l-ADIC AND Z / l^{∞}-ALGEBRAIC AND TOPOLOGICAL K-THEORY

by VICTOR SNAITH \dagger

(Received 12th March 1984)

0. Introduction

Let l be an odd prime and let A be a commutative ring containing $1 / l$. Let $K_{*}\left(A ; Z / l^{\nu}\right)$ denote the mod l^{v} algebraic K-theory of A [3]. As explained in [4] there exists a "Bott element" $\beta_{v} \in K_{2 l v-1(l-1)}\left(Z[1 / l] ; Z / l^{v}\right)$ and, using the K-theory product we may, following [16, Part IV], form

$$
\begin{equation*}
\mathscr{K}_{i}(A ; Z / l)=K_{i}\left(A ; Z / l^{v}\right)\left[1 / \beta_{v}\right] \tag{0.1}
\end{equation*}
$$

which is defined as the direct limit of iterated multiplication by β_{v}. There is a canonical localisation map

$$
\begin{equation*}
\rho_{v}: K_{i}\left(A ; Z / l^{v}\right) \rightarrow \mathscr{K}_{i}\left(A ; Z / l^{v}\right) \tag{0.2}
\end{equation*}
$$

As explained in [15], the Lichtenbaum-Quillen conjecture for a regular ring A (or regular scheme X), having suitably nice étale cohomological properties, reduces to the study of the kernel of (0.2) when $i=2$. In [15] I characterised the kernel of ρ in dimension two when $v=1$. For simplicity suppose that A is a $Z\left[1 / l, \xi_{1 \infty}\right]$-algebra. In [15, $\S 4.1]$ a commutative diagram is constructed of the following form, when $v=1$.

$$
\begin{equation*}
K U_{0}\left(B G L A ; Z / l^{v}\right) \tag{0.3}
\end{equation*}
$$

It is shown that $\hat{H}_{1}(x)=H_{K}(x)-H_{K}(x)^{l}$ where H_{K} is the $K U_{*}\left(C_{-} ; Z / l\right)$-Hurewicz map. Since I_{v} is one-one, this shows that, in dimension two,

$$
\operatorname{ker} \rho_{1}=\left\{x \in K_{2}(A ; Z / l) \mid H_{K}(x)=H_{K}(x)^{l}\right\}
$$

[^0]D

In [15] it is also shown that the Lichtenbaum-Quillen conjecture can be reduced to showing that $\operatorname{ker} \rho_{1}=\operatorname{ker} H_{K}$.

In this paper we generalise these results to establish (0.3) for all $v \geqq 1$ and we verify that these diagrams respect inverse and direct limits over v. The precise statement of our main result is given in Section 3.12. In addition, an implicit formula for \hat{H}_{v} is given, as a polynomial in the Dyer-Lashof operations of [10] applied to $H_{K}(x)$. This is given in Section 3.11(b).

Following the ideas of [15, Section 3], we use a description of $\mathscr{K}_{2}\left(A ; Z / l^{v}\right)$ in terms of Adams maps between Moore spaces to define I_{v} and to define a map $\rho_{v}^{\prime}: K_{2}\left(A ; Z / l^{v}\right) \rightarrow \mathscr{K}_{2}\left(A ; Z / l^{v}\right)$ for which we can evaluate $I_{v} \rho_{v}^{\prime}=\hat{H}_{v}$, then we show that the formula for \hat{H}_{v} and injectivity of I_{v} implies $\rho_{v}^{\prime}=\rho_{v}$. These results are proved in Section 3. Sections 1,2 contain preliminary $K U_{*}\left(C_{-} ; Z / l^{\nu}\right)$-theory calculations which are used to evaluate the adjoints of the Adams maps in $K U_{*}$-theory and thence to evaluate $\hat{H}_{v}=I_{v} \rho_{v}^{\prime}$.

1. $P K_{0}\left(Q P^{2}(v) ; Z / l^{v}\right)$

Let $K_{*}\left(-; Z / l^{v}\right)$ denote $\bmod 2$ graded unitary K-homology with coefficients mod l^{v}. For our purposes l will be an odd prime (although most of this section is valid when $l=2$, see Section 1.8) and $v \geqq 1$ will be an integer. Let $P^{n}(v)=S^{n-1} \bigcup_{l v} e^{n}$ for $n \geqq 2$ and, as usual,

$$
Q X=\underset{n}{\lim _{n}} \Omega^{n} \Sigma^{n} X
$$

Since $Q X$ is an infinite loopspace [12] its mod K-theory admits Dyer-Lashof operations as introduced in $[6 ; 14]$. More generally we have the Dyer-Lashof operations of McClure [10] (see also [11])

$$
\begin{equation*}
Q: K_{i}\left(Q X ; Z / l^{\nu}\right) \rightarrow K_{i}\left(Q X ; Z / l^{\nu-1}\right) \tag{1.1}
\end{equation*}
$$

Using (1.1) [10] describes $K_{*}\left(Q P^{2}(v) ; Z / l\right)$ from which we will evaluate the primitives, $P K_{0}\left(Q P^{2}(v) ; Z / l^{a}\right)$, for $a \leqq v$.

Recall that the inclusion, $i: Y \vee Y \rightarrow Y \times Y$, induces an injection, for any space Y,

$$
i_{*}:\left(K_{*}\left(Y ; Z / l^{a}\right) \otimes 1\right) \oplus\left(1 \otimes K_{*}\left(Y ; Z / l^{a}\right)\right)>K_{*}\left(Y \times Y ; Z / l^{a}\right)
$$

The primitives are defined by

$$
\begin{equation*}
P K_{*}\left(Y ; Z / l^{a}\right)=\left\{z \in K_{*}\left(Y ; Z / l^{a}\right) \mid d_{*}(z)=i_{*}(z \otimes 1+1 \otimes z)\right\} \tag{1.2}
\end{equation*}
$$

where $d: Y \rightarrow Y \times Y$ is the diagonal map.
Following [10] we have evident natural maps

$$
\begin{array}{lll}
l_{*}^{s}: K_{\alpha}\left(Y ; Z / l^{r}\right) \rightarrow K_{a}\left(Y ; Z / l^{+s}\right) & \text { if } & s \geqq 1 \\
\pi: K_{\alpha}\left(Y ; Z / l^{r}\right) \rightarrow K_{\alpha}\left(Y ; Z / l^{t}\right) & \text { if } & 1 \leqq t \leqq r
\end{array}
$$

and

$$
\beta_{r}: K_{z}\left(Y ; Z / l^{r}\right) \rightarrow K_{\alpha-1}\left(Y ; Z / l^{r}\right)
$$

Also the reduced K-groups of $P^{2}(v)$ are given by

$$
\widetilde{K}_{0}\left(P^{2}(v) ; Z / l^{a}\right) \cong Z / l^{a} \cong \tilde{K}_{1}\left(P^{2}(v) ; Z / l^{a}\right)
$$

for $1 \leqq a \leqq v$. Let z generate $\tilde{K}_{0}\left(P^{2}(v) ; Z / l^{v}\right)$ and set $u=\pi(z) \in \tilde{K}_{0}\left(P^{2}(v) ; Z / l\right)$ then the v-th Bockstein of u is a generator, v, of $\tilde{K}_{1}\left(P^{2}(v) ; Z / l\right)$.

From [10, Theorem 5] we obtain the following calculation.
Proposition 1.3. Let l be an odd prime then, as an algebra,

$$
K_{*}\left(Q P^{2}(v) ; Z / l\right) \cong Z / l\left[u_{1}, u_{2}, \ldots, u_{v}\right] \otimes E\left[v_{1}, \ldots, v_{v}\right)
$$

where

$$
\begin{gathered}
u_{i}=\pi Q^{i-1}(z) \quad \text { and } \\
v_{i}=\pi \beta_{v-i+1}\left(Q^{i-1}(z)\right) .
\end{gathered}
$$

there $Q^{j}=Q\left(Q\left(\ldots\left(Q\left(_{-}\right)\right) \ldots\right)\right)$, the j-th iterate of Q and $E\left(_{-}\right)$denotes an exterior algebra.
Proposition 1.4. A basis for $P K_{0}\left(Q P^{2}(v) ; Z / l\right)$ is given by $\left\{u_{1}^{\left.l^{Z} ; \alpha \geqq 0\right\}}\right.$ and for $P K_{1}\left(Q P^{2}(v) ; Z / l\right)$ by $\left\{v_{i} ; \mathrm{q} \leqq i \leqq v\right\}$.

Proof. Firstly the operation, Q, is linear in odd degree so that each v_{i} is primitive because v_{1} is. Here we have used the fact that in odd dimensions McClure's operation, Q, covers the (linear) operation $Q^{\prime}: K_{1}(X ; Z / l) \rightarrow K_{1}(X ; Z / l)$ of [14] for any infinite loopspace, X. This means that $v_{i}=\left(Q^{\prime}\right)^{i-1}\left(v_{1}\right)$ and is therefore primitive as claimed.

However in even dimensions Q is not additive [14, p. 190] but satisfies instead the formula [10, Theorem 1(ii)]

$$
\left.Q(x+y)=Q(x)+Q(y)-\pi\left[\sum_{i=1}^{p-1}\binom{l}{i} / l\right) x^{i} y^{l-i}\right] .
$$

Hence $d_{*}\left(u_{j}\right) \equiv u_{j} \otimes 1+1 \otimes u_{j}-\sum_{i}\left(\begin{array}{l}\left.\binom{l}{i} / l\right) u_{j-1}^{i} \otimes u_{j-1}^{l-i}\left(\bmod u_{1}, \ldots, u_{j-2}\right) \text { when } u_{1} \text { is primitive. }\end{array}\right.$
Since $A=K_{*}\left(Q P^{2}(v) ; Z / l\right)$ is finitely generated we have an exact Milnor-Moore sequence $P\left(A^{l}\right)>P(A) \xrightarrow{\lambda} Q(A)$, where A^{l} denotes the subalgebra of l-th powers. From the foregoing discussion it is clear that $\operatorname{im}(\lambda)$ is generated by $\left\{u_{1}, v_{1}, v_{2}, \ldots, v_{v}\right\}$ and the result follows from the Milnor-Moore sequence since $P\left(A^{l}\right)=P(A)^{l}$.

Now let X be an infinite loopspace and suppose $u \in K_{0}\left(X ; Z / l^{a}\right)$ for $a \geqq 2$. Define $x(u) \in K_{0}\left(X ; Z / l^{a}\right)$ by the formula

$$
\begin{equation*}
x(u)=u^{l}+l_{*} Q(u) \tag{1.5}
\end{equation*}
$$

Lemma 1.6. If $u \in P K_{0}\left(X ; Z / l^{a}\right)$ in (1.5) then $x(u) \in P K_{0}\left(X ; Z / l^{a}\right)$ also.
Proof. Firstly

$$
\begin{aligned}
d_{*}\left(u^{l}\right) & =(u \otimes 1+1 \otimes u)^{l} \\
& =u^{l} \otimes 1+1 \otimes u^{l}+l\left\{\sum_{i=1}^{l-1}\left(\binom{l}{i} / l\right) u^{i} \otimes u^{l-i}\right\} .
\end{aligned}
$$

Also, as mentioned above,

$$
d_{*} Q(u)=Q(u) \otimes 1+1 \otimes Q(u)-\pi\left\{\sum_{i=1}^{l}\left(\binom{l}{i} / l\right) u^{i} \otimes u^{l-i}\right\}
$$

so that $x(u)$ is primitive since $l_{*} \pi$ is multiplication by l.
We can now state the main result of this section.
Theorem 1.7. Let l be an odd prime. For $2 \leqq a \leqq v, P K_{0}\left(Q P^{2}(v) ; Z / l^{a}\right)$ is generated by $\left\{\pi x^{\alpha}(x) \mid \alpha \geqq 0\right\}$, where $x^{\alpha}(z)=x(x(\ldots(x(z)) \ldots))$ is the α-th iterate of $x(\ldots)$ and z generates $\widetilde{K}_{0}\left(P^{2}(v) ; Z / l^{v}\right)$.

Remark 1.8.

(a) This result is true when $P^{2}(v)$ is replaced by $P^{2 m}(v)=S^{2 m-1} \bigcup_{l v} e^{2 m}$ for any $m \geqq 1$.
(b) The result is probably true, by an elaboration of the proof which is to follow, when $l=2$. The difficulty at the prime two lies in the non-commutative structure of $K_{*}(Q X ; Z / 2)$ and in the fact that [10, Theorem 5] may not give the algebra structure when $l=2$.
1.9 In the proof of Theorem 1.7 we need the following facts concerning the behaviour of the Bockstein spectral sequence $\left\{E_{r}^{*}(X) ; r \geqq 1\right\}$ for the space $X=Q P^{2}(v)$. This behaviour follows the well-known pattern-some call it Henselian-of the Bockstein spectral sequences of [9]. In fact the proofs of the following assertions follow from the properties of the operations in [10, Theorems 1 and 4] in a manner analogous to that in which one deduces the results of [9] from the properties of the Pontrjagin squaring operation.

From Section 1.3, if $X=Q P^{2}(v)$,

$$
E_{1}^{*}=Z / l\left[u_{1}, \ldots, u_{v}\right] \otimes E\left(v_{1}, \ldots, v_{v}\right)
$$

with $\beta_{1}\left(u_{v}\right)=d_{1}\left(u_{v}\right)=v_{v}$. Also d_{1} is zero on the other generators. Hence

$$
E_{2}^{*}=Z / l\left[u_{1}, \ldots, u_{v-1}, u_{v}^{l}\right] \otimes E\left(v_{1}, \ldots, v_{v-1}, v_{v}^{l-1} v_{v}\right) .
$$

More generally if $1 \leqq s \leqq a \leqq v$ set $\hat{u}_{j}=u_{j}^{j+s-v-1}, \hat{v}_{j}=u_{j}^{j+s-v-1-1} v_{j}$ for $v+1-s<j \leqq v$ then

$$
E_{s}^{*}=Z / l\left[u_{1}, \ldots, u_{v-s+1}, \hat{u}_{v-s+2}, \ldots, \hat{u}_{v}\right] \otimes E\left(v_{1}, \ldots, v_{v-s+1}, \hat{v}_{v-s+2}, \ldots, \hat{v}_{v}\right)
$$

with

$$
\begin{gather*}
d_{s}\left(\hat{u}_{j}\right)=\hat{v}_{j} \quad(j \geqq v-s+2) \tag{1.10}\\
d_{s}\left(u_{v-s+1}\right)=v_{v-s+1}
\end{gather*}
$$

Proof of Theorem 1.7. Let $w \in P K_{0}\left(X ; Z / l^{a}\right)$ and consider the following exact sequence

$$
\begin{equation*}
K_{1}\left(X ; Z / l^{a-1}\right) \xrightarrow{\beta} K_{0}(X ; Z / l) \xrightarrow{\left(a^{a-1}\right)} K_{0}\left(X ; Z / l^{a}\right) \xrightarrow{\pi} K_{0}\left(X ; Z / l^{a-1}\right) \tag{1.12}
\end{equation*}
$$

By induction on a, starting with Section $1.4, \pi(w)=\sum_{\alpha} \lambda_{\alpha} \pi x^{\alpha}(z)$ so $y=w-\sum_{\alpha} \lambda_{\alpha} \pi x^{\alpha}(z)=$ $\left(l^{a-1}\right)_{*}(r)$ is a primitive $\left(r \in K_{0}(X ; Z / l)\right)$. Furthermore there exists $t \in K_{1}\left(X \times X ; Z / l^{a-1}\right)$ such that the diagonal satisfies $d_{*}(r)=r \otimes 1+1 \otimes r+\beta(t)$. Since $d_{1} \beta(t)=0$, $d_{1}(r) \in P E_{1}^{1} \cap \operatorname{im}\left(d_{1}\right)$. By (1.10) and (1.11)

$$
d_{1}(r)=\lambda v_{v}=d_{1}\left(\lambda u_{v}\right)
$$

so that $x=r-\lambda u_{v}$ is a d_{1}-cycle with diagonal given by

$$
d_{*}(x)=x \otimes 1+1 \otimes x+\beta(t)+\lambda \sum_{i=1}^{l-1}\left(\binom{l}{i} / l\right) u_{v-1}^{i} \otimes u_{v-1}^{l-i}
$$

Now $\beta(t)$ is d_{a-1}-boundary. Hence if $a=2$ the class of x in E_{2}^{*} satisfies

$$
d_{*}[x]=[x] \otimes 1+1 \otimes[x]+\lambda \sum_{i=1}^{l-1}\left(\binom{l}{i} / l\right) u_{v-1}^{i} \otimes u_{v-1}^{l-i} .
$$

However, the reduced diagonal of any canonical generator in E_{2}^{*} is a polynomial in $u_{1}, u_{2}, \ldots, u_{v-2}$ and u_{v-1}^{i}, from which it is straightforward to see that $\lambda=0$. Thus $[x] \in P E_{2}^{0}$ so that, by $(1.11) x=\sum \mu_{\alpha} u_{1}^{I^{z}}\left(\operatorname{modim} \beta_{1}\right)$ whence $\left(\right.$ since $\left.l_{*} \beta_{1}=0\right)$

$$
\begin{aligned}
l_{*}(x) & =\sum \mu_{\alpha} l_{*}\left(u_{1}^{\alpha^{\alpha}}\right) \\
& =\sum \mu_{\alpha} l_{*}\left(\pi x^{\alpha}(z)\right)=\sum \mu_{\alpha} l^{a-1} x^{\alpha}(z)
\end{aligned}
$$

as required. Here we have used that if $q \in K_{0}\left(X ; Z / l^{2}\right)$

$$
\begin{aligned}
l_{*} \pi(x(q)) & =l x(q)=l q^{l}+l_{*} Q(q) \\
& =l q^{l}
\end{aligned}
$$

since $l Q(q)=0$.
Now suppose $a \geqq 3$. Since $\beta(t)$ is a d_{a-1}-boundary it is a d_{2}-cycle. Let $s=d_{2}(x)$ then, in $E_{2}^{*}(X \times X)$,

$$
\begin{aligned}
d_{*}(s)= & s \otimes 1+1 \otimes s \\
& \left.+\lambda \sum_{i=1}^{l-1}\binom{l}{i} / l\right) i u_{v-1}^{i-1} v_{v-1} \otimes u_{v-1}^{l-i} \\
& \left.+\lambda \sum_{i=1}^{l-1}\binom{l}{i} / l\right) u_{v-1}^{i} \otimes(l-i) u_{v-1}^{l-i-1} v_{v-1}
\end{aligned}
$$

As in the case $a=2$ it is straightforward to show that the last two terms in the above expression can only be the reduced diagonal of an element of E_{2}^{1} if $\lambda=0$. Hence $x=r$ and $d_{2}(r) \in P E_{2}^{1}$ whence by (1.10) and (1.11)

$$
d_{2}(r)=\lambda_{1} v_{v-1}+\lambda_{2} \hat{v}=d_{2}\left(\lambda_{1} u_{v-1}+\lambda \hat{u}_{v}\right) .
$$

Now write

$$
x_{2}=r-\lambda_{1} u_{v-1}-\lambda_{2} u_{v}^{l} \in K_{0}(X ; Z / l)
$$

so that x_{1} is a d_{2}-cycle with diagonal in $E_{2}^{*}(X \times X)$ is given by

$$
\begin{aligned}
d_{*}\left(x_{2}\right)= & x_{2} \otimes 1+1 \otimes x_{2}+\beta(t) \\
& +\lambda_{1}\left(\sum_{i=1}^{l-1}\left(\left({ }_{l}^{l}\right) / l\right) u_{v-2}^{i} \otimes u_{v-2}^{l-i}\right) \\
& +\lambda_{2}\left(\sum_{i=1}^{l-1}\left(\left({ }_{l}^{l}\right) / l\right) \hat{u}_{v-1}^{i} \otimes \hat{u}_{v-1}^{l-i}\right) .
\end{aligned}
$$

Proceeding thus suppose we have constructed a d_{s}-cycle $(s \leqq a-2)$

$$
x_{s}=r-\lambda_{1} u_{v-s+1}-\lambda_{2} u_{v-s+2}^{l}-\ldots-\lambda_{s} u_{v}^{l s-1} \in K_{0}(X ; Z / l)
$$

whose diagonal in $E_{s}^{*}(X \times X)$ is given by

$$
\begin{aligned}
d_{*}\left(x_{s}\right)= & x_{s} \otimes 1+1 \otimes x_{s}+\beta(t) \\
& +\lambda_{1}\left(\sum_{i=1}^{l-1}\left(\binom{l}{i} / l\right) u_{v-s}^{i} \otimes u_{v-s}^{l-i}\right) \\
& +\ldots \\
& +\lambda_{s}\left(\sum_{i=1}^{l-1}\left(\binom{l}{i} / l\right) \hat{u}_{v-1}^{i} \otimes \hat{u}_{v-1}^{l-i}\right) .
\end{aligned}
$$

As above, applying d_{s}, and observing $d_{s} \beta(t)=0$,

$$
\begin{aligned}
d_{s} d_{*}\left(x_{s}\right)= & d_{*}\left(d_{s} x_{s}\right) \\
= & d_{s} x_{s} \otimes 1+1 \otimes d_{s} x_{s}+\ldots \\
& +\lambda_{s}\left(\sum_{i=1}^{l-1}\left(\binom{l}{i} / l\right) i \hat{u}_{v-1}^{i-1} \hat{v}_{v-1} \otimes \hat{u}_{v-1}^{l-i}\right) \\
& +\lambda_{s}\left(\sum_{i=1}^{l-1}\left(\binom{l}{i} / l\right) \hat{u}_{v-1}^{i} \otimes(l-i) \hat{u}_{v-1}^{l-i-1} \hat{v}_{v-1}\right)
\end{aligned}
$$

and again the only manner in which the last $2 s$ terms in the above expression to appear in the reduced diagonal of an element of $E_{2}^{*}(X)$ is for $\lambda_{1}=\ldots=\lambda_{s}=0$.

By induction we see that $r\left(=x_{a-1}\right)$ is a d_{a-1}-cycle which represents a primitive in $E_{a}^{0}(X)$. Hence, by (1.11), $r=\sum \gamma_{a} u_{1}^{l^{\alpha}}(\bmod \operatorname{im} \beta)$ so $\left(\right.$ since $\left.\left(l^{a-1}\right)_{*} \beta=0\right)$

$$
\begin{aligned}
\left(l^{a-1}\right)_{*}(r) & =\left(l^{a-1}\right)_{*}\left(\Sigma \gamma_{\alpha} u_{1}^{l a}\right) \\
& =\Sigma \gamma_{\alpha}\left(l^{a-1}\right)_{*} \pi\left(x^{\alpha}(z)\right) \\
& =\Sigma \gamma_{\alpha} l^{a-1} x^{\alpha}(z)
\end{aligned}
$$

which completes the proof. In this last step we have used the fact that if $q \in K_{0}\left(X ; Z / l^{v}\right)$ then

$$
\begin{aligned}
\left(l^{a-1}\right)_{*} \pi(x(q)) & =l_{*}^{a-1} \pi\left(q^{l}\right)+l_{*}^{a-1} \pi l_{*} Q(q) \\
& =l^{a-1} \pi(q)^{l}+\left(l^{a-1}\right)_{*} \pi^{\prime}(l Q(q))
\end{aligned}
$$

(where π^{\prime} is reduction $\bmod l$ from $K_{0}\left(X ; Z / l^{\nu-1}\right)$)

$$
=l^{a-1} \pi(q)^{l} .
$$

Let $B U$ denote the classifying space for unitary K-theory [2, Part III]. Let
$f: P^{2}(v) \rightarrow B U$ represent a generator of $\pi_{2}\left(B U ; Z / l^{v}\right)$ and let $F: Q P^{2}(v) \rightarrow B U$ denote the infinite loop map (unique up to homotopy) which gives f upon restriction to $P^{2}(v)$.

Corollary 1.13. Let l be an odd prime and $v \geqq 1$ then

$$
F_{*}: P K_{0}\left(Q P^{2}(v) ; Z / l\right) \rightarrow P K_{0}\left(B U ; Z / l^{v}\right)
$$

is injevtive.

Proof. The Q-operation of [10, Theorem 1] induces an endomorphism of $K_{0}(B U ; Z / l) / \mathscr{D}$, where \mathscr{D} denotes the decomposables in the algebra structure induced by Whitney sum of bundles. From [10, p. 3] this endomorphism, also denoted by Q, coincides with the operation constructed in [14] and computed for $B U$ in [14, Section 6]. Hence the image of $x^{\alpha}(z) \in P K_{0}\left(Q P^{2}(v) ; Z / l^{v}\right)$ in $K_{0}(B U ; Z / l) / \mathscr{D}$ is $Q^{\alpha}\left(v_{1}\right)$, when $K U_{0}(B U ; Z / l)=Z / l\left[v_{1}, v_{2}, \ldots\right]$ in the notation of [14, Section 6]. By [14, Section 6] the images $F_{\alpha}(z), F(x(z)), F_{*}\left(x^{2}(z)\right), \ldots$ are linearly independent $\bmod l$ from which the result follows easily, since $K_{0}\left(B U ; Z / l^{\nu}\right)=Z / l^{\nu}\left[v_{1}, v_{2}, \ldots\right]$.

2. The effect of Adams' maps in K-theory

Let l be an odd prime.
In [1, Section 12] Adams showed that there exist the following interesting maps between Moore spaces,

$$
\begin{equation*}
A_{v}: p^{q+2 l^{v-1}(l-1)}(v) \rightarrow p^{q}(v) \tag{2.1}
\end{equation*}
$$

for q sufficiently large. As in Section $1, P^{m}(v)$ denotes $S^{m-1} U_{l^{\nu}} e^{m}(m \geqq 2, v \geqq 1)$. There exist homotopy commutative diagrams

in which i and j are the canonical inclusion and collapsing maps, respectively. The maps, A_{v}, are partially characterised by the following (equivalent) conditions

$$
\begin{equation*}
\left[1, \text { Section 12.3]. Set } m=q+2 l^{v-1}(l-1)\right. \tag{2.3}
\end{equation*}
$$

$\left(A_{v}\right)_{*}: K_{*}\left(P^{m}(v)\right) \rightarrow K_{*}\left(P^{q}(v)\right)$ is an isomorphism.
the (unitary) K-theory e-invariant of α_{v} is $\left(-1 / l^{\nu}\right)$.

In fact a_{v} and α_{v} determine elements in the stable homotopy groups

$$
\Pi_{2 l v-1(l-1)}^{S}\left(S^{0} ; Z / l^{v}\right) \quad \text { and } \quad \Pi_{2 l v-1(l-1)-1}^{S}\left(S^{0}\right)
$$

respectively. Each of these groups has a direct summand [1]-the image of the J -homomorphism-which is cyclic of order l^{v}. (2.3) suffices to determine the J-component of a_{v} and α_{v}.

We will see below that the effect of the adjoint of A_{v} in $K U_{*}$-theory is determined by (2.3).

Let A_{v}^{s} denote the s-th iterate of the map A_{v} of (2.1), considered as an S-map. Also denote by A_{v}^{s} the adjoint map

$$
\begin{equation*}
A_{v}^{s}: P^{2 l^{v-1}(l-1) s+2}(v) \rightarrow Q P^{2}(v) \tag{2.4}
\end{equation*}
$$

As in Section 1,

$$
Q X=\underset{n}{\lim _{n} \Omega^{n} \Sigma^{n} X ~}
$$

Let $k: P^{m}(v) \rightarrow P^{m}(v+1)$ and $n: P^{m}(v+1) \rightarrow P^{m}(v)$ be maps induced by (a choice of) an inclusion $Z / l^{\nu} \rightarrow Z / l^{\nu+1}$ and a surjection $Z / l^{\nu+1} \rightarrow Z / l^{v}$ respectively.

Theorem 2.5. Let l be an odd prime. Let s, a and v be integers $(1 \leqq s, 1 \leqq a \leqq v)$. The following diagrams commute up to multiplication by an l-adic unit.
(a) Let $m=2 l^{\nu-1}(l-1)$.

(b) Let $t=2 l^{v}(v-1)$.

$$
\left.\right|_{\left.K U_{0}\left(P^{s+2}(v) ; Z / l^{a}\right) \xrightarrow{\left(A_{v}^{s}\right) .} K U_{0}\left(Q P^{t s+2}(v+1) ; Z / l^{2}\right) \xrightarrow{\left(A_{v+1}^{s}\right) .} K U_{0}\left(Q P^{2}(v+1) ; Z / l^{a}\right) ; Z / l^{a}\right)} ^{\left(Q_{n}\right) .}
$$

Proof. (a) To see whether or not such a diagram commutes it suffices, by Section 1.13, to compare the homomorphisms induced by $F Q(k) A_{v}^{s l}$ and by $F A_{v+1}^{s} k$ on $K U_{0}\left({ }_{-} ; Z / l^{v}\right)$. Here, as in Section 1.13, $F: Q P^{2}(v+1) \rightarrow B U$ is the Ω^{∞}-map extension of
$P^{2}(v+1) \xrightarrow{j} S^{2} \xrightarrow{\beta} B U$ which generates $\pi_{2}\left(B U ; Z / l^{\nu+1}\right) \cong Z / l^{\nu+1}$. This is because the generator of $K U_{0}\left(P^{s m+2}(v) ; Z l^{a}\right)$ is equal to the image of the (primitive) generator of $K U_{0}\left(P^{s m+2}(v) ; Z / l^{v}\right)$. From [1, Section 12] one sees that the S-maps $P^{s m+2}(v) \rightarrow S^{2}$ given by the adjoints of $j \cdot A_{v+1}^{s} \cdot k$ and $j \cdot k A_{v}^{s l}$ both have e-invariant, $-1 / l^{v}$. This means that the J-components of the maps $Q(j) A_{v+1}^{s} k$ and $Q(j k) A_{v}^{s l}: P^{s m+2}(v) \rightarrow Q S^{2}$ are equal (up to multiplication by an l-adic unit, possibly). However there is an infinite loopmap $Q_{0} S^{0} \rightarrow Z \times \operatorname{im} J$ which deloops to give $Q S^{2} \rightarrow B^{2}(\operatorname{im} J)$, a map which is a $K U_{*}\left(-; Z / l^{v}\right)$ isomorphism [7]. The space, $B^{2}(\mathrm{im} J)$, detects precisely the J-component of $\pi_{*}\left(Q S^{2} ; Z / l^{v}\right)$ so the result follows from the factorisation

$$
\begin{aligned}
& Q S^{2} \xrightarrow{F} B U \\
& \searrow \\
& B^{2}(\operatorname{im} J)
\end{aligned}
$$

(b) The proof of (b) is similar to that of (a).

3. The l-adic and Z / l^{∞}-diagrams

Let l be an odd prime and let A be $Z\left[1 / l, \xi_{l_{\infty}}\right]$-algebra where $\xi_{l n}$ is a primitive l^{n}-th root of unity and

$$
Z\left[1 / l, \xi_{l \infty}\right]=\underset{n}{\lim } Z\left[1 / l, \xi_{l n}\right] .
$$

Let $v \geqq 1$ be an integer and let $\mathscr{K}_{*}\left(A ; Z / l^{v}\right)$ denote Bott periodic algebraic K-theory $\left(\bmod l^{v}\right)$ as defined in the introduction. Hence, by construction, $\mathscr{K}_{*}\left(A ; Z / l^{v}\right)$ satisfies Bott periodicity with period $2 l^{v-1}(l-1)=d_{v}$, say (i.e. $\mathscr{K}_{i} \cong \mathscr{K}_{i+d_{v}}$). Let

$$
\begin{equation*}
\rho_{v}: K_{i}\left(A ; Z / l^{v}\right) \rightarrow \mathscr{K}_{i}\left(A ; Z / l^{v}\right)=\underset{n}{\lim } K_{i+n d_{v}}\left(A ; Z / l^{v}\right) \tag{3.1}
\end{equation*}
$$

denote the canonical localisation map.
There is an injective homomorphism [15, Section 3]

$$
\begin{equation*}
I_{v}: \mathscr{K}_{i}\left(A ; Z / l^{v}\right)>K U_{i}\left(B G L A ; Z / l^{v}\right) \tag{3.2}
\end{equation*}
$$

In this section we shall write $K U_{*}$ for unitary (topological) K-theory-to distinguish it from algebraic K-theory.

The object of this section is to evaluate the compositions $\left\{I_{v} \cdot \rho_{v}, v \geqq 1\right\}$ and to verify that they respect direct and inverse limits over v.

In order to construct I_{v} one appeals to the results of [15, Section 3]. Suppose that

$$
A_{v}: P^{q+d_{v}}(v) \rightarrow P^{q}(v) \quad\left(d_{v}=2 l^{v-1}(l-1)\right)
$$

is, as in Section 2, one of Adams' maps between Moore spaces. Since, for $i \geqq 2$,

$$
K_{i}\left(A ; Z / l^{v}\right)=\left[P^{i}(v), B G L A^{+}\right]
$$

we may form the direct limit

$$
\begin{equation*}
\xrightarrow{\lim }\left(K_{i}\left(A ; Z / l^{v}\right) \xrightarrow{\left(\Sigma^{i-q} A_{v}\right)^{*}} K_{i+d_{v}}\left(A ; Z / l^{v}\right) \xrightarrow{\left(\Sigma^{i+d_{v}-q_{v}}\right)^{*}} \ldots\right) . \tag{3.3}
\end{equation*}
$$

If $i \geqq q$ the direct limit of (3.3) makes sense and, in [15, Section 3], it is shown to be isomorphic to $\mathscr{K}_{i}\left(A ; Z / l^{v}\right)$. In addition this isomorphism identifies ρ of (3.1) with the map which sends $K_{i}\left(A ; Z / l^{v}\right)$ in at the left of (3.3) by

$$
\underset{n}{\lim }\left(\Sigma^{i+n d_{v}-q} A_{v}\right)^{*}
$$

We may choose generators $z_{m, \alpha}$ of $K U_{\alpha}\left(P^{m}(v) ; Z / l^{v}\right) \cong Z / l^{v}$ in such a manner that

$$
\left(\sum^{m-q} A_{v}\right)^{*}\left(z_{m, \alpha}\right)=z_{m-d_{v}, \alpha}
$$

If we make such choices then it is clear that the Hurewicz map induces a map from the direct limit of (3.3) to

$$
K U_{i}\left(B G L A^{+} ; Z / l^{v}\right) \cong K U_{i}\left(B G L A ; Z / l^{v}\right)
$$

(note that $K U_{i} \cong K U_{i+2 m}$ for all m) defined by sending

$$
f \in K_{i+n d}\left(A ; Z / l^{v}\right)=\left[P^{i+n d v}(v), B G L A^{+}\right]
$$

to $f_{*}\left(z_{i+n d_{v}, i+n d_{v}}\right)$. This defines I_{v} in (3.2).
Now we will construct maps

$$
\begin{equation*}
\rho_{s, v}^{\prime}: K_{2}\left(A ; Z / l^{v}\right) \rightarrow \mathscr{K}_{2+s d_{v}}\left(A ; Z / l^{v}\right) \tag{3.4}
\end{equation*}
$$

If we identify $\mathscr{K}_{2}\left(A ; Z / l^{v}\right)$ and $\mathscr{K}_{2+s d_{v}}\left(A ; Z / l^{v}\right)$-by Bott periodicity-then, up to an l-adic unit, $\rho_{s, v}$ will be independent of s, if s is large. The $\left\{\rho_{s, v}^{\prime}\right\}$ are designed so that we can easily evaluate $I_{v} \cdot \rho_{s, v}^{\prime}$. However, we shall show later that, for large s,

$$
\rho_{v}=\rho_{v, s}^{\prime}: K_{2}\left(A ; Z / l^{v}\right) \rightarrow \mathscr{K}_{2+s d_{v}}\left(A ; Z / l^{v}\right) \cong \mathscr{K}_{2}\left(A ; Z / l^{v}\right)
$$

3.5. Construction of $\boldsymbol{\rho}_{v, s}^{\prime}$

Let $A_{v}: P^{q+\alpha_{v}}(v) \rightarrow P^{q}(v)$ denote the Adams map of (2.2), where q is chosen to be minimal. By adjointing the s-th composite of A_{v} (A_{v}^{s} considered as an S-map) we obtain, as in (2.4),

$$
A_{v}^{s}: P^{2+s d_{v}}(v) \rightarrow Q P^{2}(v)
$$

If $f: P^{2}(v) \rightarrow B G L A^{+}$represents $u=[f] \in K_{2}\left(A ; Z / l^{v}\right)$ we may form the composite

$$
\begin{equation*}
P^{2+s d_{v}}(v) \xrightarrow{A_{v}^{s}} Q P^{2}(v) \xrightarrow{Q(f)} Q\left(B G L A^{+}\right) \xrightarrow{D} B G L A^{+} \tag{3.6}
\end{equation*}
$$

where D is the structure map [12] of the infinite loopspace structure on $B G L A^{+}$which comes from the (direct sum) permutative category of finitely generated projective A modules [13].

If $q<2+s d_{v}(3.6)$ gives a map (of sets)

$$
\begin{equation*}
\rho_{s, v}^{\prime}: K_{2}\left(A ; Z / l^{v}\right) \rightarrow K_{2+s d_{v}}\left(A ; Z / l^{v}\right) \xrightarrow{\rho_{v}} \mathscr{K}_{2+s d_{v}}\left(A ; Z / l^{v}\right) . \tag{3.7}
\end{equation*}
$$

In (3.7) ρ_{v} is given, as mentioned above, by representing $\mathscr{K}_{2+s d_{v}}\left(A ; Z / l^{v}\right)$ as the limit of (3.3).

Let $\hat{H}_{v}: K_{2}\left(A ; Z / l^{v}\right) \rightarrow K U_{0}\left(B G L A ; Z / l^{v}\right) \cong K U_{0}\left(B G L A^{+} ; Z / l^{v}\right)$ be defined by

$$
\hat{H}_{v}[f]=D_{*} Q(f)_{*}\left(A_{v}^{s}\right)_{*}\left(z_{2+s d_{v, 0}}\right)
$$

By definition of I_{v}, in (3.2), the following diagram commutes, up to multiplication by an l-adic unit.

Since I_{v} is one-one in (3.8) Lemma 3.10 will imply that, up to an l-adic unit, $\rho_{s, v}^{\prime}$ is independent of s when $2+s d_{v}>q$. Hence we define, for $v \geqq 1$,

$$
\begin{equation*}
\rho_{v}^{\prime}=\rho_{s, v}^{\prime}: K_{2}\left(A ; Z / l^{v}\right) \rightarrow \mathscr{K}_{2}\left(A ; Z / l^{v}\right) \tag{3.9}
\end{equation*}
$$

for some choice of s such that $2+s d_{v}>q$. Thus ρ_{v}^{\prime} is well-defined up to multiplication by an l-adic unit. In [15] it is shown that

$$
\hat{H}_{1}(y)=H_{K}(y)-H_{K}(y)^{l}
$$

where H_{K} is the $K U_{*}(; Z / l)$-Hurewicz map.
Lemma 3.10. For $2+s d_{v}>q$ the element

$$
\left(A_{v}^{s}\right)_{*}\left(z_{2+s d_{v, 0}}\right) \in K U_{0}\left(Q P^{2}(v) ; Z / l^{v}\right)
$$

is independent of s, up to multiplication by an l-adic unit.
Proof. As in the proof of Section 2.5, it suffices, by Section 1.13, to compute

$$
F_{*}\left(A_{v}^{s}\right)_{*}\left(z_{2+s d_{v, 0}}\right) \in P K U_{0}\left(B U ; Z / l^{v}\right)
$$

However $F \cdot A_{v}^{s}$ generates $\pi_{2+s d_{v}}\left(B U ; Z / l^{v}\right) \cong Z / l^{v}$ so that, up to l-adic units,

$$
F A_{v}^{s+1}=\left(F A_{v}^{s}\right) \cdot\left(\Sigma^{2+s d_{v}-q} A_{v}\right)
$$

and the result follows since

$$
\left(\Sigma^{2+s d_{v}-q} A_{v}\right)_{*}: K U_{0}\left(P^{2+(s+1) d_{v}}(v) ; Z / l^{v}\right) \rightarrow K U_{0}\left(P^{2+s d_{v}}(v) ; Z / l^{v}\right)
$$

is an isomorphism.
Recall [2, p. 47] that $K U_{0}\left(\mathbb{C} P^{\infty} ; Z / l^{v}\right)$ has a basis $\beta_{1}, \beta_{2}, \ldots$ and that $K U_{0}(B U$; $\left.Z / l^{v}\right) \simeq Z / l^{v}\left[\beta_{1}, \beta_{2}, \ldots\right]$. Also, being an infinite loopspace [13] (with the + -structure) $K U_{*}\left(B U ; Z / l^{v}\right)$ admits the action of Dyer-Lashof operations [10].

The following result gives the form of \hat{H}_{v} in (3.8).

Proposition 3.11.

(a) Let $b_{v, s}: P^{2+s d_{v}(v) \rightarrow B U}$ generate $\pi_{2+s d_{v}}\left(B U ; Z / l^{v}\right)\left(\cong Z / l^{v}\right)$. There exist $\left\{a_{v_{j}} \in Z / l^{v}\right.$; $j=1,2, \ldots\}$ such that

$$
\left(b_{v, s}\right)_{*}\left(z_{2+s d_{v, 0}}\right)=u\left(\beta_{1}+\sum_{j=1}^{N(v)} a_{v, j} X^{j}\left(\beta_{1}\right)\right) .
$$

Here u is an l-adic unit and, as in Section 1.5, $X(w)=w^{l}+l_{*} Q(w)$.
(b) Up to an l-adic unit, in (3.8)

$$
\hat{H}_{v}(y)=H_{K}(y)+\sum_{j=1}^{N(v)} a_{v, j} X^{j}\left(H_{K}(y)\right)
$$

where H_{K} is the $K U_{*}\left({ }_{-} ; Z / l^{v}\right)$-Hurewicz map.
Proof. Part (a) follows from Section 1.7, together with the fact that $b_{v, s}$ factorises as

$$
P^{2+\operatorname{sdv}}(v) \xrightarrow{A_{v}^{s}} Q P^{2}(v) \xrightarrow{F} B U .
$$

Since F is an infinite loopmap $F_{*} X(y)=X F_{*}(y)$. By Section $1.13 F_{*}$ is one-one on $P K U_{0}\left(Q P^{2}(v) ; Z / l^{v}\right)$ so that

$$
\left(A_{v}^{s}\right)_{*}\left(z_{2+s d_{v, 0}}\right)=u\left(z_{2,0}+\sum_{j=1}^{N(v)} a_{v, j} X^{j}\left(z_{2,0}\right)\right) .
$$

Therefore part (b) follows from

$$
\begin{aligned}
\hat{H}_{v}[f] & =D_{*} Q(f)_{*}\left(A_{v}^{s}\right)_{*}\left(z_{2+s d_{v, 0}}\right) \\
& =u D_{*} Q(f)_{*}\left(z_{2,0}+\sum_{j} a_{v, j} X^{j}\left(z_{2,0}\right)\right) \\
& =u\left(D_{*} Q(f)_{*}\left(z_{2,0}\right)+\sum_{j} a_{v, j} X^{j}\left(D_{*} Q(f)_{*}\left(z_{2,0}\right)\right)\right)
\end{aligned}
$$

since D and $Q(f)$ are infinite loopmaps,

$$
=u\left(H_{K}[f]+\sum_{j} a_{v, j} X^{j}\left(H_{K}[f]\right)\right)
$$

since

$$
D_{*} Q(f)_{*}\left(z_{2,0}\right)=f_{*}\left(z_{2,0}\right)=H_{K}[f] \in K U_{0}\left(B G L A^{+} ; Z / l^{v}\right) .
$$

Now we can state and prove our main result.
Theorem 3.12. Let l be an odd prime and let A be a commutative $Z\left[1 / l, \xi_{1 \infty}\right]$-algebra. Then, up to l-adic units, the homomorphisms in (3.8) commute with direct and inverse limits over v. In addition ρ_{v}^{\prime} of (3.9) may be identified with the natural localisation map, ρ_{v}. Consequently, we have the following commutative diagrams.

Proof. First it is clear that I_{v}, being induced by the $K U$-Hurewicz map applied to the direct limit of (3.3), commutes with the coefficient homomorphisms induced by $Z / l^{\nu} \longrightarrow Z / l^{\nu+1}$ and $Z / l^{\nu+1} \rightarrow Z / l^{\nu}$. Hence both

$$
{\underset{v}{l}}_{\lim _{v}} I_{v} \text { and } \underset{v}{\lim } I_{v}
$$

exist and are injective.
Let us consider the $\left(\frac{\lim }{v}\right)$-case. We have a choice of routes. We could show that $\lim _{v} \rho_{v}^{\prime}$ (and thence $\underset{l_{v}}{\lim _{v}} \hat{H}_{v}$) exists by showing that $\rho_{v}^{\prime}=\rho_{v}$ and then appealing to properties of the latter. Instead we will show independently that $\underset{v}{\lim } \hat{H}_{v}$ (and, by injectivity of I_{v}, also ${\underset{\sim}{l}}_{\lim } \rho_{v}^{\prime}$) exists. The $\left(\frac{\lim }{n}\right)$-case is proved in a similar manner.

Let $X=B G L A^{+}$and let $d_{v}=2 l^{v-1}(l-1)$.
Consider the following diagram.

By definition, if $f: P^{2}(v+1) \rightarrow X$ represents a class $[f] \in K_{2}\left(A ; Z / l^{v+1}\right)$,

$$
\begin{aligned}
\pi \hat{H}_{v+1}[f] & =\pi D_{*} Q(f)_{*}\left(A_{v+1}^{s}\right)_{*}\left(z_{2+s d_{v+1,0}}\right) \\
& =D_{*} Q(f)_{*}\left(A_{v+1}^{s}\right)_{*}\left(z_{2+s d_{v+1,0}}\right) \\
& =D_{*} Q(f)_{*}\left(A_{v+1}^{s}\right)_{*}\left(z_{2+s l d_{v, 0}}\right)
\end{aligned}
$$

since $\pi: K U_{0}\left(P^{2 m}(v+1) ; Z / l^{v+1}\right) \rightarrow K U_{0}\left(P^{2 m}(v+1) ; Z / l^{v}\right)$ is onto. On homotopy groups π is induced by the map, k, of Theorem 2.5(a). Therefore we have

$$
\begin{aligned}
\hat{H}_{v} \pi[f] & =D_{*} Q(f k)_{*}\left(A_{v}^{s l}\right)_{*}\left(z_{2+s l d_{v, 0}}\right) \\
& =D_{*} Q(f)_{*} Q(k)_{*}\left(A_{v}^{s l}\right)_{*}\left(z_{2+s l d_{v, 0}}\right) \\
& =D_{*} Q(f)_{*}\left(A_{v+1}^{s}\right)_{*} k_{*}\left(z_{2+s l d_{v, 0}}\right) \\
& =D_{*} Q(f)_{*}\left(A_{v+1}^{s}\right)_{*}\left(z_{2+s l d_{v, 0}}\right)
\end{aligned}
$$

since

$$
k_{*}: K U_{0}\left(P^{2 m}(v) ; Z / l^{v}\right) \rightarrow K U_{0}\left(P^{2 m}(v+1) ; Z / l^{v}\right)
$$

is an isomorphism. Therefore (3.13) commutes. A similar argument, using Theorem $2.5(\mathrm{~b})$, shows that the following diagram commutes.

From (3.13) and (3.14)

$$
{\underset{v}{l i m}}_{\lim _{v}} \quad \text { and } \underset{v}{\lim } \hat{H}_{v}
$$

exist and therefore so do

$$
\varliminf_{v} \rho_{v}^{\prime} \text { and } \underset{v}{\lim } \rho_{v}^{\prime}
$$

Finally we show that $\rho_{v}^{\prime}=\rho_{v}$ by means of Section 3.11 (b). Consider the external product in algebraic K-theory [8]

$$
v: S^{1} \wedge B G L A^{+} \rightarrow B G L A\left[v, v^{-1}\right]^{+} .
$$

The adjoint of v, together with the natural map, j, from $B G L A^{+}$, may be "added" to give a map

$$
\begin{equation*}
B G L A^{+} \times \Omega B G L A^{+} \xrightarrow{\text { asf(c)+ } \Omega(i)} \Omega B G L A\left[v, v^{-1}\right]^{+} \tag{3.15}
\end{equation*}
$$

which is a homotopy equivalence when A is a regular ring, by [8] and the localisation sequence [5]. However, by [19], the localisation sequence exists with mod l^{v} coefficients provided that l is invertible in A. Hence (3.15) is an equivalence $\left(\bmod l^{v}\right)$. This $B G L A\left[v, v^{-1}\right]^{+}$behaves like a "delooping" of $B G L A^{+}$in the sense that the homomorphism, σ_{v}, defined by the diagram,

satisfies the same properties with respect to Dyer-Lashof operations as does the usual suspension homomorphism

$$
\sigma_{*}: K U_{\alpha}\left(\Omega X ; Z / l^{v}\right) \rightarrow K U_{\alpha+1}\left(X ; Z / l^{v}\right)
$$

For example, $\left(\sigma_{v}\right)_{*}$ annihilates decomposables.
Therefore, by Section 3.11(b),

$$
\left(\sigma_{v}\right)_{*}(H(y))=\left(\sigma_{v}\right)_{*}\left(H_{K}(y)\right)+\sum_{j=1}^{N(v)} a_{v, j} l_{*}\left(\sigma_{v}\right)_{*} Q\left(X^{j-1}\left(H_{K}(y)\right)\right) .
$$

From [10, Theorem 1(v)]

$$
\left(\sigma_{v}\right)_{*} Q(z)= \begin{cases}Q\left(\sigma_{v}\right)_{*}(z) & \text { if } \operatorname{deg}(z) \equiv 0(2) \\ \pi\left(\left(\sigma_{v}\right)_{*}(z)\right)^{l}+l Q\left(\sigma_{v}\right)_{*}(z), & \text { if } \operatorname{deg}(z) \equiv 1(2)\end{cases}
$$

Therefore, for large integers T

$$
\begin{equation*}
\left(\sigma_{v_{T}}\right)_{*}\left(\sigma_{v_{T-1}}\right)_{*} \ldots\left(\sigma_{v_{1}}\right)_{*}\left[\hat{H}_{v}(y)-H_{K}(y)\right]=0 \tag{3.16}
\end{equation*}
$$

in $K U_{*}\left(B G L B^{+} ; Z / l^{v}\right)$, where

$$
B=A\left[v_{1}, v_{1}^{-1}, \ldots, v_{T}, v_{T}^{-1}\right] .
$$

Set $\underline{v}=v_{T} v_{T-1} \ldots v_{1}$ and $\sigma_{\underline{v}}=\sigma_{v_{T}} \ldots v_{v_{1}}$.
Consider the following commutative diagram, for T large.

In (3.17) the lower triangle commutes if $2+T \geqq q$ in (3.3), $\left(\sigma_{\underline{v}}\right)_{*} \hat{H}_{v}=H_{K} \underline{v}_{\#}$ by (3.16), $\left(\sigma_{v}\right)_{*} I_{v}=I_{v} \underline{v}_{\#}$ by well-known properties of the Hurewicz map (which induces I_{v}) and so $\underline{v}_{\#} \rho_{v}^{\prime}=\rho_{v} \underline{v}_{\#}$, as I_{v} is injective. On the other hand the natural map satisfies $\underline{v}_{\#} \rho_{v}=\rho_{v} v_{\#}$ so $\rho_{v}=\rho_{v}^{\prime}$ because $\underline{v}_{\#}$ is one-one.

REFERENCES

1. J. F. Adams, On the groups $J(X)$, IV, Topology 5 (1966), 21-71.
2. J. F. Adams, Stable Homotopy and Generalised Homology (Chicago Lecture Notes in Mathematics, 1974).
3. W. Browder, Algebraic K-theory with Coefficients Z/p (Lecture Notes in Mathematics No. 654, Springer-Verlag, 1978), 40-84.
4. W. G. Dwyer, E. M. Friedlander, V. P. Snaith and R. W. Thomason, Algebraic K-theory eventually surjects onto topological K-theory, Inventiones Math. 66 (1982), 481-491.
5. D. Grayson (after D. G. Quillen), Higher Algebraic K-theory II (Lecture Notes in Mathematics, No. 551, 0000, Springer-Verlag), 217-240.
6. L. Hodgkin, Dyer-Lashof Operations in K-theory (London Math. Soc. Lecture Notes No. 11, 1974), 27-33.
7. L. Hodgkin and V. P. Snaith, The K-theory of some more well-known spaces, Illinois J. Math (2) 22 (1978), 270-278.
8. J-L. Loday, K-théorie algébrique et représentations de groupes, Ann. Sci. Ec. Norm. Sup $4^{\text {e }}$ serie 9 (1976), 309-377.
9. I. Madsen, Higher torsion in $S G$ and BSG, Math. Zeit. 143 (1975), 55-80.
10. J. E. McClure, Dyer-Lashof operations in K-theory, Bull. Amer. Math. Soc. (1) 8 (1983), 67-72.
11. J. E. McClure and V. P. SNaith, On the K-theory of the extended power construction, Math. Proc. Cambs. Philos. Soc. (2) 92 (1982), 263-274.
12. J. P. May, Geometry of Iterated Loopspaces (Lecture Notes in Mathematics No. 271, 0000, Springer-Verlag).
13. J. P. May (with contributions by Frank Quinn, Nigel Ray and Jørgen Tornehave), E_{∞} ring Spaces and E_{∞}-ring Spectra (Lecture Notes in Mathematics No. 577, 0000, Springer-Verlag).
14. V. P. Snaith, Dyer-Lashof Operations in K-theory (Lecture Notes in Mathematics No. 496, 0000, Springer-Verlag), 100-299.
15. V. P. SNaith, Unitary K-homology and the Lichtenbaum-Quillen conjecture on the algebraic K-theory of schemes, Algebraic Top. Conf., Aarhus 1982 (Lecture Notes in Mathematics No. 1051, 0000, Springer-Verlag), 128-155.
16. V. P. Snaith, Algebraic Cobordism and K-theory (Mem. A. M. Soc. No. 221, 1979).
17. R. W. Thomason, Algebraic K-theory and étale cohomology (preprint M.I.T., 1981).
18. R. W. Thomason, The Lichtenbaum-Quillen conjecture for $K / l^{*}[1 / \beta]$, Proc. Current Trends in Algebraic Topology (Can. Math. Soc. Conf. Proc. Series No. 2, Part 1, 1982), 117-140.
19. C. A. Weibel, Mayer-Vietoris Sequences (Lecture Notes in Mathematics No. 966, 0000, Springer-Verlag), 390-407.

Department of Mathematics
University of Western Ontario
London, Ontario
N6A 5B7 Canada

[^0]: \dagger Research partially supported by NSERC Grant A4633.

