
Ice flow at low deviatoric stress

Erin C. PETTIT, Edwin D.WADDINGTON
Department of Earth and Space Sciences, University ofWashington, P.O. Box 351350, Seattle,Washington 98195-1310, U.S.A.

E-mail: epettit@ess.washington.edu

ABSTRACT. The effective viscosity of ice depends upon many factors, including tem-
perature, deviatoric stress, crystal orientation and impurities. A flow law that includes these
factors and is simple to implement is a requirement for numerically efficient ice-flow models.
The dominant microscale flow mechanism changes as temperature, deviatoric stress or
grain-size changes. For both anisotropic and isotropic constitutive relations, this shift in
dominant flow mechanism is expressed as a change in the stress exponent. We study the
effects of this shift in stress exponent on ice flow using a two-term flow law for isotropic ice.
Our stress^strain-rate relationship does not explicitly describe the microscale processes of ice
deformation; however, it encompasses a range of deformationbehaviorswith a simple law. In
terrestrial ice, a flow-mechanism shift may occur in low-deviatoric-stress regions near ice
divides, resulting in a near-linear constitutive relationship for ice flow. Compared to a non-
linear (Glen) divide, a divide dominated by a near-linear flow mechanism has vertical-
velocity profiles that are similar at divide and flank sites, internal layers that do not develop
a Raymond bump, and a steady-state surface profile that is more rounded near the divide.

NOTATION

A Flow-law softness parameter (Pa n̂s^1)
Ao Temperature-independent softness parameter for

clean, isotropic, Holocene ice (Pa n̂s^1)
E Enhancement factor relative to Holocene ice
H Ice-equivalent ice-sheet thickness (m)
Q Thermal activation energy for creep (J mol^1)
R Gas constant (8.314 J mol^1 K^1)
T Temperature (K)
_bb Ice-equivalent accumulation rate (m a^1)
d Average grain diameter (m)
k Crossover stress (Pa)
n Stress exponent in flow law
p Grain-size exponent in flow law
u Velocity vector (m a^1)
¡ Coefficient of Glen term in flow law (equal to coeffi-

cient for `̀normal’’ Glen flow when p ˆ 0)
« Non-dimensional effective deviatoric stress
«char Characteristic « for a particular divide
¯ Length scale for deformation of 10% strain (m)
_°°ij Strain-rate tensor (s^1)
_°°char Characteristic strain rate (s^1, equals _bb=H)
_°°eff Effective strain rate (s^1, second invariant of _°°ij)
²eff Effective viscosity (Pa s)
¼ij Stress tensor (Pa)
½ij Deviatoric stress tensor (Pa)
½char Characteristic stress for a particular divide (Pa)
½eff Effective shear stress (Pa, second invariant of ½ij)

INTRODUCTION

Information about the history of Earth’s climate is preserved
in annual layers in ice sheets. Our access to these annual
layers, however, is limited to ice cores, boreholes and ice-

penetrating radar. Full interpretation of these data in terms
of climate and ice-sheet history requires an understanding of
local ice flow through accurate ice-flow modeling.

By comparing paleoclimate ice-core records or radar
images with predictions from ice-flow models, scientists can
infer constraints on the historical variations in accumulation
rate, surface elevation and surface temperature. For example,
Paterson and Waddington (1984) deduced past accumulation
rates on Devon Island, Canada, from the thickness of strati-
graphically dated annual layers in ice cores. Nereson and
others (1998) used a model of ice flow to infer recent flow his-
tory from radar internal reflections (isochrones) at Siple
Dome,West Antarctica. Hvidberg and others (1997) modeled
the flow from the Greenland Icecore Project (GRIP) ice-core
site to the Greenland Ice Sheet Project 2 (GISP2) site to aid in
the interpretation of the cores. Marshall and Cuffey (2000)
studied the effects of a wandering divide at Greenland’s sum-
mit on ice-core records. Large-scale models of present and
paleo-ice sheets relate geophysicalandgeologicevidence such
as postglacial uplift and glacial landforms to ice-core climate
histories (e.g. Greve,1997; Marshall and others, 2000; Peltier
and others, 2000).

Most ice-sheet models use a constitutive relation for ice
based on Glen’s law (Glen,1958): _°°eff ˆ A½3

eff , where _°°eff is the
effective strain rate (the second invariant of the strain-rate
tensor), ½eff is the effective deviatoric stress (the second
invariant of the stress tensor), and A is known as the softness
parameter. This relationship was generalized to a tensor form
by Nye (1957). Experiments and field observations show that
Glen’s law provides a goodapproximationto ice flow at many
locations in glaciers and ice sheets, but its applicability is not
universal. The deformation rate of ice is a function of many
properties of the ice; impurity content, crystal orientation
and temperature are examples. Through detailed obser-
vations and modeling of ice sheets and glaciers, and through
laboratory experiments on ice samples, deviations from
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Glen’s law have become more evident.There is an increasing
need to formulate a flow law that is more widely applicable
and is also simple enough to be incorporated easily into
current flow models.

There are multiple mechanisms at work in the deform-
ation of ice, and different mechanisms dominate under
different conditions. Glen’s law (Glen,1958), with an exponent
of 3, describes flow dominated by dislocation glide on the
basal plane, rate-limited by dislocationclimb (e.g.Weertman,
1973; Alley,1992). Another interpretation of Glen’s law is that
it expresses the transition region between dislocation creep
with an exponent of 4 and a grain-size-sensitive process with
an exponent of 1.8 (Durham and Stern, 2001; Goldsby and
Kohlstedt, 2001). In polycrystals, the dominant mechanisms
shift as deviatoric stress decreases. At the lowest deviatoric
stresses, Newtonian flow prevails, according to studies of
polycrystalline metals (e.g. Langdon, 1991, 1996). There is
currently debate over which mechanisms dominate in various
deviatoric-stress and temperature regimes within an ice sheet.
We approach this discussion from an ice-sheet modeling point
of view. A flow law that is non-mechanism-specific but has the
ability to encompass awide range of behaviorswouldbe useful
for ice-sheet flow models. We formulate a phenomenological
isotropic flow law, and incorporate it into a two-dimensional
plane-strain steady-state finite-element model to explore how
a shift in mechanism at low deviatoric stress expresses itself in
ice sheets. Anisotropic flow laws (Azuma, 1994; Azuma and
Goto-Azuma,1996; Castelnau and others,1996;Thorsteinsson,
2001) typically use a power law with a specified stress expo-
nent, similar to Glen’s law, to define deformation rate on the
basal plane of individual crystals; thus, our results will apply
to models of anisotropic ice as well.

GLEN’S ISOTROPIC FLOW LAW

Glen’s law (Glen,1958) relates deviatoric stress to strain rate,
assuming that ice is an incompressible, isotropic polycrystal
that obeys a power-law form similar to polycrystallinemetals
(Nye, 1953; Glen, 1955). The most widely used expression of
Glen’s law is

_°°ij ˆ EAoe
¡ Q

RT …½ 2
eff †

n¡1
2 ½ij ; …1†

where _°°ij and ½ij are the strain-rate and stress tensors,
respectively, ½eff is the effective shear stress, and n is a con-
stant (usually equal to 3). Ao (often called the softness param-
eter) is a constant that describes clean, isotropic, Holocene
glacier ice, with units of Pa^n s^1. Strain rate is a function of
temperature according to an Arrhenius relationship where
Q is the thermal activation energy for creep, R is the gas
constant, and T is temperature. The coefficient E is the
enhancement factor, a non-dimensional multiplier describing
the increase or decrease in strain rate caused by variations
in crystal size, impurity content and crystal orientation. E is
a function of position and, in the case of crystal orientation,
local deformation field.The necessity of this correction factor
is one indication of the need to refine Glen’s law. There is a
slight dependence of strain rate on hydrostatic pressure
(Paterson,1994), but we followstandardpractice and neglect it.

Laboratory and field studies have focused on empiri-
cally determining Ao and n, assuming E ˆ 1. Weertman
(1973), Budd and Jacka (1989), Paterson (1994) and Goldsby
and Kohlstedt (2001) provide reviews. Currently, most ice-
sheet and glacier models use n ˆ 3 and Ao as given by table
5.2 in Paterson (1994). This formulation, however, is inad-

equate in some situations. For example, in strongly aniso-
tropic ice, E is insufficient for expressing any but the
simplest deformation fields. Equation (1) is inappropriate
for ice with a strong crystal fabric (e.g. Van der Veen and
Whillans,1994; Azuma and Goto-Azuma,1996;Thorsteins-
son, 2001).

In low-deviatoric-stress environments, particularly in the
central regions of ice sheets, Glen’s law predicts unusually
high viscosities. By rearranging Equation (1) to the standard
form for a linear viscous fluid,

½ij ˆ 2²eff _°°ij ; …2†
we define an effective viscosity, ²eff :

²eff ˆ ‰2EAoe
¡ Q

RT …½ 2
eff †

n¡1
2 Š¡1 : …3†

For any n greater than1, this viscosity goes to infinity as ½eff

goes to zero; this may result in a singularity in the viscosity
at the base of the ice under a divide. In polycrystalline
metals, however, the viscosity is bounded at low deviatoric
stress by a transition to a linear regime (Langdon,1991).We
can expect a similar transition to appear in flow mechan-
isms in ice.

The validity of Glen’s law with n ˆ 3 has been verified
with some confidence in the laboratory and field down to
½eff ˆ 0.3 bar (30 kPa) (Budd and Jacka, 1989). However,
Duval and others (2000) suggest that ½eff ˆ 2 bar is the lower
limit to the validity of Glen’s law with n ˆ 3; at lower devia-
toric stresses, n < 2. Since a deviatoric stress of less than
0.5 bar is not uncommon in divide regions of ice sheets, a con-
stitutive relation for ice in ice-sheet models should incor-
porate behavior appropriate for low-deviatoric-stress flow
regimes, especially those models that focus on near-divide
regions.

Meier (1958) suggested adding a linear term to the flow
law, explaining,`̀One should expect that the resultant flow
of a polycrystalline mass would be the sum of contributions
from at least two mechanisms.’’ The additional term implies
that there is a shift in mechanism as the deviatoric stress
decreases; but because Glen’s law works most of the time,
many researchers neglect the added complexity of an add-
itional term. Also, at low deviatoric stresses and low tem-
peratures, the laboratory experiments needed to determine
the best flow-law parameters could take millennia to run.
(For example, at deviatoric stresses and temperatures typ-
ical of Siple Dome, West Antarctica, 0.2 bar and ^15³C, a
sample could require ¹1500 years to undergo 10% strain.)
In the lower-deviatoric-stress regions of ice sheets (Fig. 1),
however, this change in behavior may be significant, par-
ticularly for interpreting ice-core or other data collected
near an ice divide.

MICROPHYSICAL PROCESSES AT LOW DEVIA-
TORIC STRESS

Identifying the mechanisms at work in ice deformation is no
easy chore, and we do not intend to do it here. Weertman
(1973), Lliboutry (1987), Alley (1992) and Goldsby and Kohl-
stedt (2001) provide background information on the micro-
physical processes in ice. We do, however, want to highlight
the processes that may make a multi-term flow law neces-
sary at low deviatoric stresses.

At deviatoric stresses in the range 0.5 bar (50 kPa) to
1.5 bar (150 kPa), typical of ice in valley glaciers and in all
but the central and near-surface regions of ice sheets, disloca-
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tion glide on the basal plane is thought to dominate deform-
ation. During dislocation glide, dislocations move through
the crystal along the basal plane. An applied stress causes dis-
locations to multiply and get tangled up or stuck on obstacles
(grain boundaries, solid impurities), thereby increasing
strain energy in the crystal. Recovery processes work to
decrease the strain energy. They include the creation and
migration of grain and sub-grain boundaries (through poly-
gonization or twinning), the diffusion of vacancies and inter-
stitials, andthe nucleation of new grains. In addition, crystals
tend to rotate such that their c axes move towardthe principal
compressive deviatoric stress. This rotation often requires a
modification of grain shape through diffusion of vacancies,
movement of dislocations alongand within grain boundaries,
and grain-boundary migration. In an ice sheet, all of these
processes work to create characteristic grain-sizes and crystal
fabrics that depend on temperature and strain histories.

The third power of deviatoric stress in Glen’s law is an
empirical result. Weertman (1973) discussed the disloca-
tion-glide theory to support these results. According to
Weertman (1973), Glen’s law can be derived from two
assumptions. First, dislocations move along the basal plane
with a velocity proportional to the deviatoric stress. Second,
balance between dislocation-multiplication and recovery
processes determines the dislocation saturation density,
which is proportional to the square of the stress deviator.
This second assumption equates the average internal stress
(due to the presence of dislocations) to the applied stress.

As deviatoric stress in the ice decreases, the dominant
mechanism of flow changes.There are several processes that
may be involved: diffusion creep, Harper^Dorn creep and grain
boundary sliding (superplasticity). In diffusion creep, a grain
deforms by diffusion of vacancies from regions of low com-
pressive stress to regions of high compressive stress through
the crystal (Nabarro^Herring creep) and along boundaries
(Coble creep). Likewise, interstitials move from regions of high
compressive stress to regions of low compressive stress.
Theoretically, this results in a linear stress^strain-rate relation
(Lliboutry,1987). Because the high- and low-stress source and
sink regions are most often along grain boundaries, this pro-
cess depends on grain-size.With the large grain-sizes found in

natural ice (1mm to 10 cm), Lliboutry (1987) and many others
consider diffusion creep to be negligible.

Harper^Dorn creep is similar to dislocation glide in that
deformation is dominated by motion of dislocations along
the basal plane; however, in this case, the dislocation density
is independent of stress.This occurs when dislocation-multi-
plication processes proceed so slowly that the rate of
recovery due to diffusion and grain-boundary migration
dominates (Alley, 1992; Montagnat and Duval, 2000); thus,
dislocations disappear at the same rate as they are being
created. According to this theory, n º1and the deformation
rate has a negligible dependence on grain-size.

Grain-boundary sliding is strongly dependent on grain-
size. In this superplastic deformation, almost all of the dis-
locations are on the grain boundaries. The deformation is
primarily a result of dislocation climb and glide within the
grain boundaries. Langdon (1991, 1994) described this type
of deformation and its relationship with other deformation
mechanisms (see Langdon,1991, fig. 7). For grain-boundary
sliding in metals, Langdon (1994) showed evidence that n ¹
2 for small grain-sizes and n ¹ 3 for larger grain-sizes.
Recently, Goldsby and Kohlstedt (1997) found evidence for
grain-boundary sliding in ice of small crystal size (3^
200 mm) at moderate-to-high deviatoric stresses (relative to
stresses found in existing ice sheets).They found n ˆ1.8 best
fit their data.Whether this process dominates in natural ice
(with much larger crystals and lower stresses) and what
value of stress exponent is most applicable is still under de-
bate. Grain-size is not an independent parameter, and feed-
backs between grain-growth processes and grain-size-
sensitive deformation processes are not fully understood
(Duval and Lliboutry, 1985; Durham and Stern, 2001).
Furthermore, larger crystals often have complex shapes,
and thus additional processes (e.g. polygonization or grain-
boundary migration) must be present to prevent cavities or
overlapping grains or to relieve stress concentrations. Even
if grain-boundary sliding does become dominant at lower
deviatoric stress, we expect that it must be superseded at still
lower deviatoric stress by an n ˆ 1 process by analogy with
polycrystalline metals (Langdon,1991).

MODIFIED ISOTROPIC FLOW LAW

Because ice in an ice sheet moves through regions of different
deviatoric-stress configurations, it is necessary to explore the
assumption that strain rate depends only on the contempor-
ary temperature and state of deviatoric stress. With this
assumption, temperature and strain histories affect strain
rate only through the grain-size and crystal orientation that
they produce. In other words, is ice moving through non-
uniform deviatoric-stress fields slowly enough that its strain
rate equilibrates with the local deviatoric-stress field, or are
deviatoric-stress gradients also important? It is commonly
assumed that ice `̀ forgets’’ past stress conditions after it has
undergone 10% total strain (defined as steady-state creep
(Paterson, 1994, p.83)). The length scale for significant
changes in the deviatoric stress near an ice divide is one to
several ice thicknesses (Raymond,1983). We express a char-
acteristic length scale, ,̄ over which ice acquires 10% total
strain as:

¯ º 0:1
juj
_°°char

; …4†

Fig. 1. Cartoon showing the approximate pattern of effective
deviatoric stress, ½eff, for a typical ice divide.The arrows show
approximate ice-flow trajectories. ½xx is the longitudinal stress,
which cannot be ignored in the region near an ice divide. It is
largest near the surface and approaches zero near the bed (Ray-
mond, 1983). ½xz is the horizontal shear stress. It is zero at the
divide and increases with depth and with distance from the
divide. The extent of the region of very low deviatoric stress
(white) will vary with the thickness and the accumulation rate.
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where juj is the velocity magnitude. A characteristic strain
rate, _°°char, can be derived from the accumulation rate, _bb,
and the characteristic thickness, H ( _°°char º _bb=H). The
speed, juj, also scales with the accumulation rate. Thus,
the characteristic length scale for 10% strain is ¯ º 0.1H.
Since 0.1H is much smaller than the scale of typical devia-
toric-stress-field variations (except perhaps near bedrock
bumps), we can assume that the strain-rate field near a
divide is a function only of the contemporary deviatoric-
stress field. This allows us to confidently write an ice-sheet-
scale flow law that relates the strain rate to only the coexist-
ing state of deviatoric stress in the ice and the coexisting ice
properties.

Attention has recently focused on methods for relating
deformation rate to anisotropic crystal fabric (e.g. Lliboutry,
1993; Azuma,1994; Castelnau and others,1996; Thorsteinsson
and others,1999), impurities (e.g. Paterson,1991; Cuffey,1999;
Thorsteinsson and others,1999) and grain-size (e.g. Goldsby
and Kohlstedt,1997, 2001; Cuffey and others, 2000b). In simple
cases, these effects can be incorporated into the enhance-
ment factor, E. In anisotropic flow laws for polycrystals,
however, Glen’s law is often abandoned in favor of one that
details the strain rate of individual crystals within the poly-
crystalline aggregate, using a non-linear constitutive
relation for deformation along basal planes. For example, a
flow law of this type worked well in separating crystal fabric
and impurity effects on the shear strain rates measured in the
Dye 3 borehole in Greenland (Thorsteinsson and others,
1999;Thorsteinsson, 2000).

These modifications to Glen’s law, however, are incom-
plete. If the mechanism of deformation changes in low-
deviatoric-stress regions of ice sheets, then a change in the
enhancement factor, E, or implementation of a fully aniso-
tropic flow law that maintains the n ˆ 3 assumption cannot
accurately describe the flow; a change in the exponentof the
constitutive relation is also necessary.

There are two ways to combine creep rates of multiple
mechanisms: independently and sequentially (Langdon and
Mohamed,1977). In sequential processes (sometimes called
dependent processes (Durham and Stern, 2001)), the two
mechanisms interact such that the slowest process is rate-
limiting. The observed strain rate, _°°, is determined through
1= _°° ˆ

P
i 1= _°°i, where _°°i are the strain rates for individual

mechanisms. If two mechanisms operate independently,
then the fastest process dominates flow, and their strain rates
sum: _°° ˆ

P
i _°i°i. In ice, most data (e.g. Colbeck and Evans,

1973; Langdon,1973; Durham and others, 2001; Goldsby and
Kohlstedt, 2001) show that the stress exponent in the flow law
increases with increasing deviatoric stress; this is a character-
istic of independent processes. Goldsby and Kohlstedt (1997)
did find sequential processes in some of their experiments,
but only in their finest-grain samples (3 mm); therefore, they
are not likely to affect the flow of ice sheets. Peltier and others
(2000), Durham and others (2001) and Goldsby and Kohl-
stedt (2001) suggest a flow law in which the total strain rate is
an independent and sequential combination of four different
mechanisms. This type of constitutive relation has also been
found for polycrystalline metals (Langdon, 1991). Such a
relation is useful for studies of laboratory-scale ice deform-
ation, but becomes less appealing at larger scales if it means
we have to track particle size distributions as well as tempera-
ture and fabric.

While the debate over dominant mechanisms continues,
we take a pragmatic approach to refining Glen’s law for

modeling ice sheets. We propose a multi-term flow law that
can approximate the expected behavior from a combination
of mechanisms. We expand Equation (1) to three terms and
include a possible grain-size dependence. Our flow law is:

_°°ij ˆ
X3

mˆ1

EmAom

dpm
e¡Qm

RT …½ 2
eff†

m¡1½ij ; …5†

where Ao and E have the same meanings as in Equation (1),
but may be different for each term. d is the average grain-
size, and pm is a constant for each term.

For a given grain-size, d, the three terms in this equation
are equivalent to three versions of Equation (1) with n ˆ 1, 3
or 5. Laboratory and field studies have inferred exponents
ranging from n ˆ 1 to n ˆ 4.2 (Weertman,1973, table 2). For
example, Goldsby and Kohlstedt (1997) fit n ˆ 1.8 and n ˆ
2.4 to their data in studies of grain-boundary sliding; Wolff
and Doake (1986) argued that an n ˆ1 relation best predicts
the borehole-deformationdata from Devon Ice Cap, Canada,
and the depth^age profile at Camp Century, Greenland.
Many of these data can be fit (within their uncertainties)
with our formulation in Equation (5) by selecting the appro-
priate softness parameter and enhancement factor for each
term. For ice-sheet-scale modeling purposes, it is not always
necessary to have a separate term for each suspected mech-
anism, as long as the form that is used approximates the cor-
rect behavior. Indeed, this formulation is not intended to
individually describe the microphysics of each deformation
mechanism, but to provide a simple empirical form to repre-
sent deformation over a wider range of conditions than Glen’s
law with n ˆ 3.

Several other authors, in addition to Meier (1958), have
found multi-term flow laws to be useful. Lliboutry (1969)
used a three-term polynomial to accommodate the spread
of existing laboratory and field data, as well as to achieve
mathematical simplicity. Colbeck and Evans (1973) fit their
data from Blue Glacier,Washington, U.S.A., to a three-term
flow law similar to Equation (5). Hutter and others (1981)
introduced a linear term to avoid the singularity in viscosity
(Equation (3)) in Glen’s law as the deviatoric stress goes to
zero. Smith and Morland (1981) needed a polynomial flow
law to express the stress^strain-rate relationship for the wide
range of empirical data in the literature. Waddington and
others (1996) explored the effects of the linear term on ice
divides. In this paper, we expand onWaddington and others
(1996) and show that a linear term can have a significant
impact on some ice-sheet modeling applications.

To explore the effect of a shift in mechanism at low devia-
toric stress, we focus on just the first two terms, representing
linear and Glen (n ˆ 3) stress^strain-rate dependencies:

_°°ij ˆ E1Ao1

dp1
e¡Q1

RT

µ

|‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚}
linear term

‡ E2Ao2

dp2
e¡Q2

RT …½ 2
eff †

¶

|‚‚‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚‚‚}
Glen term

½ij : …6†

If the coefficients of the second term are factored out, Equa-
tion (6) can be rewritten:

_°°ij ˆ ¡‰k2 ‡ ½ 2
eff Š½ij ; …7†

where

¡ ˆ E2Ao2

dp2
e¡Q2

RT …8†
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is the coefficient for normal Glen flow when p2 ˆ 0 (there is
no crystal size dependency in Glen’s law) and

k ˆ E1Ao1

E2Ao2

dp2

dp1
e¡Q1¡Q2

RT

µ ¶1=2

: …9†

In this formulation, k, the crossover stress, is the effective devia-
toric stress at which the linear and cubic terms contribute
equally to the total strain rate (see Fig.2). k is the square root
of the ratio of the coefficients of the two terms in Equation
(6). The effective viscosity is now ²eff ˆ …2¡‰k2 ‡ ½2

eff Š†
¡1,

which remains finite as ½eff ! 0 (cf. Equation (3)). The
expression for k in Equation (9) highlights the sensitivity of
the crossover stress to properties of the ice such as tempera-
ture, thermal activationenergy and grain-size. For example,
if the microscale flow mechanisms have different thermal
activation energies, then k2 will depend on temperature
through a factor of e¡…Q1¡Q2†=RT . This effect can be large: a
difference in activation energy of 10 kJ mol^1 will result in a
difference of approximately one order of magnitude in k for
typical ice-sheet temperatures. Langdon and Mohamed
(1977) have provided a detailed description of the effect of
thermal activation energies for both sequentially and inde-
pendently combined creep processes in metals.

As another example, two of the three mechanisms (diffu-
sion creep and grain-boundary sliding) that may dominate at
low deviatoric stress depend on grain-size; therefore, we
include a grain-size dependence in our flow law. If p1 6ˆ p2,
the crossover stress will also depend on grain-size. Creep rate
is independent of instantaneous grain-size for the normal
Glen regime (Paterson,1994), so probably p2 ˆ 0 in Equation
(5). Goldsby and Kohlstedt (1997) fit their data with a grain-
size dependence of p ˆ 1.4 for a flow law with an exponent of
n ˆ 1.8. To be represented by Equation (6), however, their
data would have to be re-analyzed to find the best-fitting
parameters.

Crossover stress may depend on other ice properties as
well. For example, since the n ˆ 1 Harper^Dorn creep
mechanism is based on dislocation glide on the basal plane,
it likely has the same crystal-orientation dependence as n ˆ
3 dislocation creep. If these two mechanisms dominate, and
crystal orientation is expressed approximately through
enhancement factors, Em, then E1 ˆ E2 in Equation (9),
and k is independent of crystal orientation. A diffusional pro-

cess or grain-boundary sliding, however, may be independent
of crystal orientation. If one of these processes dominates
deformation rate at low deviatoric stress, then E1 6ˆ E2 and
k depends on crystal orientation.

A useful parameter that can readily show which term
(linear or Glen) is dominant anywhere in an ice sheet is:

« ˆ ½eff
2

k2

µ ¶1=2

: …10†

« is a non-dimensional stress that describes the relationship
between the effective deviatoric stress and the crossover
stress. The effective deviatoric stress is a function of a divide’s
geometry and climate, while the crossover stress is a material
property independent of geometry and accumulation rate,
but dependent upon other ice properties according to Equa-
tion (9).The flow law expressed in terms of « is:

_°°ij ˆ ¡k2‰1 ‡ «2Š½ij : …11†

Fig. 2. Strain rate vs deviatoric stress for the linear and cubic
terms in Equation (7).The dashed curve shows the total strain
rate (i.e. the sum of the two terms). k is the crossover stress at
which the linear and cubic terms contribute equally to the total
strain rate.

Fig. 3. The natural range of divide characteristic stress on
Earth, illustrated by applying Equation (12) to a wide range
of ice divides worldwide.We estimated H, _bb and T from data
available from a variety of sources, including scientific litera-
ture, web sites, atlases and personal communications. The
three divides shown in bold type are studied in more detail in
Figures 6 and 7. Labels are as follows: Q, Quelccaya ice cap,
Andes, Peru (SAIC); BG, Blue Glacier, Olympic Moun-
tains, Washington, U.S.A.; D, Dunde ice cap, Qinghai^
Tibetan Plateau;V,Vatnajo« kull, Iceland; Au, Austfonna ice
cap, Svalbard; G, Guliya ice cap, Qinghai^Tibetan Plateau;
B, Barnes Ice Cap, Baffin Island, Canada; Ag, Agassiz Ice
Cap, Ellesmere Island, Canada; DI, Devon Ice Cap, Canada;
LD, Law Dome,Wilkes Land, East Antarctica;WAIS, in-
land divide of the West Antarctic ice sheet; SD, Siple Dome,
Siple Coast, West Antarctica (SWAR); GS, Greenland
Summit (GRIP/GISP2); L(LGM), Laurentide paleo-ice
sheet at Last Glacial Maximum (LGM), North America;
TD, Taylor Dome, Victoria Land, East Antarctica;
TD(LGM), Taylor Dome at LGM, Victoria Land, East
Antarctica; DA, Dome A, East Antarctica; VD, Valkyrie
Dome, site of Dome Fuji station, Dronning Maud Land,
East Antarctica (EAR).
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DIVIDE CHARACTERISTIC STRESS

The effect of the linear term in Equation (11) on an ice sheet
depends on the distribution of deviatoric stress in the ice sheet
and on the value of the crossover stress, k. The deviatoric-
stress field in an ice sheet depends primarily on the geometry.
Figure 1 shows the typical pattern of effective deviatoric
stress, ½eff, near an ice divide.The linear term in the flow law
will be important if « ˆ ‰½2

eff=k2Š1=2 µ 1. Since « is a function
of position, it is useful to define a characteristic stress (½char)
to represent the large-scale behavior of a particular divide.
Equation (7) suggests the form:

½char ˆ 2¡
H

_bb

µ ¶¡1=3

; …12†

where _°°char º _bb=H is the characteristic strain rate.With this
definition, ½char is of the same order of magnitude as the
average ½eff in the vicinity of the divide, except for those
divides strongly dominated by the linear term (k2 ¾ ½ 2

eff ).
Similarly, we can define a non-dimensional characteristic

stress using «:

«char ˆ ½ 2
char

k2
char

µ ¶1=2

; …13†

where kchar is a characteristic value for k based on the prop-
erties of the ice at two-thirds depth under the divide (the
region most sensitive to the presence of the linear term).

Figure 3 shows characteristic stresses for various divides,
based on estimated ice thickness (H), average accumulation
rate ( _bb), and temperature (T ) in the lower half of the ice
column.These numbers come from several sources, including
a variety of scientific literature, web sites, and personal com-
munications. While this is a crude representation of condi-
tions under any particular divide, this graph shows the
spread of possible characteristics. Even with estimates shown
in Figure 3, we cannot determine which divides have «char >
1 (exhibiting primarily Glen rheology) or have «char < 1
(exhibiting primarily linear rheology) without knowing
kchar.We can, however, use Figure 3 to guide selection of sites
at which to make measurements to constrain kchar.

Figure 4 shows schematically the relationship between
«char and a divide’s behavior. When «char is large (½2

char ¾
k2

char), divide deformation is dominated by the Glen term in
the flow law; we call this a Glen divide. When «char is small
(½2

char ½ k2
char), we get a linear divide, where the linear term

dominates right at the divide, while the Glen term is progres-
sively more important with increasing distance from the
divide. In a transitional divide (0.5 < «char < 2), both terms
contribute significantly to the modeled deformation rate at
the divide. Ice flow at linear and transitional divides is
modeled inaccurately with the conventional Glen’s law.

FINITE-ELEMENT ICE-FLOW MODEL

Raymond (1983) developed a two-dimensional, plane-strain,
finite-element model using all terms of the stress tensor to
study divide behavior.We have modified this model to explore
the impact of the linear term in the flowlaw on ice flow near a
divide.

The model is structured aroundthe followingassumptions:

1. The ice deforms in plane strain; thus, the model best rep-
resents a ridge ice divide, such as Siple Dome (Nereson
and others, 1996) or Roosevelt Island, West Antarctica
(Conway and others,1999).

2. The ice sheet is in steady state.

3. Strain rate is a function of deviatoric stress according to
Equation (11). We do not account for effects of fabric,
impurities or grain-size in this model. This flow law is
implemented by calculatingan effective viscosity at each
iteration based on the stress field of the previous iter-
ation. These iterations continue until a convergence
criterion is met.

4. Measured temperature profiles in the divide regions of
ice sheets typically have a low gradient near the surface
and a steeper gradient near the bed. To capture the
qualitative features of this shape, we use a quarter of a
cosine curve, specified by measured surface temperature
and estimated geothermal gradient at the bed.

5. Total thickness of the ice and firn is reduced to ice-
equivalent thickness.

6. The ice is frozen to the bed.

Fig. 4. Characterization of ice divides based on magnitude of
non-dimensional stress, «.Where « ˆ ‰½2

eff=k2Š1=2 is greater
than unity (shaded region), the Glen term in the flow law will
dominate; where « is less than unity (unshaded region), the
linear term will dominate.
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7. The ice surface is stress-free and is allowed to evolve
until the topography reaches a steady state with the
specified uniform accumulation rate. We terminate the
evolution when the maximum change in surface-node
elevations is µ 1mm a^1.

8. The horizontal-velocity profile on the flank boundary
(at ¹30 ice thicknesses from the divide) is based on
laminar flow, and carries away the integrated mass
balance from the divide to the boundary, in order to
satisfy mass conservation for a steady-state ice sheet.
Because our boundary is 420 ice thicknesses from the
divide, results for the region within 10 ice thicknesses of
the divide are insensitive to the details of the horizontal-
velocity profile on the flank boundary (Raymond,1983;
SchÖtt and others,1992).

9. We use finite-element grids with flat beds and 66620
nodes. We choose initial ice thicknesses and accumu-
lation rates to represent three ice divides that have very
different characteristic stresses.

In order to isolate effects of the flow law from site-spe-
cific geometry, we model idealized ice sheets with flat beds
and with the average accumulation rate, thickness and
deep-ice temperature characteristic of three divides that
span a broad range of characteristic stress in Figure 3. The
East Antarctic ridge (EAR) end-member approximatesValkyrie
Dome, the site of Dome Fuji station, a thick, cold, low-
accumulation region. Siple Dome is the model for our small
West Antarctic ridge (SWAR), with moderate accumulation
rate and thickness. The other end-member is a small alpine
ice cap (SAIC); the thin, high-accumulation Quelccaya ice
cap, Peru, is an example.Table 1contains the model param-
eters that we use. In modeling each divide, we vary the
crossover stress, k, from 0 (Glen flow) to 0.4 bar; this range
spans all characteristic stresses in Figure 3.

RESULTS

Vertical velocity and depth^age scale

Raymond (1983) used an earlier version of this model to
determine the steady-state patterns of deviatoric stress and
strain rate under an isothermal divide with Glen flow. His
figure 3 shows the depth profile of horizontal and vertical
velocity at the divide and at various distances from the
divide. There are two results to note in this figure: (1) the
region affected by the presence of the divide extends hori-
zontally several ice thicknesses, and (2) the vertical deform-

ation rate is more concentrated in the upper two-thirds of
the ice sheet near the divide, when compared to the flank.
This vertical-strain-rate pattern results from the presence of
a region of low deviatoric stress near the bed at the divide,
where Glen’s law predicts high viscosities. Because this
region of stiff ice impedes downward flow, a particular iso-
chrone moves down more quickly on the flank than at the
divide, producinga local arch in the isochrone.These arches,
called Raymond bumps, have been recognized in radio-echo
sounding images at Fletcher Promontory, West Antarctica
(Vaughan and others, 1999), Siple Dome (Nereson and
others, 1998) and Roosevelt Island (Conway and others,
1999). Interestingly, in radar transects of the divide in
Greenland (Jacobel and Hodge,1995) a Raymond bump is
noticeably missing, most likely due to the peregrinations of
the divide (Hindmarsh,1996; Marshall and Cuffey, 2000).

In normal Glen flow, ice near the bedat a divide tends tobe
warmer due to reduced downward advection of cold ice rela-
tive to the flank (Paterson and Waddington, 1986). This heat
softens the ice, partially countering the increase in viscosity
due to low deviatoric stress. Hvidberg (1996) predicted a smal-
ler-amplitude Raymond bump due to this thermal softening.

Figure 5 shows our results for relative vertical-velocity
profiles for the SWAR resulting from our calculations; the
two other divides we modeled produce qualitatively similar
results. When the linear term dominates at the divide (« ½
1), the shape of the relative vertical-velocity profile at the
divide approaches the shape found on the flanks, where the
non-linear term always dominates. The linear term allows
the ice at the divide, where deviatoric stress is low, to main-
tain a viscosity comparable to that of the ice on the flank,
which is under higher deviatoric stress. This causes both the
differential thermal softening and the Raymond bump at
the divide to disappear.

Table 1. Model input parameters for the three divides

Tsurf dT =dzbed
_bb H

³C ³C m^1 m a^1 m

East Antarctic ridge
(Valkyrie Dome, Dome Fuji station)

^55a 0.023b 0.03a 3500a

Small West Antarctic ridge
(Siple Dome)

^26c 0.030b 0.1c 1000c

Small alpine ice cap
(Quelccaya ice cap, Peru)

^2d 0.0b 1.30d 165d

Note: Data sources are as follows: a Satow and others (1999); b estimates
based on heat-flow assumptions; c Nereson and others (1996); and d Mos-
ley-Thompson and others (1993).

Fig. 5. Modeled vertical-velocity profiles for divide flow
(assuming a range of «char) and for flank flow for the
SWAR.The SAIC and the EAR model results are qualita-
tively similar. Glen flow occurs when the non-linear term
dominates; there is a significant difference between the Glen
profile and the flank profile where the non-linear term always
dominates. At a transitional divide, the linear term causes the
divide profile to resemble the flank profile more closely. In the
limit of «char ! 0, there is no difference between the divide
profile and the flank profile.
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By impacting the shapes of isochrones near a divide, the
value of k in a model’s constitutive relation at low deviatoric
stress also affects the calculated depth^age scale used to
interpret ice cores. Since the age of ice at a given depth at the
divide is equal to the integral of the inverse of the vertical-
velocity field along the particle’s flow path, the progression
shown in Figure 5 affects the corresponding calculated
depth^age scale. Inclusion of the linear term in a flow model
results in younger ice at a given depth at a divide.

Isochrones and surface morphology

In Figure 6, we show the effect of the linear term on
isochrones near a divide. Since k is unknown, we model the
isochrone shapes near the three divides for four values of k.

For the lowest value of k, 0.01bar, all three divides exhibit
non-linear behavior described by Glen’s law. For k ˆ 0.1bar,
the EAR showstransitional behavior, since it has a character-
istic ½char of approximately 0.1bar and «char ¹ 1; the ampli-
tude of the Raymond bump in the isochrone pattern is much
reduced. For the SWAR, ½char ¹ 0.2 bar and for the SAIC,
½char ¹ 0.4 bar; therefore, transitional behavior occurs only
at values of k larger than 0.1and 0.2 bar, respectively.

If Glen’s law works well for deviatoric stresses down to
0.3 bar, as Budd and Jacka (1989) suggest, it is unlikely that
the crossover stress, k, is 40.3 bar. The SAIC, therefore, has
deviatoric stresses large enough that non-linear Glen flow

should dominate, regardless of the value of k. Depending on
the actual value of k, the SWAR and EAR could be transi-
tional, linear or Glen divides. The existence of a distinctive
Raymond bump in the radar images of Siple Dome (Nereson
and others,1998), our model for a SWAR, suggests that it is a
Glen or transitional divide and, therefore, k <0.2 bar.

The relatively softer ice in the divide region of a linear or
transitional ice sheet (compared to a Glen divide) also
affects the surface geometry. Figure 7 shows the modeled
surface shapes for the same three divides shown in Figure
6. The effect of the linear term is not only to reduce surface
curvature near the divide, but if a large enough region of ice
behaves linearly (i.e. « ¾ 1; see Fig. 4) it may produce a
slightly thinner divide.The overall thickness of an ice sheet,
however, is ultimately limited by non-linear (Glen) flow on
the flanks, where shear stresses are high. The crossover
stress, k, could have an impact on modeling of the Lauren-
tide ice sheet, for example. Some models of the Laurentide
ice sheet predict much thicker ice than can be accounted for
by isostatic rebound and sea-level changes (e.g. Marshall
and others, 2000). Many scientists have ascribed this incom-
patibility to properties of the bed, but Peltier and others
(2000) noted that a different flow law could also contribute
to a thinner ice sheet. In their model, Peltier and others
(2000) assumed a near-linear constitutive relation based on
grain-boundary sliding for the entire ice sheet. Realistically,
even an ice-sheet geometry based primarily on flow due to

Fig. 6. Modeled steady-state isochrones for three idealized ice divides, in order of increasing ½char, assuming four different values for the
unknown crossover stress, k.The EAR has the lowest ½char and thus shows the largest effect from the linear term.The SAIC has the largest
½char and thus shows very little effect from the linear term.
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grain-boundary sliding is likely to be constrained by a high-
er-power constitutive relation on the flanks; thus, both terms
are important for accurately modeling ice sheets.

CONCLUSIONS

Glen’s law, with a cubic relationbetween deviatoric stress and
strain rate, was derived empirically, and it works well for
modeling most ice sheets and glaciers. In the low-deviatoric-
stress regimes found particularly near ice divides, Glen’s law
may be inadequate, because the ice-flow mechanism may
change. Our extended formulation for the constitutive
relation for ice, Equation (5), is not mechanism-specific; it is
intended to represent a range of microphysical processes
(within their current experimental uncertainties), yet main-
tain simplicity for flow modeling at ice-sheet scales. Since
empirical evidence shows that deviatoric stress and strain
rate are related by exponents ranging from n ˆ 1 to 4.2, our
formulation uses a summation of three terms with exponents
1, 3 and 5. At low deviatoric stresses, the linear term domin-
ates flow. At deviatoric stresses typical of most ice flow, the
cubic term dominates. In high-deviatoric-stress situations,
the fifth-power term may become important.

The importance of the linear term depends on the value
of the unknown crossover stress, k, which is the deviatoric
stress at which the linear and cubic terms contribute equally
to the strain rate. A steady-state divide exhibiting linear flow
has:

1. a vertical velocity profile that closely resembles the
profile on the flanks (and, therefore, corresponding
similarities in the shape of the horizontal velocity
profile, and in vertical and horizontal strain rates),

2. a lack of a Raymond bump in isochrones or an arch in iso-
therms,

3. younger ice than a corresponding Glen divide at any
given depth,

4. more-rounded topography at the ice divide.

The linear term of the flow law may also be important
near the surfaces of ice sheets and glaciers, where shear
stresses and ½eff can be small. The impact of rheological
properties of this near-surface region on large-scale ice-
sheet models is minimal; it may, however, become import-
ant in flow of valley glaciers (Marshall and others, 2002).

We must also consider whether the magnitude of this
effect is large enough to be of concern to modelers, consider-
ing the variability in strain rates due to anisotropy, impurity
content and grain-size.The model byAzuma (1994) predicts
a maximum enhancement factor of 9 for anisotropic ice in
simple shear; all other stress configurations produce less en-
hancement. Other anisotropy models give comparable
results (e.g. Thorsteinsson and others,1999). The theoretical
basis for enhancement due to solid or chemical impurities or
grain-size is less well understood, but measurements from
high-deviatoric-stress environments show maximum total
enhancements (including anisotropy) of up to 10 relative to
isotropic ice at the same temperature (Dahl-Jensen and
Gundestrup, 1987; Cuffey and others, 2000a). In addition,
laboratory tests on impurity-laden ice show enhancements
up to 2 (Budd andJacka,1989). From these data, we can con-
clude that the enhancement of the strain rate due to these
effects is no more than one order of magnitude, and often

less. On the other hand, transition to linear flow in the
near-divide region is equivalent to applying an enhance-
ment factor, E, of up to 105 to the n ˆ 3 version of Glen’s
law in regions where « ½ 1, such as near the bed at the
divide. In other words, the uncertainties due to the
unknown value of k will be negligible for much of the ice

Fig. 7. Modeled surface morphology for the three divides in
Figure 6.The transition from Glen flow to linear flow causes
a flattening of the surface in the divide region because of the
change in the velocity field (see Fig. 5).
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sheet, but in the near-divide regions the assumption of an
n ˆ 3 flow law may result in large errors in models.

Before this constitutive law can be incorporated into
current flow models, however, the value of the crossover stress,
k, must be determined.This effort may involve re-analyzing
existing laboratory and field data as well as designing future
experiments to study the transition between linear and Glen
constitutive behavior (e.g. Morse, 1997; Zumberge and
others, 2002). Although in this paper we modeled only iso-
tropic ice, the issue of stress-dependent flow-law exponent
also applies when modeling anisotropic ice, especially if the
anisotropic model relies on an n ˆ 3 relationship between
deformation and resolved shear stress on the basal plane
for an individual crystal.
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