ON THE MEAN VALUE OF THE ENUMERATION FUNCTION FOR MULTIPLICATIVE PARTITIONS

Cao Hui-Zong and Ku Tung-Hsin

Let $g(n)$ denote the number of multiplicative partitions of the natural number n. We prove that

$$
\sum_{n \leqslant x} g(n)=O_{c}\left(x^{2} \exp \left\{-\left(\frac{1}{4}-\varepsilon\right) \sqrt{\log x \cdot \log \log x}\right\}\right), \varepsilon>0 .
$$

Consider the set $T(n)=\left\{\left(m_{1}, m_{2}, \cdots, m_{s}\right) \mid n=m_{1} m_{2} \cdots m_{s} \& m_{i}>1,1 \leqslant i \leqslant\right.$ $s\}$. where n and $m_{i}, 1 \leqslant i \leqslant s, \in N$, and identify those partitions which differ only in the order of their factors. We define $g(n)=|T(n)|, n>1$, and $g(1)=1$. For example, $g(12)=4$, since $12=6.2=4.3=3.2 .2$.

The behaviour of $g(n)$ is quite erratic, and apparently has not been previously studied in this form [3]. In 1983, Hughes and Shallit [3] proved that $g(n) \leqslant 2 n^{\sqrt{2}}$. In 1987, Chen Xiao-Xia [2] proved that $g(n) \leqslant n$. It is easily seen that $g(n)=O\left(n^{\alpha}\right), \alpha<$ 1 is not true.

In this paper, we discuss the mean value of $g(n)$ and prove that

$$
\sum_{n \leqslant x} g(n)=O_{e}\left(x^{2} \exp \left\{-\left(\frac{1}{4}-\varepsilon\right) \sqrt{\log x \cdot \log \log x}\right\}\right)
$$

Throughout this paper $p(n)$ is the largest prime factor of n for $n>1, p(1)=1$.
For the proof of the result, we need the following lemmas.
Lemma 1. Let $\psi(x, y)=\sum_{\substack{n \leqslant x \\ p(n) \leqslant y}} 1$, then

$$
\psi(x, y)=O\left(x \exp \left\{-\frac{1}{2} \beta \log \beta\right\}\right), \text { for } y=x^{1 / \beta}
$$

Proof: See [1].

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 \$A2.00+0.00.

Lemma 2. Let $n>1$, then $\sum_{\alpha \left\lvert\, \frac{n}{(n)}\right.} d \leqslant 1 /\left(p_{1}-1\right) n$, where p_{1} is the smallest prime factor of \boldsymbol{n}.

Proof: Let $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}, p_{1}<p_{2}<\cdots<p_{r}$. When $r=1$, we have

$$
\sum_{\alpha \left\lvert\, \frac{n}{p(n)}\right.} d=\frac{p_{1}^{\alpha_{1}-1}}{p_{1}-1} \leqslant \frac{1}{p_{1}-1} p_{1}^{\alpha_{1}}
$$

When $r \geqslant 2$, we have

$$
\begin{align*}
\sum_{\alpha \left\lvert\, \frac{n}{p(n)}\right.} d & =\prod_{i=1}^{r-1} \frac{p_{2}^{\alpha_{i}+1}-1}{p_{i}-1} \frac{p_{r}^{\alpha_{r}}-1}{p_{r}-1} \\
& =\frac{1}{p_{1}-1} \prod_{i=1}^{r-1} \frac{p^{\alpha_{i}+1}-1}{p_{i+1}-1}\left(p_{r}^{\alpha_{r}}-1\right) \leqslant \frac{1}{p_{1}-1} \prod_{i=1}^{r-1} \frac{p_{i}^{\alpha_{i}+1}-1}{p_{i}} p_{r}^{\alpha_{r}} \leqslant 1 /\left(p_{1}-1\right) n
\end{align*}
$$

Lemma 3. Let $n>1$, then $g(n) \leqslant \sum_{\alpha \mid n /(p(n))} g(d)$.
Proof: Let $n=\prod_{j=1}^{r} p_{j}^{\alpha_{j}}, p_{1}<p_{2}<\cdots<p_{r}, \alpha_{j} \geqslant 1,1 \leqslant j \leqslant r$. Consider the sets:

$$
\begin{aligned}
& T_{j_{1} j_{2} \cdots j_{r}}=\left\{\left(p_{r} p_{1}^{\alpha_{1}-j_{1}} p_{2}^{\alpha_{2}-j_{2}} \cdots p_{r}^{\left(\alpha_{r}-1\right)-j_{r}}, m_{2}, \cdots, m_{s}\right) ;\right. \\
& \left.n=p_{r} p_{1}^{\alpha_{1}-j_{1}} p_{2}^{\alpha_{2}-j_{2}} \cdots p_{r}^{\left(\alpha_{r}-1\right)-j_{r}} m_{2} \cdots m_{s}, m_{i}>1,2 \leqslant i \leqslant s\right\}
\end{aligned}
$$

where $0 \leqslant j_{i} \leqslant \alpha_{i}$, for $1 \leqslant i \leqslant r-1$, and $0 \leqslant j_{r} \leqslant \alpha_{r}-1$; and where again we identify those partitions which differ only the order of their factors.

We see easily that

$$
\left|T_{j_{1} j_{2} \cdots j_{r}}\right|=g\left(p_{1}^{j_{1}} p_{2}^{j_{2}} \cdots p_{r}^{j_{r}}\right) \text { and } T(n)=\bigcup_{j_{1}=0}^{\alpha_{1}} \bigcup_{j_{2}=0}^{\alpha_{2}} \cdots \bigcup_{j_{r}=0}^{\alpha_{r}-1} T_{j_{1} j_{2} \cdots j_{r}}
$$

So we have

$$
\begin{aligned}
g(n)=|T(n)| \leqslant & \sum_{j_{1}=0}^{\alpha_{1}} \sum_{j_{2}=0}^{\alpha_{2}} \cdots \sum_{j_{2}=0}^{\alpha_{r}-1}\left|T_{j_{1} j_{2} \cdots j_{r}}\right| \\
& =\sum_{j_{1}=0}^{\alpha_{1}} \sum_{j_{2}=0}^{\alpha_{2}} \cdots \sum_{j_{r}=0}^{\alpha_{r}-1} g\left(p_{1}^{j_{1}} p_{2}^{j_{2}} \cdots p_{r}^{j_{r}}\right) \\
& =\sum_{\alpha \left\lvert\, \frac{n}{p(n)}\right.} g(d)
\end{aligned}
$$

Corollary. $g(n) \leqslant n$.
Proof: We use induction on k. When $k=1$, we have $g(1)=1$. Suppose $k>1$ and $g(n) \leqslant n$, for $n \leqslant k$. By Lemma 2, we have

$$
g(k+1) \leqslant \sum_{\alpha \left\lvert\, \frac{k+1}{p(k+1)}\right.} g(d) \leqslant \sum_{\alpha \left\lvert\, \frac{k+1}{p(k+1)}\right.} d \leqslant 1 /\left(p_{1}-1\right)(k+1) \leqslant k+1
$$

where p_{1} is the smallest prime factor of $(k+1)$.
The above proof is much simpler than the proof given in [2].
Proof of the main result: In Lemma 1 , put $\beta=(\log x /(\log \log x))^{1-\delta}$, $0<\delta<1$ and $y=\exp \left\{(\log x)^{\delta}(\log \log x)^{1-\delta}\right\}$. Then we get

$$
\begin{align*}
\psi(x, y) & =O\left(x \exp \left\{-\frac{1-\delta}{2}\left(\frac{\log x}{\log \log x}\right)^{1-\delta}(\log \log x-\log \log \log x)\right\}\right) \tag{1}\\
& =O_{\varepsilon}\left(x \exp \left\{-\frac{(1-\delta)(1-\varepsilon)}{2}(\log x)^{1-6}(\log \log x)^{\delta}\right\}\right)
\end{align*}
$$

Since $g(n) \leqslant n$, using Lemma 3 and (1), we get

$$
\sum_{n \leqslant x} g(n)=\sum_{\substack{n \leqslant x \\ p(n) \leqslant y}} g(n)+\sum_{\substack{n \leqslant x \\ p(n)>y}} g(n)=\sum_{1}+\sum_{2}
$$

where
(2) $\sum_{1} \leqslant \sum_{\substack{n \leqslant x \\ p(n) \leqslant y}} n \leqslant x \psi(x, y)=O_{e}\left(x^{2} \exp \left\{-\frac{(1-\delta)(1-\varepsilon)}{2}(\log x)^{1-\delta}(\log \log x)^{\delta}\right\}\right)$ and

$$
\begin{align*}
\sum_{2} & \leqslant \sum_{\substack{n \leqslant x \\
p(m)>y}} \sum_{\alpha \left\lvert\, \frac{n}{p(n)}\right.} d=\sum_{\substack{n \leqslant x \\
p(n)>y}} \frac{n}{p(n)} \sum_{\alpha \left\lvert\, \frac{n}{p(n)}\right.} \frac{1}{d} \ll \frac{x}{y} \sum_{n \leqslant x} d(n) \tag{3}\\
& =O\left(x^{2} \log x \exp \left\{-(\log x)^{\delta}(\log \log x)^{1-\delta}\right\}\right) .
\end{align*}
$$

Setting $1-\delta=\delta$, we get $\delta=1 / 2$. and by (2), (3), we obtain

$$
\sum_{n \leqslant x} g(n)=O_{e}\left(x^{2} \exp \{-(1 / 4-\varepsilon) \sqrt{\log x \cdot \log \log x}\}\right)
$$

For any $k \geqslant 2, k \in \mathrm{~N}$, let $(\zeta(s))^{K}=\sum_{n=1}^{\infty} \tau_{K}(n) n^{-s}$. Obviously, we have $g(n) \geqslant$ $1 /(k!) \tau_{k}(n)$ and $\sum_{n \leqslant x} g(n) \geqslant 1 /(K!) \sum_{n \leqslant x} \tau_{K}(n)$.

From $D_{K}(x)=\sum_{n \leqslant x} \tau_{K}(n)=x p_{K}(\log x)+O\left(x^{1-1 / K} \log ^{K-2} x\right)$ [4, 263-264], where p_{K} is a polynomial of degree $(K-1)$, and the arbitrariness of K, we obtain that for any given $A>0$, there exists $c(A)>0$ such that $\sum_{n \leqslant x} g(n) \geqslant c(A) x \log ^{A} x$, when x is sufficiently large.

So, for a lower bound of the mean vlaue of $g(n)$, we conjecture that $\sum_{n \leqslant x} g(n) \geqslant$ $c_{0} x \exp \left(c_{1} \log ^{\lambda} x\right), c_{0}, c_{1}>0,0<\lambda \leqslant 1$, when x is sufficiently large.
[

References

[1] N.G. de Bruijn, 'On the number of positive integers $\leqslant x$ and free of prime factors $>\boldsymbol{y}$ ', Indag. Math. 13 (1951), 50-60.
[2] Chen Xiao-Xia, 'On multiplicative partitions of natural number', Acta Math. Sinica 30 (1987), 268-271.
[3] John F. Hughes and J.O. Shallit, 'On the number of multiplicative partitions', Amer. Math. Monthly 90 (1983), 468-471.
[4] E.C. Titchmarsh, The theory of the Riemann Zeta-Function (OUP, 1951).

Department of Mathematics Shandong University Jinan Shandong China

The Hefei Branch of Combinatorial Maths Academia Sinica
Hefei Anhui
China

[^0]: Received 19 June 1989

