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Abstract
We demonstrate the effectiveness of a Bayesian evidence -based analysis for diagnosing and disentangling the sky-averaged 21-cm signal
from instrumental systematic effects. As a case study, we consider a simulated REACH pipeline with an injected systematic. We demon-
strate that very poor performance or erroneous signal recovery is achieved if the systematic remains unmodelled. These effects include
sky-averaged 21-cm posterior estimates resembling a very deep or wide signal. However, when including parameterised models of the sys-
tematic, the signal recovery is dramatically improved in performance. Most importantly, a Bayesian evidence-based model comparison
is capable of determining whether or not such a systematic model is needed as the true underlying generative model of an experimen-
tal dataset is in principle unknown. We, therefore, advocate a pipeline capable of testing a variety of potential systematic errors with the
Bayesian evidence acting as the mechanism for detecting their presence.

Keywords: dark ages – reionisation – first stars – methods: statistical – methods: data analysis

(Received 4 May 2022; revised 15 September 2022; accepted 23 September 2022)

1. Introduction

With 21-cm cosmology (Furlanetto, Oh, & Briggs 2006), we can
potentially probe the earliest phases of the Universe after the cos-
mic microwave background (CMB) photons decoupled from the
dense plasma so that protons and electrons could recombine to
form neutral hydrogen when it was energetically favoured. Neutral
hydrogen can absorb or emit the hyperfine HI line with a char-
acteristic wavelength of λ = 21 cm. Finding the 21-cm line in
emission or absorption state is dependent on the spin temperature
defined through the relative occupancy rates between the excited
and neutral state of hydrogen.When the spin temperature is lower
than the background radiation in the universe, we will find the
21-cm signal in ‘absorption’ and vice versa for emission. This tem-
perature difference is known as the sky-averaged 21-cm signal and
it is predicted to have a characteristic absorption feature (Pritchard
& Loeb 2008) which is evolving during Cosmic Dawn (CD) and
the Epoch Of Reionisation (EOR). Physical effects affecting the
signal shape include the Wouthuysen-Field effect (Wouthuysen
1952; Field 1958) of Lyman-α photon coupling, X-Ray heating
through high-energetic X-ray photons, and the progressive reion-
isation of the hydrogen due to star-forming regions at EOR. For a
detailed review of the field see Furlanetto et al. (2006), Pritchard &
Loeb (2012), Morales & Wyithe (2010), Liu & Shaw (2020).

Observatories trying to detect the 21-cm hydrogen line are
designed in one of two ways. First, the interferometric approach
such as HERA (DeBoer et al. 2017), SKA (Dewdney et al. 2009),
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LOFAR (van Haarlem et al. 2013), MWA (Tingay et al. 2013)
attempting to characterise the spatial fluctuations of the 21-cm
hydrogen line. Second, the simpler approach uses a wide-beam
single antenna system, thus averaging over the whole sky to mea-
sure the integrated emission of bright and faint radio objects.
However, they are harder to calibrate as opposed to multi-antenna
systems, for example, the phase shift calibration of a single
antenna, and lower resolving power to detect millikelvin-level sig-
nals. These measurements are known as the sky-averaged or global
signal experiment (Liu et al. 2013) with observatories such as
EDGES (Bowman, Rogers, & Hewitt 2008), SARAS 2 and 3 (Singh
et al. 2018, 2022), LEDA (Price et al. 2018), PRIZM (Philip et al.
2018), REACH (de Lera Acedo et al. 2022) and many more in the
low radio frequency regime to probe the CD and EOR.

Researchers from EDGES (Bowman et al. 2018a) were the
first to claim a detection of an absorption profile at CD with a
flattened Gaussian shape, centred at f0,21 = 78± 1MHz with an
amplitude of A21 = 500+500

−200 mK. This result is in tension with the
astrophysical models of Cohen et al. (2017), who postulated a
Gaussian-like profile with a maximum amplitude of around A21 ≈
240 mK. Consequently, candidates to explain these results include
new physics, where we either have excessive cooling of the IGM
beyond the adiabatic limit involving dark-matter particle inter-
action (Barkana 2018; Barkana et al. 2018; Muñoz & Loeb 2018)
or an enhanced radio background (Jana, Nath, & Biermann 2019;
Fialkov & Barkana 2019; Mirocha & Furlanetto 2019) with strong
implications on high-redshift star-formation (Mittal & Kulkarni
2022).

However, there is also discussion that does not involve new
physics, that is, an astrophysical origin of the signal. Explanations
could include instrumental effects such as a ground plane artefact
(Bradley et al. 2019) mimicking an absorption profile or general
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concerns about the data analysis. A re-examination of the EDGES
result lead by Hills et al. (2018) (H18) concluded that the best-
fitting profile reported by EDGES is not a unique solution and
contains unphysical values in the ionospheric foreground model
with the possibility of an uncalibrated 12.5MHz sinusoidal struc-
ture in the data. This ignited an open scientific debate as Bowman
et al. (2018b) argued that H18 concerns about unphysical param-
eters for the ionospheric model stems from covariance between
ionospheric and astronomical foreground parameters where small
errors in the latter and residual effects during calibration processes
can result to biased recovered ionospheric parameters. However,
they state that it is possible to extract a sky-averaged 21-cm signal
without an absolutely calibrated foreground component as only
relatively calibrated frequency channels are needed. Moreover,
they acknowledge the ambiguous solution of the recovered shape,
however, state that a general absorption profile is a priori most
physically justifiable.

Another re-examination of the EDGES low-band dataset lead
by Sims & Pober (2020) conducted an analysis by including a
sinusoidal systematic model and concluded that the models that
account for these structures are preferred over models that do
not include them. However, they could not clearly distinguish
whether there is a clear preference for a sky-averaged 21-cm sig-
nal model over models that do not include the signal. Moreover,
with other data analysis approaches such as applying a differ-
ent foreground model using maximally smooth functions (MSF)
(Singh & Subrahmanyan 2019; Bevins et al. 2021), one can also
detect unmodelled sinusoids in the residuals of the EDGES low-
band dataset, which are also similarly seen in another sky-averaged
experiment LEDA (Price et al. 2018) and SARAS 2 (Bevins et al.
2022b). Finally, data obtained by the SARAS 3 radiometer reject
the presence of the best-fitting absorption feature reported by
EDGES with 95.3% confidence (Singh et al. 2022).

With this work, we investigate the case of systematic effects,
that is, a non-astrophysical origin for the Bayesian pipeline of
REACH. We introduce unmodelled sinusoidal structures inside
forward modelled antenna temperature datasets, and study its
influence on the resulting sky-averaged 21-cm signal parameter
estimation using a Bayesian inference framework. In Section 2,
we introduce the Bayesian inference framework, specifically the
parameter estimation and model comparison component. In
Section 3, we describe how we generated our antenna temperature
datasets using a physically motivated forward model. In Section 4,
we discuss how to statistically model the antenna temperature
datasets in a Bayesian way using a likelihood function and assign-
ing a prior distribution on the model parameters. In Section 5,
we quantify our results by using Bayesian evidence-driven model
selection and a Goodness-of-Fit test and in Section 6 we conclude
and summarise our results.

2. Bayesian inference and nested sampling

To analyse the dataset we use Bayesian inference (Sivia & Skilling
2006), a statistical modelling framework where we must assign a
prior distribution p(θ|M) for a model M with its parameters θ

to recover the posterior distribution p(θ|D,M) of the parameters
after the datasetD has been observed. This is achieved by applying
Bayes theorem:

p(θ|D,M)= p(D|θ,M)p(θ|M)
p(D|M)

, (1)

where L(θ)≡ p(D|θ,M) is the likelihood function of the model
parameters and Z ≡ p(D|M) the Bayesian evidence.

To recover the posterior distribution for parameter estimation
and the Bayesian evidenceZ for model comparison, we use nested
sampling (Skilling 2006). With nested sampling, one computes
the Bayesian evidence by gradually shrinking the prior volume
fraction dX:

Z =
∫

L(θ)p(θ|M)dθ =
∫ 1

0
L(X)dX, (2)

through sampling from the prior which have likelihoods higher
than an evolving likelihood constraint L:

X(L)=
∫
L(θ)>L

p(θ|M)dθ. (3)

In practice, we use PolyChord (Handley, Hobson, & Lasenby
2015a,b) to find samples subject to the likelihood constraint
L(θ)>L which implements slice sampling to draw new proposal
samples. As PolyChord is a sampling-based algorithm, one can
use the computed Bayesian evidence Z to get posterior sam-
ples θ∗, therefore tackling the parameter estimation and model
comparison aspects of Bayesian inference simultaneously.

To compare competing models we need to apply Bayes
Theorem on the Bayesian evidence Z :

p(M|D)= p(D|M)p(M)
p(D)

, (4)

to recover the model probabilities p(M|D). We compare compet-
ing models M1 and M2 by forming the logarithmic Bayes factor:

logK = log p(M1|D)− log p(M2|D), (5)

where we assume equal prior model probabilities: p(M1)= p(M2).
A positive Bayes factor logK > 0 indicates a model preference of
M1 over the competing modelM2.

3. Forwardmodelling the dataset D

To generate the datasetD for this analysis, the forwardmodel splits
the process into a sum of physically motivated components:

D≡ Tdata = Tfg + T21 + Tsys + Tnoise, (6)

with Tfg the simulated foreground, T21 the sky-averaged 21-cm
signal, Tsys the systematic structure and Tnoise the noise compo-
nent of the antenna temperature. The decomposition can be seen
in Figure 1 and the next sections describe how we simulate each
component.

3.1 Sky simulation

To simulate the foreground data we use the foreground modelling
framework of Anstey, de LeraAcedo, & Handley (2021a) that is
used as the standard pipeline of REACH (de Lera Acedo et al.
2022). The pipeline utilise the 2008 Global Sky Model (GSM De
Oliveira-Costa et al. 2008) at 408MHz, T408(�) and 230MHz,
T230(�) and construct the spatially varying spectral index:

β(�)=
log

(
T230(�)−TCMB
T408(�)−TCMB

)
log

( 230
408

) , (7)

with TCMB the cosmic microwave background at TCMB = 2.725K.
This spatially variable spectral index is a physically motivated
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Figure 1. Dataset composition, from top to bottom: the foreground Tfg contribution,
the Gaussian sky-averaged 21-cm absorption signal T21, the heteroscedastic radiomet-
ric noise Tnoise, a sinusoidal systematic structure Tsys.

choice to realistically model the spatial power distribution pat-
tern through its spectral index. Hence, assuming a simple constant
spectral index β(�)= β0 = const is an unfavourable and unphysi-
cal choice in the simulation process. With this spectral index and
T230(�) we simulate the foreground component:

Tsim(ν,�)= (T230 − TCMB)
( ν

230

)−β(�) + TCMB, (8)

with TCMB = 2.725K the cosmic microwave background. We
choose T230(�) as the base map as it is an approximated ‘empty’
50–200MHz representation of the sky without having to worry
about contamination introduced by the sky-averaged 21-cm signal
as we will add it later on. We convolve this simulated foreground
map with the beam pattern B� of a conical log-spiral antenna
(Dyson 1965):

Tfg(ν)= 1
4π

∫
�

B(�, ν)Tsim(�, ν)d�. (9)

We choose the conical log-spiral antenna beam pattern as
Anstey et al. (2021b) reported that this beam pattern has the best

performance for correctly extracting a sky-averaged 21-cm signal
out of five antenna designs.

The conical log-spiral antenna is FEKO simulated (Elsherbeni
2014), assumed to be in free-space and located in ideal non-
reflective conditions from the ground. We note that this setup
is not physically realistic as it does not introduce instrumen-
tally caused systematics, however, due to these ideal conditions
we can study how an synthetically added systematic structure is
generally handled by the pipeline. One could expand the simu-
lations by adding a ground plane or soil beneath the antenna for
subsequent research. The initialisation of this sky-averaged experi-
mental setup is located at the Karoo Radio Reserve in South Africa,
at −30.71131◦ latitude and 21.4476236◦ longitude where REACH
is being built. For our analysis, we set the observation time to be
a snapshot of the sky at ‘2019-10-01 00:00:00’ UTC (LST: 23.99 h)
when the Milky Way centre is not at the zenith.

3.2 Sky-averaged 21-cm signal

We add a sky-averaged 21-cm absorption signal with a Gaussian
shape to the antenna temperature:

T21(ν)= −A21 exp
(

− 1
2σ2

21
(ν − f0,21)2

)
, (10)

where ν is the frequency, A21 the amplitude of the sky-averaged
21-cm signal, f0,21 the central frequency and σ21 the standard devi-
ation. For the following analysis we set A21 = 155 mK, f0,21 =
85MHz and σ21 = 15MHz which is an Gaussian approximation
of the standard case of the astrophysical models of Cohen et al.
(2017). We emphasise here the challenge of the sky-averaged 21-
cm signal extraction, the Gaussian absorption signal is in the
millikelvin-level, whereas the foreground contribution reaches
several thousands of kelvin in our frequency band.

3.3 Antenna temperature noise

After the sky has been simulated, we add the noise component
Tnoise. We choose a physically motivated radiometric noise model
(Kraus et al. 1986) which can be modelled through a Gaussian dis-
tribution centred at Tfg(ν) with heteroscedastic radiometric noise:

σradio(ν)= ηTfg(ν)+ (1− η)T0 + Trec√
τ�ν

, (11)

with Tfg the antenna temperature, η the antenna radiation effi-
ciency, T0 the ambient temperature, Trec the antenna receiver
temperature, τ the integration time and �ν the channel width.
For our analysis, we choose η = 0.9, T0 = 293.15K, Trec = 500K,
τ = 105 s and �ν = 0.1MHz. This choice of parameters sup-
presses the noise contribution by a factor of

√
τ�ν = 105 which

is the necessary noise level at the lower frequency end, where the
antenna temperature Tfg can reach several thousands of kelvins.
We note that in a real experimental setup, the integration time τ

might not be constant across the frequency band due to flagging
of RFI contamination.

Furthermore, we ‘seed’ the noise so that the noise realisation
is identical for each dataset. This engenders consistency in the
Bayesian evidence when comparing models and consistency of
results across datasets.
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3.4 Systematic structure

For the systematic component, we choose the generalised damped
sinusoid:

Tsys(ν)=
(

ν

f0

)α

Asys sin
(
2π

ν

Psys
+ φsys

)
, (12)

where Asys is the amplitude, ν the frequency, Psys the period of
the sinusoid, φsys the phase, α the damping coefficient and f0
the reference central frequency of the antenna band. For our
experimental setup we have the frequency band 50–200MHz,
therefore f0 = 125MHz. These types of structures can arise due to
cable reflections within an antenna system, or due to frequency-
dependent soil-related losses seen as regular or damped sinusoidal
structures.

More concisely, such systematic structures can appear in
EDGES, LEDA and in SARAS 2 when using foreground modelling
techniques such as polynomial or MSFs, for example, in reanalysis
done by Hills et al. (2018), Singh & Subrahmanyan (2019), Bevins
et al. (2021, 2022b). Possible causes could include instrumental
effects or a poor foreground modelling. However, given the differ-
ent approaches of foreground modelling, the similar design and
calibration of the sky-averaged 21-cm experiments and the vari-
ation of parameters seen, for example, in amplitude and period
of the systematics across instruments, an instrumental origin is
more probable. Potential causes, for example, in LEDA could be
due to direction-dependent gain of the antenna, a band-pass fil-
ter that causes frequency-dependent group-delay or rainfall that
moisturises the cables and soil (Price et al. 2018) or other calibra-
tion errors (Sims & Pober 2020). Non-instrumental effects such as
ionospheric activity, emission from the soil or RFI could also be a
possibility (Bevins et al. 2022b). This suggest a further investiga-
tion of this structure as a potential instrumental systematic with
the exact cause still unknown. As the (damped) sinusoidal sys-
tematic structure appeared at several independent sky-averaged
21-cm signal experiments, we continue our analysis by artificially
injecting this structure into the dataset.

We choose a parameter cube:
Asys ∈ [0, 60, 100, 150, 200, 500, 1000] mK,
Psys ∈ [6, 12.5, 25, 50, 100]MHz, φsys ∈ [0, π

2 , π ,
3
2π]. For the

damping coefficient we set α ∈ [0,−2.5] where α = −2.5 is
similarly seen in the LEDA (Price et al. 2018) experiment by an
analysis using MSF of Bevins et al. (2021). It is worth to note that
the damping coefficient is in the order of the spectral index of the
galactic foregrounds for this frequency band (Mozdzen et al. 2017;
Spinelli et al. 2021), suggesting a possibly multiplicative rather
than additive systematic. We inject either one of them, damped
or not damped systematic, to the dataset such that we create two
parameter cubes—one for each systematic structure—where we
take the outer product of the parameter vectors.

4. Bayesian modelling of the dataset D

4.1 Likelihood function

Once we have generated the dataset, we define a likelihood func-
tion L for our model and provide prior ranges of the model
parameters θ which PolyChord needs to compute the Bayesian
evidence Z for our chosen model and generate posterior samples

θ∗. As we introduce radiometric noise to generate the dataset, we
use a radiometric likelihood function:

logL=
∑

ν

−1
2
log

(
2πσ2

radio(ν)
) − 1

2

(
Tdata(ν)− TM(ν)

σradio(ν)

)2

,

(13)

which is a Gaussian likelihood with heteroscedastic radiometric
noise of Equation (11) for the dataset Tdata and TM the modelling
component. We define four models:

M1 ≡ TM1 = Tfg + T21, (14)

the signal model and:

M2 ≡ TM2 = Tfg, (15)

the no-signal model. For both models we leave the systematic
structure unmodelled to study its influence on the parameter
inference of the sky-averaged 21-cm signal in Sections 5.1 and 5.2.

We also introduce the modelsM3 andM4 where the systematic
structure is modelled in addition to the foreground, sky-averaged
21-cm signal and noise component:

M3 ≡ TM3 = Tfg + T21 + Tsys, (16)

that includes the sky-averaged 21-cm signal model and:

M4 ≡ TM4 = Tfg + Tsys, (17)

that does not contain the sky-averaged 21-cm signal. Hence, these
models contain a systematic structure that can arise due to exper-
imental setups. We study the inference results of these models in
Section 5.3.

Tomodel the foregroundwe use the Bayesian foregroundmod-
elling framework with chromaticity correction of Anstey et al.
(2021a). This model splits the foreground map into Nreg regions
of uniform spectral indices to account for chromatic effects. With
this subdivided foreground map which is an approximation of the
foreground map used for dataset generation, the antenna temper-
ature can be modelled by convolving it with the conical log-spiral
beam pattern B�. The log-spiral antenna is assumed to be in free-
space with no reflections from the ground, that is, we use the same
antenna pattern for inference as the antenna pattern used for sim-
ulating the dataset. This log-spiral antenna is similarly used as one
of the two antennae of REACH.

For our analysis, we set the foreground region parameter to
Nreg = 14 as complex structure modelling needs generally more
foreground region parameters. One could expand this analysis by
studying how the inference changes by varying the number of fore-
ground regions. However, we decide to omit this analysis as it
introduces another parameter dimension for an already compu-
tationally expensive inference. Moreover, our parameter cube of
the sinusoidal structure is extensive enough for the purpose of our
study. Additionally, Anstey et al. (2021a) reported that the infer-
ence should in principle not differ much but rather be considered
as a tool to search the optimum number of foreground regions
with the highest Bayesian evidence. Nevertheless, we note that for
a real dataset one should incorporate this extra dimension into the
analysis.

For the sky-averaged 21-cm signal component we include a
Gaussian signal model of Equation (10) with θ21 = (f0,21, σ21,A21)
the parameter vector.
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Table 1. Prior choices for the foreground spectral indices
β1:Nreg , sky-averaged 21-cm signal shape f0,21, σ21, A21, the
radiometric noise model Trec, η, σnoise and the systematic
parameters αsys., Asys., Psys., φsys.

Parameter Type Range

β1:Nreg uniform 2.458–3.146

f0,21 uniform 50–200MHz

σ21 uniform 10–30MHz

A21 uniform 0–0.50 K

Trec log uniform 100–1000 K

η uniform 0.8–1

σnoise log uniform 10−8–0.1 K

αsys. uniform 0–3

Asys. uniform variable

Psys. uniform variable

φsys. uniform 0–2 π

For the radiometric noise component, we include the radio-
metric noise model of Equation (11) through the radiomet-
ric likelihood function and parameterise it through θnoise =
(Trec, η, σnoise), where σnoise = 1/

√
τ�ν is the noise level.

For the systematic component, we include a parame-
terised (damped) sinusoidal model of Equation (12) θsys =
(αsys,Asys, Psys, φsys). We set the damping coefficient αsys = 0 for
inference when the dataset does not contain a damped structure.

To summarise, we have the following parameterisation
for each model: θM1 = (θfg, θ21, θnoise), θM2 = (θfg, θnoise), θM3 =
(θfg, θ21, θnoise, θsys) and θM4 = (θfg, θnoise, θsys).

4.2 Prior ranges of parameters

The prior ranges of the model parameters are listed in Table 1
and we note that the parameter grid of the sinusoidal structure
of Section 3.4 exceeds the prior upper ranges of σ21 and A21.
We set these upper limits to signal strengths which are similarly
seen in Bowman et al. (2018a). This allows PolyChord to fit for
these EDGES-like sky-averaged 21-cm signal shapes within the
datasets. The foreground prior limits β1:Nreg are the corresponding
minimum and maximum values of the spectral index map com-
puted through Equation (7). The sinusoidal systematic parameter
Asys. and Psys. have variable ranges depending on the dataset,
for example, 0–0.5 K and 0–50MHz for datasets with weaker
systematic structures versus 0.5–1.5 K and 50–150MHz ranges
for datasets with the largest sinusoidal structures. Nevertheless,
the ranges remain identical across different models within a
dataset.

We note that the resulting analysis is dependent on the choice
of prior and their ranges. The prior choice can be optimised if one
understands the underlying system well enough such that some
prior types and ranges might be more suitable for a given model
and system. As we do not know what a reasonably prior can be
for such a system, we choose uniform priors to maximise entropy,
that is, minimise prior information with ranges that seems most
plausible and physically realistic for our analysis with upper signal
parameter ranges that include the absorption feature of Bowman
et al. (2018a).

Table 2. PolyChord settings with nlive the number of live points,
npriorthe number of initial prior samples before compression,
nfail the number of failed spawns before stopping the algorithm
and nrepeats the number of slice sampling repeats which are
all proportional to the model/parameter dimension Ndim. The
precision criterion is the nested sampling evidence termi-
nation criterion and do clustering if clustering of samples
should be activated.

Parameter Settings

nlive Ndim ∗ 25
nprior Ndim ∗ 25
nfail Ndim ∗ 25
nrepeats Ndim ∗ 5
precision criterion 0.001

do clustering True

4.3 PolyChord settings

To compute the Bayesian evidence Z and to recover the poste-
rior distributions of the model through PolyChord we set the
following sampling initialisations which are listed in Table 2.

Furthermore, we run PolyChord twice where in the second
run we use the posterior sample mean θ̄∗ and sample standard
deviation σ∗ of the first run to construct narrower prior ranges
θ̄∗ ± 5σ∗ (of same shape as in Table 1) for the ‘enhanced’ run.
This allows us to narrow the initial priors and focus the param-
eter search around the posterior mode engendering a more tightly
constrained posterior distribution of the parameters after the sec-
ond run. A more detailed description of this method can be found
in Anstey et al. (2021a).

5. Results

In Figures 2 and 3 we present five sky-averaged 21-cm sig-
nal extractions when sinusoidal structures without damping are
present in the data and are left unmodelled. Each dataset has
a varying sinusoidal structure, that is, different parameter pair
values (Asys, Psys) present. Furthermore, these extractions are rep-
resentative examples of five distinct cases of sinusoidal structures:

• low amplitude, low period case, (60mK, 12.5MHz),
• low amplitude, high period case, (60mK, 100MHz),
• high amplitude, low period case, (1000mK, 12.5MHz),
• high amplitude, high period case, (1000mK, 100MHz),
• base case, no systematic.

In all four cases when there is a sinusoid present inside the data,
the resulting sky-averaged 21-cm signal shape is highly deformed.
The amplitude, scale and central frequency of the sky-averaged 21-
cm signal are all affected by the sinusoid, that is, the true Gaussian
signal shape is not accurately recovered.We notice a tendency that
the extracted sky-averaged 21-cm signal shape has an enhanced
amplitude and broadened profile which is similarly reported by
EDGES (Bowman et al. 2018a) given the predictions of the astro-
physical models of Cohen et al. (2017) and the discussion whether
or not this is caused by an unmodelled systematic structure seen in
the residuals (Hills et al. 2018; Bowman et al. 2018b; Bevins et al.
2021; Singh & Subrahmanyan 2019).
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21-cm signal inference (blue) in comparison to the true 155mKGaussian signal shape (green). The left panel shows the sky-averaged signal recoverywhen the systematic structure
is left unmodelled. The right panel shows the signal recovery when the systematic structure is modelled. One shade in the colorbar represents the 0.5σ region.

To statistically quantify the signal recovery in a Bayesian way,
we will compare these extractions with the inference results of the
no-signal model M2 using the Bayesian evidence logZ for all the
combinations of parameters of the sinusoidal parameter cube in
Section 5.1. We also discuss the Goodness-of-Fit for these five
cases of the sinusoid in Section 5.2. Moreover, when including
a systematic model the true sky-averaged 21-cm signal parame-
ters are accurately recovered with the model having the highest
Bayesian evidence of all models considered. This is discussed in
more detail in Section 5.3.

5.1 Bayes factor logK contours

For each dataset, we compute the Bayesian evidence Z of the sky-
averaged 21-cm signal modelM1 and the no-signal modelM2. We
then compare these models by forming the Bayes factor logK of
Equation (5). Hence, a positive Bayes factor quantifies that the
signal modelM1 is preferred for the dataset D.

Figure 4 shows the Bayes factor contour plots for the parameter
space (Asys, Psys) of the sinusoidal systematic relative to the sky-
averaged 21-cm signal parameters A21 and the Full Width at Half
Maximum (FWHM21) for different sinusoidal phases φsys.

We find in the high amplitude, low period region of the sys-
tematics that the Bayes factor logK is preferring the no-signal
modelM2. This is due to the low signal-to-noise ratio between the
sky-averaged 21-cm signal and the systematic structure which is
also becoming increasingly similar to the radiometric background

noise. Hence, Bayesian model selection cannot justify the inclu-
sion of a 21-cm signal model and Bayesian model selection
penalises more complicated models with constrained parameters
that are not necessarily needed, see a discussion in Hergt et al.
(2021).

However, this trend seems to break once we have oscillations
with higher periods, where the Bayes factor reaches values of
logK > 4. This indicates a strong preference for the 21-cm sig-
nal modelM1. For these cases the Bayes factor is always preferring
the signal model, however, it is not clear if the actual sky-averaged
21-cm signal has been successful. This will be further investigated
and discussed in Section 5.2.

In the low amplitude region there is a clear preference for the
sky-averaged 21-cm signal modelM1, irrespective of the period of
the sinusoid. However, as in the high amplitude, high period case,
it is not clear whether the sky-averaged 21-cm signal extraction has
been successful.

We note that the model preference stays relatively insensitive
to the phase φsys of the systematic. Slight variations, for example,
an enhanced preference of the no-signal modelM2 for φsys = 3/2π
is due to the varying superposing effects between the amplitude of
the sinusoidal and the amplitude of the 21-cm signal.

A similar plot has been generated for the frequency decreasing
damped sinusoidal structure which is also shown in Figure 4. Here
we observe the same Bayes factor trends as the general sinusoidal
structure and it is also not clear whether the recovery of the sky-
averaged 21-cm signal was successful.
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Figure 3. Top: Sky-averaged 21-cm signal recovery (blue) and foreground subtracted residuals (red) when there is no sinusoid present (black line). ‘By eye’ the fit looks reasonable
compared to the true signal shape (green). Bottom: The radiometric noise residuals. This figure is referred to as the base case.
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Figure 4. Logarithmic Bayes factor logK contour plots for varying parameterisation of the systematic structure and radiometric noise present in the dataset D. The damped
sinusoid has a damping coefficient αsys = −2.5.

5.2 Goodness-of-Fit test

The Bayes factor analysis is the Bayesian way of quantifying which
competing model is preferred, however, this analysis does not
quantify if the extraction of the sky-averaged 21-cm signal has
been successful, that is, the true sky-averaged 21-cm signal shape
has been recovered. To quantify the parameter recovery we use
a Goodness-of-Fit test by constructing a p-value that quantifies

how well the posterior distribution is recovering the true signal
parameters. Then, we will put that parameter recovery in per-
spective to the compression rate of the prior as they are related
through the Occam’s equation of the Bayesian evidence (Hergt
et al. 2021) and therefore contributing to the Bayes factor. To
construct the p-value, we need to evaluate the marginalised pos-
terior probabilities of the true signal parameters and the posterior
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Figure 5. Goodness-of-Fit test p-value contour plots with the presence of a systemic structure and radiometric noise in the dataset D. The damped sinusoid has a damping
coefficient αsys = −2.5.

samples. To estimate the probabilities, we learn the marginalised
sky-averaged 21-cm signal posterior distribution through normal-
ising flows (Kobyzev, Prince, & Brubaker 2021; Papamakarios et al.
2021).

Normalising flows are a density estimation method that utilise
a series of bijective transformations to find an estimate P̂ of a prob-
ability density function. More complex methods such as masked
autoregressive flows (Papamakarios, Pavlakou, & Murray 2018)
utilise a neural network as a bijective transformation and are start-
ing to be applied in cosmology (Alsing & Handley 2021) to learn
sample distributions.

In practice, we use margarine (Bevins et al. 2022a) to train
these autoregressive flows on the marginalised posterior distribu-
tion of the sky-averaged 21-cm signal parameters and conduct a
Goodness-of-Fit test by evaluating the probabilities P̂(θ|D) of the
true signal parameters θtrue and constructing a p-value:

p=
∑n

i=1 wi ×1{P̂(θ∗
i |D)< P̂(θtrue|D)}∑n

i=1 wi
, (18)

where 1 is the indicator function for our posterior samples θ∗
i with

weights wi. With this definition, a p-value of 0 indicates that no
posterior sample has lower probability than the true signal param-
eters, and p= 1 would indicate that every posterior sample has
lower probability than the true signal parameters. This validation
technique of posterior distributions can be found in more detail in
Harrison et al. (2015).

We generated an equivalent contour plot of p-values using
our parameter grid (Asys, Psys) with phase variations φsys of the
sinusoidal structure in Figure 5 for the general and frequency
decreasing damped cases. We also show the marginalised pos-
terior distributions of the recovered sky-averaged 21-cm signal
parameters in Figure 6. The p-value contour plots can similarly
be divided into two categories of sinusoidal systematics, the high
or low period case.

For the base case where there is no systematic structure present
inside the data (Asys = 0 mK), we observe a p-value of p≈ 0.07.
This is due to the true parameters for the sky-averaged 21-cm

signal parameter pair (σ21, f0,21) being outside of the tightly con-
strained light red shaded 2σ region of the marginalised posterior
distribution shown in Figure 6 which is attributed to the approx-
imated foreground model we used in the modelling process.
Nevertheless, we will consider this fit and p-value as well recov-
ered given the compression rate of the prior to the posterior and
the Bayes factor showing a preference for the signal model.

For the high period cases of the sinusoidal structure, we find
p≈ 0, therefore, the true signal parameters have unlikely been gen-
erated by the posterior distribution of the samples. Combining
these findings with the Bayes factor contour plots, we can infer
that the pipeline is able to extract a sky-averaged 21-cm signal but
not the correct one, as these large oscillations are mimicking a sky-
averaged 21-cm signal towards the higher frequency end where the
foreground and noise contribution is weaker which is seen in the
marginalised signal estimates.

For the lower period cases, we find that the p-values are sig-
nificantly higher than the base case when there is no systematic
structure in the dataset. In this region, the systematic structure is
superposing with the 21-cm signal, that is, the sinusoidal struc-
ture is fitted as part of the 21-cm signal model engendering biased
p-values. This can be seen in the marginalised posterior distri-
bution, where the true signal parameter are within the contours
and not as dominated by the systematic, for example, through
major shifting of the central frequency f0,21 or deeply enhancing
the amplitude A21. Additionally, the signal-to-noise ratio is also
very low hence showing weaker signs of compression relative to
the prior, therefore allowing a wider signal parameter range to fit
these datasets. This is consistent with the Bayes factor analysis that
shows in this parameter region the no-signal modelM2 with fewer
parameters is preferred. Hence, this region is unsuitable for suc-
cessful sky-averaged 21-cm signal extraction if the systematics are
left unmodelled.

Only when decreasing the amplitude and the period of the
sinusoidal significantly Asys

A21
≤ 0.5, Psys

FWHM21
≤ 0.5, the Bayes factor

and the p-value indicate a well recovered fit but it is still higher
than in the base case. In this regime, the systematic structure is
also fitted as part of the 21-cm signal model resulting in a higher
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is in red. The black dotted lines represent the true parameters.

p-value and biased parameter mean estimates. We conclude that
in this parameter region the sky-averaged 21-cm signal recovery
can be partly successful but at the cost of a deformed sky-averaged
21-cm signal due to higher parameter variances that do not accu-
rately resemble the true sky-averaged 21-cm signal shape, as seen
in Figure 2 top left plot.

Moreover, we see similar trends regarding the p-value for the
frequency damped sinusoidal structures. However, there is a ten-
dency that the p-values are suggesting a better fit when we increase
the amplitude of the systematic structure for a given period. This
is due to the amplifying effect of the damped systematic amplitude
that superposes with the 21-cm signal, which grows exponentially
towards lower frequencies. For these damped sinusoidal struc-
tures, the pipeline is fitting a signal towards the lower frequency
end where the true signal is located therefore suggesting a
better fit.

5.3 Including a systematic model

The previous analysis has shown that an unmodelled systematic
structure can have a dramatic influence on the resulting parameter
estimation of the sky-averaged 21-cm signal shape. Hence, we will

now study the inference when we include a systematic model, that
is, examine the dataset with the systematic modelsM3 andM4.

The recovery of the sky-averaged 21-cm signal shown in
Figure 2 is now more accurate relative to the true sky-averaged
21-cm signal shape for all four cases of (Asys, Psys) variations. For
the high period cases, the central frequency and shape of the
sky-averaged 21-cm signal is now more accurately recovered and
for the datasets with lower period sinusoids, we see similar success.

More importantly, the Bayesian evidence (shown in Figure 7)
for the true model Tfg + T21 + Tsys is the highest out of all
four competing models for all systematic datasets considered.
Moreover, for the base case when there is no systematic structure
inside the dataset, the Bayesian evidence is the highest for the true
signal model Tfg + T21. Here, the systematic model has a similar
but lower Bayesian evidence than the true model. However, the
posterior estimate of the amplitude of the systematic is Ā∗

sys ≈ 0,
therefore, being in agreement with the true model which does not
require the systematic model.

Hence, the Bayesian evidence gives us the capability of dis-
tinguishing whether we need a systematic model when there is a
systematic structure inside the data and correctly preferring the
ground truth of this simulated dataset. We note that in a real
experimental scenario, we generally do not have access to the true
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Figure 7. Bayesian evidence logZ for four competingmodels: the signalmodel (blue), the no-signalmodel (red), the signalmodel with a sinusoidmodel (green) and the no-signal
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model. However, given our analysis the Bayesian evidence is capa-
ble of reliably choosing the models that could be the most likely
candidate of the ground truth, therefore providing researcher the
tools to continue their research in a given direction by testing
a variety of scientifically justifiable systematic models using the
Bayesian data analysis pipeline of Anstey et al. (2021a).

We note that the for the damped sinusoidal case with high
periods, that the Bayes factor is logK ≈ 0 when comparing the
models M3 and M4. The corresponding p-values of these high
period cases are also slightly higher than their low period coun-
terpart. This is due to a larger spread of the posterior samples
of the sky-averaged 21-cm signal amplitude A∗

21. This enhanced
uncertainty is caused by the correlation with the phase φsys and
period Psys of the sinusoid. The sinewaves maximum can super-
pose with the amplitude of the sky-averaged 21-cm signal and
due to the long periods affecting the sky-averaged 21-cm sig-
nal amplitude more significantly when changing the phase and
periodmarginally. Therefore, the Bayesian evidence cannot clearly
distinguish whether we need a sky-averaged 21-cm signal model
T21 due to the larger uncertainty of the sky-averaged 21-cm signal
amplitude.

However, this degeneracy is disentangled for sinusoids with
smaller periods where the posterior samples display uncorrelated
marginal posterior distributions between sky-averaged 21-cm sig-
nal and sinusoidal parameters. Hence, for these low period sinu-
soids, one achieves successful sky-averaged 21-cm signal recovery
and separation of the two model components with the true model
having the highest Bayesian evidence.

6. Conclusion

Re-examination of the EDGES data analysis has shown that there
can be an unmodelled systematic structure present inside the
data when using various data analysis techniques such as MSFs

or changing the number of polynomial functions. These unmod-
elled structures are possibly evidence that the reported best-fitting
shape of the EDGES collaboration is not purely of astrophysical
origin but biased due to instrumental effects of unknown mag-
nitude such as calibration errors. We investigate the influence
of these unmodelled systematic structures on the sky-averaged
21-cm signal parameter estimation through the Bayesian infer-
ence framework by using a nested sampling-based algorithm
PolyChord.

We used a physically motivated forward model to generate
datasets D representing the antenna temperature. Each dataset
has an identical foreground contribution, radiometric noise and a
Gaussian sky-averaged 21-cm absorption signal. After generating
these datasets, we added varying sinusoidal structures where we
parameterised the amplitude Asys, the period Psys, the phase φsys
and the damping coefficient αsys of the sinusoid.

We define four models, the signal model M1 with parameters
θM1 = (θfg, θ21, θnoise) and the no-signal modelM2 with parameters
θM2 = (θfg, θnoise) where we left the systematic structure unmod-
elled and the systematic models M3 and M4 with the parameter-
isation θM3 = (θfg, θ21, θnoise, θsys), θM4 = (θfg, θnoise, θsys), where we
include a systematic model. As we used the radiometric noise
model to generate our datasets, we use a radiometric likelihood
function, which can be modelled through a Gaussian distribu-
tion with heteroscedastic radiometric noise. With this radiometric
likelihood function and combined with the prior ranges of our
parameters, we can recover the marginalised posterior distribu-
tions of the parameters using the nested sampling-based algorithm
PolyChord. For each dataset, we use PolyChord to generate pos-
terior samples and compute the Bayesian evidence logZ for the
models considered.

To compare these models, we constructed the logarithmic
Bayes factor logK by applying Bayes Theorem on the Bayesian
evidence Z to acquire the model probabilities. For our parame-
terised sinusoids, we computed Bayes factor logK contour plots
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and found that when the systematic structures are left unmod-
elled the signal modelM1 is generally preferred over the no-signal
model M2 except in the high amplitude, low period regime of the
sinusoid. This is due to the low signal-to-noise ratio between the
sky-averaged 21-cm signal and the noisy background contribu-
tions by the sinusoid and the radiometric noise.

However, the Bayes factor logK contour plots do not contain
any information whether the actual sky-averaged 21-cm signal
recovery has been successful, that is, the true values of the sky-
averaged 21-cm signal are within the posterior sample estimates.
To quantify this statistically we used the Goodness-of-Fit test
by learning the posterior distribution of our sky-averaged 21-cm
signal parameters θ21 = (

f0,21, σ21,A21
)
through normalising flows

and computed the corresponding p-value. We created a p-value
contour plot for our sinusoidal parameter cube

(
Asys, Psys, φsys

)
similar to the Bayes factor logK contours.

This analysis has shown that the sky-averaged 21-cm signal
recovery is only slightly successful with high uncertainties in
the sky-averaged 21-cm signal parameter estimates for sinusoidal
parameter regions where Asys

A21
< 1 and Psys

FWHM21
< 1. For the other

regions, the corresponding p-value was either close to zero or one.
A p-value of zero is caused by the long period systematic struc-
tures mimicking an absorption profile with a tendency towards
the higher frequency end of the band. A p-value close to one is
due to the short period sinusoidal structures being fitted as part of
the signal model, engendering biased higher p-values. Combining
these results with the marginalised posterior distributions and the
Bayes factor contour plots, we concluded that these regions are
unsuitable for signal recovery.

However, this picture changes dramatically once we add a sys-
tematic model next to the foreground, the sky-averaged 21-cm
signal and the noise, hence using the modelsM3 andM4 for infer-
ence.We show that for all four regions of (Asys, Psys) combinations,
the resulting sky-averaged 21-cm signal extraction has been suc-
cessful and the Bayesian evidence logZ for the true model M3
is the highest out of all four competing models. Therefore, the
Bayesian evidence provides the tools to decide whether we need
a systematic model when there is a systematic structure inside the
dataset and it is capable of guiding us towards finding the ‘true’
underlying model of a dataset in a real-world scenario.

Furthermore, the marginalised posterior distributions of the
parameters show an uncorrelated behaviour between the sig-
nal parameters

(
f0,21, σ21,A21

)
and

(
Asys, Psys, φsys

)
for sinusoids

with small periods. This indicates a successful separation of these
structures in the modelling process, therefore resulting in more
precise posterior inferences. For longer periods, there is a ten-
dency that the period and phase of the sinusoid are correlated with
the amplitude of the sky-averaged 21-cm signal, hence, making it
a crucial task to precisely constrain these sinusoidal parameters
through the prior. This is evidence that by including a physically
motivated systematic model there is a possibility to do accurate
science when there is a systematic structure present in the data.

Overall, this analysis has shown that if there is a system-
atic structure present inside the dataset, Bayesian inference
strongly prefers a model where we include a systematic feature.
Additionally, the parameter inference results in a more accurate
recovery of the sky-averaged 21-cm signal parameters and more
tightly constrained posterior distributions. Finally, this analysis
is used to guide the design and the challenging task of calibra-
tion of the sky-averaged experiment REACH (de Lera Acedo et al.
2022) where systematic effects can be parameterised, introduced

and tested through the Bayesian data analysis pipeline of Anstey
et al. (2021a). Possible design choices could include the constraint
of cable lengths connected to the antenna system that could intro-
duce a varying degree of systematics effects into the data. Finally,
this kind of systematics analysis using the Bayesian data analysis
pipeline is also applicable to beyond REACH.
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