 0 −V 2

V1 0 U 1 0
0 V2 0 U 2

)
,

namely, Q12 = U ∗1 A j
12U2 + U ∗1 A j

14V2 + V ∗1 A
j
14U2−V ∗1 A

j
12V2. Hence the j-th component of

the numerical range is Re tr CTQ12 +Re tr CQ∗12 +Re tr CQT
12 +Re tr CTQ12 = 4 Re tr CTQ12,

where C = c1E11 ⊕ · · · ⊕ cpEpp. In other words, the j-th component is of the form

4 Re

p∑
i=1

ci[u∗1iA
j
12u2i + u∗1iA

j
14v2i + v∗1iA

j
14u2i − v∗1iA

j
12v2i],

where U1 = (u11 · · · u1p), V1 = (v11 · · · v1p), U2 = (u21 · · · u2q), V2 = (v21 · · · v2q) form an
element of K. The numerical range is also symmetric about the origin. By Remark 11.1, we
have

Proposition 9.1 Let C,A1,A2,A3 ∈ sp1,1. Then WC (A1,A2,A3) is an ellipsoid with inte-
rior centered at the origin in R3 and hence is convex.

Proposition 9.2 Let C,A1,A2,A3 ∈ spp,q. If min{p, q} > 1 and b ≺ c WB(A1,A2,A3) ⊂
WC (A1,A2,A3).

Proof It is sufficient to consider the case (b1, b2) ≺ (c1, c2), bi = ci , i = 3, . . . , p. Let

(x1, x2, x3) ∈ WB(A1,A2,A3), i.e., x j = 4 Re
∑p

i=1 bi[u∗1iA
j
12u2i + u∗1iA

j
14v2i + v∗1iA

j
14u2i −

v∗1iA
j
12v2i], j = 1, 2, 3. For any θ ∈ [0, 2π] and φ ∈ [0, 2π], k = 1, 2, define

u ′k1 = e−iφ cos θuk1 + eiφ sin θuk2, v ′k1 = e−iφ cos θvk1 + eiφ sin θvk2,

u ′k2 = −e−iφ sin θuk1 + eiφ cos θuk2, v ′k2 = −e−iφ sin θvk1 + eiφ cos θvk2.

Since b1 + b2 = c1 + c2, for j = 1, 2, 3, we have

y j = 4 Re

p∑
i=1

bi[u ′∗1i A j
12u ′2i + u ′1i

∗
A j

14v ′2i + v ′1i
∗
A

j
14u ′2i − v ′1i

∗
A

j
12v ′2i]

= 2(c1 + c2) Re[u∗11A j
12u21 + u∗12A j

12u22 + u∗11A j
14v21 + u∗12A j

14v22

+ v∗11A
j
14u21 + v∗12A

j
14u22 − v∗11A

j
12v21 − v∗12A

j
12v22]

+ 2(b1 − b2)[p j cos 2θ + (q j cos 2φ + r j sin 2φ) sin 2θ]

+ 4 Re

p∑
i=3

ci[u∗1iA
j
12u2i + u∗1iA

j
14v2i + v∗1iA

j
14u2i − v∗1iA

j
12v2i],
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where

p j = 2 Re[u∗11A j
12u21 − u∗12A j

12u22 + u∗11A j
14v21 − u∗12A j

14v22

+ v∗11A
j
14u21 − v∗12A

j
14u22 − v∗11A

j
12v21 + v∗12A

j
12v22]

q j = 2 Re[u∗11A j
12u22 + u∗12A j

12u21 + u∗11A j
14v22 + u∗12A j

14v21

+ v∗11A
j
14u22 + v∗12A

j
14u21 − v∗11A

j
12v22 − v∗12A

j
12v21]

r j = 2 Im[−u∗11A j
12u22 + u∗12A j

12u21 − u∗11A j
14v22 + u∗12A j

14v21

− v∗11A
j
14u22 + v∗12A

j
14u21 + v∗11A

j
12v22 − v∗12A

j
12v21].

The map which sends u’s and v’s to u ′’s and v ′’s is in γ
(
Sp(1)×Sp(1)

)
⊂ K where γ denotes

the imbedding from Sp(p)× Sp(q)→ K [13, p. 455]. As θ and φ vary on [0, 2π], the locus
of (y1, y2, y3) is an ellipsoid Eb with interior by Proposition 9.1. Since |b1− b2| ≤ |c1− c2|,
we have x ∈ Eb ⊂ Ec ⊂WC (A1,A2,A3). By a continuity argument, we are done.

Theorem 9.3 Let C,A1,A2,A3 ∈ spp,q. When min{p, q} > 1, WC (A1,A2) is convex.
Furthermore, WC (A1,A2,A3) is not convex in general.

Proof We may assume that 1 < p ≤ q. It suffices to show that WB(A1,A2) ⊂WC (A1,A2)
when 0 ≤ b1 < c1, bi = ci , i = 2, . . . , p. Let (x1, x2) ∈ WB(A1,A2), i.e., for j = 1, 2,

x j = 4 Re
∑p

i=1 bi[u∗1iA
j
12u2i + u∗1iA

j
14v2i + v∗1iA

j
14u2i − v∗1iA

j
12v2i]. For any θ ∈ [0, 2π], let

u ′11 = eiθu11 and v ′11 = eiθv11, u ′1i = u1i , v ′1i = v1i , i = 2, . . . , p; u ′2i = u2i , v ′2i = v2i ,
i = 1, . . . , q. Then for j = 1, 2,

y j = 4 Re

p∑
i=1

bi[u ′∗1i A j
12u ′2i + u ′1i

∗
A j

14v ′2i + v ′1i
∗
A

j
14u ′2i − v ′1i

∗
A

j
12v ′2i]

= 4b1[p j cos θ + q j sin θ]

+ 4 Re

p∑
i=2

ci[u∗1iA
j
12u2i + u∗1iA

j
14v2i + v∗1iA

j
14u2i − v∗1iA

j
12v2i],

where p j = Re[u∗11A j
12u21 + u∗11A j

14v21 + v∗11A
j
14u21 − v∗11A

j
12v21], q j = − Im[u∗11A j

12u21 +

u∗11A j
14v21 + v∗11A

j
14u21 − v∗11A

j
12v21]. The matrix diag(eiθ, e−iθ) belongs to Sp(1) and thus

γ
(

diag(eiθ, e−iθ) ⊕ Ip−2, Iq

)
∈ K. As θ varies on [0, 2π], the locus of (y1, y2) is an ellipse

Eb. Since 0 ≤ b1 < c1 and Sp(1) is simply connected, we have (x1, x2) ∈ Eb ∈ conv Ec ∈
WC (A1,A2).

The convexity result is best possible. We will work out the p = q case and the p �= q
case is similar. Let B̂ = In−1 ⊕ (1/3), Ĉ = In−1 ⊕ (1/2), Â1 = In−1 ⊕ (0), Â2 = In−1 ⊕ (i),
Â3 = In. Set

X =

(
0 X̂

X̂∗ 0

)
⊕

(
0 −X̂
−X̂T 0

)
,
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where X = B, C , Ai , i = 1, 2, 3. We claim that WB(A1,A2,A3) �⊂WC (A1,A2,A3) and hence
WC (A1,A2,A3) is not convex. Notice that

4(n− 1, n− 1, n− 1 + 1/3) = (Re tr BA1,Re tr BA2,Re tr BA3) ∈WB(A1,A2,A3)

and we are going to show that this point does not belong to the set

W ′
C (A1,A2,A3) = {tr CU ∗A1,U , tr CU ∗A2U , tr CU ∗A3U ) : U ∈ U (4p)}

and WC (A1,A2,A3) ⊂W ′
C (A1,A2,A3). Suppose 4(n−1, n−1, x) ∈WC (A1,A2,A3). Then

Re tr CU ∗A1V = n − 1. Then using the reasoning in the second example of the proof of
Theorem 5.4, we see that 4(n− 1, n− 1, n− 1 + 1/3) /∈W ′

C (A1,A2,A3). Hence inclusion
relation fails when s(B) ≺w s(C). Thus W ′

C (A1,A2,A3) is not convex.

10 The so∗(2n) Case

It is known that

K =

{(
A B
−B A

)
: ATA + BTB = I,ATB = BTA,A,B ∈ Rn×n

}
,

p =

{(
X Y
Y −X

)
: XT = −X,Y T = −Y,X,Y ∈ iRn×n

}
,

a = iR
(
(E12 − E21)− (En+1,n+2 − En+2,n+1)

)
⊕ iR

(
(E23 − E32)− (En+2,n+3 − En+3,n+2)

)
⊕ · · · .

Analogously to sp2n(R) case, we identify K with the unitary group U (n) and the subspace p

with the space of complex skew symmetric matrices respectively. Then a is identified with
i ⊕1≤ j≤[n/2] R(E2 j−1,2 j − E2 j,2 j−1). Then the group K acts on p such that A→ UAU T . So
the C-numerical range of the complex skew symmetric matrices A1, . . . ,Ap ∈ p is

WC (A1, . . . ,Ap) = {(Re tr CU TA1U , . . . ,Re tr CU TApU ) : U ∈ U (n)}.

The set is symmetric about the origin.
Since su1,3

∼= so∗(6), by Corollary 5.3, we have the following result and one can give a
more geometric proof by identifying O(C) with a 5-sphere.

Theorem 10.1 Let C,A1, . . . ,Ap be 3 × 3 complex skew symmetric matrices. When 1 ≤
p ≤ 5, WC (A1, . . . ,Ap) is an ellipsoid with the interior in Rp and hence a convex set.

Corollary 10.2 Let n ≥ 3 be an odd integer. Suppose B and C are complex skew symmetric
matrices with vectors of singular values (nonincreasing order) b and c, respectively such that
c − b ≥ 0. Then WB(A1, . . . ,Ap) ⊂WC (A1, . . . ,Ap) if 1 ≤ p ≤ 5.

Theorem 10.3 Let C,B,A1,A2,A3 be n × n complex skew symmetric matrices. Let n ≥
4 and b and c be the vectors of singular values of B and C respectively. If b ≺ c, then
WB(A1,A2,A3) ⊂WC (A1,A2,A3).
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Proof It is sufficient to consider the case (b1, b2) ≺ (c1, c2) and bi = ci , i = 3, . . . , n. Sup-
pose x = (x1, x2, x3) ∈ WB(A1,A2,A3), i.e., there exist e1, e2, . . . , en orthonormal vectors
in Cn such that for i = 1, 2, 3,

xi = −Re
[

(b1 + b2)(eT
1 Aie2 + eT

3 Aie4)− (b1 − b2)(eT
1 Aie2 − eT

3 Aie4)− 2

[n/2]∑
j=3

b je
T
2 j−1Aie2 j

]
.

Let f1, f2, f3 and f4 ∈ Cn be the vectors defined by [30]

f1 = cosφ cos θe1 − sinφ cos θe2 − cosφ sin θe3 + sinφ sin θe4

f2 = sinφ cos θe1 + cosφ cos θe2 − sinφ sin θe3 − cosφ sin θe4

f3 = cosφ sin θe1 + sinφ sin θe2 + cosφ cos θe3 + sinφ cos θe4

f4 = − sinφ sin θe1 + cosφ sin θe2 − sinφ cos θe3 + cosφ cos θe4.

The matrix which sends (e1, e2, e3, e4) to ( f1, f2, f3, f4) is an element of SO(4). So f1, f2,
f3, f4 ∈ Cn are orthonormal vectors. Direct computation leads to

Re( f T
1 A j f2 + f T

3 A j f4) = eT
1 A je2 + eT

3 A je4,

Re( f T
1 A j f2 − f T

3 A j f4) = p j cos 2θ + sin 2θ(q j sin 2φ + s j cos 2φ), j = 1, 2, 3,

where

p j = Re(eT
1 A je2 − eT

3 A je4), q j = Re(eT
1 A je3 − eT

2 A je4), s j = Re(−eT
2 A je3 + eT

1 A je4).

Then for i = 1, 2, 3, yi is just the real part of the number

(b1 − b2)[p j cos 2θ + sin 2θ(q j sin 2φ + s j cos 2φ)]

− (c1 + c2)(eT
1 Aie2 + eT

3 Aie4) + 2

[n/2]∑
j=3

b je
T
2 j−1Aie2 j .

As θ and φ vary in R, the locus of the point (y1, y2, y3) in R3 is an ellipsoid (compare [2])
which will be denoted by Eb,E. Here E = (e1 · · · en) ∈ U (n). Notice that |c1− c2| ≥ |b1−b2|
and hence (x1, x2, x3) ∈ Eb,E ⊂ conv Ec,E ⊂WC (A1,A2,A3).

Now, given a 4× 4 complex skew symmetric matrix A, there exists U ∈ U (4) such that

U TAU =

(
0 is1

−is1 0

)
⊕

(
0 is2

−is2 0

)

where s1, s1, s2, s2 are singular values of A. This implies that we can find orthonormal
vectors e ′1, e

′
2, e
′
3, e
′
4 in the span of e1, e2, e3, e4 such that Ec,E ′ is degenerated where E ′ =

(e ′1e ′2e ′3e ′4e5 · · · en) ∈ U (n). By a continuity argument, the result follows.

Theorem 10.4 Let C,A1,A2,A3 be n× n complex skew symmetric matrices.
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1. Then WC (A1,A2) = {(Re tr CU TA1U ,Re tr CU TA2U ) : U ∈ U (n)} is convex when
n > 2. It is an ellipse (perhaps degenerated) if n = 2.

2. If n is even, then WC (A1,A2,A3) is not convex in general. If n ≥ 3 is odd, then
WC (A1,A2,A3) is convex.

Proof Suppose n > 2. (1) We notice that WC (A1,A2) is equal to the set

{
−2

(
Re

[n/2]∑
i=1

cix
T
2i−1A1x2i ,Re

[n/2]∑
i=1

cix
T
2i−1A2x2i

)
: (x1 · · · xn) ∈ U (n)

}
.

By Lemma 3.3, Corollary 3.2 and Theorem 10.3, it is sufficient to consider that case that
0 ≤ b1 < c1 and bi = ci , i = 2, . . . , [n/2]. Suppose x = (x1, x2) ∈ WB(A1,A2), i.e., there
exist e1, e2, . . . , en ∈ Cn such that

xi = −2 Re
(

b1eT
1 Aie2 +

[n/2]∑
j=2

b je
T
2 j−1Aie2 j

)
, i = 1, 2.

Define f1 = eiθe1 and fi = ei , i = 2, . . . , n. Then for i = 1, 2,

yi = −2 Re
(

b1 f T
1 Ai f2 +

[n/2]∑
j=2

b j f T
2 j−1Ai f2 j

)

= −2
(

b1[cos θ Re eT
1 Aie2 − sin θ Im eT

1 Aie2] + Re

[n/2]∑
j=2

b je
T
2 j−1Aie2 j

)
.

The locus of the point (y1, y2) traces out an ellipse which is denoted by Ee,b. Now (x1, x2) ∈
Ee,b ⊂ conv Ee,c. There are orthonormal vectors u1, u2 such that uT

1 A1u2 = 0 ([29], n > 2).
Extend u1, u2 to an orthonormal basis of Cn, {u1, . . . , un}. The corresponding ellipse is
degenerated. By continuity argument, we are done.

Suppose n = 2. The orbit O(C) is{
U T

(
0 −c
c 0

)
U : U ∈ U (n)

}
=

{
eiθ

(
0 −c
c 0

)
: θ ∈ [0, 2π]

}
,

by considering the determinant of U TCU , where C =
(

0 −c
c 0

)
. Let

A1 =

(
0 −a1

a1 0

)
, A2 =

(
0 −a2

a2 0

)
.

Then

WC (A1,A2) = {(Re ca1 cos θ − Im ca1 sin θ,Re ca2 cos θ − Im ca2 sin θ) : θ ∈ [0, 2π]}

is an ellipse.
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The following example shows that the first part, when n is even, is best possible. Let
X =

(
0 1
−1 0

)
. Let B = X⊕· · ·⊕X⊕X/3, C = X⊕· · ·⊕X⊕X/2, A1 = X⊕· · ·⊕X⊕O2,

A2 = X⊕ · · · ⊕X⊕ iX, A3 = X⊕ · · · ⊕X⊕X, where each matrix is of size 2n× 2n. Then
we claim that WB(A1,A2,A3) is not a subset of WC (A1,A2,A3).

Notice that
(
−2(n−1),−2(n−1),−2(n−1)−2/3

)
= (Re tr BA1,Re tr BA2,Re tr BA3) ∈

WB(A1,A2,A3). Now if
(
−2(n−1),−2(n−1), x

)
∈WC (A1,A2,A3), then Re tr CU TA1U =

−2(n − 1) and by extremal properties, we have U TA1U = A1. So U = U1 ⊕U2 where U2

is a 2 × 2 unitary matrix. Now Re tr CU TA2U = −2(n − 1) implies that U T
2 XU2 = ±X.

Thus Re tr CU TA3U cannot be−2(n− 1)− 2/3. Hence the inclusion relation fails though
s(B) ≺w s(C). So WC (A1,A2,A3) is not convex.

(2) Let n = 2m + 1. Similarly, we show that WB(A1,A2,A3) ⊂ WC (A1,A2,A3) where
b1 < c1 and bi = ci , i = 2, . . . , n. Suppose x = (x1, x2, x3) ∈ WB(A1,A2,A3), i.e.,
there exist orthonormal vectors e1, e2, . . . , e2m+1 ∈ C2m+1 such that xi = −2(b1eT

1 Aie2 +∑m
j=2 b jeT

2 j−1Aie2 j), i = 1, 2, 3.

The point γ = −2b1(eT
1 A1e2, eT

1 A2e2, eT
1 A3e2) belongs to WB ′(A ′1,A

′
2,A

′
3) which is the

ellipsoid with interior and centered at the origin by Theorem 10.1. Here

A ′i = (ETAiE)[1, 2, 2m + 1 | 1, 2, 2m + 1], i = 1, 2, 3,

are 3 × 3 skew symmetric matrices, and A[α | β] denotes the submatrix of A lying in the
rows and columns indexed by the sequence α and β, respectively, and

B ′ =

(
0 b1

−b1 0

)
⊕ 0.

The ellipsoid with interior is denoted by Ce,b1 . Since the 5-sphere b1S5 centered at the origin
and with radius b1 in R6 is contained in the interior of the larger sphere c1S5 with radius c1

(0 ≤ b1 < c1), (x1, x2, x3) ∈ Ce,b1 ⊂ Ce,c1 ⊂WC (A1,A2,A3).

Remark 10.5 The n = 2 case follows from the isomorphism so∗(4) ∼= su(2)⊕sl2(R). The
numerical range associated with su(2) ⊕ sl2(R) is indeed the numerical range associated
with sl2(R) since su(2) is a compact form. Also so∗(8) ∼= so2,6 and see Theorem 11.4.

Corollary 10.6 ([26]) Let C be a complex n×n skew symmetric matrix and let A be an n×n
complex matrix. Then the congruence numerical range WC (A) = {tr CU TAU : U ∈ U (n)}
is a circular disk centered at the origin when n > 2 or n = 1. When n = 2, it is a circle
centered at the origin.

11 The sop,q Case

Now

K = SO(p)× SO(q), p =

{(
0 Y

Y T 0

)
: Y ∈ Rp×q

}
, a =

⊕
1≤ j≤p

R(E j,p+ j + Ep+ j, j).
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The corresponding C-numerical range of p× q matrices A1, . . . ,Am, after disregarding the
constant 2(p + q− 2), is

WC (A1, . . . ,Am) = {(tr CTUA1V, . . . , tr CTUAmV ) : U ∈ SO(p),V ∈ SO(q)},

where C,A1, . . . ,Am are p × q real matrices. It is clear that when p �= q, say p < q, the
special orthogonal groups can be replaced by the orthogonal groups and hence the set is
symmetric about the origin. It is also symmetric when p = q = 2n.

When m = 1, the set WC (A) is evidently a line segment and is fully known [21] and [28].
Let m = 2. When (p, q) = (1, 1), the numerical range is a singleton set. When (p, q) =
(1, 2) or (2, 1), the numerical range WC (A1,A2) is then the image of the circle centered at
the origin under a linear map from R2 to R2, i.e., an ellipse and hence not convex. This is
certainly the case since so1,2

∼= sl2(R).

Remark 11.1 When p = 1 and q ≥ 3, WC (A1,A2) is the image of the unit sphere Sq−1

in Rq under a linear map from Rq to R2. It is an elliptical disk and hence is convex. We
already learned the special cases q = 3 and q = 5 from the isomorphisms so1,3

∼= sl2(C)R

and so1,5
∼= sl2(H). Similarly, if p = 1 and q ≥ 4, WC (A1,A2,A3) is the image of the unit

sphere Sq−1 in Rq under a linear map from Rq to R3. It is an ellipsoid with interior and
hence convex. We then conclude that the numerical range WC (A1,A2,A3) is an ellipsoid
with interior centered at the origin in R3 for sp1,1 since sp1,1

∼= so1,4.

When (p, q) = (2, 2) we have the following example.

Example 11.2 The numerical range WC (A1,A2) is not convex when

C =

(
1 0
0 0

)
, A1 =

(
1 0
0 1

)
, A2 =

(
0 1
−1 0

)
.

Proof Clearly the points (1, 0) and (−1, 0) belong to WC (A1,A2). We want to show that
their midpoint is not in WC (A1,A2). Suppose (0, x) ∈ WC (A1,A2), i.e., there exist P,Q ∈
SO(2) such that PQ = PA1Q =

(
0 α
β γ

)
. By Theorem 2 of [35], γ = 0. Since the matrices

have the same determinant, i.e., det I2 = det PQ = 1 and they have the same singular
values, i.e., α = −β and β = ±1, we conclude that PQ = A2 or−A2. Let

P =

(
cos θ sin θ
− sin θ cos θ

)
, Q =

(
cosφ sinφ
− sinφ cosφ

)
.

Direct computation on PQ = ±A2 leads to cos(θ + φ) = 0 and sin(θ + φ) = ±1. This im-
plies that PA2Q = −I2 and I2 respectively. In other words, x = ±1 and hence WC (A1,A2)
does not contain the origin.

Remark 11.3 The orbit of C = diag(1, 0) is merely a part of the sphere S3 ⊂ R4. The real
linear map C ′ �→ (tr C ′A1, tr C ′A2) does not send O(C) onto an elliptical disk in R2.

Indeed, by Proposition 2.4 one can deduce the nonconvexity from the isomorphism
so2,2

∼= sl2(R) ⊕ sl2(R). The numerical range corresponding to sl2(R) ⊕ sl2(R) is the
sum (pointwise) of two ellipses, i.e., the locus traced by one of the ellipses when its center
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is moving on the boundary of the other ellipse (when the directions of the axes of the
moving ellipse do not change). The figure is then the region between the outer and inner
envelopes. In particular, if the two ellipses are circles, we have an annulus. If the two ellipses
are degenerated, e.g., two line segments centered at the origin, the numerical range is then
a parallelogram with interior and hence convex.

Proposition 11.4 Let C,A1,A2 be p × q real matrices. If

(i) min{p, q} ≥ 2 and p �= q, or
(ii) p = q ≥ 3, then WB(A1,A2) ⊂WC (A1,A2) when b ≺ c.

Proof For definiteness we assume p ≤ q. Let (r1, r2) ∈WB(A1,A2), i.e., there exist x1, x2 ∈
Rq and y1, y2 ∈ Rp such that for j = 1, 2,

r j =

p∑
i=1

bi yT
i A jxi

=
1

2
(b1 + b2)(yT

1 A jx1 + yT
2 A jx2) +

1

2
(b1 − b2)(yT

1 A jxi − yT
2 A jx2) +

p∑
i=3

bi yT
i A jxi .

Let

u1 = cos θx1 + sin θx2, v1 = cos θy1 + sin θy2,

u2 = − sin θx1 + cos θx2, v2 = − sin θy1 + cos θy2,

and ui = xi and vi = yi , i = 3, . . . , n. Then

p∑
i=1

biv
T
i A jui =

1

2
(b1 + b2)(yT

1 A jx1 + yT
2 A jx2) +

1

2
(b1 − b2)[cos 2θ(yT

1 A jx1 − yT
2 A jx2)

+ sin 2θ(yT
2 A jx1 + yT

1 A jx2)] +

p∑
i=3

bi yT
i A jxi .

Let Eb,x,y denotes the ellipse which is the locus of the above expressioin as θ varies on
[0, 2π].

(i) We consider three cases:

(a) If q > p ≥ 3, then there is a unit vector x ′1 in the null space of A1, i.e., A1x ′1 = 0.
Then choose a unit vector x ′2 ∈ Rq which is orthogonal to x ′1 ∈ Rq, and choose the
orthonormal vectors y ′1 and y ′2 in Rp such that they are orthogonal to A1x ′2 ∈ Rp.

(b) If q ≥ p + 2, and q > p ≥ 2, then take x ′1, x
′
2 in the null space of A1 and set

y ′1 = y1, y ′2 = y2.
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(c) It remain to consider (p, q) = (2, 3). Given any A ∈ R2×3, there exist U ∈ SO(2)
and V ∈ SO(3) such that

UAV =

(
0 a 0
b 0 0

)
,

where a ≥ b ≥ 0 are the singular values of A. Now choose W = 1⊕R(θ) ∈ SO(3)
where R(θ) is a rotation matrix such that

UAVW =

(
0 −b c
b 0 0

)

and b2 + c2 = a2. This implies that there exist x ′1, x
′
2 ∈ R3 and y ′1, y ′2 ∈ R2 such

that y ′1A1x ′1 = y ′2A1x ′2 = 0 and y ′2A1x ′1 = −y ′1A1x ′2.

(ii) We consider two cases:

(a) If p = q ≥ 4, then obviously we can choose two orthonormal vectors x ′1, x
′
2 ∈ Rp,

and two orthonormal vectors y ′1, y ′2 ∈ Rp such that y ′i
TA1x ′j = 0, where i, j =

1, 2.

(b) Suppose (p, q) = (3, 3). Let A ∈ R3×3. There exist U ,V ∈ SO(3) such that
UAV = diag(s2, s1, δs3) where δ is the sign of det A and s1 ≥ s2 ≥ s3 ≥ 0 are
the singular values of A. Let R(θ) be a rotation. Then there exists θ ∈ R such
that the (1,1) entry of R−1(θ) diag(s1, δs3)R(θ) is s2. This implies that there exist
x ′1, x

′
2, y ′1, y ′2 ∈ R3 such that y ′1A1x ′1 = y ′2A1x ′2 and y ′2A1x ′1 = y ′1A1x ′2 = 0.

Extend {x ′1, x
′
2} and {y ′1, y ′2} to orthonormal bases {x ′1, . . . , x

′
p} and {y ′1, . . . , y ′q} of Rp

and Rq respectively. So the corresponding Ex ′,y ′,b is a line segment or a point. By continuity
argument, the inclusion relation follows.

Theorem 11.5 Let C,A1,A2,A3 be p × q real matrices. If min{p, q} ≥ 2 and p �= q, then
WC (A1,A2) is convex. Moreover, WC (A1,A2,A3) is not convex in general.

Proof It is sufficient to show that WB(A1,A2) ⊂ WC (A1,A2) if 0 ≤ b1 < c1 in view of
(i) of Proposition 11.4. Let (r1, r2) = (

∑p
i=1 bi yT

i A1xi ,
∑p

i=1 bi yT
i A1xi) ∈ WC (A1,A2). Let

x ′1 = cos θx1 + sin θxq and x ′q = − sin θx1 + cos θxq, x ′i = xi , i = 2, . . . , q − 1. Then for
j = 1, 2,

p∑
i=1

bi yT
i A jx

′
i = b1(yT

1 A jx1 cos θ + yT
1 A jxq sin θ) +

p∑
i=2

bi yT
i A jxi .

The locus of the point (
∑p

i=1 bi yT
i A1x ′i ,

∑p
i=1 bi yT

i A2x ′i ) is an ellipse as θ varies on [0, 2π],
denoted by Ex,y,b. We have Ex,y,b ⊂ conv Ex,y,c since 0 ≤ b1 < c1. Let u1 be a unit vector in
the null space of A1 and extend it to an orthonormal basis {u1, . . . , uq} of Rq. Then choose
a unit vector v1 ∈ Rp which is perpendicular to A1u2 ∈ Rp (p ≥ 2) and then extend it to
an orthonormal basis {v1, . . . , vp} of Rp. Then Eu,v,c is a line segment or a point. Applying
the continuity argument will finish the proof.

https://doi.org/10.4153/CJM-2000-007-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-007-2


168 Chi-Kwong Li and Tin-Yau Tam

The convexity is best possible because of the following example. Assume p < q without
loss of generality, B = [B̂ | 0] where B̂ = Ip−2 ⊕ 3I2 and C = [Ĉ | 0] where Ĉ =
Ip−2 ⊕ diag(4, 2). Let Ai = [Âi | 0] for i = 1, 2, 3, such that

Â1 = Ip, Â2 = Ip−2 ⊕ diag(1,−1), Â3 = Ip−2 ⊕

(
0 1
1 0

)
.

Then (p + 4, p − 2, p − 2) ∈ WB(A1,A2,A3) \WC (A1,A2,A3) because of the following
reason. If tr BTU TA1V = tr CTU TA1V = p + 4, then by the same argument in the proof of
Theorem 5.4 U is of the form U1 ⊕U2 ∈ SO(p), where U2 ∈ SO(2), and V is of the form
U1 ⊕U2 ⊕V3 ∈ SO(q). Now VCTU T = [D | 0]T where

D = Ip−2 ⊕

(
a c
c d

)
.

If (Re tr CTU TA1V,Re tr CTU TA2V,Re tr CTU TA3V ) were (p+4, p−2, p−2), then a+b =
6, a−b = 0, c = 0, implying that a = b = 3 and c = 0 which is impossible. Thus inclusion
does not hold, and WC (A1,A2,A3) is not convex.

Remark 11.6 By Proposition 2.4 the convexity result for so2,3, so2,4, and so2,6 can also
be deduced from those of sp4(R), su2,2, and so∗(8) respectively, since so2,3

∼= sp4(R),
so2,4

∼= su2,2, and so2,6
∼= so∗(8).

The above technique does not apply for the n × n case (n ≥ 3) since the condition
Z ∈ conv W (Y ) is not equivalent to ≺w nor ≺. It is Thompson’s partial ordering �.
Nevertheless we have the following result.

Theorem 11.7 Let C,A1,A2,A3 be n × n real matrices where n ≥ 3. Then WC (A1,A2) is
convex. Moreover, WC (A1,A2,A3) is not convex in general if n ≥ 2.

Proof The proof is similar to Theorem 6.2. From the isomorphism so3,3
∼= sl4(R) and

Theorem 4.1, WC (A1,A2) = {(tr CUA1V, tr CUA2V ) : U ,V ∈ SO(3)} is convex for any
3 × 3 real matrices C,A1,A2. Then apply the arguments in the proof of Theorem 6.2 to
finish the proof.

Let C = In−2 ⊕ diag(1, 0), A1 = In−2 ⊕ O2, A2 = In−2 ⊕
(

0 1
−1 0

)
and A3 = In. Then we

claim that WC (A1,A2,A3) is not convex. It is clear that the points (n−2, n−2, n−2±1/2)
are in WC (A1,A2,A3). We are going to show that the mid-point (n− 2, n− 2, n− 2) is not
inside. If (n− 2, n− 2, n− 2) = (tr CU TA1V, tr CU TA2V, tr CU TA3V ) ∈WC (A1,A2,A3),
then by extremal properties [17], we have U TA1V = A1 and hence U = W ⊕ U1 and
V = W ⊕ V1, where U1,V1 ∈ SO(2). Then consider tr CU TA2V and tr CU TA3V . It will
then reduce to the computation of Example 11.2. So WC (A1,A2,A3) is not convex.

Remark 11.8 If SO(n) is replaced by O(n) in the above setting, then we have W̃C (A1,A2)
= {(tr CUA1V, tr CUA2V ) : U ,V ∈ O(n)}. It is the union of the convex sets WC (A1,A2)
and WC ′(A1,A2) where C ′ = DC and D = diag(1, . . . , 1,−1). Clearly W̃C (A1,A2) =
WC (A1,A2) when the rank of C is less than n. However the set W̃C (A1,A2) is not convex in
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general and we have the following example. Let C = A1 = In, A2 = D. Evidently (n, n− 2)
and (n − 2, n) ∈ W̃C (A1,A2). If the midpoint (n − 1, n− 1) were in W̃C (A1,A2), then we
would have U ,V ∈ O(n) such that tr A1UCV = tr A2UCV = n − 1. Let d1, . . . , dn be
the diagonal elements of UCV . So

∑n
i=1 di =

∑n−1
i=1 di − dn = n − 1. Hence dn = 0 and∑n−1

i=1 di = n − 1. Then n− 1 = |
∑n−1

i=1 di| ≤
∑n−1

i=1 |di| =
∑n−1

i=1 |di| − |dn| ≤ n− 2, by
Thompson’s inequalities [35]. It is absurd.

12 Conclusion

We conclude that sl2(R) is the only one giving nonconvex WC (A1,A2) among simple clas-
sical real Lie algebras (up to isomorphism). Concerning the convexity of WC (A1,A2,A3)
we make the following table.

g = sln(C), n ≥ 2 Yes if n > 2 (best possible)
h = sln(R) No

h = slm(H), n = 2m Yes if n > 2 (best possible)
h = sup,q (p = 0, 1, . . . , [n/2], p + q = n) Yes if p �= q (best possible).

No if p = q

g = so2n+1(C), n ≥ 2 Yes (best possible)
h = sop,q (p = 0, 1, . . . , n, p + q = 2n + 1) No

g = spn(C), n = 2m, m ≥ 3 Yes (best possible)
h = spn(R), n = 2m No

h = spp,q, (p = 0, 1, . . . , [m/2], p + q = m) No

g = so2n(C), n ≥ 4 Yes (best possible)
h = sop,q, (p = 0, 1, . . . , n, p + q = 2n) No

h = so∗(2n) No if n is even. Yes if n is odd.

The following is the only case in the above list we have no answer.

Problem For the case so∗(2n) with an odd integer n, what is the largest m ≥ 3 so that
WC (A1, . . . ,Am) is always convex?

From the proof of Theorem 10.1, we see that m ≤ 5.

Remark 12.1 The exceptional simple Lie algebras are [23]: 3 for g2; 4 for f4; 6 for e6;
5 for e7 and 4 for e8. The total number of cases is 22. Among them 5 are compact Lie
algebras and the corresponding numerical ranges are trivial. For those 5 complex simple
Lie algebras of exceptional type when we consider them as real Lie algebras, Theorem 2.1
yields the convexity of WC (A1,A2). Hence 12 cases are left.
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