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ABSTRACT. A finite-clement model is developed in order to calculate the
coupled ice and heat flow and the surface topography in cold, steady-state ice sheets.
The model decouples the heat-flow equation and the surface mass-balance condition
from the rest of the equations and solves the problem by an iterative method. The
model is used to examine the thermomechanics of ice divides. Initial studies of a
symmetric, plane ice divide and an axisymmetric ice divide have led to the following
conclusions, which are consistent with previous results. The ice-divide zone is a narrow
region, only a few ice thicknesses wide, where the surface slope drops to zero and the
flow solution changes. The longitudinal strain rate is high, especially in the upper
layers, and the vertical velocity is smaller than away from the divide. This causes the
hasal temperatures to increase and the isochrones to rise. Divergent-flow conditions
widen the ice-divide zone, whereas they do not influence the solution at the ice divide.

INTRODUCTION previously (Johnson, 1981; Hutter and others, 1987) but

without special emphasis on the divide zone. Here, the

The ice-divide region of large ice sheets is a zone of special
interest. It is regarded an optimal site for ice-core drilling,
since the ice stratigraphy is minimally disturbed by the
flow (Johnsen and others, 1992). Furthermore, the ice-
divide region provides a simple flow regime. which is
useful for testing flow laws of ice. Several models have
been used to analyse the conditions close to the divide in
large, plane-flow ice sheets (e.g. Raymond, 1983; Hutter
and others, 1986; Paterson and Waddington, 1986: Dahl-
Jensen. 1989a, b; Hindmarsh and others, 1989; Szidar-
ovszky and others, 1989; Firestone and others, 1990).
Modelling the ice divide is found to be complicated for
several reasons: the longitudinal stress deviators cannot be
disregarded compared to the shear stresses, which is often
done to simplify the equations (see, for example,
discussion by Hutter (1993)): the thermodynamics and
the stress-equilibrium equations are coupled; generally.
the flow pattern is three-dimensional.

In this paper, a new model is presented, which solves
the general thermomechanically coupled ice-flow (coupled
ice and heat flow) problem with a free surface for cold
steady-state ice sheets using a [inite-element technique.
The model is capable of treating a general plane-lflow ice
sheet or an axisymmetric ice sheet. The finite-element
method has been used previously for modelling ice flow
(e.e. Hooke and others, 1979; Raymond, 1983; Paterson
and Waddington, 1984; Hodge, 1985; Hanson, 1990, 1995;
Schott and others, 1992) but none of these models has
considered the coupled thermomechanical ice-flow pro-
blem. Axisymmetric ice sheets have been examined
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equations are solved by decoupling the heat-low equation
from the other equations, as suggested by Hutter (1983).
Furthermore, the surface mass-balance condition is
decoupled and the surface calculation is formulated as a
time evolution. The capability of the model is demon-
strated by some initial model experiments, which compare
the steady-state flow and temperature [ields of a symmetric,
plane-flow ice divide and an axisymmetric ice dome.

THE FLOW MODEL

The model considers the slow, incompressible thermo-
mechanical flow of a large, steady-state ice sheet.

Fig. 1. The coordinale system seen_from the side. Notation
is explained in the text. In the model experiments of this
paper. only the flow close to the divide is considered
( indicated by the shaded areas).
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Governing equations

Plane ice flow

The model uses a Cartesian coordinate system (. y, 2)
(Fig. 1). x and y are the horizontal coordinates with the
x-axis in the direction of the flow and z is the vertical
coordinate. The corresponding velocity components are
denoted (u. v, w) where v = 0. When restricted to plane
flow, the governing equations are as follows. The stress-
equilibrium equations are

aos  Oes
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where a; are the normal stress components, 7;; are the
shear-stress components, g =9.81 ms ” is the gravity and
p=917kgm "’
constant. The strain-rate components are

is the ice density, which is assumed
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where ¢; are the normal strain-rate components, ¢;; are
the shear-stress components. The local mass balance is
expressed by the incompressibility equation
ou  Ow
=h—— =il (3)
Or 0z
The ice is assumed to deform as described by Glen's
(1955) generalized flow law

&= A(T*)ri el (4)
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where rr:,, are the deviatoric stress components, defined by

o, =0.+p and o =7, (H)

!
GJ‘ = 0-4" + })' 15
where @/, is an abbreviation of o', ete., and the pressure
= —%[(r‘,. + .) is the mean compressive stress. 7, is the
effective stress where

2f =ul} +of 3272 . (6)

The flow-law exponent n is set to 3 (Paterson, 1994, the
flow-law rate factor A(T™) is a function of temperature
T =T — Ty measured relative to the pressure-melting
point Ty, and T is temperature. Following Dahl-Jensen
(1989a), A(T™) is set to

A(T™) :(0.2071 (’xp“"—’”ﬂ"?"
+ 0.09833 (‘X])U'l [T )IU'“’ e

(7)

with T in units of "C. Equation (7) is a fit to the
Arrhenius relation recommended by Paterson (1994,
The steady-state heat-flow equation may be written

(Dahl-Jensen, 1989a) as
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https://doi.org/10.3189/5026030550001332X Published online by Cambridge University Press

Huidberg: Steady-state thermomechanical modelling of ice flow
S et (T .

where the thermal-heat conductivity K and the specific-
heat capacity ¢ ol ice are temperature dependent (Fire-
stone and others, 1990):

K = 9.828 exp(—0.0057(T + 273.15)) Wm— K~
(2098.1 + 6.97928T) J kg 'K '. (9)

I

¢

Equations (1)-(6) and (8) are the governing equations for
the fields of velocity, stress, pressure and temperature of
steady-state, plane ice flow,

Axisymmetric ice flow

The model uses a eylindrical coordinate system (2.6, z)
(Fig. 1). z and 0 are the horizontal coordinates, where a is
the radial coordinate, and z is the vertical coordinate.
The corresponding velocity components are (u, v, w),
where v = 0. All physical variables are independent of 6
and the shear stresses along the # direction are zero, When
restricted to axisymmetric flow, the governing equations
are as follows with notations and definitions as above. The
stress-cquilibrium equations are

(‘)U.r ‘;)T.r: i Ty — Og —0
dr ' 0z R

and
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du dz R
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where It = . T'he strain rate components are
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The local mass balance is expressed by the incompressi-

(11)

bility equation

du u

or R
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Er+ép+é. =0
The ice is assumed to deform as described by Glen's
generalized flow law (Equation (1)), with the deviatoric-
stress components defined by

div=0,+p, dy=op+p, .=0.+p,

G-’.r: = Tp; 6te: “'3)
where the pressure is p = —%(ﬂ",- +op+0:), and the
cllective stress is

il =ar+og+os 4272 (14)

The steady-state heat-flow equation is here
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Equations (4) and (10} (15) are the governing equations
lor the fields of velocity, stress, pressure and temperature
of steady-state axisymmetric ice flow. The parameter 1/R
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controls the effects from the three-dimensional stresses. It
may be interpretated as the radius of curvature of surface
contour lines of an axisymmetric ice sheet centred at
o =0. At the limit of 1/R — 0, which corresponds to
plane flow, Equations (10) (15) reduce to those for plane
flow.

Boundary conditions

A kinematic condition at the surface is expressed as

as as

i + ws — Uy oz’ (16)

where § = 5(t, ) is the ice surface, t is time and a = a(x)
is the accumulation rate. Equation (16) determines the
evolution of the surface topography. The ice-llow
houndary conditions at the free surface are

as 08

= Tz, Tz

5 O (17)
which expresses that no stresses are imposed at the
surface, i.e. the atmospheric pressure is neglected
compared to the stresses in the ice. At the surface, the
temperature 7} is assumed to be a function of surface
elevation and

T =T(S(t,2)). (18)

If the bedrock temperature is helow the melting point
Thelt, the heat-flow boundary condition at the base
B— Blz) is

()T . Qy,(ﬂu

E - K Thure % Lot s (19)

where Queo is the geothermal heat flux. In this case, the
ice-flow boundary conditions at the base are assumed to
be

= we= s (20)

IT the basal temperatures exceed a temperature of a few
degrees below T, this no-slip condition is too strict, as
sliding may occur at sub-freezing temperatures. No
existing theory yet describes this sliding realistically (sce
discussion in Paterson (1994)). Here, basal sliding is
neglected, as the basal temperatures of the model studies
presented below were several degrees below T
Boundary conditions for 1" > Tj,¢ are not ol present
interest in the model studies presented in this paper.

[n this paper, only the flow close to an ice-sheet divide
is examined. Therefore, boundary conditions must be
specified at the vertical boundaries of the solution domain
(Fig. 1). The following approach is applied (Waddington
and others, 1986): simple flow conditions are assumed at
the vertical boundaries. The error introduced by the
difference between these profiles and the real flow
conditions will propagate several ice thicknesses back into
the solution domain. The solution domain is therefore
extended. Once the flow has been modelled, only the flow
in the original not the extended region can be considered.
The horizontal ice-flow boundary condition is
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where u,,(x) is the depth-averaged horizontal velocity at

the boundary obtained from a global mass-balance
calculation, and n is the flow law exponent. The vertical
ice flow boundary condition is

as
oz

o' =—Ppg(s — 2) (22)

The shapes of Equations (21) and (22) correspond to
those of “laminar flow™ ol isothermal ice (Paterson,
1994). Following Firestone and others (1990), the applied
heat flux is assumed to be zero at the vertical boundaries,
i.e. the horizontal temperature gradient is neglected. How
far the effect from the boundary conditions can propagate
back into the grid depends on the quality of these. With
the boundary conditions in Equations (21) and (22), and
coupled ice and heat flow, it is necessary to extend the
grid 10-15 ice thicknesses (Hvidberg, 1993).

Numerical solution technique

The problem is formulated in terms of the velocity,
pressure and temperature fields, together with an
unknown surface topography. The finite-clement model
is based on the Galerkin method (Zienkiewicz and
Taylor, 1989) and it consists of three sub-models: a
surlace-evolution sub-model, an ice-llow sub-model and a
heat-flow sub-model. The model uses nine-node, two-
dimensional, quadrilateral elements with a curved,
isoparametric mapping. The temperature and velocity
vary hiquadratically within each element. The pressure
varies bilincarly within each element. The ice-llow sub-
model uses 4 x 4 Gaussian quadrature and a standard
Galerkin weighting. The heat-flow sub-model uses 3 x 3
Gaussian quadrature and optimized Petrov-Galerkin
weighting.

The flow solution is found by an iterative procedure,
which is formulated as a time evolution. At each time
step, the surface is developed one time step and the
corresponding ice-flow pattern is calculated, while the
corresponding steady-state temperature field is calculated
at longer time intervals. The iteration is continued until

Table 1. Table with parameters used in the model studies.
The parameters reflect central Greenland conditions

Initial ice thickness H 3025 m
Accumulation rate a 0.2ma '
T hermomechanical models
Surface temperature at

3000 m elevation I =30°C
Surface lapse rate aT /0= 0.01°Cm
Geothermal heat flux s 40 mWm

Isothermal models

205

Lce temperature
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Fig. 2. Longitudinal variations of model vesulls: Surface

slope (a), basal temperatures (b), basal shear stress (¢)

and surface longitudinal-stress deviator (d). Dashed lines b
(Ad) are for the thermomechanical plane-flow model.

Dotled lines (B) are for the thermomechanical axisym-

metric flow model. Long-dashed lines (C) are for the

wsothermal plane-flow model. Chain-dashed lines (D) are

Jor the wsothermal axisymmetric flow model.

T/ (pgHo)

the surface and flow solution have converged into a steady
state. Initial fields are set up a priori from simple analytic
profiles in order to speed up the iteration towards steady
state, The initial surface is a Vialov profile (Paterson,
1994). Initial horizontal velocities are set up from
Equation (21). The initial vertical velocities are derived

Elevation

from Equation (21) through the incompressibility equa-
tion. The emerging matrix equations are symmetric in
plane flow but the required processing time is yet
relatively high.

4 B
Stress

SYMMETRICAL ICE DIVIDES

Fig. 3. Depth profiles of shear-stress and longitudinal-stress

Four symmetric ice divides have been modelled: a plane- deviator for the plane isothermal flowe model (a) and the
low ice divide and an axisymmetric ice dome, both under plane thermomechanical flow model (b). The profiles are
isothermal conditions and coupled thermomechanical showen for seven locations: (0, one-quarter, one-half, one, two,
conditions. The purpose of these experiments is to Sour and ten ice thicknesses from the divide. The profiles at
examine the thermomechanical conditions in the vicinity the divide are for the limit of x — 0. The stresses are
of the ice divide and to obtain insight into the eflect of a normalized, the shear stress with —pg(S — B)OS/0x, and
third dimension. The isothermal models are included for the longitudinal-stress deviator by the surface longitudinal-
comparison with previous ice-divide models. The models stress deviator o, g.
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Lig. 4. Depth profiles of horizontal and vertical velocily components for the isothermal axisymmetric flow model (a), the
isathermal plane-flow model (b) and for the thermomechanical plane-flow model (¢). at seven localions: (), one-quarter.
one-half, one, tewo, four and ten ice thicknesses from the divide. The profiles al the divide ave for the limil of @ — 0.1 he

profiles are normalized by the surface velocities.

used only within about ten ice thicknesses to cach side of
the divide. Closer to the vertical boundaries, the solution
is influenced by the simple shape of the boundary
conditions, as mentioned above.

The surface slopes (Fig. 2a) drop sharply at the divide,
as the rounding appears within one ice thickness from the
divide. This was also observed by Dahl-Jensen (1989b)
and Szidarovsky and others (1989). The problem ol the
sharp drop of the slope has heen recognized previously
(e.g. Morland and Johnson, 1980: Raymond, 1983;
Hutter and others, 1986: Hindmarsh and others, 1989)
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and is due to the use of Glen’s {low law (see discussion in
Hutter (1993)). The plane-flow ice divide is steeper and
narrower than the axisvmmetric ice dome. The isother-
mal models have a sharper divide than the corresponding
thermomechanical models due to the lower temperature
in the basal layers. Basal temperatures are shown in
Figure 2b. In agreement with previous models, a basal
“hot spot™ is seen at the divide (Dahl-Jensen 1989a, b:
Paterson and Waddington, 1986; Firestone and others,
1990), which is due to the rapid change of the vertical
advection close to the divide (see Figure 4 below). The
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Fig. 5. Age depth relations at the divide for the isothermal
plane flow and axisymmetric models (both dotled lines)
and the thermomechanical plane-flow and axisymmetric

models (both full lines).

width of the zone with increased temperatures is two to
three ice thicknesses, widest in the axisymmetric model.
The three-dimensional effects do not influence the bottom
temperature at the divide, only at downstream positions.
The bottom shear stresses decrease rapidly close to the
divide (Iig. 2¢). The decrease occurs over two to three ice
thicknesses, which is a wider divide zone than that of the
surface slope. The surface longitudinal-stress deviator
rises at the divide (Fig. 2d).

Normalized depth profiles at several locations of shear
stress 7, and longitudinal deviatoric stress o, (Fig. 3) and
of velocity (Fig. 4) are shown for some of the models in
order to see how the shape of the profiles changes with
distance from the divide. The plane-flow results are
consistent with previous results for isothermal [low
(Raymond, 1983; Reeh, 1988; [or the divide) and [or
thermomechanical flow (Dahl-Jensen, 1989a; Szidar-
ovsky and others, 1989). Generally, the shape of the
proliles changes fast close to the divide but, as above, the
zone with divide conditions is wider in axisymmetric flow
than in plane flow. The prolfiles of vertical velocity display
the greatest difference: in plane flow the zone with divide
conditions is about one ice thickness wide, while in
axisymmetric flow it is more than [our ice thicknesses
wide. The profiles of shear stress are diflerent from the

usual lincar variation, which is due to the rapid change of

the longitudinal stress deviator near the divide. It is most
pronounced in the thermomechanical model, due to the
relatively warmer temperatures in the lower parts ol the
ice. 'T'he normalized shear stress approaches zero at the
divide, contrary to the results of Dahl-Jensen (1989a).
Age—depth relations at the divide are identical for
plane flow and axisymmetric flow (Fig. 5). The three-
dimensional stresses do not affect the vertcal velocity
pattern at the divide, not even when downstream
conditions of temperature and velocity are different.
Away [from the divide, the three-dimensional effects
influence the low pattern and the surface topography,
implying that the course of the isochrones are different for
plane flow and axisymmetric flow (Fig. 6a). The
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isochrones rise at the divide as found by Dahl-Jensen
(1989b), the rise being sharpest in the plane-flow model.
At the divide, the isochrones coincide and away from the
divide the isochrones of the plane-flow model are found at
depths greater than the corresponding isochrones of the
axisymmetric flow model. The largest differences occur at
about one 10 two ice thicknesses [rom the divide as a result
of a wider zone with divide conditions in the axisym-
metric model. To test the influence from a non-uniform
accumulation rate, two models were set up with linearly
varying accumulation rate between 0.2ma ! at the divide
and 1.0ma ' at distances of 70 km [rom the divide and all
other parameters as before. The resulting isochrones for
these models are shown at Figure 6b. Again, the
isochrones coincide at the divide, downstream the
isochrones differ and it is seen that divergeni-flow
conditions increase the effect from the accumulation-rate
variation, which was also pointed out by Reeh (1989).

CONCLUSION AND DISCUSSION

A coupled ice- and heat-flow model is described, which
models the [low of steady-state, plane and axisymmetric
ice sheets. The model treats the general set of equations
describing the coupled flow of ice and heat flow with a
free surface by using a [inite-element technique. The
problem is formulated in terms of the fields of velocity,
pressure and temperature, and an ice surface in balance
with the unknown fields. The set ol equations is
decoupled, allowing three sub-models to be formed: an
ice-flow model, a heat-llow model and a surface-evolution
model. The solution is found by an iterative procedure
between the sub-models, which is formulated as a time
evolution.

The ice-divide region has been examined for domes
displaying various degrees of divergence: a symmetric,
plane-flow ice divide and an axisvmmetric ice dome.
Within a few ice thicknesses [rom the divide. the flow
pattern and thermal conditions differ qualitatvely from
the conditions further downstream: the longitudinal
strain rate is high, especially in the upper layers; the
horizontal velocity and the shear stresses vanish: the
vertical velocity is smaller than compared to the sides; due
to the decreased downward transport of ice, the
isochrones rise at the divide, and a “hot spot’ is formed
below the divide with temperatures several degrees
warmer than at the sides. These results are all known
from previous plane-flow models. Other results are:

Divergent-flow conditions only influence the condi-
tions at downstream positions not at the divide,
Divergent-flow conditions widen the ice-divide zone;
with respect to the vertical veloeity, it is about one ice
thickness for plane flow but about 5 to 10 ice
thicknesses for axisvmmetric flow,

The age-depth relationship at the divide is indepen-
dent ol the three-dimensional stresses. The isochrones
rise at the divide, most sharply with plane flow. With a
uniform accumulation rate, the isochrones of the
plane-flow model are found at greater depths than
those of the axisymmetric model, with the largest
differences at one to two ice thicknesses [rom the
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Fig. 6. (a) The depth of eight selected isochrones (1, 2,5, 10, 20, 50, 100 and 200 kyear) for the thermomechanical plane-
flow model { full lines) and for the thermomechanical axisymmelric flow model ( dotted lines). "I he models assume a uniform
accumulation rate at 02ma . (b) Same isochrones as in (a) for a thermomechanical plane-flow model (full lines) and a
thermomechanical axisymmetric flow model (dotted lines). The models assume a linear varying accumulation rate between
: o i ] . 5 . > :
0.2ma "’ at the divide and 1.0ma " at distances of 70km from the divide. Other model parameters are as in (a).
divide. Divergent-flow conditions increase the eflect of increase considerably. Furthermore, the model is a
upstream variations of the accumulation rate. steady-state model. When realistic ice sheets are mod-
elled, the three-dimensional structure of the bedrock, the
The model in its present form does not consider the accumulation rate pattern, ete. may be of great im-
three-dimensional set of equations, mainly because the portance and transient effects must be considered. The
required CPU time is yet relatively high and it would climate conditions, expressed by temperature, precipita-
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tion, dust, etc. change with time and determine the
transient variation of the ice thickness, flow pattern and
temperature field. The historic variations of the climate
conditions have an important ellect on the present
conditions in the large ice sheets, as expressed by, for
example, the age depth relation (Dahl-Jensen and others,
1993) or the temperature field (Dahl-Jensen and Johnsen,
1986: Ritz, 1989). The model is partly capable of treating
time-dependent conditions: the calculation of the free
surface is formulated as a time evolution, while the
thermal inertia of the underlying rock stll needs to be
included in the heat-flow part.
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