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Abstract
This paper proposes a fairly general new point of view on the question of asymptotic stability of (topological)
solitons. Our approach is based on the use of the distorted Fourier transform at the nonlinear level; it does not rely
only on Strichartz or virial estimates and is therefore able to treat low-power nonlinearities (hence also nonlocalised
solitons) and capture the global (in space and time) behaviour of solutions.

More specifically, we consider quadratic nonlinear Klein-Gordon equations with a regular and decaying potential
in one space dimension. Additional assumptions are made so that the distorted Fourier transform of the solution
vanishes at zero frequency. Assuming also that the associated Schrödinger operator has no negative eigenvalues,
we obtain global-in-time bounds, including sharp pointwise decay and modified asymptotics, for small solutions.

These results have some direct applications to the asymptotic stability of (topological) solitons, as well as several
other potential applications to a variety of related problems. For instance, we obtain full asymptotic stability of kinks
with respect to odd perturbations for the double sine-Gordon problem (in an appropriate range of the deformation
parameter). For the 𝜙4 problem, we obtain asymptotic stability for small odd solutions, provided the nonlinearity
is projected on the continuous spectrum. Our results also go beyond these examples since our framework allows
for the presence of a fully coherent phenomenon (a space-time resonance) at the level of quadratic interactions,
which creates a degeneracy in distorted Fourier space. We devise a suitable framework that incorporates this and
use multilinear harmonic analysis in the distorted setting to control all nonlinear interactions.
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1. Introduction

This work concerns the global-in-time behaviour of small solutions of one-dimensional quadratic Klein-
Gordon equations with an external potential. The class of equations that we treat in this paper appears
when studying the asymptotic stability of special solutions of nonlinear dispersive and hyperbolic
equations, such as solitons, travelling waves and kinks.

1.1. The model and motivation

1.1.1. The equation
We consider the equation

𝜕2
𝑡 𝑢 + (−𝜕2

𝑥 +𝑉 (𝑥) + 𝑚2)𝑢 = 𝑎(𝑥)𝑢2 (KG)

where the unknown 𝑢 = 𝑢(𝑡, 𝑥) ∈ R, the space and time variables (𝑡, 𝑥) ∈ R × R, 𝑚 > 0 is the mass
parameter, V is a real-valued, decaying and smooth external potential, and a is a sufficiently smooth
function with 𝑎(𝑥) −ℓ±∞ decaying quickly as 𝑥 → ±∞, ℓ±∞ ∈ R. The addition of cubic and higher-order
terms (with constant or nonconstant coefficients) does not bring any further complication, so we omit it
for the sake of explanation.1

Equation (KG) derives from the Hamiltonian

ℋ(𝑢) = 1
2

∫
R

[
(𝜕𝑡𝑢)2 + (𝜕𝑥𝑢)2 + 𝑚2𝑢2 +𝑉𝑢2] 𝑑𝑥 + 1

3

∫
R

𝑎(𝑥)𝑢3 𝑑𝑥. (1.1)

By rescaling, we can set 𝑚 = 1 without loss of generality; we will do so in the rest of the paper. We
will be interested in the Cauchy problem with small initial data (𝑢(0, 𝑥), 𝑢𝑡 (0, 𝑥)) = (𝑢0(𝑥), 𝑢1(𝑥)) in
suitable weighted Sobolev spaces. In short, under some spectral assumptions on V, our main result,
Theorem 1.1, gives the existence of global small solutions with sharp pointwise time-decay and long-
range asymptotics.

We will consider a broad class of external potentials in equation (KG), both generic and exceptional,
with some additional assumptions in the latter case. In all cases, we assume that there is no discrete
spectrum. The class of nongeneric potentials that we consider arises in applications such as, for example,
pure power nonlinear Klein-Gordon and the 𝜙4 model; see Section 1.4.

1.1.2. Motivation
Nonlinear equations with external potentials arise from the perturbation of full nonlinear problems
around special solutions, such as solitons. The quadratic problem in equation (KG) is inspired by the
long-standing open question of the full asymptotic stability of the kink solution 𝐾 = tanh(𝑥/

√
2) for the

𝜙4 model 𝜙𝑡𝑡 − 𝜙𝑥𝑥 = 𝜙 − 𝜙3 (see Section 1.4.1 and [45]). It is also closely related to similar questions
about solitons of nonlinear Klein-Gordon, kinks of other relativistic Ginzburg-Landau theories and
generalised sine-Gordon theories in 1 + 1 dimensions.

One-dimensional kinks are the simplest example of topological solitons: that is, non-spatially lo-
calised special solutions, as opposed to the more standard solitons that are localised in space. While the
mathematical theory on the stability (or instability) of solitons is very well-developed in many models,
this is not the case for topological solitons. There are in fact major difficulties in dealing with these
objects even in the most basic one-dimensional case. As we will explain below, our paper aims to ad-
dress some of these difficulties by treating the deceptively simple-looking quadratic model in equation
(KG) under fairly general assumptions. Note that models with quadratic nonlinearities, such as equation

1In fact, cubic terms such as 𝑢3, and more complicated ones, naturally appear in the analysis of equation (KG) performed in
this paper.
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(KG), also arise in the linearisation of quadratic equations (e.g., water waves, Euler-Poisson, Zakharov,
etc.) around (localised) soliton solutions.

Furthermore, the study of asymptotic stability (or instability) of solitons - as opposed to orbital or
local asymptotic stability - is motivated by problems in the theory of quasilinear equations, where this
is often the only relevant type of stability that one can hope to achieve, since the equations are usually
not even locally well-posed in the energy space.

Before describing our result in more detail, let us briefly mention some important aspects of our
paper:
• We can treat a large class of equations provided that the property 𝑢̃(0, 𝑡) = 0 holds; here 𝑢̃ denotes

the distorted Fourier transform of u. Under this sole assumption, we need to allow for a loss of
regularity in Fourier space of our solutions. This loss of regularity was previously observed in some
2d (unperturbed: that is, with no potential) models [14, 15]; in the 1d case under consideration, it is
caused by a coherent phenomenon - that is, a full (space-time) nonlinear resonance - that appears
because of the potential. See Section 2.3 for more on this.

• Loss of regularity in Fourier space is expected to be a crucial phenomenon in dimension one. First,
it should occur generically due to resonant nonlinear interactions within the continuous spectrum.
Also, singularities can arise through the coupling of internal modes of oscillations (discrete
spectrum) and the continuous spectrum through the ‘Fermi golden rule’ [67, 69]; furthermore, they
can appear due to zero energy resonances of the linear(ised) operator.2

• Our global stability and decay result for equation (KG) has direct applications to the stability of
stationary states of nonlinear evolution problems, under additional symmetry assumptions, when
restricting the nonlinear interactions to the continuous spectrum; see Section 1.4. We also obtain full
asymptotic stability for certain families of kinks of the double sine-Gordon equation (a generalised
sine-Gordon theory); see Section 1.4.3.

• We believe that our treatment of equation (KG) helps clarify the interconnected roles of the
zero-energy resonances, symmetries of the equation and low-frequency behaviour (or improved local
decay) in the study of global space-time asymptotics; see, for example, the discussion in Section 1.4.2.

• More generally, we believe that the approach laid out in this paper enables a precise analysis of the
nonlinear interactions of perturbed waves that are localised, yielding optimal results as far as decay
is concerned, for instance. In this respect, it goes beyond classical methods that rely on dispersive or
Strichartz estimates or virial-type identities.

1.2. Previous results

1.2.1. Methods for solitons and topological solitons
The literature on soliton stability is extensive, and a complete overview is beyond the scope of this paper,
and our abilities. We refer readers to the excellent surveys [71, 68, 64] and the book [9] and references
therein.

One immediately noticeable difference between solitons, which are spatially localised, and topologi-
cal solitons, which are not, is in the linearised equations. In fact, since topological solitons do not decay
to zero, lower-order nonlinear terms are typically powers of the small perturbation times a nondecaying
coefficient; see equation (1.18) as an example. This lack of localisation prevents the efficient use of
improved local decay type estimates, which are often a key tool when dealing with (standard) solitons.

In general, the treatment of low-power nonlinearities (in low dimensions) for equations with potentials
is a well-known problem. Linear dispersive tools (e.g., 𝐿 𝑝 − 𝐿𝑞 estimates for the linear group, Strichartz
estimates, improved local decay, etc.) and energy estimates are typically not enough to treat these
equations. Similar issues arise when 𝑉 = 0, but in this case, one can resort to well-established methods,
such as normal forms, vectorfields, the space-time resonance method and multilinear harmonic analysis
tools.

2See Section 1.4.1 for more on internal modes and the discussion after equation (2.19) for more on zero energy resonance.
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In the perturbed case𝑉 ≠ 0, all these methods are not directly applicable: the (large) potential decor-
relates linear frequencies, ruling out standard normal form analysis and multilinear Fourier analysis, and
at the same time destroys the invariance properties of the equation, ruling out vectorfields. To address
these fundamental issues, we initiated a systematic approach based on the distorted Fourier transform
in our work with F. Rousset [24] on the basic3 1d cubic NLS model with a generic potential. In this
paper, we advance our theory by treating the much more complex case of equation (KG).

Let us now review some of the existing literature, starting with results on flat/unperturbed 1d Klein-
Gordon equations and then turning to recent advances in the treatment of perturbed equations.

1.2.2. Klein-Gordon in the flat (𝑽 = 0) case in dimension one
In this case, Delort [11] obtained small data (modified) scattering for quasilinear quadratic nonlinearities.
Similar results were obtained in the semilinear cubic and quadratic case, respectively, in [52] and [30].
In the last few years, some works have been dedicated to inhomogeneous models of the form

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑢 = 𝑎(𝑥)𝑢2 + 𝑏(𝑥)𝑢3. (1.2)

Lindblad-Soffer [53] and Sterbenz [70] treated the case of constant a; see also [54] for a recent proof
when 𝑎 = 0. Lindblad-Soffer-Luhrman [55] also recently treated equation (1.2) under the assumption
that a decays to zero at infinity and either 𝑎̂(±

√
3) = 0, or 𝑎̂(±

√
3) ≠ 0 but 𝑏 = 0. In Section 2.3, we

will discuss the key role of the frequencies 𝜉 = ±
√

3 for the evolution of solutions of equation (KG).
As one of the byproducts of our main result, we also obtain globally decaying solutions with modified
asymptotics for equation (1.2) in the case of odd initial data and a general odd a and even b; see Remark
(9) after Theorem 1.1.

1.2.3. Equations with potentials in dimension one
In the analysis of nonlinear equations with potentials, the first step is to understand the dispersive
properties of the perturbed linear operator. There is a vast literature on dispersive properties, such as
decay estimates and Strichartz estimates; for brevity we just refer to the classical works [38, 25] and
[64] and references therein. The literature on linear scattering theory for Schrödinger operators is also
substantial; limiting ourselves to the 1d case, we refer to Deift-Trubowitz [10], Weder [75] and the books
[73, 77, 49].

As discussed above, linear tools are generally not sufficient to deal with low-power nonlinearities,
which are the ones of interest for the stability of topological solitons. Recently, a few works have been
dedicated to this situation in the one-dimensional case; see the works on cubic NLS [12, 60, 24, 7, 59],
and [16, 17] on wave equations.

Concerning kink solutions, Kowalczyk, Martel and Muñoz [45] proved asymptotic stability locally
in the energy space for odd perturbations of the kink of the 𝜙4 equation (1.17); the more classical orbital
stability was proven in [31, 26]. See also the related result on KG/wave models [46, 47], the proof of
local asymptotic stability for a large class of 1d scalar field equations by Kowalczyk, Martel, Muñoz
and Van Den Bosch [48] and the paper of Jendrej-Kowalczyk-Lawrie [37] on kink-antikink interactions.
Full asymptotic stability for kinks of relativistic GL equations (1.24) was proven by Komech-Kopylova
[41, 42] when 𝑝 ≥ 13. In a very recent paper, Delort and Masmoudi [13] proved long time stability
for the kink of the 𝜙4 model, reaching times of order 𝜖−4 for data of size 𝜖 ; their analysis is based on
a semi-classical approach using conjugation by the wave operators. Concerning this last problem, as a
consequence of our general results on equation (KG), we can obtain a global stability result (in the odd
class) provided the nonlinearity is projected onto the continuous spectrum. This latter is, of course, an
important restriction, and we do not claim any new results in the case of a full coupling to the internal

3In a perturbative and dispersive setting, a cubic model is substantially easier to handle than a quadratic one. The proof of
[24] can be adapted to a cubic KG equation with some additional observations, but a quadratic KG model presents substantial
additional difficulties.
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mode. However, we are hopeful that our techniques will be relevant in this case, too; see Section 1.4.1
for more on the 𝜙4 problem.

Finally, for results on the related problem of asymptotic stability of solitary waves for NLS, we refer
to the classical works [1, 2] and Krieger-Schlag [44] and references therein. For supercritical NLKG,
see Krieger-Nakanishi-Schlag [43].

1.2.4. Higher dimensions
Equations with potentials and questions about the stability of (nontopological) solitons in higher dimen-
sions have also been extensively studied. Without going too much into details, we refer the reader to the
classical results [67, 74, 69, 72, 27] and the surveys [68, 64, 65] and references therein. Finally, let us
mention some 3d works that are close in spirit to ours: [20] laid out some basic multilinear harmonic
analysis tools and treated the nonlinear Schrödinger equation in the case of a nonresonant 𝑢2 nonlinear-
ity, while [50, 51], respectively [62], considered the case of a small, respectively large, potentials and a
𝑢2 nonlinearity.

1.3. Main result

Let us now state our main result. In short, for sufficiently small and localised data (as in equation (1.3)),
and assuming that the distorted Fourier transform of the solution vanishes at the zero frequency, we can
construct global solutions for quadratic Klein-Gordon equations that decay at the optimal (i.e., linear)
rate (see equation (1.4)); moreover, we obtain full asymptotics with modified scattering via a logarithmic
phase corrections (see equation (1.13) below).

The statement of our main theorem requires some technical definitions, for which we give precise
references to later parts of the paper.

Theorem 1.1. Let

𝐻 := −𝜕2
𝑥 +𝑉

denote the Schrödinger operator, and assume it has no bound states. Let 𝑉 = 𝑉 (𝑥) and 𝑎 = 𝑎(𝑥) be
smooth and such that𝑉 (𝑥) and 𝑎(𝑥) −ℓ±∞ and their derivatives decay super-polynomially4 as 𝑥 → ±∞.

Consider either one of the following two equations:

• Either

𝜕2
𝑡 𝑢 + (𝐻 + 1)𝑢 = 𝑎(𝑥)𝑢2 (KG)

under one of the following three assumptions (see Sections 3 and 3.1.3 for definitions):
(A) V is generic, or
(B) V is exceptional and even, the zero energy resonance is even, and 𝑎(𝑥) is odd, or
(C) V is exceptional and even, the zero energy resonance is odd, and 𝑎(𝑥) is even.

• Or

𝜕2
𝑡 𝑢 + (𝐻 + 1)𝑢 =

√
𝐻 (𝑎(𝑥)𝑢2) (KG2)

under one of the following two assumptions:
(D) V is generic, or
(E) V is exceptional, and the distorted Fourier transform associated to H (defined in Section 3.2) of

the data (𝑢, 𝜕𝑡𝑢) (0, 𝑥) is vanishing at frequency zero.5

4The smoothness and decay assumptions can be relaxed. A more careful inspection of the proof shows that only a finite (possibly
large) amount of smoothness and polynomial decay would be sufficient.

5It is implied here that the distorted transform should be continuous at zero.
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Consider data at the initial time

(𝑢, 𝜕𝑡𝑢) (𝑡 = 0) = (𝑢0, 𝑢1)

with ��(√𝐻 + 1𝑢0, 𝑢1)
��
𝐻 4 +

��〈𝑥〉(√𝐻 + 1𝑢0, 𝑢1)
��
𝐻 1 = 𝜀0. (1.3)

Then the following holds:

• (Global existence) There exists 𝜀 > 0 such that for all 𝜀0 ≤ 𝜀, equation (KG) with initial data
(𝑢, 𝜕𝑡𝑢) (𝑡 = 0) = (𝑢0, 𝑢1) admits a unique global solution 𝑢 ∈ 𝐶 (R, 𝐻5(R)).

• (Pointwise decay) For all 𝑡 ∈ R��(√𝐻 + 1𝑢, 𝜕𝑡𝑢
)
(𝑡)

��
𝐿∞
𝑥
� 𝜀0 (1 + |𝑡 |)−1/2. (1.4)

• (Global bounds in 𝐿2 spaces) The solution satisfies the global-in-time bounds��𝑢(𝑡)��
𝐻 5 +

��𝜕𝑡𝑢(𝑡)��𝐻 4 � 𝜀0〈𝑡〉𝑝0 , (1.5)

for some small 𝑝0 > 0. Moreover, if we define the profile

𝑔 = 𝑒𝑖𝑡
√
𝐻+1 (

𝜕𝑡 − 𝑖
√
𝐻 + 1)𝑢 (1.6)

we have ��〈𝜉〉𝜕𝜉 𝑔̃(𝑡)��𝐿2
𝜉
� 𝜀0〈𝑡〉1/2+𝛿 , (1.7)

for some small 𝛿 > 0, where 𝑔̃ denotes the distorted Fourier transform of g (as defined in equation
(3.21); see also Proposition 3.6).

• (Asymptotic behaviour) There exists a quadratic transformation B (satisfying bilinear Hölder type
bounds) such that, as |𝑡 | → ∞, the ‘renormalised’ profile 𝑓 := 𝑔 − 𝐵(𝑔, 𝑔) scatters to a
time-independent profile up to a logarithmic phase correction. See Remark 6 for more details.

Here are a few remarks about the statement and our main assumptions.

Remark 1.2 (Vanishing at the zero frequency). Hypotheses (A), (B), (C) for equation (KG) and hy-
pothesis (D) and (E) for equation (KG2) are ways of ensuring that 𝑓̃ (0) = 0, where 𝑓̃ is the distorted
Fourier transform of f associated to the operator H; see Section 3 for the definitions and equation (2)
below for the vanishing property. The zero frequency for the distorted Fourier transform is linked to a
resonant phenomenon, hence the necessity for the cancellation 𝑓̃ (0) = 0 for our proof to apply; see the
discussion in Section 2.3.

Remark 1.3. In the course of our proof, we will work (most of the time) just with the assumption that
𝑓̃ (0) = 0, so as to be able to treat all cases in a unified way. In particular, we will carry out all our main
estimates for equation (KG), but everything can be easily adapted to equation (KG2). In some instances,
we will need to distinguish between the different cases, such as (A) vs. (B), and will specify when this
is so (see, for example, the proof of Lemma 5.8).

Remark 1.4. Theorem 1.1 remains true if the operator H is allowed to have bound states, but the data
and the nonlinearities in equations (KG) and (KG2) are projected on the continuous spectrum of the
operator.

Remark 1.5. Note that the parity assumptions in (B), respectively (C), imply that the solutions are odd,
respectively even. However, in the case of equation (KG2), no parity assumptions are needed.
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Moreover, Theorem 1.1 remains valid if one includes cubic and higher-order terms in equation (KG),
provided this is done by keeping the proper parity. For example, in both cases (B) and (C), one can add
a term 𝑏(𝑥)𝑢3 to equation (KG) with an even and sufficiently regular (but not necessarily decaying) b.
Similarly, one can add any cubic or higher-order terms to equation (KG2) inside the parentheses on the
right-hand side.

Let us now make some remarks about our results and some of their implications. More specific
applications are discussed in Section 1.4.1.

1. Assumptions on the potential: generic and exceptional.
The assumption that V is generic is the following:∫

R

𝑉 (𝑥) 𝑚(𝑥) 𝑑𝑥 ≠ 0, (1.8)

where m is the unique solution of (−𝜕2
𝑥 +𝑉)𝑚 = 0 with lim𝑥→∞ 𝑚(𝑥) = 1. One can see that equation

(1.8) is equivalent to the condition that the transmission coefficient T (see equation (3.13) for the
definition) satisfies 𝑇 (0) = 0. This is also equivalent to the fact that the 0 energy level is not a
resonance: that is, there does not exist a bounded solution in the kernel of H; See Lemma 3.3.
A nongeneric potential is called ‘exceptional’.

2. The zero frequency and symmetries.
For generic V, one has that 𝑓̃ is continuous everywhere for 𝑓 ∈ 𝐿1, and 𝑓̃ (0) = 0. See the remarks
after Proposition 3.6. In the case of exceptional potentials, one does not have continuity of 𝑓̃ at 0 in
general. Continuity holds if 𝑇 (0) = 1 or, equivalently, 𝑎 := 𝑚(−∞) = 1, since

𝑓̃ (0+) = 2𝑎
1 + 𝑎2

1
√

2𝜋

∫
𝑚(𝑥) 𝑓 (𝑥) 𝑑𝑥 and 𝑓̃ (0−) = 1

𝑎
𝑓̃ (0+), (1.9)

where m is the zero energy resonance; see equation (3.23). In the context of our nonlinear problem in
equation (KG), we are interested in the low-frequency behaviour of the solution and, in particular, the
vanishing of 𝑢̃(𝑡, 𝜉) at 𝜉 = 0. While for generic potentials, we are guaranteed that indeed 𝑢̃(𝑡, 0) = 0
for all times t, in the case of exceptional V, we need to impose some additional (symmetry) conditions
for this to hold, as in (B), (C) or (E) of Theorem 1.1.
Since in case (B), respectively (C), we have odd, respectively even, solutions (see Remark 1.5),
equation (1.9) shows that when the zero energy resonance 𝑚(𝑥) is even, respectively odd, we indeed
have 𝑢̃(𝑡, 0) = 0.

The structure of the equation might also guarantee the desired vanishing condition, which is
what we exploit for equation (KG2). Indeed, in case (E), the initial data is assumed to be such that
(𝑢̃, 𝑢𝑡 ) (𝑡 = 0, 𝜉 = 0) = 0, and this condition is preserved by the flow of equation (KG2), since
applying the distorted Fourier transform and evaluating at 𝜉 = 0 gives 𝑢𝑡𝑡 (𝑡, 0) + 𝑢(𝑡, 0) = 0.

3. Improved local decay.
An important aspect in the study of nonlinear problems with potentials is local decay. Roughly
speaking, the potential, which is localised around the origin, typically reflects low-energy particles
away from it, leading to an improved local decay estimate of the form��〈𝑥〉−𝜎1𝑃𝑐𝑒

𝑖𝑡
√
𝐻+1 𝑓

��
𝐿∞ � |𝑡 |−𝑎‖〈𝑥〉𝜎2 𝑓 ‖𝐿1 (1.10)

for some 𝜎1, 𝜎2 > 0, and a rate of decay a larger than 1/2, which is the optimal one for general linear
waves. 𝑃𝑐 in equation (1.10) denotes the projection to the continuous spectrum of H. While we do
not directly make use of estimates like equation (1.10), we do rely on the dual improved behaviour
for small frequencies.
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For generic potentials, it can be shown that equation (1.10) holds with 𝑎 = 3/2 and 𝜎2 = 1 [44,
64] (the value of 𝜎1 is unimportant for this discussion); such an estimate is essentially equivalent to
(and scales like) ��〈𝑥〉−𝜎1𝑃𝑐𝑒

𝑖𝑡
√
𝐻+1 𝑓

��
𝐿∞ � |𝑡 |−1‖〈𝑥〉 𝑓 ‖𝐿2 . (1.11)

To see the difference with the exceptional case, it suffices to consider the flat case 𝑉 = 0. From a
stationary phase expansion, one sees that linear solutions satisfy, as 𝑡 → ∞,

𝑒𝑖𝑡 〈𝜕𝑥 〉 𝑓 ≈ 𝑒𝑖
𝜋
4

√
2𝑡

〈𝜉0〉3/2𝑒𝑖𝑡 〈𝜉0 〉+𝑖𝑥 𝜉0 𝑓̂ (𝜉0) ,
𝜉0

〈𝜉0〉
:= −𝑥

𝑡
, (1.12)

where 𝑓̂ is the regular Fourier transform. Thus, there is no improvement to the local decay rate unless
𝑓̂ (0) = 0. However, in general, the next term in the expansion is only of the order of |𝑡 |−3/4‖〈𝑥〉 𝑓 ‖𝐿2 .
The difference between this and the faster |𝑡 |−1 decay in equation (1.11) turns out to be a major issue
when dealing with equation (KG) under our very general assumptions.

Local decay is also stronger for exceptional potentials if, in addition to 𝑓̃ (0) = 0, further can-
cellations occur due to symmetries. This suggests the possibility of simplifications to parts of our
arguments if one of the assumptions (A), (B) or (C) in Theorem 1.1 holds. In particular, one may be
able to adopt a less refined functional framework than the one we use here (see Section 2.5).

4. The functional framework and degenerate norms.
To deal with an example such as equation (KG2) where only 𝑓̃ (0) = 0 can be assumed, we need
to pay particular attention to a phenomenon of loss of regularity in frequency space. As we explain
in Section 2.3, when the distorted frequency 𝜉 approaches ±

√
3, the 𝐿2 weighted norm of the

(renormalised) profile f becomes singular. We then need to use a norm that captures this degenerate
behaviour; see equation (2.30).

It is important to point out that while some of the complications may be avoided by making less
general assumptions, we expect that degenerate norms like the one we use in this paper will play a
key role when internal modes (positive eigenvalues of 𝐻+1) are present, as well as when considering
general (nonsymmetric) solutions.

5. Violating the zero frequency condition
The above discussion emphasised the technical reasons leading to the requirement that the solution
of equation (KG) vanishes at zero frequency. The works [55, 56] address a setup where the coefficient
𝑎(𝑥) is localised but the solution does not have to vanish at zero in (distorted) Fourier space. In these
papers, it is shown that the decay in time slows by a logarithmic factor compared to the linear case;
see also the discussion at the end of Section 2.3. Since the linear decay rate was already critical at
the level of the cubic interaction, this additional logarithm is expected to make the nonlinear analysis
of the full problem (including cubic terms or a nondecaying a) extremely delicate.

6. Modified asymptotics.
In the last point of Theorem 1.1, we state that a renormalised profile 𝑓 = 𝑔 − 𝐵(𝑔, 𝑔) undergoes
modified scattering. Let us postpone for the moment the exact definition of f and just think of
𝐵(𝑔, 𝑔) ≈ 𝑔2. For the profile f, we prove the following asymptotic formula: there exists an asymptotic
profile 𝑊∞ = (𝑊∞

+ ,𝑊
∞
− ) ∈

(
〈𝜉〉−3/2𝐿∞

𝜉

)2 such that, for 𝜉 > 0,(
𝑓̃ (𝑡, 𝜉), 𝑓̃ (𝑡,−𝜉)

)
= 𝑆−1(𝜉) exp

(
− 5𝑖

12
diag

(
ℓ2
+∞

��𝑊∞
+ (𝜉)

��2, ℓ2
−∞

��𝑊∞
− (𝜉)

��2) log 𝑡
)
𝑊∞(𝜉) +𝑂

(
𝜀2

0〈𝑡〉
−𝛿0

) (1.13)

as 𝑡 → ∞, for some 𝛿0 > 0; here 𝑆(𝜉) is the scattering matrix associated to the potential V defined
in equation (3.12). As 𝑡 → −∞, using the time-reversal symmetry, one obtains a similar (in fact,
simpler) formula that resembles the flat case. While this correction to scattering is most naturally
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viewed in distorted Fourier space, it translates to physical space by standard arguments. Note that
because of the potential V, this logarithmic phase correction depends on the scattering matrix S (at
least in one time direction) and ‘mixes’ positive and negative frequencies. We refer the reader to
Proposition 10.1 and the comments after it for more details.

The phenomenon of modified scattering by a logarithmic phase correction is one of the fun-
damental types of nonlinear phenomena that one may observe for scattering critical (long-range)
equations. We refer the reader to the papers on NLS [29, 53, 39, 32] and on KG [11, 30, 55] where
this type of modified scattering is proved using various approaches for equations without potentials.
For equation with potentials, see the already cited [12, 60, 24, 7].

7. Assumptions on the data.
The assumptions in equation (1.3) are quite standard for these types of problems. Finiteness of
the weighted norm guarantees |𝑡 |−1/2 pointwise decay for linear solutions. Propagating a suitable
weighted bound for all times will be one of the main goals of our proof. For the profile g, we can only
propagate the weak bound in equation (1.7), while we will be able to control a stronger weighted
norm of f.

A certain amount of Sobolev regularity is helpful in many parts of the proof when we deal with
high frequencies. However, although equation (KG) is a semilinear problem, it seems to us that it
is not straightforward to propagate any desired amount of Sobolev regularity, unlike in many other
similar problems. This is essentially because the nonlinearity contains quadratic terms that cannot
be eliminated by normal forms, and (localised) decay is at best |𝑡 |−3/4 in the absence of symmetries.

8. Global bounds and bootstrap spaces.
Most of our analysis is performed in the distorted Fourier space. The main task is to prove a priori
estimates in suitably constructed spaces for a renormalised profile obtained after a partial normal
form transformation. This is the profile6 𝑓 := 𝑔 − 𝐵(𝑔, 𝑔) alluded to in the main Theorem. We refer
the reader to Section 5, and in particular to Section 5.7, for the definition of f.
The profile f is measured in three norms: a Sobolev norm (like g), a weighted-type norm that
incorporates the degeneration close to the bad frequencies ±

√
3, and the sup-norm of its distorted

Fourier transform. We refer to Section 2.5 for details about the functional framework and to the
beginning of Section 7 for the main bootstrap propositions on f and g.

9. The flat case.
For the sake of explanation, it is interesting to consider equation (KG) in the simplified case 𝑉 = 0

𝜕2
𝑡 𝑢 + (−𝜕2

𝑥 + 1)𝑢 = 𝑎(𝑥)𝑢2, (1.14)

where 𝑎(𝑥) is odd and fast approaching ±ℓ as 𝑥 → ±∞. Cubic terms of the form 𝑢3 and 𝑏(𝑥)𝑢3

(with b even) can be included in the model. For equation (1.14), our result gives globally decaying
solutions for odd initial data. However, as discussed in Remark (3) above, this specific case of odd
symmetry is simpler due to faster local decay. A related, and more difficult, toy model that we can
include in our treatment is (see equation (KG2))

𝜕2
𝑡 𝑢 + (−𝜕2

𝑥 + 1)𝑢 = 𝜕𝑥 (𝑎(𝑥)𝑢2) (1.15)

with zero average initial data. Note that symmetries are not needed here, and other variants are
possible provided the zero average condition is preserved.

As mentioned after equation (1.2), the flat case in equation (1.14) with nonsymmetric localised
data, and decaying coefficient 𝑎(𝑥), was treated in [54], where a logarithmic slowdown of the decay
rate was also shown to occur. Cubic terms are also included in the results of [54], provided 𝑎̂(±

√
3) =

0. The general case of equation (1.14) without symmetries and with nondecaying 𝑎(𝑥) is still open.

6In the course of the proof, we will denote the bilinear transformation B by the letter T (see the definition of f in equations
(5.53)–(5.54) with g defined in equations (5.2)–(5.5). We use the different notation B in the main theorem and this intro to avoid
any confusion with the transmission coefficient T (see equation (3.13)) here. In later parts of the paper, the distinction should be
clear from the context.
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1.4. Applications

In this subsection, we discuss the relevance of our results to questions on the asymptotic stability of
stationary solutions for several important physical problems. We will be considering one-dimensional
scalar field theories

𝜕2
𝑡 𝜙 − 𝜕2

𝑥𝜙 +𝑈 ′(𝜙) = 0

deriving from the Hamiltonian

ℋ =
1
2

∫ (
𝜙2
𝑡 + 𝜙2

𝑥

)
𝑑𝑥 +

∫
𝑈 (𝜙) 𝑑𝑥. (1.16)

Choosing the potential U with a double-well (Ginzburg-Landau) structure, special solutions connecting
stable states at ±∞, known as kinks, emerge. The question of their stability, or asymptotic behaviour,
depends very delicately on the potential U and leads to a wealth of interesting mathematical problems.
Our analysis sheds light on this question for various models, some of which we review below.

1.4.1. The 𝝓4 model
This fundamental model corresponds to the choice

𝑈 (𝜙) = 𝑈0 (𝜙) =
1
4
(1 − 𝜙2)2,

leading to the equation

𝜕2
𝑡 𝜙 − 𝜕2

𝑥𝜙 = 𝜙 − 𝜙3, (1.17)

which admits the kink solution 𝐾0(𝑥) = tanh(𝑥/
√

2). Setting 𝜙 = 𝐾0 + 𝑣, where v is a small (localised)
perturbation, we see that

(𝜕2
𝑡 + 𝐻0 + 2)𝑣 = −3𝐾0𝑣

2 − 𝑣3, 𝐻0 := −𝜕2
𝑥 +𝑉0, 𝑉0(𝑥) := −3sech2(𝑥/

√
2). (1.18)

It is known (see [8, 9, 54]) that the spectrum of the Schrödinger operator 𝐻0 has the following structure:
the −2 eigenvalue corresponding to the translation symmetry, an even zero energy resonance (a bounded
solution of 𝐻𝜓 = 0) and the eigenvalue 𝜆1 = −1/2 corresponding to an odd exponentially decaying
eigenfunction 𝜓−1/2. The latter is the so-called internal mode. For the sake of explanation, let us restrict
our attention to the subspace of odd functions.7 By projecting onto the discrete and continuous modes,
one can decompose 𝑣 = 𝑐0 (𝑡)𝜓−1/2 +𝑃𝑐 𝑢(𝑡, 𝑥), where 𝑃𝑐 is the projection onto the continuous spectrum
of 𝐻0, and obtain the equation (𝜕2

𝑡 + 𝐻0 + 2)𝑢 = 𝑃𝑐 (−3𝐾0𝑣
2 − 𝑣3) for the radiation component. One is

then naturally led to analysing the ‘continuous subsystem’

(𝜕2
𝑡 + 𝐻0 + 2)𝑢 = 𝑃𝑐

(
−3𝐾0𝑢

2 − 𝑢3
)
. (1.19)

Since 𝑉0 and its zero energy resonance are even, our results apply to show global bounds and decay for
equation (1.19) with odd data.

Thus, we are able to settle at least part of the kink stability problem; the remaining difficulty, in
the odd case, is to prove that the coupling of the internal mode to the continuous spectrum causes the
energy of the internal mode to be dispersed through the phenomenon of ‘radiation damping’ [69, 13].
This is a serious obstacle since the presence of the internal mode leads to the formation of a singularity
in distorted Fourier space, at the frequency given by the Fermi golden rule. However, notice that a very

7On the one hand, this has the practical advantage of avoiding modulating the kink to track the motion of its centre. On the
other hand, at a deeper level, oddness suppresses the even resonance that otherwise would have to be dealt with.
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similar phenomenon is dealt with in the present paper, with the formation of a singularity at the distorted
frequencies ±

√
3.

For general data, one has to deal with the resonance at zero frequency, which should at least lead to
a logarithmic slowdown of the decay, as observed in [55, 56]. Since the decay rate is already critical for
the cubic nonlinearity, this makes this question extremely delicate.

1.4.2. The sine-Gordon equation
Choosing 𝑈 (𝜙) = 𝑈𝑆𝐺 (𝜙) = 1 − cos 𝜙 in equation (1.16) gives the sine-Gordon equation

𝜕2
𝑡 𝜙 − 𝜕2

𝑥𝜙 + sin 𝜙 = 0, (1.20)

which is integrable and admits the kink solution 𝐾SG(𝑥) = 4 arctan(𝑒𝑥) [9, Chapter 2]. Setting 𝜙 =
𝐾SG + 𝑣, the perturbation v solves

𝜕2
𝑡 𝑣 + (𝐻SG + 1)𝑣 = (sin𝐾SG)𝑣2 +𝑂 (𝑣3), 𝐻SG = −𝜕2

𝑥 − 2 sech2(𝑥). (1.21)

𝐻SG has no internal mode (only the eigenvalue 𝜆 = −1 associated with the translation invariance), and
it is exceptional, but with an odd zero energy resonance; thus, the distorted Fourier transform of an odd
function does not vanish at zero energy. Therefore, despite its similarities with the 𝜙4 model, equation
(1.20) does not a priori fall into the class of equations that we can treat with our approach.

The asymptotic stability of the kink could, however, be proved by means of inverse scattering by
Chen, Liu and Lu [6], since the sine-Gordon equation is completely integrable. After the first version of
the present paper appeared online, another proof of the asymptotic stability of the kink was published
by Lührmann and Schlag [57]; their beautiful and (relatively) short paper avoids the use of inverse
scattering or the distorted Fourier transform. They rely on two key observations: on the one hand, the
linearised operator around the kink can be factorised in a very convenient way; and on the other hand,
the nonlinear coupling of the resonance to the continuous spectrum is cancelled by the specific form of
the equation. In hindsight, we believe that the latter observation would allow us to treat the sine-Gordon
problem within the framework developed in the present paper.

1.4.3. The double sine-Gordon equation
More interestingly, our results apply to the perturbation of equation (1.20) given by the double sine-
Gordon model

𝜕2
𝑡 𝜙 − 𝜕2

𝑥𝜙 +𝑈 ′
𝐷𝑆𝐺 (𝜙) = 0, 𝑈𝐷𝑆𝐺 (𝜙) = 1

1 + |4𝜂 |
[
𝜂(1 − cos 𝜙) + 1 + cos

( 𝜙
2
) ]
, (1.22)

where 𝜂 ∈ R. This model is not integrable for 𝜂 ≠ 0; see also [9] and Campbell-Peyrard-Sodano [4]
and references therein for a description of the various physical contexts where equation (1.22) has been
classically used. For 𝜂 < 0, we obtain asymptotic stability results for kinks of equation (1.22). More
precisely, there are two ranges of the parameter 𝜂 with corresponding families of kinks that we can
consider:

1. For −1/4 < 𝜂 < 0, equation (1.22) has (up to symmetries) a single odd kink connecting the minima
of the potential ±2𝜋; let us call this kink 𝐾1.

2. For 𝜂 < −1/4, equation (1.22) has an odd kink connecting the minima of the potential ±𝜙0 with
cos(𝜙0/2) = 1/4𝜂; let us denote this kink by 𝐾2. There is also another kink in this range of 𝜂 that we
do not consider since we cannot apply our results to it.

We have the following asymptotic stability of the 𝐾1 and 𝐾2 kink solutions for odd perturbations:

Corollary 1.6. Consider equation (1.22) with 𝜂 ∈ (−1/4, 0), respectively 𝜂 < −1/4, with
an initial condition of the form (𝜙, 𝜙𝑡 ) (0, 𝑥) = (𝐾1 (𝑥), 0) + (𝑢1,0(𝑥), 𝑢1,1 (𝑥)), respectively
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(𝜙, 𝜙𝑡 ) (0, 𝑥) = (𝐾2(𝑥), 0) + (𝑢2,0 (𝑥), 𝑢2,1(𝑥)). Assume that (𝑢𝑖,0, 𝑢𝑖,1), 𝑖 = 1, 2 are odd and satisfy the
same smallness condition in equation (1.3). Then the associated global solution 𝜙 can be written as

𝜙(𝑡, 𝑥) = 𝐾𝑖 (𝑥) + 𝑢𝑖 (𝑡, 𝑥),

where 𝑢𝑖 decays globally on R as in equation (1.4), satisfies the bounds in equation (1.5) and has the
asymptotic behaviour described in equation (1.13).8

Proof. We let 𝜙 = 𝐾𝑖 + 𝑣, with 𝑖 = 1, 2 and denote 𝑈1 := 𝑈𝐷𝑆𝐺 when −1/4 < 𝜂 < 0, and 𝑈2 := 𝑈𝐷𝑆𝐺
when 𝜂 < −1/4. Then from equation (1.22), we get

(𝜕2
𝑡 + 𝐻𝑖 + 𝑚2

𝑖 )𝑣 = −𝑈 ′
𝑖 (𝐾𝑖 + 𝑣) +𝑈 ′

𝑖 (𝐾𝑖) +𝑈 ′′
𝑖 (𝐾𝑖)𝑣

𝐻𝑖 = −𝜕2
𝑥 +𝑉𝑖 , 𝑉𝑖 (𝑥) = 𝑈 ′′

𝑖 (𝐾𝑖) − 𝑚2
𝑖 , 𝑚2

𝑖 := lim
𝑥→±∞

𝑈 ′′
𝑖 (𝐾𝑖) > 0.

(1.23)

More precisely, 𝑚2
1 = (1 − 4𝜂)−1(𝜂 + 1/4) and 𝑚2

2 = 1/(16𝜂) − 𝜂.
It can be shown that𝐻𝑖 is generic and has no eigenvalues, except the translation mode; see Appendix A

for a short proof relying on the arguments of [48, Section 5.6]. In particular, the assumptions of
Theorem 1.1 hold for odd solutions of equation (1.23). The conclusions of Theorem 1.1 applied to v
then imply the statement of this corollary. �

For the double sine-Gordon model in equation (1.22) in the same range of 𝜂 above (and also for
several other scalar field models with the same spectral properties), Kowalczyk-Martel-Muñoz-Van
Den Bosch [48] proved local asymptotic stability in the energy space. Compared to this latter result,
Corollary 1.6 gives asymptotic stability on the full real line, and modified scattering, provided the data
is (mildly) localised and odd.

1.4.4. General relativistic Ginzburg-Landau theories
Our approach and results apply similarly to general relativistic Ginzburg-Landau theories, where the
potential in equation (1.16) is taken to be of double-well type, with the following expansion at the
minima ±𝑎:

𝑈 (𝜙) = 𝑈GL (𝜙) = 1
2
(|𝜙| − 𝑎)2 +𝑂

(
(|𝜙| − 𝑎) 𝑝+1) , 𝑝 ≥ 2. (1.24)

The corresponding equations 𝜙𝑡𝑡−𝜙𝑥𝑥+𝑈 ′
𝐺𝐿 (𝜙) = 0 admit kink solutions𝐾GL exponentially converging

to ±𝑎 at ±∞; see [41, 42, 37]. The dynamics for the perturbation v (up to a standard modulation if
necessary) become

(𝜕2
𝑡 + 𝐻GL + 1)𝑣 = −𝑈 ′′′

𝐺𝐿 (𝐾GL)𝑣2 + 1
2
𝑈 (4)
𝐺𝐿 (𝐾GL)𝑣3 +𝑂 (𝑣4),

𝐻GL = −𝜕2
𝑥 +𝑉GL, 𝑉GL (𝑥) = 𝑈 ′′

GL (𝐾) − 1.
(1.25)

In analogy with the discussion on the 𝜙4 model, our analysis can be applied directly to the ‘continuous
subsystem’ (the analogue of equation (1.19)) that takes the form

(𝜕2
𝑡 + 𝐻𝐺𝐿 + 1)𝑢 = 𝑃𝑐

(
−𝑈 ′′′

𝐺𝐿 (𝐾𝐺𝐿)𝑢
2 + 1

2
𝑈 (4)
𝐺𝐿 (𝐾𝐺𝐿)𝑢

3 +𝑂 (𝑢4)
)
. (1.26)

If one assumes that the minima of the well are sufficiently flat – or, in other words, that p is sufficiently
big – the coefficients𝑈 (𝑘)

GL (𝐾𝐺𝐿), 3 ≤ 𝑘 ≤ 𝑝+1, become exponentially decaying, and this simplifies the
nonlinear analysis considerably. Komech-Kopylova fully analysed the radiation-damping phenomenon

8In this case, ℓ±∞ can be explicitly calculated from the values of 𝜕ℓ𝜙𝑈 (𝐾𝑖 (±∞)) for ℓ = 3, 4.
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associated to the internal mode and obtained asymptotic stability in [41] for 𝑝 ≥ 14. While Komech-
Kopylova required a large p, the methods introduced in the present paper certainly allow the treatment
of smaller values of p (e.g., one should be able to comfortably reach 𝑝 = 5: that is, a nonlocalised quintic
nonlinearity).

1.4.5. The nonlinear Klein-Gordon equation
This final example involves localised solitons. The potential

𝑈 (𝜙) = 𝑈𝑝 (𝜙) =
1
2
𝜙2 − 1

𝑝 + 1
𝜙𝑝+1

gives the 1 + 1 focusing nonlinear Klein-Gordon equations

𝜕2
𝑡 𝜙 − 𝜕2

𝑥𝜙 + 𝜙 = 𝜙𝑝 (1.27)

for 𝑝 = 2, 3, 4, . . . . These admit the soliton solution

𝑄(𝑥) = 𝑄𝑝 (𝑥) := (𝛼 + 1)
1

2𝛼 sech1/𝛼 (𝛼𝑥), 𝛼 := 1
2 (𝑝 − 1). (1.28)

By assuming even symmetry, we may neglect the soliton manifold obtained under Lorentz transforma-
tions. The equation for the perturbation v (𝜙 = 𝑄 + 𝑣) is

(𝜕2
𝑡 + 𝐻𝑝 + 1)𝑣 =

1
2
𝑝(𝑝 − 1)𝑄𝑝−2𝑣2 + · · · + 𝑣𝑝 .

𝐻𝑝 := −𝜕2
𝑥 +𝑉𝑝 , 𝑉𝑝 (𝑥) := −𝑝𝑄𝑝−1.

(1.29)

It is known that 𝐻𝑝 has a negative eigenvalue at −𝛼(𝛼 + 2) − 1, which makes the soliton unstable.
However, besides this and the −1 eigenvalue associated to the translation invariance, 𝐻𝑝 has no other
negative eigenvalues when 𝑝 > 3 [5, 47]. Note that when 𝑝 = 3, 𝐻3 coincides (up to a rescaling) with
𝐻0 (see equation (1.18)); since the resonance is even, our results do not apply to the corresponding
continuous subsystem.

When 𝑝 = 2 instead, the linearised operator 𝐻2 has an odd resonance. Therefore, asymptotic stability
holds for small even solutions of the continuous subsystem

(𝜕2
𝑡 + 𝐻2 + 1)𝑢 = 𝑃𝑐 𝑢

2. (1.30)

A natural question for equation (1.27) is the construction of stable manifolds for solutions suitably
close to the soliton, and the asymptotic stability of the subclass of global solutions. For 𝑝 > 5 this was
done by Krieger-Nakanishi-Schlag [43]. More recently, [47] proved a conditional asymptotic stability
result locally in the energy space for global solutions. For 𝑝 ≤ 5, the problem of full asymptotic stability
appears to be still open. A serious obstacle to the construction of a stable manifold is to prove a robust
small data scattering theory for low-power nonlinearities. While this cannot be done using Strichartz-
type estimates, which only exploit the decay of the solution, it becomes amenable to our techniques,
which take advantage of the full resonant structure. In particular, the cases 𝑝 = 2, 4 and 5 can be directly
approached with our methods. Note that even for 𝑝 = 4 (or 5), despite the quadratic and cubic terms in
the nonlinearity being localised, one would still need to exploit oscillations in frequency space to deal
with the weak decaying quartic (or quintic) nonlinearity.

2. Ideas of the proof

The starting ingredient in our approach is the Fourier transform adapted to the Schrödinger operator
−𝜕𝑥𝑥 + 𝑉 , the so-called distorted Fourier transform (or Weyl-Kodaira-Titchmarsh theory). The basic
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idea is to try to extend Fourier analytical techniques used to study small solutions of nonlinear equations
without potentials and develop new tools in the perturbed setting.

In the setting of the distorted Fourier transform, we begin by filtering the solution by the linear
(perturbed) group and view the (nonlinear) Duhamel’s formula as an oscillatory integral in frequency
and time. In the unperturbed case 𝑉 = 0, this point of view was proposed in the works [21, 19, 22]
with the so-called ‘space-time resonance’ method; see also [28]. In the past 10 years, this proved to be
a very useful approach to studying the long-time behaviour of weakly nonlinear dispersive equations
in the Euclidean/unperturbed setting. As already mentioned in Section 1.2, the presence of a potential
introduces some fundamental differences, which lead to a number of new phenomena and difficulties.

2.1. Setup: dFT and the quadratic spectral distribution

We refer to Section 3 for a more detailed presentation of the distorted Fourier transform (dFT) and admit
for the moment the existence of generalised eigenfunctions 𝜓 = 𝜓(𝑥, 𝜉) such that

∀ 𝜉 ∈ R, (−𝜕2
𝑥 +𝑉)𝜓(𝑥, 𝜉) = 𝜉2𝜓(𝑥, 𝜉), (2.1)

and the familiar formulas relating the Fourier transform and its inverse in dimension 𝑑 = 1 hold if one
replaces (up to a constant) 𝑒𝑖 𝜉 𝑥 by 𝜓(𝑥, 𝜉):

𝑓̃ (𝜉) =
∫
R

𝜓(𝑥, 𝜉) 𝑓 (𝑥) 𝑑𝑥 and 𝑓 (𝑥) =
∫
R

𝜓(𝑥, 𝜉) 𝑓̃ (𝜉) 𝑑𝜉. (2.2)

Let us consider a solution of the equation

𝜕2
𝑡 𝑢 + (−𝜕2

𝑥 +𝑉 (𝑥) + 1)𝑢 = 𝑎(𝑥)𝑢2, (𝑢, 𝑢𝑡 ) (𝑡 = 0) = (𝑢0, 𝑢1).

Defining the profile g by

𝑔(𝑡, 𝑥) := 𝑒𝑖𝑡
√
𝐻+1 (

𝜕𝑡 − 𝑖
√
𝐻 + 1

)
𝑢, 𝑔̃(𝑡, 𝜉) = 𝑒𝑖𝑡 〈𝜉 〉 (𝜕𝑡 − 𝑖〈𝜉〉

)
𝑢̃, (2.3)

and denoting 𝑔̃+ = 𝑔̃, 𝑔̃− = 𝑔̃, one sees that 𝑔̃ satisfies an equation of the form

𝜕𝑡 𝑔̃(𝑡, 𝜉) = −
∑

𝜄1 , 𝜄2 ∈{+,−}
𝜄1𝜄2

∬
𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝑔̃ 𝜄1 (𝑡, 𝜂)𝑔̃ 𝜄2 (𝑡, 𝜎)

𝜇 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)
4〈𝜂〉〈𝜎〉 𝑑𝜂 𝑑𝜎, (2.4)

where the oscillatory phase is given by

Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) = 〈𝜉〉 − 𝜄1〈𝜂〉 − 𝜄2〈𝜎〉, (2.5)

and

𝜇 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) :=
∫

𝑎(𝑥)𝜓(𝑥, 𝜉)𝜓 𝜄2 (𝑥, 𝜂)𝜓 𝜄1 (𝑥, 𝜎) 𝑑𝑥 (2.6)

is what we refer to as the (quadratic) ‘nonlinear spectral distribution’ (NSD).
For the sake of exposition we will drop the signs (𝜄1, 𝜄2) from 𝑔̃ and 𝜇 since they do not play any major

role. We will instead keep the relevant signs in equation (2.5) and the analogous expressions for cubic
interactions. We also drop the factor 〈𝜂〉〈𝜎〉 in equation (2.4). With this simplifications, integrating
equation (2.4) over time gives

𝑔̃(𝑡, 𝜉) = 𝑔0 (𝜉) − 𝑖
∑

𝜄1 , 𝜄2 ∈{+,−}

∫ 𝑡

0

∬
𝑒𝑖𝑠Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝑔̃(𝑠, 𝜂)𝑔̃(𝑠, 𝜎)𝜇(𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎 𝑑𝑠. (2.7)
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The first task is to analyse 𝜇 in equation (2.6), and we immediately see an essential difference from
the flat case 𝑉 = 0: in the absence of a potential, the generalised eigenfunctions 𝜓(𝑥, 𝜉) should be
replaced by 𝑒𝑖 𝜉 𝑥 , in which case 𝜇(𝜉, 𝜂, 𝜎) = 𝛿(𝜉 − 𝜂 − 𝜎) – in particular, the sum of the frequencies of
the two inputs: that is, 𝜂 and 𝜎, gives the output frequency 𝜉. This can be thought of as a ‘conservation
of momentum’ or ‘correlation’ between the frequencies. But if 𝑉 ≠ 0, the structure of 𝜇 becomes more
involved, and there is no a priori relation between the frequencies. This can be seen as a ‘decorrelation’
or ‘uncertainty’ due to the presence of the potential.

For the sake of this presentation, we can essentially think that

𝜇(𝜉, 𝜂, 𝜎) =
∑

𝜇,𝜈∈{+,−}

[
𝐴𝜇,𝜈 (𝜉, 𝜂, 𝜎)𝛿(𝜉 + 𝜇𝜂 + 𝜈𝜎)

+ 𝐵𝜇,𝜈 (𝜉, 𝜂, 𝜎) p.v.
1

𝜉 + 𝜇𝜂 + 𝜈𝜎

]
+ 𝐶 (𝜉, 𝜂, 𝜎),

(2.8)

where 𝐴𝜇,𝜈 , 𝐵𝜇,𝜈 and C are smooth functions and ‘p.v.’ stands for principal value.
The 𝛿 component of 𝜇 gives a contribution to equation (2.7) that is essentially the same as in the flat

case, only algebraically more complicated due to the different signs combinations and the coefficients
(which are related to the transmission and reflection coefficients of the potential). One could expect to
treat these terms as in the classical flat case, that is, using a normal form transformation to eliminate the
quadratic term in favour of cubic ones [66, 11, 30].

The p.v. term in equation (2.8) seriously impacts the nature of the problem at hand. When the
variable 𝜉 + 𝜇𝜂+𝜈𝜎 that determines the singularity is very small, one could think that the corresponding
interactions are not so different from those allowed by the 𝛿 distribution, possibly only logarithmically
worse. When instead 𝜉 + 𝜇𝜂 + 𝜈𝜎 is not too small, we have in essence a smooth kernel. While this
might seem like a favourable situation, it is in fact a major complication. The decorrelation between the
input and output frequencies prevents the application of a normal form transformation (quadratic terms
cannot be eliminated); even more, it creates a genuinely nonlinear phenomenon of loss of regularity (in
Fourier space) at specific bad frequencies. We explain this in more detail in the following paragraphs.

2.2. Oscillations and resonances: Singular vs. regular terms

Let us consider the quadratic interactions in equation (2.7) and, according to equation (2.8), write them
as ∫ 𝑡

0

∬
𝑒𝑖𝑠Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝑔̃(𝑠, 𝜂)𝑔̃(𝑠, 𝜎)𝔪(𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎 𝑑𝑠, (2.9)

where𝔪(𝜉, 𝜂, 𝜎) can be a distribution (i.e., a 𝛿 or a p.v.) or a smooth function. The properties of equation
(2.9) are dictated by the oscillations of the exponential factor and the structure of the singularities of 𝔪.
More precisely,

• If 𝔪 = 𝛿(𝜉 − 𝜇𝜂 − 𝜈𝜎) or 𝔪 = p.v. 1
𝜉−𝜇𝜂−𝜈𝜎 , resonant oscillations can be characterised as the

stationary points of the phase 𝑠Φ 𝜄1 𝜄2 , restricted to the singular hypersurface {𝜉 − 𝜇𝜂 − 𝜈𝜎 = 0}. Up
to changing coordinates, we can reduce to the phase

Φ𝑆𝜄1 𝜄2 (𝜉, 𝜂) = 〈𝜉〉 − 𝜄1〈𝜂〉 − 𝜄2〈𝜉 − 𝜂〉 (2.10)

(where we added the superscript S to emphasise that we consider a singular 𝔪), for which stationary
points satisfy

Φ𝑆𝜄1 𝜄2 (𝜉, 𝜂) = 𝜕𝜂Φ
𝑆
𝜄1 𝜄2 (𝜉, 𝜂) = 0. (2.11)

These are the classical resonances.

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.9


18 Pierre Germain and Fabio Pusateri

• If 𝔪 is smooth, we need to look at the unrestricted stationary points of the phase
𝑠Φ𝑅𝜄1 𝜄2 = 𝑠(〈𝜉〉 − 𝜄1〈𝜂〉 − 𝜄2〈𝜎〉) (where we added the superscript R to emphasise that we consider a
regular 𝔪): that is,

Φ𝑅𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) = 𝜕𝜂Φ
𝑅
𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) = 𝜕𝜎Φ

𝑅
𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) = 0. (2.12)

This simple and natural distinction has important implications on the behaviour of equation (2.9),
hence on the solution of the nonlinear equation, which we now discuss.

2.3. Regular quadratic terms and bad frequencies

Let us first look at the case when 𝔪 is smooth. The regular quadratic phase Φ𝑅𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) = 〈𝜉〉− 𝜄1〈𝜂〉−
𝜄2〈𝜎〉 leads to rather harmless interactions if (𝜄1𝜄2) ≠ (++) since in this case, there are no solutions to
equation (2.12). For the (𝜄1𝜄2) = (++) interaction, we have that

Φ𝑅++ = 𝜕𝜂Φ
𝑅
++ = 𝜕𝜎Φ

𝑅
++ = 0 ⇐⇒ (𝜉, 𝜂, 𝜎) = (±

√
3, 0, 0). (2.13)

This is a full resonance or coherent interaction and it is the source of many of the difficulties. Notice
that this sort of interaction is generic in dimension 1 in the presence of a potential, since in equation
(2.12) there are 3 variables and as many equations to solve. Obviously, a similar phenomenon would
occur already in the case 𝑉 = 0 and a nonlinear term of the form 𝑎(𝑥)𝑢2.

Recall that the classical theory of quadratic/cubic one-dimensional dispersive problems revolves
around trying to control weighted-type norms of the form ‖𝑥𝑔‖𝐿2 . The natural candidate in our context
is then ‖𝜕𝜉 𝑔̃‖𝐿2

𝜉
. In some cases, such as equation (KG), or the more standard examples of flat cubic NLS

and cubic KG equations, one knows that a uniform-in-time bound cannot be achieved due to long-range
effects already present in the corresponding flat problem. As the next best thing, one can try to establish

‖𝜕𝜉 𝑔̃‖𝐿2
𝜉
� 〈𝑡〉𝛼 (2.14)

for some small 𝛼 > 0.
Let us now explain how equation (2.14) is incompatible with the nonlinear resonance equation (2.13).

Since our assumptions will always guarantee 𝑔̃(0) = 0, equation (2.14) implies

|𝑔̃(𝜉) | � 〈𝑡〉𝛼 |𝜉 |1/2. (2.15)

Consider then the main (++) contribution to the right-hand side of equation (2.9), namely

Q𝑅++(𝑡, 𝜉) :=
∫ 𝑡

0

∬
𝑒𝑖𝑠Φ++ ( 𝜉 ,𝜂,𝜎) 𝑔̃(𝑠, 𝜂)𝑔̃(𝑠, 𝜎)𝔮(𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎 𝑑𝑠, (2.16)

where 𝔮 is a smooth symbol. Up to lower-order terms,

𝜕𝜉Q𝑅++(𝑡, 𝜉) ≈
∫ 𝑡

0

∬
𝑠
𝜉

〈𝜉〉 𝑒
𝑖𝑠Φ++ ( 𝜉 ,𝜂,𝜎)𝔮(𝜉, 𝜂, 𝜎)𝑔̃(𝑠, 𝜂)𝑔̃(𝑠, 𝜎) 𝑑𝜂 𝑑𝜎. (2.17)

Observe that |𝑠Φ++| � 1 if |𝜉 −
√

3| + |𝜂 |2 + |𝜎 |2 � 〈𝑠〉−1 and that in this region there are no oscillations
that can help. Thus, when 𝔮(±

√
3, 0, 0) ≠ 0, we are led to the following heuristic lower bound: for

| |𝜉 | −
√

3| ≈ 𝑟 ,

��𝜕𝜉Q𝑅++(𝑡, 𝜉)
�� � ∫ min( 1

𝑟 ,𝑡)

1
𝑠 · 〈𝑠〉2𝛼

∫
|𝜂 |2+|𝜎 |2 ≤𝑠−1

|𝜂 |1/2 |𝜎 |1/2 𝑑𝜂 𝑑𝜎 𝑑𝑠 ≈ min
(1
𝑟
, 𝑡

) 1
2 +2𝛼

. (2.18)
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This implies that, if 〈𝑡〉−1 ≤ 𝑟 � 〈𝑡〉−1/2,��𝜕𝜉Q𝑅++
��
𝐿2 ( |𝜉−

√
3 |≈𝑟 ) � 𝑟

−2𝛼 � 〈𝑡〉𝛼, (2.19)

which is inconsistent with the bootstrap hypothesis in equation (2.14). We then need to modify the
bootstrap norm to a version of ‖𝜕𝜉 𝑓̃ ‖𝐿2 that is localised dyadically around ±

√
3 and degenerates as

|𝜉 | →
√

3. The analysis needed to propagate such a degenerate norm turns out to be quite delicate.
A phenomenon similar to the one described above was previously observed in [14, 15] in the two-
dimensional (unperturbed) setting.

Note that in the heuristics in equation (2.19), one would get better bounds, consistent with equation
(2.15), when 𝔮(±

√
3, 0, 0) = 0. For the model in equation (KG2), one has 𝔮(±

√
3, 0, 0) ≠ 0 when V

is nongeneric (case (E)) and 𝑎̃(±
√

3) ≠ 0. A true degeneracy in frequency space will then occur for
these models. For equation (KG), under the assumptions (A) or (B) or (C), it is instead possible to show
that 𝔮(𝜉, 0, 0) = 0; this is connected to the discussion at the end of Remark (3) and the possibility of
simplifying the functional framework in this case.

Remark 2.1. The argument above also shows that, if 𝑔̃(0) ≠ 0, then

Q𝑅++(𝑡, 𝜉) ≈
∫ 𝑡

0
𝑒𝑖𝑠 ( 〈𝜉 〉−2)𝔮(𝜉, 0, 0)

(
𝑔̃(𝑠, 0)

)2 𝑑𝑠

𝑠 + 1
+ · · ·

so thatQ𝑅++(𝑡,±
√

3) is logarithmically diverging if𝔮(±
√

3, 0, 0) ≠ 0. This suggests that 𝑔̃ is not uniformly
bounded, which in turn implies that the solution cannot decay pointwise at the linear rate; see equation
(1.12). In the case of equation (1.14) with localised 𝑎(𝑥) such that 𝑎̂(±

√
3) ≠ 0 (and no cubic terms),

this has been rigorously proved in [55], where the authors construct global solutions that decay in 𝐿∞
𝑥 at

the optimal rate of log 𝑡/𝑡. This result was then extended in [56] to the case of any nongeneric potential
with the corresponding condition 𝑎̃(±

√
3) = 0.

Also note that 𝑔̃(0) ≠ 0 will give an asymptotic of the form 𝜕𝜉Q𝑅++(𝑡, 𝜉) ≈ |〈𝜉〉 − 2|−1. When
localised at the scale | |𝜉 | −

√
3| ≈ 2ℓ , this gives an 𝐿2 norm of size 2−ℓ/2. The functional framework

that we will adopt does not quite allow for such a singularity, as this would correspond to choosing
the parameter 𝛽 = 1/2 in the definition of the norm in equation (2.30) (this is the norm in which we
will measure the derivative of our [renormalised] profile in frequency space). However, we can allow
essentially any slightly less singular behaviour; this seems to suggest that a zero-energy resonance may
be treated by our methods at least for long times.

2.4. Singular quadratic and cubic terms

Let us now consider the quadratic interactions in equation (2.7) that correspond to the first two terms in
equation (2.8). Disregarding the irrelevant signs 𝜇, 𝜈 and the coefficients 𝐴, 𝐵, let us denote them by

Q𝑀𝜄1 𝜄2 (𝑡, 𝜉) :=
∫ 𝑡

0

∬
𝑒𝑖𝑠Φ

𝑆
𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝑔̃(𝑠, 𝜂)𝑔̃(𝑠, 𝜎)𝑀 (𝜉 − 𝜂 − 𝜎) 𝑑𝜂 𝑑𝜎 𝑑𝑠, 𝑀 ∈ {𝛿, p.v.}. (2.20)

The 𝜹 case
The case of the 𝛿 distribution corresponds to the Euclidean (𝑉 = 0) quadratic Klein-Gordon, which is
not resonant (in any dimension), in the sense that for any 𝜉, 𝜂 ∈ R and 𝜄1, 𝜄2 ∈ {+,−}, equation (2.10)
never vanishes, and more precisely��〈𝜉〉 − 𝜄1〈𝜂〉 − 𝜄2〈𝜉 − 𝜂〉

�� � min(〈𝜉〉, 〈𝜂〉, 〈𝜉 − 𝜂〉)−1. (2.21)
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This implies that the quadratic interactions Q𝛿𝜄1 𝜄2 (𝑡, 𝜉) can be eliminated by a normal form transforma-
tion. This was first shown in the seminal work of Shatah [66] in 3d and crucially used in the 1d case in
[11] and [30].

Applying a normal form transformation to equation (2.20) gives quadratic boundary terms that we
disregard for simplicity and cubic terms when 𝜕𝑡 hits the profile 𝑔̃. From equations (2.7)–(2.8), we see
that these cubic terms can be of several types depending on the various combinations of convolutions
between 𝛿, p.v. and smooth functions. Without going into the details of these (we refer the reader to
Section 5), we concentrate on the simplest interaction: that is, the ‘flat’ one

C𝑆𝜄1 𝜄2 𝜄3 (𝑡, 𝜉) =
∬

𝑒𝑖𝑡Φ
𝑆
𝜄1 𝜄2 𝜄3 ( 𝜉 ,𝜂,𝜁 )𝔠𝑆𝜄1 𝜄2 𝜄3 (𝜉, 𝜂, 𝜁) 𝑔̃ 𝜄1 (𝑡, 𝜉 − 𝜂)𝑔̃ 𝜄2 (𝑡, 𝜉 − 𝜂 − 𝜁)𝑔̃ 𝜄3 (𝑡, 𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁

(2.22)

with a smooth symbol 𝔠𝑆𝜄1 𝜄2 𝜄3 and phase functions

Φ𝑆𝜄1 𝜄2 𝜄3 (𝜉, 𝜂, 𝜁) = 〈𝜉〉 − 𝜄1〈𝜉 − 𝜂〉 − 𝜄2〈𝜉 − 𝜂 − 𝜁〉 − 𝜄3〈𝜉 − 𝜁〉.

We observe that if {𝜄1, 𝜄2, 𝜄3} ≠ {+, +,−}, the equations 𝜕𝜂Φ𝑆𝜄1 𝜄2 𝜄3 = 𝜕𝜁Φ𝑆𝜄1 𝜄2 𝜄3 = Φ𝑆𝜄1 𝜄2 𝜄3 = 0 have no
solutions, and therefore the case {𝜄1, 𝜄2, 𝜄3} = {+, +,−} is the main one. If we look at the (+ − +) phase
for simplicity, we see that, for every fixed 𝜉,

Φ𝑆+−+ = 𝜕𝜂Φ
𝑆
+−+ = 𝜕𝜁Φ

𝑆
+−+ = 0 ⇐⇒ 𝜂 = 𝜁 = 0.

This resonance is responsible for the logarithmic phase correction appearing in equation (1.13). We refer
the reader to [39, 32, 24] where a similar phenomenon has been dealt with. We should point out, however,
that in our case, the asymptotic behaviour in equation (1.13) is slightly harder to capture because of
the degenerate weighted norm and the algebraic complications due to the treatment of potentials with
general transmission and reflection coefficients.

The p.v. case
The main observation that allows us to treat the terms Qp.v.

𝜄1 𝜄2 is the following: when |𝜉 − 𝜂 − 𝜎 | is much
smaller than the right-hand side of equation (2.21), these terms are similar to Q𝑆𝜄1 𝜄2 . When instead
|𝜉 − 𝜂 −𝜎 | is away from zero, the symbol in equation (2.20) is actually smooth, which gives a term like
the regular Q𝑅𝜄1 𝜄2 discussed before.

2.5. The functional framework

To measure the evolution of our solutions, we need to take into account various aspects including
pointwise decay, spatial localisation (which we measure through regularity on the distorted Fourier
side), the coherent space-time resonance phenomenon in equation (2.13) (which dictates the choice
of our 𝐿2-based norm) and long-range asymptotics. We describe our functional setting below after
introducing the necessary notation.

2.5.1. Notation
To introduce our functional framework, we first define the Littlewood-Paley frequency decomposition.
Frequency decomposition. We fix a smooth even cutoff function 𝜑 : R→ [0, 1] supported in [−8/5, 8/5]
and equal to 1 on [−5/4, 5/4]. Note that the choice of the number 8/5 for the support of 𝜑 is fairly
arbitrary, and other choices are possible; however, this number is chosen to be less than

√
3 so that when

we define the cutoffs 𝜒ℓ centred around ±
√

3 in equation (2.27), we can start the indexing at 0.
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For 𝑘 ∈ Z, we define 𝜑𝑘 (𝑥) := 𝜑(2−𝑘𝑥) − 𝜑(2−𝑘+1𝑥), so that the family (𝜑𝑘 )𝑘∈Z forms a partition of
unity, ∑

𝑘∈Z
𝜑𝑘 (𝜉) = 1, 𝜉 ≠ 0.

We let

𝜑𝐼 (𝑥) :=
∑
𝑘∈𝐼∩Z

𝜑𝑘 , for any 𝐼 ⊂ R, 𝜑≤𝑎 (𝑥) := 𝜑 (−∞,𝑎] (𝑥), 𝜑>𝑎 (𝑥) = 𝜑 (𝑎,∞) (𝑥), (2.23)

with similar definitions for 𝜑<𝑎, 𝜑≥𝑎. We will also denote 𝜑∼𝑘 a generic smooth cutoff function that is
supported around |𝜉 | ≈ 2𝑘 , for example 𝜑 [𝑘−2,𝑘+2] or 𝜑′

𝑘 .
We denote by 𝑃𝑘 , 𝑘 ∈ Z, the Littlewood-Paley projections adapted to the regular Fourier transform:

𝑃𝑘 𝑓 (𝜉) = 𝜑𝑘 (𝜉) 𝑓̂ (𝜉), �𝑃≤𝑘 𝑓 (𝜉) = 𝜑≤𝑘 (𝜉) 𝑓̂ (𝜉), and so on.

We will avoid using, as a recurrent notation, the distorted analogue of these projections.
We also define the cutoff functions

𝜑 (𝑘0)
𝑘 (𝜉) =

{
𝜑𝑘 (𝜉) if 𝑘 > �𝑘0�,
𝜑≤�𝑘0 � (𝜉) if 𝑘 = �𝑘0�,

(2.24)

and

𝜑 [𝑘0 ,𝑘1 ]
𝑘 (𝜉) =

⎧⎪⎪⎨⎪⎪⎩
𝜑𝑘 (𝜉) if 𝑘 ∈ (�𝑘0�, �𝑘1�) ∩ Z,
𝜑≤�𝑘0 � (𝜉) if 𝑘 = �𝑘0�,
𝜑≥�𝑘1 � (𝜉) if 𝑘 = �𝑘1� .

(2.25)

We are adopting the standard notation �𝑥� to denote the largest integer smaller than x. Note that the
indexes 𝑘0 and 𝑘1 in equations (2.24)–(2.25) do not need to be integers. We also adopt the convention
that if 𝑘0 = 𝑘1, then 𝜑 [𝑘0 ,𝑘1 ]

𝑘 = 1.
We will denote by T a positive time, and always work on an interval [0, 𝑇] for our bootstrap

estimates; see, for example, Proposition 7.1. To decompose the time integrals such as equation (2.7) for
any 𝑡 ∈ [0, 𝑇] (this is first done in equation (8.12) and then systematically throughout Sections 8–11), we
will use a suitable decomposition of the indicator function 1[0,𝑡 ] by fixing functions 𝜏0, 𝜏1, · · · , 𝜏𝐿+1 :
R→ [0, 1], for an integer L with |𝐿 − log2(𝑡 + 2) | < 2, with the properties that

𝐿+1∑
𝑛=0

𝜏𝑛 (𝑠) = 1[0,𝑡 ] (𝑠), supp (𝜏0) ⊂ [0, 2], supp (𝜏𝐿+1) ⊂
[ 1

4 𝑡, 𝑡
]
,

and supp (𝜏𝑛) ⊆ [2𝑛−1, 2𝑛+1], |𝜏′
𝑛 (𝑠) | � 2−𝑛, for 𝑛 = 1, . . . , 𝐿.

(2.26)

In all our arguments, we also will often restrict to 𝑛 ≥ 1, as the contribution for 𝑛 = 0 is always trivial
to handle.

In light of the coherent phenomenon explained in Section 2.3, we also need cutoff functions

𝜒ℓ,
√

3(𝑧) = 𝜑ℓ (|𝑧 | −
√

3), ℓ ∈ Z ∩ (−∞, 0], (2.27)

which localise around ±
√

3 at a scale ≈ 2ℓ . In analogy with equations (2.23) and (2.24), we also define

𝜒∗,
√

3 (𝑧) = 𝜑∗(|𝑧 | −
√

3), 𝜒∗
ℓ,

√
3
(𝑧) = 𝜑∗

ℓ (|𝑧 | −
√

3). (2.28)
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More notation.
For any 𝑘 ∈ Z, let 𝑘+ := max(𝑘, 0) and 𝑘− := min(𝑘, 0).
We denote as 1𝐴 the characteristic function of a set 𝐴 ⊂ R and let 1± be the characteristic function

of {±𝑥 > 0}.
We use 𝑎 � 𝑏 when 𝑎 ≤ 𝐶𝑏 for some absolute constant 𝐶 > 0 independent on a and b. 𝑎 ≈ 𝑏

means that 𝑎 � 𝑏 and 𝑏 � 𝑎. When a and b are expressions depending on variables or parameters, the
inequalities are assumed to hold uniformly over these.

Given 𝑐 ∈ R, we will use the notation 𝑐+ to denote a number d larger than c but that can be chosen
arbitrarily close to it. Similarly, we will use 𝑐− for a number smaller than c that can be chosen arbitrarily
close to it; see, for example, equation (6.9). We will sometimes use this convention also with 𝑐 = ∞ to
denote an arbitrarily large number (see, for example, equation (6.27)).

We will denote by min(𝑥1, 𝑥2, . . . ), respectively max(𝑥1, 𝑥2, . . . ), the minimum, respectively maxi-
mum, over the set {𝑥1, 𝑥2, . . . }. We will also denote by min2 (𝑥1, 𝑥2, . . . ), respectively max2 (𝑥1, 𝑥2, . . . ),
the second smallest, respectively second largest, element in the set {𝑥1, 𝑥2, . . . }. We are also using
med(𝑥1, 𝑥2, 𝑥3) for max2(𝑥1, 𝑥2, 𝑥3); see, for example, equation (5.60) or equation (8.76).

We denote by

𝑓̂ = F̂( 𝑓 ) :=
1

√
2𝜋

∫
R

𝑒−𝑖𝑥 𝜉 𝑓 (𝑥) 𝑑𝑥 (2.29)

the standard Fourier transform of f.
We use the standard notation for Lebesgue 𝐿𝑝 spaces and for Sobolev spaces 𝑊 𝑘, 𝑝 and 𝐻𝑘 = 𝑊 𝑘,2.

2.5.2. Norms
For 𝑇 > 0, we let 𝑊𝑇 be the space given by the norm

‖ℎ‖𝑊𝑇
:= sup
𝑛≥0

sup
ℓ∈Z∩[ �−𝛾𝑛�,0]

��𝜒 [−𝛾𝑛,0]
ℓ,

√
3

( · ) 𝜏𝑛 (𝑡) ℎ(𝑡, ·)10≤𝑡≤𝑇
��
𝐿∞
𝑡 𝐿

2
𝜉

2𝛽ℓ2−𝛼𝑛, (2.30)

where9 𝜏𝑛 here denotes a partition of unity as in equation (2.26) with T in place of t, and where the
parameters 0 < 𝛼, 𝛽, 𝛾 < 1

2 satisfy

𝛾𝛽′ < 𝛼 <
𝛽′

2
, 𝛽′ � 1, 𝛽′ :=

1
2

− 𝛽, 𝛾′ :=
1
2

− 𝛾. (2.31)

𝛽′ is a fixed constant that needs to be chosen small enough to satisfy various inequalities that we will
impose in the course of the proof. Note that we automatically have 𝛾 < 1/2 and that one possible way
to impose all of the conditions in equation (2.31) is to choose 𝛼 sufficiently small and

𝛽′ = 2𝛼 + 2𝛼2, 𝛾′ = 2𝛼 + 𝛼2.

Let us briefly explain the choice of the norm and parameters:

• The norm in equation (2.30) will be used to measure our solution on the Fourier side. More
precisely, we will show that ‖〈𝜉〉𝜕𝜉 𝑓̃ ‖𝑊𝑇

� 𝜀0, where 𝑓̃ is a renormalised version of the profile 𝑔̃ in
equation (1.6). As already pointed out, measuring 𝜕𝜉 on the Fourier side is akin to measuring a
weighted norm in real space.

• The quantity 2ℓ measures the distance from ±
√

3 starting at smallest scale 2−𝛾𝑛, where 2𝑛 ≈ |𝑡 | and
the norm is penalised by the factor 2𝛽ℓ . The additional penalization of 2−𝛼𝑛 is added globally to take
into account long-range effects that are present at every frequency.

9We are using the same notation from equation (2.26) for time cutoffs to avoid introducing an additional notation, but in the
definition in equation (2.30), we do not need regularity assumptions on the 𝜏𝑛, but just that they are a partition of unity.
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• To make sure that localisation and derivation in the 𝑊𝑇 norm commute (under the hypothesis that 𝑓̃
is uniformly bounded), one needs 𝛽′𝛾 ≤ 𝛼.

• In order to deduce from a bound on the 𝑊𝑇 norm (together with a bound on the F̃−1〈𝜉〉−3/2𝐿∞) the
necessary linear decay estimate at the optimal rate of 〈𝑡〉−1/2, we need 𝛼 + 𝛽𝛾 < 1/4; see Proposition
3.11. Since

𝛼 + 𝛽𝛾 = 𝛼 + 1/4 − 𝛽𝛾′ − 𝛽′/2,

it suffices to impose 𝛽′ ≥ 2𝛼.

2.6. The main bootstrap and proof of Theorem 1.1

For 𝑇 > 0, consider a local solution 𝑢 ∈ 𝐶 ([0, 𝑇], 𝐻5 (R)) ∩ 𝐶1 ([0, 𝑇], 𝐻4 (R)) of equation (KG)
constructed by standard methods. Our proof is based on showing an a priori estimate for the following
norm:

‖𝑢‖𝑋𝑇 = sup
𝑡 ∈[0,𝑇 ]

[
〈𝑡〉−𝑝0

��(√𝐻 + 1 𝑢, 𝑢𝑡 ) (𝑡)
��
𝐻 4 + 〈𝑡〉1/2‖(𝜕𝑡 , 𝜕𝑥)𝑢(𝑡)‖𝐿∞

]
, 0 < 𝑝0 < 𝛼. (2.32)

Under the initial smallness condition in equation (1.3), we will assume the a priori bound

‖𝑢‖𝑋𝑇 ≤ 𝜀1, (2.33)

and show that this implies

‖𝑢‖𝑋𝑇 ≤ 𝐶𝜀0 + 𝐶𝜀2
1, (2.34)

for some absolute constant𝐶 > 0. Picking 𝜀0 sufficiently small and using a standard bootstrap argument
with 𝜀1 = 2𝐶𝜀0, equation (2.34) gives global existence of solutions that are small in the space 𝑋∞. Also,
using time reversibility, we obtain solutions for all times.

The structure of the paper and the proof of Theorem 1.1, with details on how the main bootstrap
equation (2.34) will be proved, are described below.

2.7. Structure of the paper and the proof of Theorem 1.1

In this subsection, we discuss the organization of the paper, describe the overall structure of the proof,
and give more details about the various estimates needed to show equation (2.34), under the a priori
assumption in equation (2.33).

• Section 3 contains an exposition of the elements of the scattering theory for Schrödinger operators
𝐻 := −𝜕2

𝑥 +𝑉 on R, which we will need.
After introducing the Jost functions 𝑓± (see equation (3.1)) and the transmission and reflection

coefficients T and 𝑅± (see equations (3.7) and (3.13)), we define the distorted Fourier transform
(dFT) as in equation (2.2) (see equation (3.21)), with the ‘distorted’ (or generalised) exponentials (or
eigenfunctions) 𝜓(𝑥, 𝜉) given by equation (3.19).

Some basic properties of the dFT are discussed in Section 3.2.1. Then the 𝜓(𝑥, 𝜉) are analysed in
detail in Section 3.3 and decomposed into a singular and a regular part. The singular part behaves at
spatial infinity like linear combinations of (standard) complex exponentials, while the regular part is
fast decaying. This decomposition is also at the heart of the decomposition of the nonlinear spectral
distribution 𝜇 defined in equation (2.6).

In Section 3.4, we prove the first nontrivial result involving the dFT: that is, the estimate for
the linear flow 𝑒𝑖𝑡

√
𝐻+1 = 𝑒𝑖𝑡 〈𝐷̃〉 (see the notation for Fourier multipliers in Section 3.2.2) given in

equation (3.32), which involves the degenerate norm 𝑊𝑇 . This estimate shows that sharp 𝐿∞
𝑥 decay
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(i.e., at the rate of 𝑡−1/2) for the evolution 𝑒𝑖𝑡
√
𝐻+1ℎ(𝑡) of a (time-dependent) profile h on an interval

[0, 𝑇], follows from controlling the norms

sup
𝑡 ∈[0,𝑇 ]

��〈𝜉〉3/2 ℎ̃(𝑡)
��
𝐿∞
𝜉

≤ 𝐶, ‖〈𝜉〉𝜕𝜉 ℎ̃‖𝑊𝑇
≤ 𝐶, sup

𝑡 ∈[0,𝑇 ]

(
〈𝑡〉−𝑝0 ‖〈𝜉〉4 ℎ̃‖𝐿2

)
≤ 𝐶, (2.35)

where 𝑊𝑇 is the norm defined in equation (2.30), with the restriction on the parameters in equation
(2.31), 𝑝0 sufficiently small, and C an absolute constant independent of T. As it turns out, we cannot
control the norms in equation (2.35) for the profile associated to the solution u and infer the bound for
the 𝐿∞

𝑥 norm in equation (2.32) from this. Instead, we need to take a longer route and estimate norms
as in equation (2.35) for a renormalised profile, which is defined in Section 5; see equation (5.53).

• Before moving on to the analysis of the nonlinear time evolution, we study more precisely the
nonlinear spectral measure in Section 4.

The main Proposition 4.1 describes the precise structure of the NSD 𝜇 (see equation (2.6)); for
lighter notation, we omit the indexes 𝜄1, 𝜄2 here. The main goal is to decompose 𝜇 into a ‘singular’
and a ‘regular’ part.

The singular part, denoted 𝜇𝑆 , is a linear combination of 𝛿 and p.v. distributions, as anticipated
in equation (2.8); the precise definition is given by equations (4.2)–(4.3), with formulas for the
coefficients given in equations (4.4)–(4.5). Notice that these coefficients may not be smooth at 𝜉 = 0
(e.g., in the generic case). As is apparent, handling formulas involving these coefficients requires
quite a lot of somewhat tedious bookkeeping; however, this is necessary for two main reasons: first,
we need the exact expressions to calculate the final asymptotics for the solution of equation (KG); and
second, we will need to check some smoothness properties for the multipliers of the trilinear terms
that will appear after a normal form transformation and involve these coefficients.

The regular part of the NSD, denoted 𝜇𝑅, is defined in equation (4.6) with equation (4.7), and it is
essentially a smooth function of the three frequencies (𝜉, 𝜂, 𝜎) up to possible jump singularities on
the axes. The mapping properties of the associated bilinear operator are established in Section 4.2,
with equation (4.29) showing that it essentially behaves like multiplication by a localised function.

• In Section 5, we begin the analysis of the time evolution by defining the profile associated to u as

𝑔 := 𝑒𝑖𝑡
√
𝐻+1(𝜕𝑡 − 𝑖

√
𝐻 + 1)𝑢; (2.36)

see equations (5.5) and (5.2). From the main equation (KG), we write the nonlinear evolution for 𝑔̃
as in equations (5.7)–(5.8) (which is the same as the formula in equation (2.4)).

Using the decomposition of 𝜇 = 𝜇𝑆 + 𝜇𝑅, we would like to decompose accordingly the quadratic
terms in the formula for 𝜕𝑡 𝑔̃ into singular terms and regular terms. However, as briefly mentioned
in equation (2.4), because of the presence of the p.v. term coming from 𝜇𝑆 , we cannot do this
decomposition directly. We instead need a further distinction within the terms containing the p.v.
into ‘truly’ singular terms, where the p.v. is restricted close to its singularity, and more regular ones
that are supported away from the singularity. This is the role of the cutoff 𝜑∗ defined in equation
(5.12) and appearing in equation (5.11). The singular terms are then defined according to equations
(5.10)–(5.11). The precise choice of 𝜑∗ is made so that, on its support, we can derive lower bounds
for the oscillating phases Φ in equation (5.8).
The main motivation for the splitting

𝜕𝑡 𝑔̃ = Q𝑆 + Q𝑅,

as done in Section 5.2, is that the singular quadratic terms resemble the quadratic terms that one would
get for a flat (𝑉 = 0) quadratic KG equation. In particular, the oscillating phases are lower bounded
on the support of Q𝑆 , as established in Lemma 5.2; then we can apply a normal form transformation
to recast these terms into cubic ones.
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The algebra for the normal form step is carried out in Section 5.4. Starting from the simple identity
in equation (5.27), we naturally define the bilinear normal form transformation10 T in equation
(5.29), which arises from the boundary terms in the time-integration by parts. More precisely (but
still omitting the various sums over the signs such as 𝜄1 and 𝜄2) we have∫ 𝑡

0
Q𝑆 𝑑𝑠 = F̃𝑇 (𝑔, 𝑔) (𝑡) − F̃𝑇 (𝑔, 𝑔) (0) +

∫ 𝑡

0
𝐵1(𝑠) + 𝐵2(𝑠) 𝑑𝑠 (2.37)

where the bulk terms 𝐵1 and 𝐵2 are the expressions defined in equations (5.34) and (5.35) and are
cubic in g. The only quadratic terms left are then the Q𝑅 terms that include the contribution from
𝜇𝑅, and the p.v. part restricted outside the support of 𝜑∗.

In Section 5.5, respectively, Section 5.6, we analyse the leading order symbol 𝔟1, respectively, the
lower-order symbol 𝔟2, of the bulk term 𝐵1, respectively, 𝐵2 above. These are somewhat complicated
expressions since they involve the symbol equation (5.11) and its variant without the cutoff 𝜑∗ and
therefore combinations of the (nonsmooth) coefficients in equation (4.4). The leading order symbol
is made by the convolution of 𝛿 and p.v.-type distributions; see equations (5.36)–(5.38). For the
later nonlinear analysis, we need to make sure that this symbol is nice enough so that the associated
trilinear operators satisfy Hölder type bounds. An important technical point then is the verification of
the smoothness with respect to variable in which the convolution is performed; this is done in Section
5.5.1. In Section 5.5.2, we then calculate precisely the top order (singular 𝛿 and p.v.-type) contribution
from 𝔟1: that is, the symbol 𝔠𝑆 in equation (5.46); the associated trilinear operator will be denoted by
C𝑆 . Other contributions from 𝔟1 and the symbol 𝔟2 are analysed in Section 5.6; the associated trilinear
operator will be denoted by C𝑅. The mapping properties of these trilinear operators are analysed in
Section 6.

In the last Section 5.7, we finally arrive at the definition in equation (5.53) of the renormalised
profile

𝑓 = 𝑔 − 𝑇 (𝑔, 𝑔). (2.38)

We see that f satisfies an equation where the only quadratic terms are regular ones, and the cubic
terms are those analysed in the previous subsections. Equation (5.55) for 𝑓̃ is the starting point for the
nonlinear analysis, and we record it here for ease of reference in a slightly simplified form (omitting
the easier regular cubic terms; see equations (5.59)–(5.60))

𝜕𝑡 𝑓̃ = Q𝑅 (𝑔, 𝑔) + C𝑆 (𝑔, 𝑔, 𝑔); (2.39)

see the definitions in equations (5.56)–(5.57).
The heart of the proof of the bootstrap equation (2.34) is another bootstrap argument for the

renormalised profile f involving the norms in equation (2.35) and is based on (a renormalisation of)
equation (2.39). See the description of the contents of Section 7 below.

• Section 6 contains bilinear and trilinear estimates for the various operators appearing in our problem.
Here we need to analyse different types of pseudo-product operators, from the standard bilinear ones
(equation (6.1)) to trilinear ones involving a p.v. (equation (6.5)). Bounds for general bilinear and
trilinear operators of the types that appear in our proof are established in Lemmas 6.5 and 6.7, and
basic criteria to check the assumptions in these lemmas are also given.

In Section 6.3, we analyse in detail the normal form operator T and establish, in Lemma 6.10, that
it satisfies Hölder-type bounds with a gain of regularity on the inputs.

The other main results in this Section are Lemma 6.11, which gives improved Hölder-type inequal-
ities for the smooth bilinear operator Q𝑅, and Lemma 6.13, which gives sharp Hölder-type bounds
with some gain of regularity for the singular cubic terms C𝑆 .

10This is the bilinear operator that we denoted by B in Theorem 1.1 to avoid confusion with the reflection coefficient there.
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• In Section 7, we set up the proof of the main bootstrap bound in equation (2.34). As mentioned above,
these estimates will mostly involve the renormalised profile f, but we first need to relate the desired
bounds for g (and u, as stated in equations (1.4)–(1.5)) to the necessary bounds on f. Here is how we
proceed.

With 𝜀0 as in equation (1.3), we let 𝜀2 � 𝜀1 � 𝜀0. Proposition 7.1 gives an a priori bootstrap on
g for the norms

sup
𝑡 ∈[0,𝑇 ]

[
〈𝑡〉−𝑝0

��〈𝜉〉4𝑔̃(𝑡)
��
𝐿2 + 〈𝑡〉1/2‖𝑒−𝑖𝑡 〈𝜕𝑥 〉1±(𝐷)W∗𝑔(𝑡)‖𝐿∞

]
, (2.40)

where W∗ is the adjoint of the wave operator defined in equation (3.24); we assume that equation
(2.40) is bounded by 2𝜀2 and claim that it can bounded by 𝜀2. Proposition 7.2 instead gives the main
bootstrap for the following norms of f

sup
𝑡 ∈[0,𝑇 ]

[
〈𝑡〉−𝑝0

��〈𝜉〉4 𝑓̃ (𝑡)
��
𝐿2 + ‖〈𝜉〉𝜕𝜉 𝑓̃ ‖𝑊𝑡

+ ‖〈𝜉〉3/2 𝑓̃ (𝑡)‖𝐿∞

]
; (2.41)

assuming that equation (2.41) is bounded by 2𝜀1, we claim that it can be bounded by 𝜀1. Note that
we are assuming much stronger information on f than on g.

Section 7.1 is dedicated to showing how the a priori bound on equation (2.41) by 2𝜀1 can be used
to close the claimed bootstrap for the norms in equation (2.40). This is not too hard to do using the
relation 𝑔 = 𝑓 + 𝑇 (𝑔, 𝑔) (see equation (2.38)), the bilinear bounds on the T operator established in
Section 6.3 and the linear estimate in equation (3.32).

Note that once we have proven a bound for equation (2.40) by 𝜀2 = 𝐶𝜀0, we can immediately deduce
the Sobolev bound in equation (1.5) from equation (2.36) and the boundedness of wave operators
(Theorem 3.10). The decay bound in equation (1.4) does not follow directly from the 𝐿∞ bound in
equation (2.40) (because wave operators may be unbounded on 𝐿∞), and it is proved separately in
equation (7.9). The weighted bound in equation (1.7) is proved in Lemma 7.6. Since equations (1.4)–
(1.7) follow from the bound on equation (2.40), the proof of the main theorem has been reduced
to proving the bootstrap Proposition 7.2. As part of the arguments needed to prove these bootstrap
estimates on f, we will also establish its asymptotic behaviour; see equation (1.13) (and Section 10).
The rest of Section 7 prepares for later analysis and the proof of Proposition 7.2. Section 7.2 contains
some preliminary bounds on f that follow from the a priori bound on the norms in equation (2.41)
(Lemma 7.5). Then, in Section 7.3, using equation (2.38), we rewrite the equation for f (see equation
(2.39)) as

𝑓̃ (𝑡) − 𝑓̃ (0) =
∫ 𝑡

0
Q𝑅 ( 𝑓 , 𝑓 ) 𝑑𝑠 +

∫ 𝑡

0
C𝑆 ( 𝑓 , 𝑓 , 𝑓 ) 𝑑𝑠 + · · · + R(𝑡), (2.42)

where the ‘. . . ’ denotes other cubic and quartic terms in f and Rs denote terms that have a higher
degree of homogeneity in f and g and can be treated as remainders. We actually use expansions at
different orders depending on which norm we are trying to estimate.

To close the bootstrap for f, we then need to estimate the terms on the right-hand side of equation
(2.42). Lemmas 7.8 and 7.9 give, among other things, suitable bounds on the remainders R, in all the
norms in equation (2.41).

In Section 7.4, for the convenience of the reader, we summarise the bounds obtained thus far and
list all the bounds that are left to prove.

• Sections 8 and 9 constitute the heart of the paper and the more technical part of the analysis. The goal of
these two sections is to carry out the main parts of the estimates for the weighted 𝐿2 norm in equation
(2.30) of the regular quadratic terms, Q𝑅 ( 𝑓 , 𝑓 ), and of the singular cubic terms, C𝑆 ( 𝑓 , 𝑓 , 𝑓 ).The
desired weighted bound for Q𝑅 ( 𝑓 , 𝑓 ) is equation (8.1) in Proposition 8.1. Section 8 is then entirely
dedicated to proving this key bound when the interactions are restricted to the main resonant ones:
that is, (𝜂, 𝜎) = (0, 0) −→ 𝜉 = ±

√
3 (see the notation used in equations (8.8) and (8.2)).
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Sections 8.1–8.3 give some preliminary bounds and reductions. We first take care of frequencies
𝜉 that are very close to ±

√
3 and reduce the desired bound to showing equation (8.35) with equation

(8.36) for the localised operator11 𝐼 (𝑡, 𝜉) defined in equation (8.32); these reductions are summarised
in Lemma 8.4.

Note that the estimate in equation (8.32) involves localisation in the size of the input variables |𝜂 |
and |𝜎 |, in the distance | |𝜉 |−

√
3|, in the size of the oscillating phase |Φ|, and in the integrated time s, at

dyadic scales with respective parameters 𝑘1, 𝑘2, ℓ, 𝑝 and m. These localisations allow us to distinguish
various cases and to exploit the oscillations efficiently in either frequency space or time depending
on the relative size of the quantities involved. The estimates are split into four main regions, as
described in equation (8.48), and treating each of these regions occupies one of the Sections 8.4–8.7.
We remark that a useful quantity is the one defined in equation (8.17), which incorporates some
improved decay properties of the solution (for small frequencies).

• In Section 9, we estimate the weighted 𝐿2 norm for the singular cubic terms C𝑆 ( 𝑓 , 𝑓 , 𝑓 ) of the form
in equation (2.22) (see equation (5.57) with equation (5.46) for the precise definition), focusing on
the case of the main resonant interactions ±(

√
3,

√
3,

√
3) → ±

√
3. In particular, we achieve the main

step in the proof of Proposition 9.1, which deals with the interactions of the type (+ − +), where the
signs correspond to the signs of the oscillating factors in the cubic phases in equation (5.57).

Section 9.2 treats the terms that involve a 𝛿 factor, while Section 9.3 treats those with a p.v.
(recall the form of the cubic symbols in equation (5.46)). Once again, we need to distinguish
various cases depending on the distance of the input and output variables from the bad frequency√

3, relative to time and the size of their differences (see, for example, the dyadic localisations
in equation (9.16)).

• With Sections 8 and 9, we have taken care of estimating the weighted norm for the leading-order
terms on the right-hand side of equation (2.42) in the case of the main resonant interactions. All of
the other nonresonant interactions are estimated in Section 11.
Section 10 contains the main part of the proof for the control of the Fourier-𝐿∞ norm in equation
(2.41): that is, the proof of Proposition 10.1, which gives asymptotics for the singular cubic terms
C𝑆 (see equation (10.2), where the Hamiltonian function is given in equation (10.27)). From this,
we can then derive an asymptotic ODE for 𝑓̃ and thus the asymptotic behaviour of the solution as
in equation (10.4) (see equation (1.13)).

Section 10.1 provides first a formal computation for the asymptotics, based on the stationary
phase lemma. Section 10.2 utilises these computations to give the exact structure of the long-range
asymptotics and the form of the Hamiltonian H appearing in the statement of Proposition 10.1).
Rigorous bounds are then proved in equation (10.3).

• Section 11 contains the estimates needed to control all the contributions from the nonlinear terms on
the right-hand side of equation (2.42) that have not been dealt with in Sections 7–10, since they are
lower-order compared to the main ones. We refer the reader to the first paragraph of Section 11 for
a list of the estimates that are carried out there and the details on how they complete the proofs of
the main propositions stated in the previous sections.
The estimates of Section 11 complete the bootstrap on the norm in equation (2.41).

• Finally, Appendix A contains a verification of the spectral assumptions needed to apply our results
to the double sine-Gordon model in equation (1.22) and obtain Corollary 1.6.

3. Spectral theory and distorted Fourier transform in 1d

We develop in this section the spectral and scattering theory of

𝐻 = −𝜕2
𝑥 +𝑉,

11We continue to adopt our convention of omitting the various indexes in this discussion.
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assuming that 𝑉 ∈ S and that H only has a continuous spectrum. We state the results that are needed for
the nonlinear problem that interests us here and sketch the important proofs.

This theory is due to Weyl, Kodaira and Titchmarsh (who also considered more general Sturm-
Liouville problems). Complete expositions can be found in [18] and [77]; we mention in particular
Yafaev [73, Chapter 5], where the operator H is considered and direct proofs are given.

3.1. Linear scattering theory

3.1.1. Jost solutions
Define 𝑓+(𝑥, 𝜉) and 𝑓−(𝑥, 𝜉) by the requirements that

(−𝜕2
𝑥 +𝑉) 𝑓± = 𝜉2 𝑓±, for all 𝑥, 𝜉 ∈ R, and

{
lim𝑥→∞ | 𝑓+(𝑥, 𝜉) − 𝑒𝑖𝑥 𝜉 | = 0,
lim𝑥→−∞ | 𝑓−(𝑥, 𝜉) − 𝑒−𝑖𝑥 𝜉 | = 0. (3.1)

Define further

𝑚+(𝑥, 𝜉) = 𝑒−𝑖 𝜉 𝑥 𝑓+(𝑥, 𝜉) and 𝑚−(𝑥, 𝜉) = 𝑒𝑖 𝜉 𝑥 𝑓−(𝑥, 𝜉), (3.2)

so that 𝑚± is a solution of

𝜕2
𝑥𝑚± ± 2𝑖𝜉𝜕𝑥𝑚± = 𝑉𝑚±, 𝑚±(𝑥, 𝜉) → 1 as 𝑥 → ±∞. (3.3)

The functions 𝑚± satisfy symbol type bounds for ±𝑥 > 0, as stated in the following lemma.

Lemma 3.1. For all nonnegative integers 𝛼, 𝛽, 𝑁 ,��𝜕𝛼𝑥 𝜕𝛽𝜉 (𝑚±(𝑥, 𝜉) − 1)
�� � 〈𝑥〉−𝑁 〈𝜉〉−1−𝛽 , ±𝑥 ≥ −1, (3.4)��𝜕𝛼𝑥 𝜕𝛽𝜉 (𝑚±(𝑥, 𝜉) − 1)
�� � 〈𝑥〉1+𝛽 〈𝜉〉−1−𝛽 , ±𝑥 ≤ 1. (3.5)

The estimates in equations (3.4)–(3.5) can be obtained from the integral form of equation (3.3)

𝑚+(𝑥, 𝜉) = 1 +
∫ ∞

𝑥
𝐷 𝜉 (𝑦 − 𝑥)𝑉 (𝑦)𝑚+(𝑦, 𝜉) 𝑑𝑦,

𝑚−(𝑥, 𝜉) = 1 +
∫ 𝑥

−∞
𝐷 𝜉 (𝑥 − 𝑦)𝑉 (𝑦)𝑚−(𝑦, 𝜉) 𝑑𝑦, (3.6)

where

𝐷 𝜉 (𝑧) =
𝑒2𝑖 𝜉 𝑧 − 1

2𝑖𝜉
.

Since the proof is fairly standard, we skip the details and refer the reader to [12, Appendix A].

3.1.2. Transmission and reflection coefficients
A classical reference for the formulas that we recall here is [10] (see also [76], [73], for example).
Denote as 𝑇 (𝜉) and 𝑅±(𝜉), respectively, the transmission and reflection coefficients associated to the
potential V. These coefficients are such that

𝑓+(𝑥, 𝜉) =
1

𝑇+(𝜉)
𝑓−(𝑥,−𝜉) + 𝑅−(𝜉)

𝑇+(𝜉)
𝑓−(𝑥, 𝜉),

𝑓−(𝑥, 𝜉) = 1
𝑇−(𝜉) 𝑓+(𝑥,−𝜉) + 𝑅+(𝜉)

𝑇−(𝜉) 𝑓+(𝑥, 𝜉), (3.7)
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or, equivalently,

𝑓+(𝑥, 𝜉) ∼ 1
𝑇+(𝜉)

𝑒𝑖 𝜉 𝑥 + 𝑅−(𝜉)
𝑇+(𝜉)

𝑒−𝑖 𝜉 𝑥 as 𝑥 → −∞,

𝑓−(𝑥, 𝜉) ∼ 1
𝑇−(𝜉) 𝑒

−𝑖 𝜉 𝑥 + 𝑅+(𝜉)
𝑇−(𝜉) 𝑒

𝑖 𝜉 𝑥 as 𝑥 → ∞.

In the equalities above, 𝑇+ and 𝑇− do a priori differ; however, since the Wronskian

𝑊 (𝜉) := 𝑊 ( 𝑓+(𝜉), 𝑓−(𝜉)), 𝑊 ( 𝑓 , 𝑔) = 𝑓 ′𝑔 − 𝑓 𝑔′ (3.8)

is independent of the point x, where it is computed for solutions of equation (3.1), one sees (taking
𝑥 → ±∞) that 𝑇+ = 𝑇− = 𝑇 and

𝑊 (𝜉) = 2𝑖𝜉
𝑇 (𝜉) . (3.9)

Since 𝑓±(𝑥, 𝜉) = 𝑓±(𝑥,−𝜉), we obtain furthermore that

𝑇 (𝜉) = 𝑇 (−𝜉) and 𝑅±(𝜉) = 𝑅±(−𝜉). (3.10)

Finally, computing 𝑊 ( 𝑓+(𝜉), 𝑓−(𝜉)), 𝑊 ( 𝑓+(𝜉), 𝑓+(−𝜉)), 𝑊 ( 𝑓−(𝜉), 𝑓−(−𝜉)) at 𝑥 = ±∞ gives

|𝑅±(𝜉) |2 + |𝑇 (𝜉) |2 = 1, and 𝑇 (𝜉)𝑅−(𝜉) + 𝑅+(𝜉)𝑇 (𝜉) = 0. (3.11)

As a consequence, the scattering matrix associated to the potential V is unitary:

𝑆(𝜉) :=
(
𝑇 (𝜉) 𝑅+(𝜉)
𝑅−(𝜉) 𝑇 (𝜉)

)
, 𝑆−1(𝜉) :=

(
𝑇 (𝜉) 𝑅−(𝜉)
𝑅+(𝜉) 𝑇 (𝜉)

)
. (3.12)

Starting from the integral formula in equation (3.6) giving 𝑚±, letting 𝑥 → ∓∞ and relating it to the
definition of T and 𝑅± gives

𝑇 (𝜉) = 2𝑖𝜉
2𝑖𝜉 −

∫
𝑉 (𝑥)𝑚±(𝑥, 𝜉) 𝑑𝑥

,

𝑅±(𝜉) =
∫
𝑒∓2𝑖 𝜉 𝑥𝑉 (𝑥)𝑚∓(𝑥, 𝜉) 𝑑𝑥

2𝑖𝜉 −
∫
𝑉 (𝑥)𝑚±(𝑥, 𝜉) 𝑑𝑥

.

(3.13)

These formulas are only valid for 𝜉 ≠ 0 a priori. But a moment of reflection shows that T and 𝑅± can
be extended to be smooth functions on the whole real line. Combining these formulas with Lemma 3.1
gives the following lemma.

Lemma 3.2. Let T and 𝑅± be defined as in equation (3.13). Then under our assumptions on V, for any
𝛽 and N, we have

|𝜕𝛽𝜉 [𝑇 (𝜉) − 1] | � 〈𝜉〉−1−𝛽 , |𝜕𝛽𝜉 𝑅±(𝜉) | � 〈𝜉〉−𝑁 . (3.14)
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3.1.3. Generic and exceptional potentials
We call the potential V

• generic if
∫

𝑉 (𝑥)𝑚±(𝑥, 0) 𝑑𝑥 ≠ 0

• exceptional if
∫

𝑉 (𝑥)𝑚±(𝑥, 0) 𝑑𝑥 = 0

• very exceptional if
∫

𝑉 (𝑥)𝑚±(𝑥, 0) 𝑑𝑥 =
∫

𝑥𝑉 (𝑥)𝑚±(𝑥, 0) 𝑑𝑥 = 0

Lemma 3.3. The following four assertions are equivalent:

(i) V is generic.
(ii) 𝑇 (0) = 0, 𝑅±(0) = −1.

(iii) 𝑊 (0) ≠ 0.
(iv) The potential V does not have a resonance at 𝜉 = 0; in other words, there does not exist a bounded

nontrivial solution in the kernel of −𝜕2
𝑥 +𝑉 .

Checking the equivalence of these assertions is easy based on the formulas in equation (3.13).

Proposition 3.4 (Low-energy scattering). If V is generic, there exists 𝛼 ∈ 𝑖R such that

𝑇 (𝜉) = 𝛼𝜉 +𝑂 (𝜉2). (3.15)

If V is exceptional, let

𝑎 := 𝑓+(−∞, 0) ∈ R \ {0}.

Then

𝑇 (0) = 2𝑎
1 + 𝑎2 , 𝑅+(0) =

1 − 𝑎2

1 + 𝑎2 , and 𝑅−(0) = 𝑎2 − 1
1 + 𝑎2 . (3.16)

Proof. In the generic case, observe that

𝑇 (𝜉) = 2𝑖
−

∫
𝑉 (𝑥)𝑚±(𝑥, 0) 𝑑𝑥

𝜉 +𝑂 (𝜉2),

hence the desired result since 𝑚±(·, 0) is real-valued.
We now turn to the exceptional case. Denoting

𝑏 =
∫

𝑉 (𝑥)𝜕𝜉𝑚±(𝑥, 0) 𝑑𝑥, and 𝑐± =
∫

𝑉 (𝑥)𝑥𝑚±(𝑥, 0) 𝑑𝑥,

𝑇 (0) and 𝑅±(0) can, thanks to equation (3.13), be expressed as

𝑇 (0) = 2𝑖
2𝑖 − 𝑏

, 𝑅±(0) = 𝑏 ∓ 2𝑖𝑐∓
2𝑖 − 𝑏

. (3.17)

It remains to determine the values of b and 𝑐±. In order to determine 𝑐+, recall the integral equation
(3.6) satisfied by 𝑚+, and let 𝜉 → 0 and 𝑥 → −∞ in that formula. Taking advantage of the condition∫
𝑉 (𝑦)𝑚+(𝑦, 0) 𝑑𝑦 = 0, we observe that

𝑎 = 𝑚+(−∞, 0) = 1 +
∫ ∞

−∞
𝑦𝑉 (𝑦)𝑚+(𝑦, 0) 𝑑𝑦 = 1 + 𝑐+. (3.18)

Similarly, we find 1
𝑎 = 1 − 𝑐−.
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Turning to b, we first claim that it is purely imaginary. Indeed, differentiating equation (3.3), setting
𝜉 = 0 and taking the real part, we obtain that

ℜ𝔢
[
(𝜕2
𝑥 −𝑉)𝜕𝜉𝑚+(𝑥, 0)

]
= 0.

Since 𝜕𝜉𝑚+(𝑥, 0) → 0 as 𝑥 → ∞, we deduce that ℜ𝔢𝜕𝜉𝑚+ = 0. Using this fact and plugging the
formulas in equation (3.17) into the identity |𝑇 (0) |2 + |𝑅−(0) |2 = 1, we find

𝑏 =

(
2 − 𝑎 − 1

𝑎

)
𝑖.

The formulas giving b and c in terms of a now lead to the desired formulas for 𝑇 (0) and 𝑅(0). �

Remark 3.5. From equation (3.18), we see that in the very exceptional case (see the definition before
Lemma 3.3), we have 𝑎 = 1, and therefore 𝑇 (0) = 1 and 𝑅±(0) = 0. Also, notice that 𝑎 = 1 in the
exceptional case when the zero-energy resonance is even. When instead it is odd, we have 𝑎 = −1, and
therefore 𝑇 (0) = −1 and 𝑅±(0) = 0.

3.1.4. Resolvent and spectral projection
If ℑ𝔪𝜆 ≠ 0, the resolvent of H is defined by 𝑅𝑉 (𝜆) = (𝐻 − 𝜆−1)−1.

Assuming first that ℜ𝔢(𝜆) > 0 and ℑ𝔪𝜆 > 0, we let 𝜉 + 𝑖𝜂 =
√
𝜆, with 𝜉, 𝜂 > 0. Then 𝑓±(𝜉 + 𝑖𝜂) can

be defined through natural extensions of the above definition, and the resolvent 𝑅𝑉 (𝜆) is given by the
kernel

𝑅𝑉 (𝜆) (𝑥, 𝑦) = − 1
𝑊 (𝜉 + 𝑖𝜂) [ 𝑓+(max(𝑥, 𝑦), 𝜉 + 𝑖𝜂) 𝑓−(min(𝑥, 𝑦), 𝜉 + 𝑖𝜂)] .

Letting ℑ𝔪𝜆 → 0 (and still with the convention that 𝜉 > 0),

𝑅𝑉 (𝜉2 + 𝑖0) = − 1
𝑊 (𝜉) 𝑓+(max(𝑥, 𝑦), 𝜉) 𝑓−(min(𝑥, 𝑦), 𝜉).

Similarly,

𝑅𝑉 (𝜉2 − 𝑖0) = − 1
𝑊 (−𝜉) 𝑓+(max(𝑥, 𝑦),−𝜉) 𝑓−(min(𝑥, 𝑦),−𝜉).

By Stone’s formula, the spectral measure associated to H is, for 𝜆 > 0,

𝐸 (𝑑𝜆) = 1
2𝜋𝑖

[𝑅𝑉 (𝜆 + 𝑖0) − 𝑅𝑉 (𝜆 − 𝑖0)]𝑑𝜆.

The formulas above for 𝑅𝑉 (𝜆 ± 𝑖0) lead to

𝐸 (𝑑𝜆) (𝑥, 𝑦) = 1
4𝜋

|𝑇 (
√
𝜆) |2

√
𝜆

[ 𝑓−(𝑥,
√
𝜆) 𝑓−(𝑦,

√
𝜆) + 𝑓+(𝑥,

√
𝜆) 𝑓+(𝑦,

√
𝜆)]𝑑𝜆.

3.2. Distorted Fourier transform

3.2.1. Definition and first properties
We adopt the following normalisation for the (flat) Fourier transform on the line

F̂𝜙(𝜉) = 𝜙(𝜉) = 1
√

2𝜋

∫
𝑒−𝑖 𝜉 𝑥𝜙(𝑥) 𝑑𝑥.
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As is well-known,

F̂−1
𝜙 =

1
√

2𝜋

∫
𝑒𝑖 𝜉 𝑥𝜙(𝜉) 𝑑𝜉 = F̂∗

𝜙,

and F is an isometry on 𝐿2 (R).
We now define the wave functions associated to H:

𝜓(𝑥, 𝜉) :=
1

√
2𝜋

⎧⎪⎪⎨⎪⎪⎩
𝑇 (𝜉) 𝑓+(𝑥, 𝜉) for 𝜉 ≥ 0

𝑇 (−𝜉) 𝑓−(𝑥,−𝜉) for 𝜉 < 0.
(3.19)

Once again, this definition a priori only makes sense for 𝜉 ≠ 0, but it can be extended by continuity to
𝜉 = 0. It follows from the estimates on T and 𝑓± that for any 𝛼, 𝛽 and 𝜉 ≠ 0,

|𝜕𝛼𝑥 𝜕
𝛽
𝜉𝜓(𝑥, 𝜉) | � 〈𝑥〉𝛽 〈𝜉〉𝛼 . (3.20)

The distorted Fourier transform is then defined by

F̃𝜙(𝜉) = 𝜙(𝜉) =
∫
R

𝜓(𝑥, 𝜉)𝜙(𝑥) 𝑑𝑥. (3.21)

Proposition 3.6 (Mapping properties of the distorted Fourier transform). With F̃ defined in equation
(3.21),

(i) F̃ is a unitary operator from 𝐿2 onto 𝐿2. In particular, its inverse is

F̃−1
𝜙(𝑥) = F̃∗

𝜙(𝑥) =
∫
R

𝜓(𝑥, 𝜉)𝜙(𝜉) 𝑑𝜉.

(ii) F̃ maps 𝐿1 (R) to functions in 𝐿∞(R) that are continuous at every point except 0 and converge to
0 at ±∞.

(iii) F̃ maps the Sobolev space 𝐻𝑠 (R) onto the weighted space 𝐿2 (〈𝜉〉2𝑠 𝑑𝜉).
(iv) If 𝑓̃ is continuous at zero, then for any integer 𝑠 ≥ 0,

‖〈𝜉〉𝑠𝜕𝜉 𝑓̃ ‖𝐿2 � ‖ 𝑓 ‖𝐻 𝑠 + ‖〈𝑥〉 𝑓 ‖𝐻 𝑠 .

Proof. As in other parts of this section, we follow Yafaev [73, Chap. 5].
(𝑖) To see that F is an isometry, we use the Stone formula derived in the previous subsection to write,

for any functions 𝑔, ℎ ∈ 𝐿2 (recall that E is the spectral measure associated to H),

〈𝑔, ℎ〉 =
∫

𝐸 (𝑑𝜆)𝑔 ℎ

=
1

4𝜋

∭ |𝑇 (
√
𝜆) |2

√
𝜆

[
𝑓−(𝑥,

√
𝜆) 𝑓−(𝑦,

√
𝜆) + 𝑓+(𝑥,

√
𝜆) 𝑓+(𝑦,

√
𝜆)

]
𝑔(𝑦)ℎ(𝑥) 𝑑𝑦 𝑑𝑥 𝑑𝜆.

Changing the integration variable to 𝜉 =
√
𝜆, this is

1
2𝜋

∫
𝜉 ∈R+

∫
R𝑥

∫
R𝑦

|𝑇 (𝜉) |2
[
𝑓−(𝑥, 𝜉) 𝑓−(𝑦, 𝜉) + 𝑓+(𝑥, 𝜉) 𝑓+(𝑦, 𝜉)

]
𝑔(𝑦)ℎ(𝑥) 𝑑𝑦 𝑑𝑥 𝑑𝜉 = 〈𝑔̃ , ℎ̃〉.

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.9


Forum of Mathematics, Pi 33

To see that the range of F̃ is 𝐿2, we argue by contradiction. If this was not the case, there would exist
𝑔 ∈ 𝐿2 not zero such that, for any 𝑓 ∈ C∞

0 and any 0 < 𝑅0 < 𝑅1,

〈𝑔 , F̃𝐸 ([𝑅2
0, 𝑅

2
1]) 𝑓 〉 = 0.

Using the spectral theorem representation and the intertwining identity F̃𝐻 = 𝑘2F̃, we deduce that

F̃
[
𝐸 ([𝑅2

0, 𝑅
2
1]) 𝑓

]
(𝜉) =

(
1[−𝑅1 ,−𝑅0 ] (𝜉) + 1[𝑅0 ,𝑅1 ] (𝜉)

)
𝑓̃ (𝜉).

Therefore, for any 𝑓 ∈ C∞
0 ,

0 = 〈𝑔 , F̃𝐸 ([𝑅2
0, 𝑅

2
1]) 𝑓 〉 =

∫ 𝑅1

𝑅0

∫ [
𝜓(𝑥, 𝜉)𝑔(𝜉) + 𝜓(𝑥,−𝜉)𝑔(−𝜉)

]
𝑓 (𝑥) 𝑑𝑥 𝑑𝜉.

This implies that ∫ 𝑅1

𝑅0

[
𝜓(𝑥, 𝜉)𝑔(𝜉) + 𝜓(𝑥,−𝜉)𝑔(−𝜉)

]
𝑑𝜉 = 0.

Since 𝑅0, 𝑅1 are arbitrary, we deduce 𝜓(𝑥, 𝜉)𝑔(𝜉) + 𝜓(𝑥,−𝜉)𝑔(−𝜉) = 0, a.e. 𝜉. Since 𝑥 ↦→ 𝜓(𝑥, 𝜉) and
𝑥 ↦→ 𝜓(𝑥,−𝜉) are independent functions (nonvanishing Wronskian), this implies 𝑔 = 0.

(𝑖𝑖) is a consequence of equation (3.20) and the Riemann-Lebesgue lemma.
(𝑖𝑖𝑖) is a consequence of Theorem 3.10 below.
(𝑖𝑣) Focusing on 𝑥 > 0 (through a smooth cutoff function 𝜒+) and 𝜉 > 0, the distorted Fourier

transform can be written as a pseudodifferential operator

F̃ [𝜒+ 𝑓 ] (𝜉) =
∫

𝑎(𝑥, 𝜉)𝑒−𝑖𝑥 𝜉 𝑓 (𝑥) 𝑑𝑥

with symbol

𝑎(𝑥, 𝜉) = 1
√

2𝜋
𝑇 (𝜉)𝑚+(𝑥, 𝜉).

Taking a derivative in 𝜉,

𝜕𝜉 F̃ [𝜒+ 𝑓 ] (𝜉) =
∫

𝜕𝜉 𝑎(𝑥, 𝜉)𝑒−𝑖𝑥 𝜉 𝑓 (𝑥) 𝑑𝑥 +
∫

𝑎(𝑥, 𝜉)𝑒−𝑖𝑥 𝜉 (−𝑖𝑥) 𝑓 (𝑥) 𝑑𝑥.

From the bounds in equations (3.4) and (3.14), along with a classical theorem on the boundedness
of pseudo-differential operators, the statement (𝑖𝑣) follows for 𝑠 = 0. If 𝑠 ∈ N, it suffices to multiply
the above by 〈𝜉〉𝑠 and integrate by parts in x in the integrals. We only discussed the case of positive
frequencies, but the case of negative frequencies is identical. It remains to check that no singularity
arises at 𝜉 = 0 when applying 𝜉 > 0, which is ensured by the assumption that 𝑓̃ is continuous. �

Lemma 3.7. If the potential V is even, then the distorted Fourier transform preserves evenness and
oddness.

Proof. Observe that when V is even, we have the relation 𝑓+(𝑥, 𝜉) = 𝑓−(−𝑥, 𝜉) between the generalised
eigenfunctions in equation (3.1), by uniqueness of solutions for the ODE. From this and the definition
in equation (3.19), we see that 𝜓(𝑥, 𝜉) = 𝜓(−𝑥,−𝜉). The preservation of parity for the distorted Fourier
transform then follows directly from the definition in equation (3.21). �
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As appears in Proposition 3.6, one of the main differences between the mapping properties of F̂ and
F̃ has to do with zero frequency. Since the zero frequency furthermore plays a key role in the nonlinear
analysis developed in the present paper, we investigate this question a bit more.

• If V is generic, then 𝜓(𝑥, 0) = 0 and 𝑓̃ (0) = 0 if 𝑓 ∈ 𝐿1. Furthermore, assuming better integrability
properties at ∞,

if 𝜉 > 0, 𝑓̃ (𝜉) = − 𝛼𝜉
√

2𝜋

∫
𝑓 (𝑥) 𝑓+(𝑥, 0) 𝑑𝑥 +𝑂 (𝜉2)

if 𝜉 < 0, 𝑓̃ (𝜉) = 𝛼𝜉
√

2𝜋

∫
𝑓 (𝑥) 𝑓−(𝑥, 0) 𝑑𝑥 +𝑂 (𝜉2),

(3.22)

where 𝛼 was defined in equation (3.15). Thus, 𝑓̃ is typically continuous but not continuously
differentiable at zero.

• If V is exceptional, then

√
2𝜋 𝜓(𝑥, 0+) = 2𝑎

1 + 𝑎2 𝑓+(𝑥, 0), and
√

2𝜋 𝜓(𝑥, 0−) = 1
𝑎
𝜓(𝑥, 0+),

where a was defined in Proposition 3.4. Therefore, if 𝑓 ∈ 𝐿1,

𝑓̃ (0+) = 2𝑎
1 + 𝑎2

1
√

2𝜋

∫
𝑓 (𝑥) 𝑓+(𝑥, 0) 𝑑𝑥 and 𝑓̃ (0−) = 1

𝑎
𝑓̃ (0+). (3.23)

As a consequence, 𝑓̃ is continuous if 𝑎 = 1 but might not be otherwise.

3.2.2. Fourier multipliers
Given m a function on the real line, the flat and distorted Fourier multipliers are defined by

𝑚(𝐷) = F̂−1
𝑚(𝜉)F̂

𝑚(𝐷) = F̃−1
𝑚(𝜉)F̃.

Denoting 𝐻0 and H for the flat and perturbed Schrödinger operators

𝐻0 = −𝜕2
𝑥 , 𝐻 = −𝜕2

𝑥 +𝑉,

these operators are diagonalised by F̂ and F̃, giving the functional calculus

𝑓 (𝐻0) = F̂−1
𝑓 (𝜉2)F̂

𝑓 (𝐻) = F̃−1
𝑓 (𝜉2)F̃.

In particular,

𝑒𝑖𝑡
√

1+𝐻0 = 𝑒𝑖𝑡 〈𝐷〉 and 𝑒𝑖𝑡
√

1+𝐻 = 𝑒𝑖𝑡 〈𝐷̃〉 .

Lemma 3.8. Assume that f is real-valued and that m is even and real-valued. Then𝑚(𝐷) 𝑓 is real-valued.
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Proof. This follows from the simple observation that f is real-valued if and only if⎧⎪⎪⎨⎪⎪⎩
𝑇 (𝜉) 𝑓̃ (𝜉) = −𝑇 (−𝜉)𝑅+(𝜉) 𝑓̃ (𝜉) + 𝑓̃ (−𝜉) for 𝜉 > 0

𝑇 (−𝜉) 𝑓̃ (𝜉) = −𝑇 (𝜉)𝑅−(−𝜉) 𝑓̃ (𝜉) + 𝑓̃ (−𝜉) for 𝜉 < 0.

�

3.2.3. The wave operator
The wave operator W is given by

W = s-lim𝑡→∞ 𝑒𝑖𝑡𝐻 𝑒−𝑖𝑡𝐻0 .

Proposition 3.9. The wave operator is unitary on 𝐿2 and given by

W = F̃−1F̂.

As a consequence,

W−1 = W∗ = F̂−1F̃, (3.24)

and the wave operator intertwines H and 𝐻0:

𝑓 (𝐻) = W 𝑓 (𝐻0)W∗.

Proof. In order to prove the desired formula for the wave operator, it suffices to check that, for any
𝑓 ∈ 𝐿2, ���𝑒𝑖𝑡𝐻 𝑒−𝑖𝑡𝐻0 𝑓 − F̃−1F̂ 𝑓

���
2
→ 0.

By the functional calculus, this is equivalent to���F̂−1
𝑒𝑖𝑡 𝜉

2
𝑓 − F̃−1

𝑒𝑖𝑡 𝜉
2
𝑓
���

2
→ 0.

By unitarity, it suffices to check the above for a dense subset of f, and thus we might assume 𝑓 ∈ C∞
0 . By

symmetry between positive and negative frequencies, we can furthermore assume that Supp 𝑓 ⊂ (0,∞).
Therefore, matters reduce to proving that����∫ ∞

0
𝑒𝑖 (𝑥 𝜉+𝑡 𝜉

2) (1 − 𝑇 (𝜉)𝑚+(𝑥, 𝜉)) 𝑓 (𝜉) 𝑑𝜉
����
𝐿2
𝑥

→ 0.

To see that the above is true, we split the function whose 𝐿2 norm we want to estimate into∫ ∞

0
𝑒𝑖 (𝑥 𝜉+𝑡 𝜉

2)1+(𝑥) (1 − 𝑇 (𝜉)𝑚+(𝑥, 𝜉)) 𝑓 (𝜉) 𝑑𝜉 −
∫ ∞

0
𝑒𝑖 (−𝑥 𝜉+𝑡 𝜉

2)1−(𝑥)𝑅−(𝜉)𝑚−(𝑥, 𝜉) 𝑓 (𝜉) 𝑑𝜉

+
∫ ∞

0
𝑒𝑖 (𝑥 𝜉+𝑡 𝜉

2)1−(𝑥) (1 − 𝑚−(𝑥, 𝜉)) 𝑓 (𝜉) 𝑑𝜉

= 𝐼 + 𝐼 𝐼 + 𝐼 𝐼 𝐼 .

The terms I and 𝐼 𝐼 have nonstationary phases, from which it follows that they converge to zero as 𝑡 → ∞.
As for 𝐼 𝐼 𝐼, it goes to zero pointwise by the stationary phase lemma and is uniformly (in t) bounded by
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a decaying function of x, as follows from the estimates on 𝑚−; therefore, it goes to zero in 𝐿2 by the
dominated convergence theorem. �

Finally, the following theorem gives the boundedness of the wave operators on Sobolev spaces.

Theorem 3.10 (Weder [75]). W and W∗ extend to bounded operators on 𝑊 𝑘, 𝑝 (R) for any k and
1 < 𝑝 < ∞. Furthermore, in the exceptional case, if 𝑓+(−∞, 0) = 1, this remains true if 𝑝 = 1 or ∞.

3.2.4. What if discrete spectrum is present?
The above discussion relied on the assumption that

𝐿2
𝑎𝑐 = 𝑃𝑎𝑐𝐿

2 = 𝐿2,

where we denoted 𝑃𝑎𝑐 the projector on the absolutely continuous spectrum of H. Since we are assuming
𝑉 ∈ S, we can exclude singularly continuous spectrum as well as embedded discrete spectrum, but there
might be a finite number of negative eigenvalues 𝜆𝑁 < · · · < 𝜆1 < 0 with corresponding eigenfunctions
𝜙1, . . . , 𝜙𝑁 ; see [10]. Then all the statements made above require small adaptations. Indeed, F̃ is zero
on 𝜙 𝑗 for all j and unitary from 𝐿2

𝑎𝑐 to 𝐿2. Thus,

F̃F̃−1
= Id𝐿2 and F̃−1F̃ = 𝑃𝑎𝑐 .

3.3. Decomposition of 𝝍(𝒙, 𝝃)

Let 𝜌 be an even, smooth, nonnegative function equal to 0 outside of 𝐵(0, 2) and such that
∫
𝜌 = 1.

Define 𝜒± by

𝜒+(𝑥) = 𝐻 ∗ 𝜌 =
∫ 𝑥

−∞
𝜌(𝑦) 𝑑𝑦, and 𝜒+(𝑥) + 𝜒−(𝑥) = 1, (3.25)

where H is the Heaviside function, 𝐻 = 1+. Notice that

𝜒+(𝑥) = 𝜒−(−𝑥).

With 𝜒± as above, and using the definition of 𝜓 in equation (3.19) and 𝑓± and 𝑚± in equations
(3.1)–(3.2), as well as the identity in equation (3.7), we can write

for 𝜉 > 0
√

2𝜋𝜓(𝑥, 𝜉) = 𝜒+(𝑥)𝑇 (𝜉)𝑚+(𝑥, 𝜉)𝑒𝑖𝑥 𝜉

+ 𝜒−(𝑥)
[
𝑚−(𝑥,−𝜉)𝑒𝑖 𝜉 𝑥 + 𝑅−(𝜉)𝑚−(𝑥, 𝜉)𝑒−𝑖 𝜉 𝑥 ] , (3.26)

and

for 𝜉 < 0
√

2𝜋𝜓(𝑥, 𝜉) = 𝜒−(𝑥)𝑇 (−𝜉)𝑚−(𝑥,−𝜉)𝑒𝑖𝑥 𝜉

+ 𝜒+(𝑥)
[
𝑚+(𝑥, 𝜉)𝑒𝑖 𝜉 𝑥 + 𝑅+(−𝜉)𝑚+(𝑥,−𝜉)𝑒−𝑖 𝜉 𝑥 ] . (3.27)

We then decompose
√

2𝜋𝜓(𝑥, 𝜉) = 𝜓𝑆 (𝑥, 𝜉) + 𝜓𝑅 (𝑥, 𝜉), (3.28)

where, on the one hand, the singular part (nondecaying in x) is

for 𝜉 > 0 𝜓𝑆 (𝑥, 𝜉) := 𝜒+(𝑥)𝑇 (𝜉)𝑒𝑖 𝜉 𝑥 + 𝜒−(𝑥) (𝑒𝑖 𝜉 𝑥 + 𝑅−(𝜉)𝑒−𝑖 𝜉 𝑥),
for 𝜉 < 0 𝜓𝑆 (𝑥, 𝜉) := 𝜒−(𝑥)𝑇 (−𝜉)𝑒𝑖 𝜉 𝑥 + 𝜒+(𝑥) (𝑒𝑖 𝜉 𝑥 + 𝑅+(−𝜉)𝑒−𝑖 𝜉 𝑥),

(3.29)
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and the regular part is

for 𝜉 > 0 𝜓𝑅 (𝑥, 𝜉) := 𝜒+(𝑥)𝑇 (𝜉) (𝑚+(𝑥, 𝜉) − 1)𝑒𝑖 𝜉 𝑥

+ 𝜒−(𝑥)
[
(𝑚−(𝑥,−𝜉) − 1)𝑒𝑖 𝜉 𝑥 + 𝑅−(𝜉) (𝑚−(𝑥, 𝜉) − 1)𝑒−𝑖𝑥 𝜉 ] ,

for 𝜉 < 0 𝜓𝑅 (𝑥, 𝜉) := 𝜒−(𝑥)𝑇 (−𝜉) (𝑚−(𝑥,−𝜉) − 1)𝑒𝑖 𝜉 𝑥

+ 𝜒+(𝑥)
[
(𝑚+(𝑥, 𝜉) − 1)𝑒𝑖 𝜉 𝑥 + 𝑅+(−𝜉) (𝑚+(𝑥,−𝜉) − 1)𝑒−𝑖𝑥 𝜉 ] .

(3.30)

3.4. Linear estimates

Recall that 〈𝐷〉 =
√
−𝜕2
𝑥 + 1 and 〈𝐷〉 =

√
−𝜕2
𝑥 +𝑉 + 1 = F̃−1〈𝜉〉F̃.

Proposition 3.11 (Dispersive estimates). Recall the definition in equation (2.30) with equation (2.31).
The following statements hold true:

(i) For any 0 ≤ |𝑡 | ≤ 𝑇 , and for 𝐼 = [0,∞) or (−∞, 0],

‖𝑒±𝑖𝑡 〈𝐷〉1𝐼 (𝐷) 𝑓 ‖𝐿∞
𝑥
�

1
〈𝑡〉1/2

��〈𝜉〉3/2 𝑓̂
��
𝐿∞
𝜉

+ 1
〈𝑡〉3/4−𝛼−𝛽𝛾

��〈𝜉〉𝜕𝜉 𝑓̂ ��𝑊𝑇
+ 1

〈𝑡〉7/12 ‖〈𝜉〉4 𝑓̂ ‖𝐿2 .

(3.31)

(ii) If V satisfies the a priori assumptions of Theorem 1.1, then for any 0 ≤ |𝑡 | ≤ 𝑇 ,��𝑒±𝑖𝑡 〈𝐷̃〉 𝑓
��
𝐿∞
𝑥
�

1
〈𝑡〉1/2

��〈𝜉〉3/2 𝑓̃
��
𝐿∞
𝜉

+ 1
〈𝑡〉3/4−𝛼−𝛽𝛾

��〈𝜉〉𝜕𝜉 𝑓̃ ��𝑊𝑇
+ 1

〈𝑡〉7/12 ‖〈𝜉〉4 𝑓̃ ‖𝐿2 . (3.32)

A more precise asymptotic formula with an explicit leading order term can be read off the proof of
Proposition 3.11; in particular, up to a faster-decaying remainder of the same form of those appearing
in equation (3.32), we have

𝑒𝑖𝑡 〈𝐷̃〉 𝑓 ≈ 𝑒𝑖
𝜋
4

√
2𝑡

〈𝜉0〉3/2𝑒𝑖𝑡 〈𝜉0 〉+𝑖𝑥 𝜉0 𝑓̃ (𝜉0) as 𝑡 → ∞,
𝜉0

〈𝜉0〉
= −𝑥

𝑡
. (3.33)

Remark 3.12. Note that, in view of equation (2.31), we have 𝛼 + 𝛽𝛾 < 1/4. Therefore, uniform-in-time
control of the profile in F̃−1〈𝜉〉−3/2𝐿∞ and 𝑊𝑡 , and in 𝐻4 with small time growth gives the sharp |𝑡 |−1/2

decay for linear solutions through equation (3.32).
Furthermore, let a be any of the coefficients defined in equation (4.5). In view of equation (3.31) and

the regularity of 𝑇 (𝜉) and 𝑅(𝜉) in equation (3.14), we have��𝑒±𝑖𝑡 〈𝐷〉F̂−1 (
a(𝜉) 𝑓̃

)��
𝐿∞
𝑥
�

1
〈𝑡〉1/2 ‖〈𝜉〉3/2 𝑓̃ ‖𝐿∞

𝜉
+ 1

〈𝑡〉3/4−𝛼−𝛽𝛾
(
‖〈𝜉〉𝜕𝜉 𝑓̃ ‖𝑊𝑡

+ ‖ 𝑓̃ ‖𝐿2
)

+ 1
〈𝑡〉7/12 ‖〈𝜉〉4 𝑓̃ ‖𝐿2 .

(3.34)

Remark 3.13. Besides the pointwise decay estimates of Proposition 3.11 above, we will also use the
following variant: for 𝑘 ≥ 5,

‖𝑒±𝑖𝑡 〈𝐷〉𝜑𝑘 (𝐷) 𝑓 ‖𝐿∞ �
1
𝑡1/2 23𝑘/2��𝜑𝑘 𝑓̂ ��1/2

𝐿2

(��𝜑𝑘𝜕𝜉 𝑓̂ ��𝐿2 +
��𝜑𝑘 𝑓̂ ��𝐿2

)1/2
, (3.35)

which follows from the standard 𝐿1 → 𝐿∞ decay and the interpolation inequality��𝜑𝑘 (𝐷) 𝑓
��
𝐿1 �

��𝜑𝑘 (𝐷) 𝑓
��1/2
𝐿2

��𝑥 𝜑𝑘 (𝐷) 𝑓
��1/2
𝐿2 .
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Notice that equation (3.35) also implies (see equation (3.24))

‖𝑒±𝑖𝑡 〈𝐷〉W∗𝜑𝑘 (𝐷) 𝑓 ‖𝐿∞ �
1

|𝑡 |1/2 23𝑘/2��𝜑𝑘 𝑓̃ ��1/2
𝐿2

(��𝜑𝑘𝜕𝜉 𝑓̃ ��𝐿2 +
��𝜑𝑘 𝑓̃ ��𝐿2

)1/2
. (3.36)

To prove Proposition 3.11, we use the following stationary phase lemma:
Lemma 3.14. Consider for 𝑋 ∈ R, 𝑡 ≥ 0, 𝑥 ∈ R the integrals

𝐼𝜇,𝜈 (𝑡, 𝑋, 𝑥) =
∫
R𝜇

𝑒𝑖𝑡 (𝜈 〈𝜉 〉−𝜉𝑋 )𝑎(𝑥, 𝜉)𝑔(𝜉) 𝑑𝜉, 𝜇, 𝜈 ∈ {+,−},

and assume that

sup
𝑥∈R, 𝜉 ∈R𝜇

(
|𝑎(𝑥, 𝜉) | + 〈𝜉〉|𝜕𝜉 𝑎(𝑥, 𝜉) |

)
� 1. (3.37)

Then we have the estimate��𝐼𝜇,𝜈 (𝑡, 𝑋, 𝑥)�� � 1
〈𝑡〉1/2 ‖〈𝜉〉3/2𝑔(𝜉)‖𝐿∞ + 1

〈𝑡〉3/4−𝛼−𝛽𝛾 ‖〈𝜉〉𝜕𝜉𝑔‖𝑊𝑇
+ 1

〈𝑡〉7/12 ‖〈𝜉〉4𝑔‖𝐿2 . (3.38)

We postpone the proof of the lemma and give first the proof of Proposition 3.11.

Proof of Proposition 3.11. In order to prove equation (3.31), we write

𝑒±𝑖𝑡 〈𝐷〉1𝐼 (𝐷) 𝑓 = 1
√

2𝜋

∫
𝐼
𝑒𝑖𝑡 (±〈𝜉 〉−𝜉𝑋 ) 𝑓̂ (𝜉) 𝑑𝜉, 𝑋 := −𝑥/𝑡

and use Lemma 3.14 on 𝐼 = R+ or R− and 𝑎 ≡ 1.
To prove equation (3.32), we use the distorted Fourier inversion (see equation (3.6)) to write

𝑒±𝑖𝑡 〈𝐷̃〉 𝑓 =
∫
R+

𝑒±𝑖𝑡 〈𝜉 〉𝜓(𝑥, 𝜉) 𝑓̃ (𝜉) 𝑑𝜉 +
∫
R−

𝑒±𝑖𝑡 〈𝜉 〉𝜓(𝑥, 𝜉) 𝑓̃ (𝜉) 𝑑𝜉.

Let us estimate the first integral, the other one being similar. Using equation (3.26), we can write

√
2𝜋

∫
R+

𝑒±𝑖𝑡 〈𝜉 〉𝜓(𝑥, 𝜉) 𝑓 (𝜉) 𝑑𝜉 = 𝜒+(𝑥)
∫
R+

𝑒𝑖𝑡 (±〈𝜉 〉−𝜉𝑋 )𝑇 (𝜉)𝑚+(𝑥, 𝜉) 𝑓 (𝜉) 𝑑𝜉

+ 𝜒−(𝑥)
∫
R+

𝑒𝑖𝑡 (±〈𝜉 〉−𝜉𝑋 )𝑚−(𝑥,−𝜉) 𝑓 (𝜉) 𝑑𝜉

+ 𝜒−(𝑥)
∫
R+

𝑒𝑖𝑡 (±〈𝜉 〉+𝜉𝑋 )𝑅−(𝜉)𝑚−(𝑥, 𝜉) 𝑓 (𝜉) 𝑑𝜉.

Then the desired estimate follows by using Lemma 3.14 with 𝑎(𝑥, 𝜉) = 𝑇 (𝜉)𝑚+(𝑥, 𝜉), 𝑚−(𝑥,−𝜉) and
𝑅−(𝜉)𝑚−(𝑥, 𝜉), where the assumption in equation (3.37) holds thanks to Lemmas 3.1 and 3.2. �

Proof of Lemma 3.14. It suffices to consider only the case 𝜇 = +, 𝜈 = + and 𝑡 ≥ 1, 𝑋 ≥ 0; all other
cases are similar or easier. We let

𝐼++ =
∑
𝑘∈Z

𝐼𝑘 , 𝐼𝑘 (𝑡, 𝑋) :=
∫
R+

𝑒𝑖𝑡 ( 〈𝜉 〉−𝜉𝑋 )𝑎(𝑥, 𝜉)𝑔(𝜉)𝜑𝑘 (𝜉) 𝑑𝜉. (3.39)

First, notice that since��𝐼𝑘 (𝑡, 𝑥)�� � ∫
R+

|𝑔(𝜉) |𝜑𝑘 (𝜉) 𝑑𝜉 � min
(
2𝑘 ‖𝑔‖𝐿∞ , 2−7𝑘/2‖〈𝜉〉4𝑔‖𝐿2

)
, (3.40)
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we see that |𝐼++| enjoys the desired bound if 2𝑘 � 𝑡1/6, or 2𝑘 � 𝑡−1/2. From now on, we assume

𝐶𝑡−1/2 ≤ 2𝑘 ≤ (1/𝐶)𝑡1/6 (3.41)

for a suitably large absolute constant 𝐶 > 0.
Let us denote

𝜙𝑋 (𝜉) := 〈𝜉〉 − 𝜉𝑋,

𝜙′
𝑋 (𝜉) = 𝜉

〈𝜉〉 − 𝑋, 𝜙′′
𝑋 (𝜉) = 1

〈𝜉〉3 , 𝜉0 := 𝑋/
√

1 − 𝑋2,
(3.42)

and note that the phase 𝜙𝑋 has no stationary points if 𝑋 ≥ 1, and a unique, nondegenerate, stationary
point at 𝜉0 for any 𝑋 ∈ [0, 1). Consider 𝑛 ∈ Z+ such that 𝑡 ∈ [2𝑛−1, 2𝑛], and let 𝑞0 ∈ Z be the smallest
integer such that 2𝑞0 ≥ 2(3/2)𝑘+2−𝑛/2 ≈ 〈𝜉〉3/2𝑡−1/2. Note that 2𝑞0 � min(2𝑘 , 1) if C in equation (3.41)
is large enough.

In what follows, we may assume that |𝜉0 | ≈ 2𝑘 , for otherwise there is no stationary point on the
support of equation (3.39), |𝜙′

𝑋 (𝜉) | � 2𝑘2−3𝑘+ , and the proof of the statement is easier. In other words,
for fixed 𝜉0, we may assume that there is a finite number of indexes k for which 𝐼𝑘 does not vanish.

Using the notation in equation (2.25), we decompose

𝐼𝑘 =
∑

𝑞∈[𝑞0 ,∞)∩Z
𝐼𝑘,𝑞 , 𝐼𝑘,𝑞 (𝑡, 𝑋) :=

∫
R+

𝑒𝑖𝑡 ( 〈𝜉 〉−𝜉𝑋 )𝑎(𝑥, 𝜉) 𝜑 (𝑞0)
𝑞 (𝜉 − 𝜉0) 𝜑𝑘 (𝜉) 𝑔(𝜉) 𝑑𝜉. (3.43)

Bounding the contribution to the sum over k of the term with 𝑞 = 𝑞0 is immediate. Let us then consider
𝑞 > 𝑞0 and note that on the support of the integral in equation (3.43), we have

|𝜙′
𝑋 (𝜉) | ≈ |𝜉 − 𝜉0 | |𝜙′′

𝑋 | ≈ 2𝑞2−3𝑘+ � 2−𝑛/22−(3/2)𝑘+ . (3.44)

Integrating by parts using (𝑖𝑡𝜙′
𝑋 )

−1𝜕𝜉 𝑒
𝑖𝑡 𝜙𝑋 = 𝑒𝑖𝑡 𝜙𝑋 , we obtain

𝐼𝑘,𝑞 =
1
𝑖𝑡

[
𝐽 (1)
𝑘,𝑞 + 𝐽 (2)

𝑘,𝑞 + 𝐽 (3)
𝑘,𝑞 + 𝐽 (4)

𝑘,𝑞

]
,

𝐽 (1)
𝑘,𝑞 (𝑡, 𝑋) =

∫
R+

𝑒𝑖𝑡 ( 〈𝜉 〉−𝜉𝑋 ) 𝜙′′
𝑋

(𝜙′
𝑋 )2 𝑎(𝑥, 𝜉) 𝜑𝑞 (𝜉 − 𝜉0) 𝜑𝑘 (𝜉) 𝑔(𝜉) 𝑑𝜉,

𝐽 (2)
𝑘,𝑞 (𝑡, 𝑋) = −

∫
R+

𝑒𝑖𝑡 ( 〈𝜉 〉−𝜉𝑋 ) 1
𝜙′
𝑋

𝜕𝜉 𝑎(𝑥, 𝜉) 𝜑𝑞 (𝜉 − 𝜉0) 𝜑𝑘 (𝜉) 𝑔(𝜉) 𝑑𝜉,

𝐽 (3)
𝑘,𝑞 (𝑡, 𝑋) = −

∫
R+

𝑒𝑖𝑡 ( 〈𝜉 〉−𝜉𝑋 ) 1
𝜙′
𝑋

𝑎(𝑥, 𝜉) 𝜕𝜉
[
𝜑𝑞 (𝜉 − 𝜉0) 𝜑𝑘 (𝜉)

]
𝑔(𝜉) 𝑑𝜉,

𝐽 (4)
𝑘,𝑞 (𝑡, 𝑋) = −

∫
R+

𝑒𝑖𝑡 ( 〈𝜉 〉−𝜉𝑋 ) 1
𝜙′
𝑋

𝑎(𝑥, 𝜉) 𝜑𝑞 (𝜉 − 𝜉0) 𝜑𝑘 (𝜉) 𝜕𝜉𝑔(𝜉) 𝑑𝜉.

(3.45)

Using equations (3.42) and (3.44) and changing the index of summation 𝑞 ↦→ 𝑝 + (3/2)𝑘+, we have��� ∑
𝑞≥𝑞0 ,𝑘

𝐽 (1)
𝑘,𝑞 (𝑡, 𝑋)

��� � ∑
𝑝≥−𝑛/2,𝑘

∫
R+

〈𝜉〉3

(𝜉 − 𝜉0)2 𝜑∼𝑝
(
(𝜉 − 𝜉0)2−(3/2)𝑘+ ) 𝜑𝑘 (𝜉) |𝑔(𝜉) | 𝑑𝜉

� 𝑡1/2‖〈𝜉〉3/2𝑔‖𝐿∞ .

(3.46)
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For the second term, using |𝜕𝜉 𝑎 | ≤ 1, we can estimate��� ∑
𝑞≥𝑞0 ,𝑘

𝐽 (2)
𝑘,𝑞 (𝑡, 𝑋)

��� � ∑
𝑝≥−𝑛/2,𝑘

∫
R+

〈𝜉〉3

|𝜉 − 𝜉0 |
𝜑∼𝑝

(
(𝜉 − 𝜉0)2−(3/2)𝑘+ ) 𝜑𝑘 (𝜉) |𝑔(𝜉) | 𝑑𝜉

� 𝑡1/2‖𝑔‖𝐿∞ .

(3.47)

The third term in equation (3.45) is similar to the first one:��� ∑
𝑞≥𝑞0 ,𝑘

𝐽 (3)
𝑘,𝑞 (𝑡, 𝑋)

��� � 𝑡1/2‖〈𝜉〉3/2𝑔‖𝐿∞ . (3.48)

The upper bounds in equations (3.46)–(3.48), after being multiplied by 𝑡−1, are bounded by the first
term on the right-hand side of equation (3.38).

For the last integral in equation (3.45), we want to distinguish cases depending on the location of 𝜉
relative to the frequency

√
3. We insert cutoffs 𝜑 (ℓ0)

ℓ (𝜉 −
√

3), for ℓ0 := −𝛾𝑛, and bound

𝑡−1��𝐽 (4)
𝑘,𝑞

�� � 𝑡−1 [
𝐾≤ℓ0 +

∑
ℓ0<ℓ≤0

𝐾ℓ + 𝐾>0
]

𝐾∗(𝑡, 𝑋) =
∫
R+

1
|𝜙′
𝑋 | |𝑎(𝑥, 𝜉) | 𝜑𝑞 (𝜉 − 𝜉0) 𝜑𝑘 (𝜉) 𝜑∗

(
𝜉 −

√
3
)
|𝜕𝜉𝑔(𝜉) | 𝑑𝜉.

(3.49)

The first term can be estimated as follows:

𝑡−1
∑
𝑞>𝑞0

��𝐾≤ℓ0 (𝑡, 𝑋)
�� � 𝑡−1

∑
𝑞>𝑞0

2−𝑞 · 2min(𝑞,−𝛾𝑛)/2 ·
��𝜑≤−𝛾𝑛

(
𝜉 −

√
3
)
𝜕𝜉𝑔

��
𝐿2

� 𝑡−1
∑
𝑞>𝑞0

2−𝑞/22(𝛽𝛾+𝛼)𝑛‖𝜒≤0,
√

3 𝜕𝜉𝑔‖𝑊𝑇

� 𝑡−12−𝑞0/2𝑡𝛽𝛾+𝛼‖𝜒≤0,
√

3 𝜕𝜉𝑔‖𝑊𝑇
,

consistently with equation (3.38), since we must have |𝑘 | ≤ 5 and 2𝑞0 ≈ 𝑡−1/2. The last term in equation
(3.49) can be estimated similarly:

𝑡−1
∑
𝑞>𝑞0

��𝐾>0(𝑡, 𝑋)
�� � 𝑡−1

∑
𝑞>𝑞0

23𝑘+−𝑞 · 2min(𝑞,𝑘)/2 ·
��𝜑𝑘𝜑>0

(
𝜉 −

√
3
)
𝜕𝜉𝑔

��
𝐿2

� 𝑡−3/42(5/4)𝑘+ · 𝑡𝛼‖𝜒>0,
√

3〈𝜉〉𝜕𝜉𝑔‖𝑊𝑇
.

(3.50)

Upon summing over 2𝑘 ≤ 𝑡1/6 the right-hand side of equation (3.50), we obtain a contribution bounded
by the second term on the right-hand side of equation (3.38), since −3/4+(5/4) (1/6)+𝛼 < −3/4+𝛼+𝛽𝛾
with our choice of parameters in equation (2.31) (provided, for example, that 𝛽′, 𝛾′ < 1/24).

Finally, we estimate

𝑡−1��𝐾ℓ (𝑡, 𝑋)
�� � 𝑡−12−𝑞 · 2min(𝑞,ℓ)/2 ·

��𝜑ℓ (𝜉 −
√

3
)
𝜕𝜉𝑔

��
𝐿2

� 𝑡−12−𝑞/2 · 2−𝛽ℓ2𝛼𝑛‖𝜒≤0,
√

3 𝜕𝜉𝑔‖𝑊𝑇
,

and, using again that |𝑘 | ≤ 5 for ℓ ≤ 0, we see that this contributions can be summed over 𝑞 > 𝑞0 with
2𝑞0 � 𝑡−1/2, and ℓ > ℓ0 with 2ℓ0 � 𝑡−𝛾 , and be bounded by the second term on the right-hand side of
equation (3.38). �
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4. The quadratic spectral distribution

In this section, we study the distribution in equation (2.6).

4.1. The structure of the quadratic spectral distribution

Recall that we denote, for a function f,

𝑓+(𝑥) = 𝑓 (𝑥) and 𝑓−(𝑥) = 𝑓 (𝑥).

Proposition 4.1. Under the assumptions on 𝑉 = 𝑉 (𝑥) and 𝑎 = 𝑎(𝑥) in Theorem 1.1, there exists a
tempered distribution 𝜇 𝜄1 𝜄2 ∈ S′(R3) for 𝜄1, 𝜄2 ∈ {+,−} such that, if 𝑓 , 𝑔 ∈ S,

F̃
[
𝑎(𝑥) 𝑓 𝜄1𝑔 𝜄2

]
(𝜉) =

∬
𝑓̃ 𝜄1 (𝜂)𝑔̃ 𝜄2 (𝜎)𝜇 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎.

The distribution 𝜇 𝜄1 𝜄2 can be decomposed into

2𝜋𝜇 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) = 𝜇𝑆𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) + 𝜇𝑅𝜄1 𝜄2 (𝜉, 𝜂, 𝜎), (4.1)

where the following hold:

• The ‘singular’ part of the distribution can be written as

𝜇𝑆𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) = 𝜇𝑆,−𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) + 𝜇𝑆,+𝜄1 𝜄2 (𝜉, 𝜂, 𝜎), (4.2)

with 𝜖 ∈ {+,−},

𝜇𝑆,𝜖𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) := ℓ𝜖∞
∑

𝜆,𝜇,𝜈∈{+,−}
𝑎 𝜖− 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎)
[√𝜋

2
𝛿(𝑝) + 𝜖p.v.

𝜙(𝑝)
𝑖𝑝

]
,

𝑝 := 𝜆𝜉 − 𝜄1𝜇𝜂 − 𝜄2𝜈𝜎,

(4.3)

where 𝜙 is a smooth, even, real-valued, compactly supported function with integral one; the
coefficients are given by

𝑎 𝜖𝜄0 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎) = a𝜖𝜆, 𝜄0 (𝜉)a
𝜖
𝜇, 𝜄1 (𝜂)a

𝜖
𝜈, 𝜄2 (𝜎) with a𝜖𝜇, 𝜄 =

(
a𝜖𝜇

)
𝜄 (4.4)

and {
a−
+ (𝜉) = 1+(𝜉) + 1−(𝜉)𝑇 (−𝜉)

a−
−(𝜉) = 1+(𝜉)𝑅−(𝜉)

{
a+
+(𝜉) = 𝑇 (𝜉)1+(𝜉) + 1−(𝜉)

a+
−(𝜉) = 1−(𝜉)𝑅+(−𝜉).

(4.5)

• The ‘regular’ part of the distribution 𝜇𝑅𝜄1 𝜄2 can be written as a linear combination of the form

𝜇𝑅𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) =
∑

𝜖1 , 𝜖2 , 𝜖3 ∈{+,−}
1𝜖1 (𝜉)1𝜖2 (𝜂)1𝜖3 (𝜎)𝔯𝜖1 𝜖2 𝜖3 (𝜉, 𝜂, 𝜎), (4.6)

where the symbols 𝔯𝜖1 𝜖2 𝜖3 : R3 → C are smooth and satisfy, for any nonnegative integer N and 𝑎, 𝑏, 𝑐,��𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜎𝔯𝜖1 𝜖2 𝜖3 (𝜉, 𝜂, 𝜎)
�� � 〈inf

𝜇,𝜈
|𝜉 − 𝜇𝜂 − 𝜈𝜎 |〉−𝑁 . (4.7)

Proof. We proceed in a few steps.
The Fourier transform of (𝜒±)3. By the choice in equation (3.25) of 𝜒−, 𝜕𝑥 (𝜒−)3 is a C∞

𝑐 function,
which we can write as 𝜕𝑥 (𝜒−)3 = 𝜙𝑜 − 𝜙𝑒, where 𝜙𝑜 and 𝜙𝑒 are, respectively, odd and even and C∞

𝑐 .
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Furthermore, since 𝜙𝑜 is odd, we can write 𝜙𝑜 = 𝜕𝑥𝜓, where 𝜓 ∈ C∞
𝑐 and 𝜓 is even. We have thus

obtained that

(𝜒−)3 = 𝜓 +
∫ +∞

𝑥
𝜙𝑒 (𝑦) 𝑑𝑦 = 𝜓 + 𝜙𝑒 ∗ 1−,

∫
R

𝜙𝑒 (𝑦) 𝑑𝑦 = 1,

where we denoted by 1± the characteristic function of {±𝑥 > 0}. Taking the Fourier transform and using
the classical formulas

�𝑓 ∗ 𝑔 =
√

2𝜋 𝑓̂ · 𝑔̂, 1̂ =
√

2𝜋𝛿0, �sign𝑥 = p.v.
√

2
𝜋

1
𝑖𝜉
, (4.8)

we see that 1̂− =

√
𝜋

2
𝛿 − 1

√
2𝜋

p.v.
1
𝑖𝜉

, and therefore, since 𝜙̂𝑒 (0) = 1
√

2𝜋
,

�(𝜒−)3 − 𝜓 = F̂
(
𝜙𝑒 ∗ 1−

)
=

√
2𝜋1̂−(𝜉)𝜙̂𝑒 (𝜉) =

√
𝜋

2
𝛿(𝜉) − p.v.

𝜙̂𝑒 (𝜉)
𝑖𝜉

.

Since 𝜒+(−𝑥) = 𝜒−(𝑥), this implies a corresponding formula for 𝜒+. To summarise, setting 𝜙 = 𝜙𝑒,

�(𝜒±)3(𝜉) =
√
𝜋

2
𝛿(𝜉) ± p.v.

𝜙(𝜉)
𝑖𝜉

+ 𝜓(𝜉). (4.9)

The regularization step. Consider for simplicity the case 𝜄1 = 𝜄2 = +. If 𝑓 , 𝑔, ℎ ∈ S, denoting w a cutoff
function,

〈$𝑎(𝑥) 𝑓 𝑔(𝜉), ℎ̃(𝜉)〉 = ∬
𝜓(𝑥, 𝜉)𝑎(𝑥)

∫
𝑓̃ (𝜂)𝜓(𝑥, 𝜂) 𝑑𝜂

∫
𝑔̃(𝜎)𝜓(𝑥, 𝜎) 𝑑𝜎 𝑑𝑥 ℎ̃(𝜉) 𝑑𝜉

= lim
𝑅→∞

∬
𝑎(𝑥)𝑤(𝑥/𝑅)𝜓(𝑥, 𝜉)

∫
𝑓̃ (𝜂)𝜓(𝑥, 𝜂) 𝑑𝜂

∫
𝑔̃(𝜎)𝜓(𝑥, 𝜎) 𝑑𝜎 𝑑𝑥 ℎ̃(𝜉) 𝑑𝜉

= lim
𝑅→∞

∭
𝑓̃ (𝜂)𝑔̃(𝜎) ℎ̃(𝜉)

( ∫
𝑎(𝑥)𝑤(𝑥/𝑅)𝜓(𝑥, 𝜉)𝜓(𝑥, 𝜂)𝜓(𝑥, 𝜎) 𝑑𝑥

)
𝑑𝜂 𝑑𝜎 𝑑𝜉

=
∭

𝑓̃ (𝜂)𝑔̃(𝜎) ℎ̃(𝜉)𝜇++(𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎 𝑑𝜉, (4.10)

where 𝜇++ is defined as the limit in the sense of (tempered) distributions

𝜇++(𝜉, 𝜂, 𝜎) = lim
𝑅→∞

∫
𝑎(𝑥)𝑤(𝑥/𝑅)𝜓(𝑥, 𝜉)𝜓(𝑥, 𝜂)𝜓(𝑥, 𝜎) 𝑑𝑥. (4.11)

Note that while the limit in equation (4.11) can be easily seen to exist in the sense of (tempered)
distribution, the limit leading to equation (4.10) needs to be understood in a different topology. In
fact, although 𝜇++ is a tempered distribution, 𝑓̃ is not a Schwartz function, even if f is a Schwartz
function: 𝑓̃ might not be smooth, or may even be discontinuous, at zero; see equations (3.22) and (3.23).
Nevertheless, one can still make sense rigorously of the limit and the pairing in equation (4.10) for
𝑓 , 𝑔, ℎ ∈ S. It actually suffices to consider 𝑓̃ , 𝑔̃, ℎ̃ ∈ 𝐿1 ∩ 𝐿∞, for example.

First, let us see that 𝜇++ can be integrated against 𝑓̃ (𝜂)𝑔̃(𝜎) ℎ̃(𝜉) provided that 𝑓̃ , 𝑔̃ and ℎ̃ are in
𝐿1 ∩ 𝐿2 (which is the case if 𝑓 , 𝑔, ℎ ∈ S). Indeed, we will see that, up to more regular terms, 𝜇++ is
a linear combination of 𝛿(𝑝) and p.v. 1

𝑝 distributions, where p is as in equation (4.3), with piecewise
smooth coefficients in the variables 𝜉, 𝜂 and 𝜎. The coefficients do not matter, so it suffices to look at
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the cases 𝜇++ = 𝛿(𝜉 − 𝜂 − 𝜎) or p.v. 1
𝜉−𝜂−𝜎 (since the signs 𝜆, 𝜇, 𝜈 in the definition of p also are not

relevant). Then in the case of the 𝛿 distribution, we have∭
𝛿(𝜉 − 𝜂 − 𝜎) 𝑓̃ (𝜂)𝑔̃(𝜎) ℎ̃(𝜉)𝑑𝜂 𝑑𝜎 𝑑𝜉 =

∬
𝑓̃ (𝜂)𝑔̃(𝜎) ℎ̃(𝜂 + 𝜎)𝑑𝜂 𝑑𝜎,

which is well defined by the Cauchy-Schwarz inequality if 𝑓̃ , 𝑔̃, ℎ̃ ∈ 𝐿1 ∩ 𝐿2. In the case of the p.v. 1
𝑝

distribution, denoting by H the (standard) Hilbert transform, we have∭
p.v.

1
𝜉 − 𝜂 − 𝜎

𝑓̃ (𝜂)𝑔̃(𝜎) ℎ̃(𝜉)𝑑𝜂 𝑑𝜎 𝑑𝜉 =
∬

𝑓̃ (𝜂)𝑔̃(𝜎) [𝐻ℎ̃] (𝜂 + 𝜎)𝑑𝜂 𝑑𝜎,

which is well defined by the boundedness of the Hilbert transform on 𝐿2, and the Cauchy-Schwarz
inequality.

Second, to justify the limit in equation (4.10), let us split

𝑓̃ = 𝑓̃ (1 − 𝜒(·/𝜖)) + 𝑓̃ 𝜒(·/𝜖) = 𝑓̃1, 𝜖 + 𝑓̃2, 𝜖 ,

where 𝜒 is a smooth cutoff function equal to 1 in a neighbourhood of 0, and similarly for g and h. We
can then write

〈F̃
(
𝑎(𝑥)𝑤(𝑥/𝑅) 𝑓 𝑔

)
(𝜉), ℎ̃(𝜉)〉 = 〈F̃

(
𝑎(𝑥)𝑤(𝑥/𝑅) 𝑓1, 𝜖 𝑔1, 𝜖

)
(𝜉), ℎ̃1, 𝜖 (𝜉)〉 (4.12)

+ 〈F̃
(
𝑎(𝑥)𝑤(𝑥/𝑅) 𝑓2, 𝜖 𝑔1, 𝜖

)
(𝜉), ℎ̃1, 𝜖 (𝜉)〉 + {similar terms}.

(4.13)

Here, the ‘similar terms’ contain at least one factor with an index 2, namely 𝑔2, 𝜖 or ℎ2, 𝜖 . We claim that
the terms in equation (4.13) are 𝑂 (𝜖) remainder terms uniformly in R. If this is the case, then

〈F̃
(
𝑎(𝑥)𝑤(𝑥/𝑅) 𝑓 𝑔

)
(𝜉), ℎ̃(𝜉)〉 = 〈F̃

(
𝑎(𝑥)𝑤(𝑥/𝑅) 𝑓1, 𝜖 𝑔1, 𝜖

)
(𝜉), ℎ̃1, 𝜖 (𝜉)〉 +𝑂 (𝜖).

For the main term on the right-hand side above, the limit as in equation (4.10) is justified, since the
functions involved are Schwartz. Therefore, one can let 𝑅 → ∞ first, then let 𝜖 → 0, and obtain the
desired formula.

To show that the remainder terms in equation (4.13) are 𝑂 (𝜖), we use the properties of the distorted
Fourier transform:���〈F̃(

𝑎(𝑥)𝑤(𝑥/𝑅) 𝑓2, 𝜖 𝑔1, 𝜖
)
(𝜉), ℎ̃1, 𝜖 (𝜉)〉

��� = ���〈𝑎(𝑥)𝑤(𝑥/𝑅) 𝑓2, 𝜖 𝑔1, 𝜖 , ℎ1, 𝜖 〉
���

� ‖ 𝑓2, 𝜖 ‖𝐿∞ ‖𝑔1, 𝜖 ‖𝐿2 ‖ℎ1, 𝜖 ‖𝐿2 � ‖ 𝑓̃2, 𝜖 ‖𝐿1 ‖𝑔1, 𝜖 ‖𝐿2 ‖ℎ1, 𝜖 ‖𝐿2

� 𝜖 ‖ 𝑓̃ ‖𝐿∞ ‖𝑔‖𝐿2 ‖ℎ‖𝐿2 � 𝜖 .

In the following, we simply denote

𝜇 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) =
∫

𝑎(𝑥)𝜓(𝑥, 𝜉)𝜓 𝜄1 (𝑥, 𝜂)𝜓 𝜄2 (𝑥, 𝜎) 𝑑𝑥.

Decomposition of the quadratic spectral distribution. We can write 𝜇 𝜄1 𝜄2 as a sum of terms of the form

1
(2𝜋)3/2

∫
𝑎(𝑥)𝜓𝐴(𝑥, 𝜉)𝜓𝐵𝜄1 (𝑥, 𝜂)𝜓

𝐶
𝜄2 (𝑥, 𝜎) 𝑑𝑥, 𝐴, 𝐵, 𝐶 ∈ {𝑆, 𝑅}, (4.14)

where we are using our main decomposition of 𝜓 in equation (3.28).
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The singular part 𝜇𝑆 . The main singular component comes from part of the contribution to equation
(4.14) with 𝐴, 𝐵, 𝐶 = 𝑆. The decomposition equation (3.29) can be written under the form

𝜓𝑆 (𝑥, 𝜉) = 𝜒+(𝑥)
∑

𝜆∈{+,−}
a+
𝜆 (𝜉)𝑒

𝑖𝜆𝜉 𝑥 + 𝜒−(𝑥)
∑

𝜆∈{+,−}
a−
𝜆 (𝜉)𝑒

𝑖𝜆𝜉 𝑥

=: 𝜒+(𝑥)𝜓𝑆,+(𝑥, 𝜉) + 𝜒−(𝑥)𝜓𝑆,−(𝑥, 𝜉),
(4.15)

where

a−
𝜆 (𝜉) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if 𝜆 = + and 𝜉 > 0,
𝑅−(𝜉) if 𝜆 = − and 𝜉 > 0,
𝑇 (−𝜉) if 𝜆 = + and 𝜉 < 0,
0 if 𝜆 = − and 𝜉 < 0,

(4.16)

and

a+
𝜆 (𝜉) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑇 (𝜉) if 𝜆 = + and 𝜉 > 0,
0 if 𝜆 = − and 𝜉 > 0,
1 if 𝜆 = + and 𝜉 < 0,
𝑅+(−𝜉) if 𝜆 = − and 𝜉 < 0,

(4.17)

or, equivalently,

a−
+ (𝜉) = 1+(𝜉) + 1−(𝜉)𝑇 (−𝜉)

a−
−(𝜉) = 1+(𝜉)𝑅−(𝜉)

a+
+(𝜉) = 𝑇 (𝜉)1+(𝜉) + 1−(𝜉)

a+
−(𝜉) = 1−(𝜉)𝑅+(−𝜉).

(4.18)

Consider the terms in equation (4.14) with 𝐴, 𝐵, 𝐶 = 𝑆 and such that in each decomposition of 𝜓𝑆
there are only contributions containing 𝜒+ (that is, 𝜓𝑆,+) or 𝜒− (that is, 𝜓𝑆,−). We can write this as

1
√

2𝜋

∫
R

𝑎(𝑥)𝜒3
±(𝑥)𝜓𝑆,±(𝑥, 𝜉)𝜓𝑆,±𝜄1 (𝑥, 𝜂)𝜓𝑆,±𝜄2 (𝑥, 𝜎) 𝑑𝑥

=
1

√
2𝜋

∑
𝜆,𝜇,𝜈∈{±}

∫
R

𝑎(𝑥)𝜒3
±(𝑥) 𝑎±

− 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎) 𝑒𝜆𝑖 𝜉 𝑥𝑒 𝜄1𝜇𝑖𝜂𝑥𝑒 𝜄2𝜈𝑖𝜎𝑥 𝑑𝑥,

=
∑

𝜆,𝜇,𝜈∈{±}
F̂

(
𝑎(𝑥) (𝜒±)3) (𝜆𝜉 − 𝜄1𝜇𝜂 − 𝜄2𝜈𝜎) 𝑎±

− 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎).

(4.19)

We then write 𝑎(𝑥) (𝜒±)3 = ℓ±∞(𝜒±)3 + (𝑎(𝑥) − ℓ±∞)(𝜒±)3, where this last function is Schwartz. Using
the formula in equation (4.9) for �(𝜒±)3, we see that the first terms in the right-hand side of equation
(4.9), namely

√
𝜋

2 𝛿 ± p.v. 𝜙𝑖 𝜉 , make up the singular part of the distribution 𝜇𝑆,± in equation (4.3). The
contribution corresponding to the last term, 𝜓(𝜉), together with the one from F̂

(
𝑎(𝑥) − ℓ±∞

)
, can be

absorbed into the regular part of the distribution 𝜇𝑅; see equation (4.27).
The regular part 𝜇𝑅. The regular part 𝜇𝑅 contains all other contributions. These are of two main types:
terms of the form in equation (4.14) when one of the indexes 𝐴, 𝐵, 𝐶 is R, or contributions where both
𝜒+ and 𝜒− appear; see equation (4.15). More precisely, we can write

𝜇𝑅𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) = 𝜇𝑅1
𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) + 𝜇𝑅2

𝜄1 𝜄2 (𝜉, 𝜂, 𝜎), (4.20)
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where, if we let 𝑋𝑅 = {(𝐴1, 𝐴2, 𝐴3) : ∃ 𝑗 = 1, 2, 3 s.t. 𝐴 𝑗 = 𝑅},

𝜇𝑅1
𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) :=

∑
(𝐴,𝐵,𝐶) ∈𝑋𝑅

∫
𝑎(𝑥) 𝜓𝐴(𝑥, 𝜉)𝜓𝐵𝜄1 (𝑥, 𝜂)𝜓

𝐶
𝜄2 (𝑥, 𝜎) 𝑑𝑥 (4.21)

and

𝜇𝑅2
𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) :=

∑
𝐴,𝐵,𝐶=𝑆

∫
𝑎(𝑥) 𝜓𝐴(𝑥, 𝜉)𝜓𝐵𝜄1 (𝑥, 𝜂)𝜓

𝐶
𝜄2 (𝑥, 𝜎) 𝑑𝑥 − 𝜇𝑆𝜄1 𝜄2 (𝜉, 𝜂, 𝜎). (4.22)

In the remainder of the proof, we verify the properties in equations (4.6)–(4.7) for equations (4.21)–
(4.22).

To understand equation (4.21), we start by looking at the case 𝐴 = 𝑅 and 𝐵,𝐶 = 𝑆. We restrict our
analysis to 𝜉 > 0 (see equation (3.30)); 𝜉 < 0 can be treated in the same way. According to equation
(3.30), this gives the terms∫

𝑎(𝑥)𝜒+(𝑥)𝑇 (𝜉) (𝑚+(𝑥, 𝜉) − 1)𝑒𝑖 𝜉 𝑥𝜓𝑆 (𝑥, 𝜂)𝜓𝑆 (𝑥, 𝜎) 𝑑𝑥

+
∫

𝑎(𝑥)𝜒−(𝑥)
[
(𝑚−(𝑥,−𝜉) − 1)𝑒𝑖 𝜉 𝑥 + 𝑅−(𝜉) (𝑚−(𝑥, 𝜉) − 1)𝑒−𝑖𝑥 𝜉

]
𝜓𝑆 (𝑥, 𝜂)𝜓𝑆 (𝑥, 𝜎) 𝑑𝑥.

(4.23)

Let us look at the first term above and only at the contributions to 𝜓𝑆 coming from 𝜓𝑆,+ (see equation
(4.15)): that is,

𝑅𝜇𝜈 (𝜉, 𝜂, 𝜎) := 𝑇 (𝜉)a+
𝜇 (𝜂)a+

𝜈 (𝜎)
∫

𝑎(𝑥)𝜒3
+(𝑥) (𝑚+(𝑥, 𝜉) − 1) 𝑒−𝑖 𝜉 𝑥𝑒𝑖𝜇𝜂𝑥𝑒𝑖𝜈𝜎𝑥 𝑑𝑥. (4.24)

Notice that the coefficients in front of the integral are products of indicator functions and smooth
functions, consistent with equations (4.6)–(4.7). Dropping the irrelevant signs 𝜇, 𝜈, it then suffices to
treat

𝑅(𝜉, 𝜂, 𝜎) :=
∫

𝑎(𝑥)𝜒3
+(𝑥) (𝑚+(𝑥, 𝜉) − 1) 𝑒−𝑖𝑥 𝜉 𝑒𝑖𝑥 (𝜂+𝜎) 𝑑𝑥. (4.25)

We use the fast decay and smoothness of 𝑚+ − 1 from Lemma 3.1 to integrate by parts. More precisely,
for any M, we write��𝑅(𝜉, 𝜂, 𝜎)

�� = ��� 1
[𝑖(𝜉 − 𝜂 − 𝜎)]𝑀

∫
𝑒−𝑖𝑥 𝜉 𝑒𝑖𝑥 (𝜂+𝜎)𝜕𝑀𝑥

[
𝑎(𝑥)𝜒3

+(𝑥) (𝑚+(𝑥, 𝜉) − 1)
]
𝑑𝑥

���
�

1
|𝜉 − 𝜂 − 𝜎 |𝑀

∑
0≤𝛼≤𝑀

∫
𝑥≥−1

��𝜕𝛼𝑥 (𝑚+(𝑥, 𝜉) − 1)
�� 𝑑𝑥 � 1

|𝜉 − 𝜂 − 𝜎 |𝑀
,

having used equation (3.4) for the last inequality.
We have therefore bounded the expression in equation (4.24) by the right-hand side of equation (4.7)

for 𝑎 = 𝑏 = 𝑐 = 0.
To estimate the derivatives, notice that applying multiple 𝜂- and 𝜎-derivatives is harmless since these

result in additional powers of x, but 𝑚+ − 1 decays as fast as desired. Similarly, again from equation
(3.4), we see that 𝜕𝜉 derivatives can also be handled easily since 𝜕𝛼𝜉 𝑚 decays fast as well. Notice that
the second line in equation (4.23) can be treated exactly like the first one, using the properties of 𝑚−
from equation (3.4). All the other terms in equation (4.21) can be treated the same way.

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.9


46 Pierre Germain and Fabio Pusateri

Let us look at the remaining piece in equation (4.22). We can write, according to the notation in
equation (4.15) and the definition in equation (4.19),

𝜇𝑅2
𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) =

∑∫
𝑎(𝑥) 𝜒𝜖1 (𝑥)𝜒𝜖2 (𝑥)𝜒𝜖3 (𝑥)𝜓𝑆,𝜖1 (𝑥, 𝜉)𝜓𝑆,𝜖2 (𝑥, 𝜂)𝜓𝑆,𝜖3 (𝑥, 𝜎) 𝑑𝑥, (4.26)

where the sum is over (𝜖1, 𝜖2, 𝜖3) ≠ (+, +, +), (−,−,−). In particular, this means that 𝑎 𝜒𝜖1 𝜒𝜖2 𝜒𝜖3 is a
smooth compactly supported function, which we denote by 𝜒 (omitting the dependence on the signs,
which is not relevant here), and equation (4.26) is a linear combination of terms of the form∫

𝜒(𝑥)a𝜖1𝜆 (𝜉)𝑒𝑖𝜆𝜉 𝑥a𝜖2𝜇 (𝜂)𝑒𝑖𝜇𝜂𝑥a𝜖3𝜈 (𝜎)𝑒𝑖𝜈𝜎𝑥 𝑑𝑥 = 𝜒̂(𝜆𝜉 − 𝜇𝜂 − 𝜈𝜎)a𝜖1𝜆 (𝜉)a𝜖2𝜇 (𝜂)a𝜖3𝜈 (𝜎). (4.27)

The desired conclusion in equations (4.6)–(4.7) follows from the properties of the coefficients a𝜆𝜖 and
the fact that 𝜒̂ is Schwartz. �

4.2. Mapping properties for the regular part of the quadratic spectral distribution

The product operation ( 𝑓 , 𝑔) ↦→ 𝑓 𝑔 obviously satisfies Hölder’s inequality; but it is natural to ask about
the mapping properties of the bilinear operators associated to the distributions 𝜇𝑆 and 𝜇𝑅

( 𝑓 , 𝑔) ↦→ F̃−1
∫

𝜇𝑆,𝑅 (𝜉, 𝜂, 𝜎) 𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑑𝜂 𝑑𝜎.

The singular part 𝜇𝑆 can be thought of as the leading order term; and indeed, it does satisfy Hölder’s
inequality, and this is optimal. The regular part is lower-order in that it gains integrability ‘at ∞’, but it
does not gain regularity. Thus, it can essentially be thought of as an operator of the type ( 𝑓 , 𝑔) ↦→ 𝐹 𝑓 𝑔,
where F is bounded and rapidly decaying. The following lemma gives a rigorous statement along these
lines.

Lemma 4.2 (Bilinear estimate for 𝜇𝑅). Under the same assumptions and with the same notations as in
Proposition 4.1, consider the measure 𝜇𝑅 = 𝜇𝑅𝜄1 𝜄2 and the corresponding bilinear operator

𝑀𝑅 [𝑎, 𝑏] := F̃−1
∬

𝜇𝑅 (𝜉, 𝜂, 𝜎)𝑎̃(𝜂) 𝑏̃(𝜎)𝑑𝜂 𝑑𝜎. (4.28)

Then for all

𝑝1, 𝑝2 ∈ [2,∞), 1
𝑝1

+ 1
𝑝2

≤ 1
2

it holds that ��𝑀𝑅 [𝑎, 𝑏]
��
𝐿2 � ‖𝑎‖𝐿𝑝1 ‖𝑏‖𝐿𝑝2 . (4.29)

Moreover, for 𝑝1, 𝑝2 as above and 𝑝3, 𝑝4 another pair satisfying the same assumptions, we have, for
any integer 𝑙 ≥ 0, ��〈𝜕𝑥〉𝑙𝑀𝑅 [𝑎, 𝑏]

��
𝐿2 � ‖〈𝜕𝑥〉𝑙𝑎‖𝐿𝑝1 ‖𝑏‖𝐿𝑝2 + ‖𝑎‖𝐿𝑝3 ‖〈𝜕𝑥〉𝑙𝑏‖𝐿𝑝4 . (4.30)

Proof of Lemma 4.2. The starting point is the splitting of 𝜇𝑅 in equations (4.20)–(4.22). We will omit
the irrelevant signs 𝜄1𝜄2 in what follows and just denote 𝜇𝑅1,2 = 𝜇𝑅1,2

𝜄1 𝜄2 . Also notice that in the definition
of 𝑀𝑅, we can replace all the distorted Fourier transforms by flat Fourier transforms, in view of the
boundedness of the (adjoint) wave operator W∗ := F̂−1F̃ on 𝐿 𝑝 , 𝑝 ∈ [2,∞); see Proposition 3.9 and
Theorem 3.10.
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Proof of equation (4.29). From equation (4.21), we see that 𝜇𝑅1 is a linear combination of terms of the
form ∫

𝜓𝐴(𝑥, 𝜉)𝜓𝐵 (𝑥, 𝜂)𝜓𝐶 (𝑥, 𝜎) 𝑑𝑥, (4.31)

where at least one of the apexes 𝐴, 𝐵 or C is equal to R; recall the definition of 𝜓𝑆 and 𝜓𝑅 in equations
(3.29) and (3.30). It suffices to look at the two cases 𝐴 = 𝑅 or 𝐵 = 𝑅.

Let us first look at the case 𝐴 = 𝑅 and further restrict our attention to 𝜉 > 0 and the contribution from
𝜒+; all the other contributions can be handled the same way. We are then looking at the distribution

𝜇1 (𝜉, 𝜂, 𝜎) :=
∫

𝜒+(𝑥)𝑇 (𝜉) (𝑚+(𝑥, 𝜉) − 1)𝑒𝑖 𝜉 𝑥𝜓𝐵 (𝑥, 𝜂)𝜓𝐶 (𝑥, 𝜎) 𝑑𝑥, 𝐵, 𝐶 = 𝑆 or 𝑅. (4.32)

The bilinear operator associated to it is

𝑀1 [𝑎, 𝑏] = F̂−1
𝜉 ↦→𝑥

∬
𝜇1 (𝜉, 𝜂, 𝜎)𝑎̂(𝜂) 𝑏̂(𝜎)𝑑𝜂 𝑑𝜎

= F̂−1
𝜉 ↦→𝑥

∫
𝜒+(𝑦)𝑇 (𝜉) (𝑚+(𝑦, 𝜉) − 1)𝑒−𝑖 𝜉 𝑦

( ∫
R

𝑎̂(𝜂)𝜓𝐵 (𝑦, 𝜂)𝑑𝜂
) ( ∫

R

𝑏̂(𝜎)𝜓𝐶 (𝑦, 𝜎) 𝑑𝜎
)
𝑑𝑦.

(4.33)

If we define

𝑢𝐴(𝑥) :=
∫
R

𝑢̂(𝜉)𝜓𝐴(𝑥, 𝜉) 𝑑𝜉, 𝐴 = 𝑆, 𝑅, (4.34)

and the symbol 𝑚(𝑦, 𝜉) := 〈𝑦〉𝜒+(𝑦)𝑇 (𝜉) (𝑚+(𝑦, 𝜉) − 1), we see that

‖𝑀1 [𝑎, 𝑏]‖𝐿2 �
��� ∫
R

𝑚(𝑦, 𝜉)𝑒−𝑖 𝜉 𝑦 · 〈𝑦〉−1 · 𝑎𝐵 (𝑦) · 𝑏𝐶 (𝑦) 𝑑𝑦
���
𝐿2
𝜉

.

In view of Lemmas 3.1 and 3.2, we see that 𝑚 = 𝑚(𝑦, 𝜉) satisfies standard pseudo-differential symbol
estimates and deduce that the associated operator is bounded 𝐿2 ↦→ 𝐿2. It follows that

‖𝑀1 [𝑎, 𝑏]‖𝐿2 � ‖〈𝑦〉−1 · 𝑎𝐵 · 𝑏𝐶 ‖𝐿2
𝑦
� ‖𝑎𝐵 ‖𝐿𝑝1 ‖𝑏𝐶 ‖𝐿𝑝2 . (4.35)

The estimate in equation (4.35) gives us the right-hand side of equation (4.29), provided we show
that 𝑢 ↦→ 𝑢𝑆 , 𝑢𝑅 as defined in equation (4.34) are bounded on 𝐿 𝑝 , 𝑝 ∈ [2,∞). Since 𝑢𝑆 + 𝑢𝑅 = 𝑢, it
suffices to show ‖𝑢𝑆 ‖𝐿𝑝 � ‖𝑢‖𝐿𝑝 . From the definition of 𝜓𝑆 in equations (3.29) and (4.15)–(4.18), we
see that this reduces to proving ��� ∫

R

𝑒𝑖𝜆𝑥 𝜉a±
𝜆 (𝜉)𝑢̂(𝜉) 𝑑𝜉

���
𝐿𝑝

� ‖𝑢‖𝐿𝑝 . (4.36)

In view of the boundedness of the Hilbert transform, it is enough to obtain the same bound where the
coefficients a±

𝜆 are replaced just by 𝑇 (±𝜉) or 𝑅±(∓𝜉). The desired bound then follows since 𝑇 (±𝜉) − 1
and 𝑅±(∓𝜉) are 𝐻1 functions (see equation (3.14)) so that their Fourier transforms are in 𝐿1.

Consider next the case 𝐵 = 𝑅. Again, without loss of generality, we may restrict our attention to
𝜂 > 0 and the contribution from 𝜒+: that is, we look at the measure

𝜇′
1(𝜉, 𝜂, 𝜎) :=

∫
𝜒+(𝑥)𝜓𝑆 (𝑥, 𝜉)𝑇 (𝜂) (𝑚+(𝑥, 𝜂) − 1)𝑒𝑖𝜂𝑥𝜓𝐶 (𝑥, 𝜎) 𝑑𝑥, 𝐶 = 𝑆 or 𝑅. (4.37)
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Letting the associated operator be

𝑀 ′
1 [𝑎, 𝑏] := F̂−1

𝜉 ↦→𝑥

∬
𝜇′

1(𝜉, 𝜂, 𝜎)𝑎̂(𝜂) 𝑏̂(𝜎) 𝑑𝜂 𝑑𝜎

= F̂−1
𝜉 ↦→𝑥

∫
𝜒+(𝑦)𝜓𝑆 (𝑦, 𝜉)

( ∫
R

𝑎̂(𝜂)𝑇 (𝜂) (𝑚+(𝑦, 𝜂) − 1)𝑒𝑖𝜂𝑦 𝑑𝜂
) ( ∫

R

𝑏̂(𝜎)𝜓𝐶 (𝑦, 𝜎) 𝑑𝜎
)
𝑑𝑦,

(4.38)

we see that

‖𝑀 ′
1 [𝑎, 𝑏]‖𝐿2 �

���〈𝑦〉 ∫
R

𝑇 (𝜂) (𝑚+(𝑦, 𝜂) − 1)𝑒𝑖𝜂𝑦 𝑎(𝜂) 𝑑𝜂
���
𝐿𝑝1

‖𝑏𝐶 ‖𝐿𝑝2

having used that 𝜓𝑆 defines a bounded PDO on 𝐿2, as we showed above. The desired conclusion in
equation (4.29) then follows since 〈𝑥〉𝑇 (𝜂) (𝑚+(𝑥, 𝜂) − 1) is the symbol of a bounded PDO on 𝐿𝑝 , for
𝑝 ∈ (2,∞) in view of Lemmas 3.1, 3.2 and standard results on PDOs; see, for example, [3].

We now analyse the 𝜇𝑅,2 component from equation (4.22) by looking at the more explicit expression
for it in equation (4.27). From this, we see that it suffices to look at bilinear operators of the form

𝑀2 [𝑎, 𝑏] := F̂−1
𝜉 ↦→𝑥

∬
R×R

𝜒̂(𝜆𝜉 − 𝜇𝜂 − 𝜈𝜎)a𝜖1𝜆 (𝜉)a𝜖2𝜇 (𝜂)a𝜖3𝜈 (𝜎)𝑎̂(𝜂) 𝑏̂(𝜎) 𝑑𝜂 𝑑𝜎, (4.39)

where 𝜒 is Schwartz. By boundedness of the Fourier multipliers a𝜖𝜆 ,

‖𝑀2 [𝑎, 𝑏]‖𝐿2 �
��𝜒 · F̂−1 (

a𝜖2𝜇 𝑎̂
)
F̂−1 (

a𝜖3𝜈 𝑏̂
)��
𝐿2

�
��F̂−1 (

a𝜖2𝜇 𝑎
)��
𝐿𝑝1

��F̂−1 (
a𝜖3𝜈 𝑏̂

)��
𝐿𝑝2 � ‖𝑎‖𝐿𝑝1 ‖𝑏‖𝐿𝑝2 .

Proof of equation (4.30). We proceed similarly to the proof of equation (4.29) and reduce to estimating
derivatives of the bilinear operators 𝑀1, 𝑀

′
1 and 𝑀2, respectively, defined in equation (4.33), equation

(4.38) and (4.39);
Applying derivatives to 𝑀1 gives

𝜕𝑙𝑥𝑀1 [𝑎, 𝑏] = F̂−1
𝜉 ↦→𝑥

∫
R

𝜒+(𝑦)𝑇 (𝜉) (𝑚+(𝑦, 𝜉) − 1) (𝑖𝜉)𝑙𝑒−𝑖 𝜉 𝑦𝑎𝐴(𝑦) 𝑏𝐵 (𝑦) 𝑑𝑦. (4.40)

Integrating by parts in y and distributing derivatives on 𝑎𝐴, 𝑏𝐵 and 𝑚+ − 1 gives a linear combination
of terms of the form

𝑀𝑙1 ,𝑙2 [𝑎, 𝑏] := F̂−1
𝜉 ↦→𝑥

∫
R

𝑇 (𝜉) 𝜕𝑙1𝑦
(
𝜒+(𝑦) (𝑚+(𝑦, 𝜉) − 1)

)
𝑒−𝑖 𝜉 𝑦 · 𝜕𝑙2𝑦

(
𝑎𝐴(𝑦) 𝑏𝐵 (𝑦)

)
𝑑𝑦 (4.41)

with 𝑙1 + 𝑙2 = 𝑙. From Lemmas 3.1, 3.2, we see that 𝑚𝑙1 (𝑥, 𝜉) := 𝑇 (𝜉) 𝜕𝑙1𝑥
(
𝜒+(𝑥) (𝑚+(𝑥, 𝜉) − 1)

)
gives

rise to a standard PDO bounded on 𝐿2. Therefore, to bound in equation (4.41) by the right-hand side of
equation (4.30), it suffices to use product Sobolev inequalities and ‖𝜕𝑙𝑥𝑢𝑆 ‖𝐿𝑝 � ‖〈𝜕𝑥〉𝑙𝑢‖𝐿𝑝 , 𝑝 ∈ [2,∞),
which follows from the inequality in equation (4.36) with 𝜕𝑙𝑥𝑢 instead of u.

A similar argument can be used for 𝑀 ′
1: from equation (4.38), we see that x-derivatives become

powers of 𝜉, which in turn can be transformed to y-derivatives since 𝜓𝑆 (𝑦, 𝜉) is a linear combination
of exponentials 𝑒±𝑖𝑦 𝜉 by harmless 𝜉-dependent coefficients; integrating by parts in y and using the
boundedness on 𝐿𝑝 of the PDO with symbol 〈𝑥〉𝑚𝑙1 (𝑥, 𝜉) gives the desired bound.

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.9


Forum of Mathematics, Pi 49

The argument for 𝑀2 is straightforward, using that 𝑇 − 1 is a bounded multiplier and 𝜒 is Schwartz:

‖〈𝜕𝑥〉𝑙𝑀2 [𝑎, 𝑏]‖𝐿2 �
���〈𝜕𝑥〉𝑙 [𝜒 · F̂−1 (

𝑎 𝜖2𝜇 𝑎̂
)
F̂−1 (

𝑎 𝜖3𝜈 𝑏̂
) ]���
𝐿2
�

���〈𝜕𝑥〉𝑙 [F̂−1 (
𝑎 𝜖2𝜇 𝑎̂

)
F̂−1 (

𝑎 𝜖3𝜈 𝑏̂
) ]���
𝐿𝑞

with 1/𝑞 = 1/𝑝1+1/𝑝2, and we can use standard Gagliardo-Nirenberg-Sobolev inequalities and equation
(4.36) to obtain equation (4.30). �

5. The main nonlinear decomposition

In this section, we first write Duhamel’s formula in distorted Fourier space and decompose the nonlinear
terms according to the results in Section 4 and their nonlinear resonance properties. In particular, in
Section 5.2, we give our main splitting of the quadratic terms into ‘singular’ and ‘regular’. In Section 5.3,
we prove lower bounds for the oscillating phases that appear in the singular quadratic terms and use this
in Section 5.4 to apply normal form transformations. We then analyse the various resulting cubic terms
in Sections 5.5 and 5.6. Here, there is a substantial algebraic component because we are treating general
transmission and reflection coefficients, and we need to keep track of exact expressions to calculate
asymptotics later; moreover, the coefficients in equation (4.5) may have jump discontinuities that we
need to take care of after the normal form transformations; finally, we also need to study convolutions
of 𝛿 distributions and (cutoff) p.v.-type distributions and prove various symbol type estimates on the
expressions obtained after the normal forms. In the final Section 5.7, we introduce the renormalised
profile f on which we will perform all main estimates moving forward; we then recapitulate all the
formulas and properties obtained so far and prove regularity in 𝜉 for the symbols of the relevant operators.

5.1. Duhamel’s formula

Let 𝑢 = 𝑢(𝑡, 𝑥) be a solution of the quadratic Klein-Gordon equation

𝜕2
𝑡 𝑢 + (−𝜕2

𝑥 +𝑉 + 1)𝑢 = 𝑎(𝑥)𝑢2, (𝑢, 𝑢𝑡 ) (𝑡 = 0) = (𝑢0, 𝑢1), (KG)

with the assumptions of Theorem 1.1. In the distorted Fourier space, equation (KG) is

𝜕2
𝑡 𝑢̃ + (𝜉2 + 1)𝑢̃ = F̃(𝑎(𝑥)𝑢2), (𝑢̃, 𝑢𝑡 ) (𝑡 = 0) = (𝑢0, 𝑢1). (5.1)

To write Duhamel’s formula in the distorted Fourier space, we define (recall 𝐻 = −𝜕2
𝑥 +𝑉)

𝑣(𝑡, 𝑥) :=
(
𝜕𝑡 − 𝑖

√
𝐻 + 1

)
𝑢, 𝑣̃(𝑡, 𝜉) :=

(
𝜕𝑡 − 𝑖〈𝜉〉

)
𝑢̃. (5.2)

Notice that, by Lemma 3.8,
√
𝐻 + 1𝑢 is real-valued since u is; therefore,

𝑢 =
𝑣 − 𝑣

−2𝑖
√
𝐻 + 1

(5.3)

and (
𝜕𝑡 + 𝑖

√
𝐻 + 1

)
𝑣 = 𝑎(𝑥)𝑢2,

(
𝜕𝑡 + 𝑖〈𝜉〉

)
𝑣̃ = F̃(𝑎(𝑥)𝑢2). (5.4)

By defining the profile

𝑔(𝑡, 𝑥) :=
(
𝑒𝑖𝑡

√
𝐻+1𝑣(𝑡, ·)

)
(𝑥), 𝑔̃(𝑡, 𝜉) = 𝑒𝑖𝑡 〈𝜉 〉 𝑣̃(𝑡, 𝜉), (5.5)
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we have

𝜕𝑡 𝑔̃(𝑡, 𝜉) = 𝑒𝑖𝑡 〈𝜉 〉F̃(𝑎(𝑥)𝑢2). (5.6)

Using the definition of the distorted Fourier transform equation (3.21), in view of equations (5.3) and
(5.5), this becomes

𝜕𝑡 𝑔̃(𝑡, 𝜉) =
∑

𝜄1 , 𝜄2 ∈{+,−}
𝜄1𝜄2𝑒

𝑖𝑡 〈𝜉 〉
∬ (∫

𝑎(𝑥)𝜓(𝑥, 𝜉)𝜓 𝜄1 (𝑥, 𝜂)𝜓 𝜄2 (𝑥, 𝜎) 𝑑𝑥
)

× 𝑒− 𝜄1𝑖𝑡 〈𝜂〉

2𝑖〈𝜂〉 𝑔̃ 𝜄1 (𝑡, 𝜂)
𝑒− 𝜄2𝑖𝑡 〈𝜎〉

2𝑖〈𝜎〉 𝑔̃ 𝜄2 (𝑡, 𝜎) 𝑑𝜂 𝑑𝜎 (5.7)

= −
∑

𝜄1 , 𝜄2 {+,−}
𝜄1𝜄2

∬
𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝑔̃ 𝜄1 (𝑡, 𝜂)𝑔̃ 𝜄2 (𝑡, 𝜎) 1

4〈𝜂〉〈𝜎〉 𝜇 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎,

where the quadratic spectral distribution 𝜇 𝜄1 𝜄2 is defined in Proposition 4.1,

Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) := 〈𝜉〉 − 𝜄1〈𝜂〉 − 𝜄2〈𝜎〉, (5.8)

and we have denoted

𝑔̃+ = 𝑔̃, 𝑔̃− = 𝑔̃.

5.2. Decomposition of the quadratic nonlinearity

Starting from equations (5.7)–(5.8) and using the decomposition of the distribution 𝜇 in Proposition
4.1, we can decompose the nonlinearity accordingly. More precisely, we write

𝜕𝑡 𝑔̃ = Q𝑆 + Q𝑅 =
∑

𝜄1 , 𝜄2 ∈{+,−}
Q𝑆𝜄1 𝜄2 + Q𝑅𝜄1 𝜄2 , (5.9)

where Q𝑆𝜄1 𝜄2 and Q𝑅𝜄1 𝜄2 are defined below.
Notation convention. When summing over different combinations of signs, such as in the formula in
equation (5.9), we will often just indicate the indexes or apexes with the understanding that they can be
either + or −. Also, we will have expressions that depend on several signs, such as the ones appearing in
equation (5.11). In such cases, we will only separate the various indexes or apexes with commas when
there is a risk of confusion; see, for example, equation (5.32) versus equation (5.10).
The singular quadratic interaction Q𝑆𝜄1 𝜄2 . We define Q𝑆𝜄1 𝜄2 to be the contribution coming from the
singular part of 𝜇 (see equations (4.1)–(4.2)) with an additional cutoff in frequency that localises the
principal value part to a suitable neighbourhood of the singularity

Q𝑆𝜄1 𝜄2 (𝑡, 𝜉) := −𝜄1𝜄2
∑

𝜆,𝜇,𝜈∈{+,−}
𝜖 ∈{+,−}

∬
𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝑔̃ 𝜄1 (𝑡, 𝜂)𝑔̃ 𝜄2 (𝑡, 𝜎)𝑍 𝜖− 𝜄1 𝜄2

𝜆𝜇𝜈
(𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎,

(5.10)

with

𝑍 𝜖𝜄0 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎) := ℓ𝜖∞

𝑎 𝜖𝜄0 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎)

8𝜋〈𝜂〉〈𝜎〉

[√
𝜋

2
𝛿(𝑝) + 𝜖𝜑∗(𝑝, 𝜂, 𝜎) p.v.

𝜙(𝑝)
𝑖𝑝

]
, (5.11)
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where

𝜑∗(𝑝, 𝜂, 𝜎) := 𝜑≤−𝐷0

(
𝑝𝑅(𝜂, 𝜎)

)
, 𝑝 = −𝜄0𝜆𝜉 − 𝜄1𝜇𝜂 − 𝜄2𝜈𝜎, (5.12)

for 𝐷0 a suitably large absolute constant, and

𝑅(𝜂, 𝜎) = 〈𝜂〉〈𝜎〉
〈𝜂〉 + 〈𝜎〉 . (5.13)

The last expression may be thought of as a regularization of min(〈𝜂〉, 〈𝜎〉), and satisfies

|𝜕𝑎𝜂𝜕𝑏𝜎𝑅(𝜂, 𝜎) | � min(〈𝜂〉, 〈𝜎〉)〈𝜂〉−𝑎〈𝜎〉−𝑏 . (5.14)

The regular quadratic interaction Q𝑅𝜄1 𝜄2 . The term Q𝑅𝜄1 𝜄2 gathers the contributions coming from the
smooth distribution 𝜇𝑅 (see equations (4.1) and (4.6)-s(4.7)) and the smooth part from the p.v. that is
not included in equation (5.11). We can write it as

Q𝑅𝜄1 𝜄2 (𝑡, 𝜉) := −𝜄1𝜄2
∬

𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝔮𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) 𝑔̃ 𝜄1 (𝑡, 𝜂)𝑔̃ 𝜄2 (𝑡, 𝜎) 𝑑𝜂 𝑑𝜎, (5.15)

where Φ 𝜄1 𝜄2 is the phase in equation (5.8) and the symbol is

𝔮𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) = 𝔮+
𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) + 𝔮−

𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) + 1
8𝜋〈𝜂〉〈𝜎〉 𝜇

𝑅
𝜄1 𝜄2 (𝜉, 𝜂, 𝜎),

𝔮𝜖𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) = 𝜖

8𝜋〈𝜂〉〈𝜎〉
∑
𝜆,𝜇,𝜈

𝑎 𝜖− 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎)
(
1 − 𝜑∗(𝑝, 𝜂, 𝜎)

) 𝜙(𝑝)
𝑖𝑝

,
(5.16)

with 𝜇𝑅𝜄1 𝜄2 satisfying the properties in equations (4.6)–(4.7) (also recall that 𝑝 = 𝜆𝜉 − 𝜄1𝜇𝜂− 𝜄2𝜈𝜎). Here
is a remark that will help us simplify the notation:

Remark 5.1 (A more convenient rewriting of Q𝑅𝜄1 𝜄2 ). For 𝜄, 𝜅 = ±1, let

𝑔̃𝜅𝜄 (𝜉) := 𝑔̃ 𝜄 (𝜉)1𝜅 (𝜉), (5.17)

and notice that for all 𝜄, 𝜅, 𝑔̃𝜅𝜄 enjoys the same bootstrap assumptions as 𝑔̃; see equation (7.7). Then
inspecting the definition of equation (5.15) and its symbol in equation (5.16), and recalling the definitions
of the coefficients in equations (4.4)–(4.5) and the property of 𝜇𝑅𝜄1 𝜄2 in equations (4.6)–(4.7), we see that
we can peel off all indicator functions and write

Q𝑅𝜄1 𝜄2 =
∑
𝜅0 ,𝜅1 ,𝜅2

Q𝑅𝜄1 𝜄2
𝜅0𝜅1𝜅2

,

Q𝑅𝜄1 𝜄2
𝜅0𝜅1𝜅2

:= −𝜄1𝜄21𝜅0 (𝜉)
∬

𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝔮 𝜄1 𝜄2
𝜅0𝜅1𝜅2

(𝜉, 𝜂, 𝜎) 𝑔̃𝜅1𝜄1 (𝑡, 𝜂)𝑔̃𝜅2𝜄2 (𝑡, 𝜎) 𝑑𝜂 𝑑𝜎,
(5.18)

where the symbols 𝔮 𝜄1 𝜄2
𝜅0𝜅1𝜅2

are smooth. In what follows, we will often omit the signs 𝜅0, 𝜅1, 𝜅2 in our
notation (for the operators and the symbols), as these play no essential role. We will instead keep the
𝜄1, 𝜄2 signs since they do play a role: the case 𝜄1, 𝜄2 = + is the main resonant one, while the other cases
are relatively easier to treat. Also notice that the indicator function in the output variable 𝜉 will not be
a problem upon differentiation (which will happen when estimating weighted 𝐿2-norms; see equation
(2.35)), as shown in Lemma 5.9.
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5.3. Estimates on the phases

As a preparation for the normal form transformation to come, we need very precise estimates on the
phase. The complication here arises since the quadratic modulus of resonance, although positive for all
interactions, degenerates at ∞ in certain directions.

Lemma 5.2 (Lower bound for the phases). For any 𝜂, 𝜎 ∈ R,

〈𝜂 + 𝜎〉 − 〈𝜂〉 − 〈𝜎〉 ≈
⎧⎪⎪⎨⎪⎪⎩

−min(〈𝜂〉, 〈𝜎〉) if 𝜂𝜎 < 0

− 1
min(〈𝜂〉, 〈𝜎〉) if 𝜂𝜎 > 0 . (5.19)

As a consequence, for any choice of 𝜄1, 𝜄2 ∈ {+,−} and any 𝜂, 𝜎 ∈ R,���� 1
Φ 𝜄1 𝜄2 (𝜂 + 𝜎, 𝜂, 𝜎)

���� � min(〈𝜂 + 𝜎〉, 〈𝜂〉, 〈𝜎〉). (5.20)

Furthermore, if 𝑝 := 𝜉 − 𝜄1𝜂 − 𝜄2𝜎 is such that

|𝑝 | ≤ 2−𝐷0+2

𝑅(𝜂, 𝜎) ,

with 𝐷0 sufficiently large, then ���� 1
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)

���� � min(〈𝜂〉, 〈𝜎〉). (5.21)

Proof. In order to prove equation (5.19), we focus on the case where 𝜂 and 𝜎 have equal signs since the
other case is trivial. The expression under study can be written

〈𝜂 + 𝜎〉 − 〈𝜂〉 − 〈𝜎〉 = −1 + 2𝜂𝜎 − 2〈𝜂〉〈𝜎〉
〈𝜂 + 𝜎〉 + 〈𝜂〉 + 〈𝜎〉 .

If 𝜂 and 𝜎 are 𝑂 (1), the result is obvious, so we focus on the case where 𝜂 + 𝜎 � 1. On the one hand,
the denominator above is ∼ max(〈𝜂〉, 〈𝜎〉). On the other hand, if 𝜂 ≈ 𝜎, the numerator above can be
expanded as

−1 + 2𝜂𝜎 − 2〈𝜂〉〈𝜎〉 = −1 + 2𝜂𝜎
(
− 1

2𝜂2 − 1
2𝜎2 +𝑂

(
1
𝜂4

))
≈ −1.

If 𝜂 � 𝜎, the numerator can be written

−1 + 2𝜂𝜎 − 2〈𝜂〉〈𝜎〉 = −1 + 2𝜂
(
𝜎 − 〈𝜎〉 − 〈𝜎〉

2𝜂2 +𝑂
(
〈𝜎〉
𝜂4

))
≈ − 𝜂

〈𝜎〉 ,

where the above line follows from 𝜎 − 〈𝜎〉 ≈ − 1
〈𝜎〉 and 〈𝜎〉

𝜂2 � 1
〈𝜎〉 . Equation (5.19) follows from the

above relations.
In order to prove equation (5.20), we observe that the case 𝜄1, 𝜄2 = + was just treated, while the case

−− is trivial. There remains the case +−, which easily reduces to ++.
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Finally, in order to prove equation (5.21), only the cases ++ and +− require attention. We focus on
the former, the argument for the latter being an immediate adaptation. It follows from the estimate in
equation (5.19) that only the case 𝜂, 𝜎 > 0 requires attention. Then��Φ++(𝜉, 𝜂, 𝜎)

�� = |〈𝜉〉 − 〈𝜂〉 − 〈𝜉 − 𝜂〉 + (〈𝜉 − 𝜂〉 − 〈𝜎〉) |

≥ |〈𝜉〉 − 〈𝜂〉 − 〈𝜉 − 𝜂〉| − |𝜉 − 𝜂 |2 − |𝜎 |2
〈𝜉 − 𝜂〉 + 〈𝜎〉

≥ 𝐶

𝑅(𝜂, 𝜎) − |𝑝 | · |𝜉 − 𝜂 + 𝜎 |
〈𝜉 − 𝜂〉 + 〈𝜎〉 .

(5.22)

By choosing the absolute constant 𝐷0 large enough, it follows that��Φ++(𝜉, 𝜂, 𝜎)
�� � 1

𝑅(𝜂, 𝜎) ≈ 1
min(〈𝜂〉, 〈𝜎〉) . (5.23)

�

Lemma 5.3 (Derivatives of the phases). Assume that |𝑝 | ≤ 2−𝐷0+2𝑅(𝜂, 𝜎)−1 (note that here p is
regarded as an independent variable), and let 𝑎, 𝑏, 𝑐 be arbitrary nonnegative integers. Then:

(i) For any 𝜂, 𝜎 > 0, ����𝜕𝑎𝜂𝜕𝑏𝜎𝜕𝑐𝑝 1
〈𝑝 + 𝜂 + 𝜎〉 − 〈𝜂〉 − 〈𝜎〉

���� � 𝑅(𝜂, 𝜎)1+𝑐

〈𝜂〉𝑎〈𝜎〉𝑏
. (5.24)

(ii) For any 𝜂, 𝜎 > 0, ����𝜕𝑎𝜂𝜕𝑏𝜎𝜕𝑐𝑝 1
〈𝑝 + 𝜂 + 𝜎〉 + 〈𝜂〉 − 〈𝜎〉

���� � 1
〈𝜂〉𝑎〈𝜎〉𝑏

. (5.25)

(iii) For any 𝜄1, 𝜄2 ∈ {+,−},����𝜕𝑎𝜂𝜕𝑏𝜎𝜕𝑐𝑝 1
Φ 𝜄1 𝜄2 (𝑝 + 𝜂 + 𝜎, 𝜂, 𝜎)

���� � min(〈𝑝 + 𝜂 + 𝜎〉, 〈𝜂〉, 〈𝜎〉)1+𝑐 . (5.26)

Proof. Let us denote 𝜉 = 𝑝 + 𝜂 + 𝜎. The proof of the first assertion relies on the lower bound
|Φ++(𝜉, 𝜂, 𝜎) | � 𝑅(𝜂, 𝜎)−1 and on the bounds on derivatives��𝜕𝑎𝜂Φ++(𝜉, 𝜂, 𝜎)

�� � 〈𝜂〉−𝑎−1��𝜕𝑎𝜎Φ++(𝜉, 𝜂, 𝜎)
�� � 〈𝜎〉−𝑎−1��𝜕𝑝Φ++(𝜉, 𝜂, 𝜎)
�� � 1��𝜕𝑎𝑝𝜕𝑏𝜂𝜕𝑐𝜎Φ++(𝜉, 𝜂, 𝜎)

�� � 〈𝜂 + 𝜎〉−𝑎−𝑏−𝑐−1 if at most one of 𝑎, 𝑏, 𝑐 vanishes, or 𝑎 ≥ 2.

Similarly, the proof of the second assertion relies on the lower bound |Φ−+(𝜉, 𝜂, 𝜎) | � 〈𝜂〉 and on the
bounds on derivatives��𝜕𝑎𝜂Φ−+(𝜉, 𝜂, 𝜎)

�� � 1 if 𝑎 = 1, and 〈𝜂〉−𝑎−1 if 𝑎 ≥ 2��𝜕𝑎𝜎Φ−+(𝜉, 𝜂, 𝜎)
�� � 〈𝜎〉−𝑎−1��𝜕𝑝Φ−+(𝜉, 𝜂, 𝜎)
�� � 1��𝜕𝑎𝑝𝜕𝑏𝜂𝜕𝑐𝜎Φ−+(𝜉, 𝜂, 𝜎)

�� � 〈𝜂 + 𝜎〉−𝑎−𝑏−𝑐−1 if at most one of 𝑎, 𝑏, 𝑐 vanishes, or 𝑎 ≥ 2.
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In order to prove the third assertion, we must distinguish several cases. First, the case (𝜄1, 𝜄2) = (−,−)
is trivial. Second, if (𝜄1, 𝜄2) = (+, +) and 𝜂, 𝜎 have the same sign, then it suffices to use equation (5.24),
while if they have opposite signs, the inequality is trivial. Finally, if (𝜄1, 𝜄2) = (−, +), the only difficult
case is that for which 𝜂𝜎 < 0 and |𝜎 | > |𝜂 |. In that case, Φ−+ enjoys the lower bound

|Φ−+(𝜉, 𝜂, 𝜎) | ∼ min(〈𝜉〉, 〈𝜂〉)−1 ∼ min(〈𝜉〉, 〈𝜂〉, 〈𝜎〉)−1,

while its derivatives can be bounded as follows:��𝜕𝑎𝜂Φ−+(𝜉, 𝜂, 𝜎)
�� � min(〈𝜂〉, 〈𝜂 + 𝜎〉)−𝑎−1��𝜕𝑎𝜎Φ−+(𝜉, 𝜂, 𝜎)
�� � 〈𝜂 + 𝜎〉−𝑎−1��𝜕𝑝Φ−+(𝜉, 𝜂, 𝜎)
�� � 1��𝜕𝑎𝑝𝜕𝑏𝜂𝜕𝑐𝜎Φ−+(𝜉, 𝜂, 𝜎)

�� � 〈𝜂 + 𝜎〉−𝑎−𝑏−𝑐−1 if at most one of 𝑎, 𝑏, 𝑐 vanishes, or 𝑎 ≥ 2.

Combining these estimates gives the desired bound equation (5.26). �

5.4. Performing the normal form transformation

We will now perform a normal form transformation on Q𝑆 . It is not possible to do so globally on Q𝑅,
which is ultimately one of the main difficulties in the nonlinear analysis. The lower bounds in Lemma
5.2 allow us to integrate by parts using the identity

1
𝑖Φ 𝜄1 𝜄2

𝜕𝑠𝑒
𝑖𝑠Φ𝜄1 𝜄2 = 𝑒𝑖𝑠Φ𝜄1 𝜄2 . (5.27)

By symmetry, it will suffice to consider the case when the time derivative hits the second function. This
gives ∑

𝜄1 , 𝜄2

∫ 𝑡

0
Q𝑆𝜄1 𝜄2 (𝑠, 𝜉) 𝑑𝑠 = {boundary terms} + {integrated terms}. (5.28)

The boundary terms are given by the following expression:

{boundary terms} =
∑
𝜄1 , 𝜄2

F̃𝑇𝜄1 𝜄2 (𝑔, 𝑔) (𝑡) − F̃𝑇𝜄1 𝜄2 (𝑔, 𝑔) (0)

F̃
(
𝑇𝜄1 𝜄2 (𝑔, 𝑔)

)
(𝑡, 𝜉) := −𝜄1𝜄2

∑
𝜆,𝜇,𝜈
𝜖

∬
𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝑔̃ 𝜄1 (𝑡, 𝜂)𝑔̃ 𝜄2 (𝑡, 𝜎)

𝑍 𝜖− 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎)

𝑖Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎.
(5.29)

The integrated terms read

{integrated terms} =∑
𝜄1 , 𝜄2
𝜖

2𝜄1𝜄2
∫ 𝑡

0

∑
𝜆,𝜇,𝜈

∬
𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝑔̃ 𝜄1 (𝑠, 𝜂)𝜕𝑠 𝑔̃ 𝜄2 (𝑠, 𝜎)

𝑍 𝜖− 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎)

𝑖Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎 𝑑𝑠.
(5.30)

We now plug in 𝜕𝑠 𝑔̃ =
∑
𝜄1 , 𝜄2 Q

𝑆♯
𝜄1 𝜄2 + Q𝑅♯𝜄1 𝜄2 , where Q𝑅♯,𝑆♯𝜄1 𝜄2 are defined exactly as Q𝑅,𝑆𝜄1 𝜄2 (see equations

(5.10) and (5.15)), with the exception that 𝜑∗ is replaced by 1; similarly for 𝑍♯ 𝜖𝜄0 , 𝜄1 , 𝜄2
𝜆𝜇𝜈

versus 𝑍 𝜖𝜄0 , 𝜄1 , 𝜄2
𝜆𝜇𝜈

, and

𝔮♯ versus 𝔮 below. In particular (see equation (5.16)), 𝔮♯ (𝜉, 𝜂, 𝜎) = (8𝜋〈𝜂〉〈𝜎〉)−1𝜇𝑅𝜄1 𝜄2 (𝜉, 𝜂, 𝜎).
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An important observation is that, since 𝜙 is even and real-valued,

)**+𝑍 𝜖
′

𝜄′0 , 𝜄
′
1 , 𝜄

′
2

𝜆′,𝜇′,𝜈′

(𝜎, 𝜂′, 𝜎′)
,--. 𝜄2 = 𝑍 𝜖

′

𝜄2 𝜄
′
0 , 𝜄2 𝜄

′
1 , 𝜄2 𝜄

′
2

𝜆′,𝜇′,𝜈′

(𝜎, 𝜂′, 𝜎′).

This gives

{integrated terms} =
∫ 𝑡

0

(
𝐵1(𝑠) + 𝐵2(𝑠)

)
𝑑𝑠, (5.31)

where

𝐵1(𝑠) = −2
∑
𝜖 , 𝜖 ′

𝜆,𝜇,𝜈
𝜆′,𝜇′,𝜈′

𝜄1 , 𝜄2 , 𝜄
′
1 , 𝜄

′
2

𝜄1𝜄2𝜄
′
1𝜄

′
2

⨌
𝑒
𝑖𝑠Φ𝜄1 , 𝜄2 𝜄′1 , 𝜄2 𝜄′2

( 𝜉 ,𝜂,𝜂′,𝜎′)
𝑍♯ 𝜖

′

− 𝜄2 , 𝜄2 𝜄′1 , 𝜄2 𝜄
′
2

𝜆′𝜇′𝜈′

(𝜎, 𝜂′, 𝜎′)
𝑍 𝜖− 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎)

𝑖Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)

× 𝑔̃ 𝜄1 (𝑠, 𝜂)𝑔̃ 𝜄2 𝜄′1 (𝑠, 𝜂
′)𝑔̃ 𝜄2 𝜄′2 (𝑠, 𝜎

′) 𝑑𝜂 𝑑𝜂′ 𝑑𝜎 𝑑𝜎′,

(5.32)

and

Φ𝜅1𝜅2𝜅3 (𝜉, 𝜂, 𝜂′, 𝜎′) := 〈𝜉〉 − 𝜅1〈𝜂〉 − 𝜅2〈𝜂′〉 − 𝜅3〈𝜎′〉. (5.33)

Upon setting 𝜅1 := 𝜄1, 𝜅2 := 𝜄2𝜄
′
1, 𝜅3 := 𝜄2𝜄

′
2, this becomes

𝐵1(𝑠) =
∑
𝜅1𝜅2𝜅3

∭
𝑒𝑖𝑠Φ𝜅1𝜅2𝜅3 ( 𝜉 ,𝜂,𝜂′,𝜎′)𝔟1

𝜅1𝜅2𝜅3 (𝜉, 𝜂, 𝜂
′, 𝜎′)𝑔̃𝜅1 (𝑠, 𝜂)𝑔̃𝜅2 (𝑠, 𝜂′)𝑔̃𝜅3 (𝑠, 𝜎′) 𝑑𝜂 𝑑𝜂′ 𝑑𝜎′,

(5.34)

with the natural definition of the symbol 𝔟1
𝜅1𝜅2𝜅3 obtained by carrying out the 𝑑𝜎 integration in equation

(5.32).
Similarly,

𝐵2(𝑠) = −2
∑
𝜖
𝜆𝜇𝜈

𝜄1 , 𝜄2 , 𝜄
′
1 , 𝜄

′
2

𝜄1𝜄2𝜄
′
1𝜄

′
2

⨌
𝑒
𝑖𝑠Φ𝜄1 , 𝜄2 𝜄′1 , 𝜄2 𝜄′2

( 𝜉 ,𝜂,𝜂′,𝜎′)
𝔮♯
𝜄′1 𝜄

′
2
(𝜎, 𝜂′, 𝜎′)

𝑍 𝜖−, 𝜄1 , 𝜄2
𝜆,𝜇,𝜈

(𝜉, 𝜂, 𝜎)

𝑖Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)

× 𝑔̃ 𝜄1 (𝑠, 𝜂)𝑔̃ 𝜄2 𝜄′1 (𝑠, 𝜂
′)𝑔̃ 𝜄2 𝜄′2 (𝑠, 𝜎

′) 𝑑𝜂 𝑑𝜂′ 𝑑𝜎 𝑑𝜎′

=
∑
𝜅1𝜅2𝜅3

∭
𝑒𝑖𝑠Φ𝜅1𝜅2𝜅3 ( 𝜉 ,𝜂,𝜂′,𝜎′)𝔟2

𝜅1𝜅2𝜅3 (𝜉, 𝜂, 𝜂
′, 𝜎′)𝑔̃𝜅1 (𝑠, 𝜂)𝑔̃𝜅2 (𝑠, 𝜂′)𝑔̃𝜅3 (𝑠, 𝜎′) 𝑑𝜂 𝑑𝜂′ 𝑑𝜎′,

(5.35)

with the natural definition of the symbol 𝔟2
𝜅1𝜅2𝜅3 .

It remains to obtain a good description of the symbols 𝔟1
𝜅1𝜅2𝜅3 and 𝔟2

𝜅1𝜅2𝜅3 obtained when carrying out
the integration over 𝜎 in the expressions above. We do this in the following two subsections. Section 5.5
deals with the top-order symbol 𝔟1 whose description requires us to study, and obtain precise formulas
for, the convolutions of 𝛿 and p.v.1/𝜉 distributions that are cut off as in equation (5.11). Section 5.6
deals with the symbol 𝔟2, which is lower-order since 𝔮♯ is smooth.
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5.5. Top-order symbols

5.5.1. Regularity in 𝝈
The first question we need to address is that of the possible lack of regularity of the coefficients in the
top-order symbols, which could arise from the lack of regularity of the coefficient a𝜖𝜆 defined in equation
(4.5) (for instance, in the case of a generic potential, these are discontinuous at the origin).

First, we observe that the coefficients of the type a𝜖𝜆 (𝑥) with 𝑥 = 𝜉, 𝜂, 𝜂′ or 𝜎′, which appear in
equations (5.32)–(5.35), are not harmful. For the input variables 𝜂, 𝜂′ and 𝜎′, this follows from the fact
that the corresponding input functions, 𝑔̃, vanish at zero; in particular, the nonsmooth coefficients can
be handled as in Remark 5.1 by pairing the indicator functions with the input profiles; see also Lemma
5.8, which guarantees that the renormalised profile 𝑓̃ (see equation (5.53)), which will be put in place of
𝑔̃, vanishes at 0. For the output variable 𝜉, we can also disregard the jump singularities of a𝜖𝜆 (𝜉) thanks
to the following: first, Lemma 5.10 and Remark 5.11(iii) allow us to differentiate once in 𝜉 as needed to
estimate the weighted 𝐿2-norms; second, we will always estimate the 𝐿𝑝-norms of the operators with
1 < 𝑝 < ∞, where 1±(𝜉) is a bounded symbol.

Therefore, we do not need to worry about the coefficients a𝜖𝜆 (𝑥), with 𝑥 = 𝜉, 𝜂, 𝜂′ or 𝜎′, and can just
assume they are smooth disregarding the 1±(𝑥) factors that they contain. However, coefficients a𝜖𝜆 (𝜎),
which enter the definition of 𝔟1 through integration over 𝜎 (see equations (5.32)–(5.34)), might be
harmful. We now check that a cancellation occurs upon a proper symmetrisation of the symbol.

The symbol 𝔟1
𝜅1𝜅2𝜅3 can be written

𝔟1
𝜅1𝜅2𝜅3 (𝜉, 𝜂, 𝜂

′, 𝜎′) = −2𝜅1𝜅2𝜅3
∑
𝜄2

𝜄2
∑

𝜆,𝜇,𝜇′,𝜈′

𝜖 , 𝜖 ′

∫
𝑀 (𝜉, 𝜂, 𝜎, 𝜂′, 𝜎′) 𝑑𝜎, (5.36)

𝑀 (𝜉, 𝜂, 𝜎, 𝜂′, 𝜎′) :=
1

𝑖Φ𝜅1 𝜄2 (𝜉, 𝜂, 𝜎)
∑
𝜈,𝜆′

𝑍♯𝜖
′

− 𝜄2 ,𝜅2 ,𝜅3
𝜆′,𝜇′,𝜈′

(𝜎, 𝜂′, 𝜎′) 𝑍 𝜖−,𝜅1 , 𝜄2
𝜆,𝜇,𝜈

(𝜉, 𝜂, 𝜎), (5.37)

where we have omitted the dependence on the signs for easier notation. We can write this out as

𝑀 (𝜉, 𝜂, 𝜎, 𝜂′, 𝜎′) :=
∑
𝜈,𝜆′

1
64𝜋2〈𝜂〉〈𝜎〉〈𝜂′〉〈𝜎′〉

1
𝑖Φ𝜅1 𝜄2 (𝜉, 𝜂, 𝜎) 𝑎

𝜖
−,𝜅1 , 𝜄2
𝜆,𝜇,𝜈

(𝜉, 𝜂, 𝜎) 𝑎 𝜖 ′
− 𝜄2 ,𝜅2 ,𝜅3
𝜆′,𝜇′,𝜈′

(𝜎, 𝜂′, 𝜎′)

× ℓ𝜖∞ℓ𝜖 ′∞

[√
𝜋

2
𝛿(𝑝) + 𝜖 𝜑∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)

𝑖𝑝

] [√
𝜋

2
𝛿(𝑝′) + 𝜖 ′p.v.

𝜙(𝑝′)
𝑖𝑝′

]
,

(5.38)

where 𝑝 := 𝜆𝜉 − 𝜅1𝜇𝜂 − 𝜄2𝜈𝜎 as in equation (5.12), and we denoted

𝑝′ := 𝜄2𝜆
′𝜎 − 𝜅2𝜇

′𝜂′ − 𝜅3𝜈
′𝜎′,

and dropped the p.v. symbols for brevity.
The main observation is that exchanging 𝜎 ↦→ −𝜎 and (𝜈, 𝜆′) ↦→ (−𝜈,−𝜆′) simultaneously leaves

Φ 𝜄1 𝜄2 , p and 𝑝′ invariant, and therefore in particular does not change the distributions in square brackets
in equation (5.38); therefore, the coefficients appearing in the first line of equation (5.38) can be
symmetrised and we may instead write

1
2

[
𝑎 𝜖

′
− 𝜄2 ,𝜅2 ,𝜅3
𝜆′𝜇′𝜈′

(𝜎, 𝜂′, 𝜎′) · 𝑎 𝜖−,𝜅1 , 𝜄2
𝜆,𝜇,𝜈

(𝜉, 𝜂, 𝜎) + 𝑎 𝜖
′

− 𝜄2 ,𝜅2 ,𝜅3
−𝜆′,𝜇′,𝜈′

(−𝜎, 𝜂′, 𝜎′) · 𝑎 𝜖−,𝜅1 , 𝜄2
𝜆,𝜇,−𝜈

(𝜉, 𝜂,−𝜎)
]
. (5.39)
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Recalling equation (4.4), the terms in the sum above can be written more explicitly as

=
1
2

[
a𝜖 ′

𝜆′,− 𝜄2 (𝜎)a𝜖 ′

𝜇′,𝜅2
(𝜂′)a𝜖 ′

𝜈′,𝜅3
(𝜎′) · a𝜖𝜆,−(𝜉)a𝜖𝜇,𝜅1 (𝜂)a

𝜖
𝜈, 𝜄2 (𝜎)

+ a𝜖 ′

−𝜆′,− 𝜄2 (−𝜎)a𝜖 ′

𝜇′,𝜅2
(𝜂′)a𝜖 ′

𝜈′,𝜅3
(𝜎′) · a𝜖𝜆,−(𝜉)a𝜖𝜇, 𝜄1 (𝜂)a

𝜖
−𝜈, 𝜄2 (−𝜎)

]
=

1
2

[
a𝜖 ′

𝜆′,− 𝜄2 (𝜎)a𝜖𝜈, 𝜄2 (𝜎) + a𝜖 ′

−𝜆′,− 𝜄2 (−𝜎)a𝜖−𝜈, 𝜄2 (−𝜎)
]

︸������������������������������������������������������������︷︷������������������������������������������������������������︸
:=

(
𝐴𝜖 , 𝜖

′

𝜈,𝜆′ (𝜎)
)
𝜄2

· a𝜖𝜆,−(𝜉)a𝜖𝜇,𝜅1 (𝜂)a
𝜖 ′

𝜇′,𝜅2
(𝜂′)a𝜖 ′

𝜈′,𝜅3
(𝜎′)︸�����������������������������������������︷︷�����������������������������������������︸

:= 𝑎 𝜖 , 𝜖
′

𝜆,𝜇,𝜇′,𝜈′
−,𝜅1 ,𝜅2 ,𝜅3

.
(5.40)

Using the formulas for the coefficients a𝜖𝜆 in equation (4.5) and the relations in equations (3.10)–
(3.11) for the transmission and reflection coefficients, we have

2𝐴+,+
+,+(𝜎) = a+

+(𝜎)a+
+(𝜎) + a+

−(−𝜎)a+
−(−𝜎)

=
(
|𝑇 (𝜎) |21+(𝜎) + 1−(𝜎)

)
+ 1+(𝜎) |𝑅+(𝜎) |2 ≡ 1,

and

2𝐴+,+
+,−(𝜎) = a+

−(𝜎)a+
+(𝜎) + a+

+(−𝜎)a+
−(−𝜎)

= 𝑅+(−𝜎)1−(𝜎) + 𝑅+(𝜎)1+(𝜎) ≡ 𝑅+(𝜎).

We can similarly calculate the other expression and arrive at the following formulas:

𝐴+,+
+,+(𝜎) = 𝐴+,+

−,−(−𝜎) = 1
2
, 𝐴+,+

+,−(𝜎) = 𝐴+,+
−,+(−𝜎) = 1

2
𝑅+(𝜎),

𝐴−,−
+,+ (𝜎) = 𝐴−,−

−,−(−𝜎) = 1
2
, 𝐴−,−

+,− (𝜎) = 𝐴−,−
−,+ (−𝜎) = 1

2
𝑅−(−𝜎),

𝐴+,−
+,+ (𝜎) = 𝐴+,−

−,−(−𝜎) = 1
2
𝑇 (𝜎), 𝐴+,−

+,−(𝜎) = 𝐴+,−
−,+(−𝜎) = 0,

𝐴−,+
+,+ (𝜎) = 𝐴−,+

−,−(−𝜎) = 1
2
𝑇 (−𝜎), 𝐴−,+

+,−(𝜎) = 𝐴−,+
−,+(−𝜎) = 0.

(5.41)

In particular, we see that this coefficient is smooth. The exact values above will be relevant when
computing the nonlinear scattering correction in Section 10.2.

5.5.2. Integrating over 𝝈
There remains to integrate equation (5.38) over 𝜎. Observe that the integrand is singular when the
variable p or 𝑝′ hits zero. They can be written{

𝑝 = 𝜄2𝜈(Σ0 − 𝜎)
𝑝′ = 𝜄2𝜆

′(𝜎 − Σ1)
with

{
Σ0 = 𝜄2𝜈(𝜆𝜉 − 𝜄1𝜇𝜂)
Σ1 = 𝜆′𝜄2 (𝜅2𝜇

′𝜂′ + 𝜅3𝜈
′𝜎′). (5.42)

Furthermore, let

𝑝∗ := 𝜄2𝜈𝑝 + 𝜄2𝜆
′𝑝′ = Σ0 − Σ1. (5.43)

Depending on whether Z and 𝑍♯ contribute 𝛿 or 1
𝑥 , M can be split into

𝑀 =
∑
𝜈,𝜆′

(
𝑀 𝛿, 𝛿 + 𝑀 𝛿,

1
𝑥 + 𝑀

1
𝑥 , 𝛿 + 𝑀

1
𝑥 ,

1
𝑥
)
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with

𝑀 𝛿, 𝛿 (𝜉, 𝜂, 𝜎, 𝜂′, 𝜎′) := M(𝜉, 𝜂, 𝜎, 𝜂′, 𝜎′) 𝜋
2
𝛿(𝑝)𝛿(𝑝′),

𝑀 𝛿,
1
𝑥 (𝜉, 𝜂, 𝜎, 𝜂′, 𝜎′) := M(𝜉, 𝜂, 𝜎, 𝜂′, 𝜎′)

√
𝜋

2
𝛿(𝑝)𝜖 ′ 𝜙(𝑝′)

𝑖𝑝′ ,

𝑀
1
𝑥 , 𝛿 (𝜉, 𝜂, 𝜎, 𝜂′, 𝜎′) := M(𝜉, 𝜂, 𝜎, 𝜂′, 𝜎′)𝜖 𝜑∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)

𝑖𝑝

√
𝜋

2
𝛿(𝑝′),

𝑀
1
𝑥 ,

1
𝑥 (𝜉, 𝜂, 𝜎, 𝜂′, 𝜎′) := M(𝜉, 𝜂, 𝜎, 𝜂′, 𝜎′)𝜖𝜖 ′ 𝜑∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)

𝑖𝑝

𝜙(𝑝′)
𝑖𝑝′ ,

(5.44)

where

M(𝜉, 𝜂, 𝜎, 𝜂′, 𝜎′) :=
ℓ𝜖∞ℓ𝜖 ′∞

64𝜋2〈𝜂〉〈𝜎〉〈𝜂′〉〈𝜎′〉
1

𝑖Φ𝜅1 𝜄2 (𝜉, 𝜂, 𝜎)

(
𝐴𝜖 , 𝜖

′

𝜈,𝜆′ (𝜎)
)
𝜄2
𝑎 𝜖 , 𝜖

′

𝜆,𝜇,𝜇′,𝜈′
−,𝜅1 ,𝜅2 ,𝜅3

(𝜉, 𝜂, 𝜂′, 𝜎′).

(5.45)

When integrating over 𝜎, we rely on the identities

𝛿 ∗ 𝛿 = 𝛿, 𝛿 ∗ 1
𝑥
=

1
𝑥

1
𝑥

∗ 1
𝑥
= −𝜋2𝛿,

(see equation (4.8)), which imply that, for a smooth function F,∫
𝛿(𝑝)𝛿(𝑝′)𝐹 (𝜎) 𝑑𝜎 = 𝐹 (Σ0)𝛿(𝑝∗)∫
𝛿(𝑝) 𝜙(𝑝′)

𝑝′ 𝐹 (𝜎) 𝑑𝜎 = 𝜄2𝜆
′𝐹 (Σ0)

𝜙(𝑝∗)
𝑝∗∫

𝜑∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)
𝑝

𝛿(𝑝′)𝐹 (𝜎) 𝑑𝜎 = 𝜄2𝜈𝐹 (Σ0)
𝜙(𝑝∗)
𝑝∗

+ {error}∫
𝜑∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)

𝑝

𝜙(𝑝′)
𝑝′ 𝐹 (𝜎) 𝑑𝜎 = −𝜋

2
𝜈𝜆′𝐹 (Σ0)𝛿(𝑝∗) + {error}.

The error terms will be dealt with in the following subsection in Lemmas 5.5 and 5.7. For the moment,
we record the top-order contribution to 𝔟1, namely

𝔠𝑆𝜅1 ,𝜅2 ,𝜅3 (𝜉, 𝜂, 𝜂
′, 𝜎′)

= −2𝜅1𝜅2𝜅3
∑
𝜖 , 𝜖 ′, 𝜄2

𝜆,𝜇,𝜈,𝜆′,𝜇′,𝜈′

1
64𝜋2〈𝜂〉〈Σ0〉〈𝜂′〉〈𝜎′〉

(
𝐴𝜖 , 𝜖

′

𝜈,𝜆′ (Σ0)
)
𝜄2

𝑖Φ𝜅1 𝜄2 (𝜉, 𝜂, Σ0)
𝑎 𝜖 , 𝜖

′

𝜆,𝜇,𝜇′,𝜈′
−,𝜅1 ,𝜅2 ,𝜅3

(𝜉, 𝜂, 𝜂′, 𝜎′)

× ℓ𝜖∞ℓ𝜖 ′∞

[
𝜄2
𝜋

2
(1 + 𝜖𝜖 ′𝜈𝜆′)𝛿(𝑝∗) +

√
𝜋

2
(𝜖 ′𝜆′ + 𝜖𝜈) 𝜙(𝑝∗)

𝑖𝑝∗

]
(5.46)

= 𝔠𝑆,1𝜅1 ,𝜅2 ,𝜅3 (𝜉, 𝜂, 𝜂
′, 𝜎′) + 𝔠𝑆,2𝜅1 ,𝜅2 ,𝜅3 (𝜉, 𝜂, 𝜂

′, 𝜎′),

where 𝔠𝑆,1 gathers all terms containing 𝛿 functions, while 𝔠𝑆,2 gathers all terms containing terms of the
type 𝜙(𝑝∗)/𝑝∗.

The multilinear operator with symbol 𝔠𝑆𝜅1 ,𝜅2 ,𝜅3 will be denoted C𝑆𝜅1 ,𝜅2 ,𝜅3 . The decomposition of 𝔠𝑆𝜅1 ,𝜅2 ,𝜅3
into 𝔠𝑆,1𝜅1 ,𝜅2 ,𝜅3 + 𝔠𝑆,2𝜅1 ,𝜅2 ,𝜅3 gives a further decomposition of C𝑆𝜅1 ,𝜅2 ,𝜅3 :

C𝑆𝜅1 ,𝜅2 ,𝜅3 = C𝑆,1𝜅1 ,𝜅2 ,𝜅3 + C𝑆,2𝜅1 ,𝜅2 ,𝜅3 . (5.47)
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5.6. Lower-order symbols

5.6.1. The symbol 𝖇2

Dropping unnecessary subscripts and superscripts, the symbol 𝔟2 in equation (5.35) can be written as a
sum of terms of the type

a(𝜉)a(𝜂)𝐶 (𝜉, 𝜂, 𝜂′, 𝜎′)

with

𝐶 (𝜉, 𝜂, 𝜂′, 𝜎′)

=
1

〈𝜂〉〈𝜎′〉〈𝜂′〉

∫
1

〈𝜎〉 𝜇
𝑅 (𝜎, 𝜂′, 𝜎′)a(𝜎)

[√
𝜋

2
𝛿(𝑝) ± 𝜑∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)

𝑝

]
1

Φ(𝜉, 𝜂, 𝜎) 𝑑𝜎.

In what follows, we adopt the convention that the measure 𝜇𝑅 appearing above is smooth in the
variables 𝜂′ and 𝜎′; in other words, we are disregarding indicator functions in these two variables,
which, as explained at the beginning of Section 5.5, can be done without loss of generality.

Lemma 5.4. The symbol C can be split into

𝐶 (𝜉, 𝜂, 𝜂′, 𝜎′) = a(Σ0)𝐶1(𝜉, 𝜂, 𝜂′, 𝜎′) + 𝐶2 (𝜉, 𝜂, 𝜂′, 𝜎′),

where Σ0 is defined as in equation (5.42), and with

|𝜕𝑎𝜉 𝜕
𝑏
𝜂𝜕
𝑐
𝜂′𝜕𝑑𝜎′𝐶1 (𝜉, 𝜂, 𝜂′, 𝜎′) | � 1

〈𝜂〉〈𝜎′〉〈𝜂′〉 〈inf
𝜇,𝜈

|Σ0 + 𝜇𝜂′ + 𝜈𝜎′|〉−𝑁 , (5.48)

|𝜕𝑎𝜉 𝜕
𝑏
Σ0
𝜕𝑐𝜂′𝜕𝑑𝜎′𝐶2 (𝜉, 𝜂, 𝜂′, 𝜎′) | � 1

〈𝜂〉〈𝜎′〉〈𝜂′〉 〈inf
𝜇,𝜈

|Σ0 + 𝜇𝜂′ + 𝜈𝜎′ |〉−𝑁
{
| log |Σ0 | | if 𝑎 + 𝑏 = 0
|Σ0 |−𝑎−𝑏 if 𝑎 + 𝑏 ≥ 1.

(5.49)

Note that in equation (5.48), we regard Σ0 as a dependent variable (since the main singular dependence
on Σ0 can be factorised), while in equation (5.49), we regard it as an independent one.

Proof. The term 𝐶1 is given by the contribution of the 𝛿 term to the symbol C:

𝐶1 (𝜉, 𝜂, 𝜂′, 𝜎′) = 1
〈𝜂〉〈𝜎′〉〈𝜂′〉〈Σ0〉

𝜇𝑅 (Σ0, 𝜂
′, 𝜎′) 1

Φ(𝜉, 𝜂, Σ0)
.

It satisfies the desired estimates by equations (5.26) and (4.6)–(4.7). As for the contribution of the
principal value term, it can be written as the sum of 𝐶 ′

2 and 𝐶 ′′
2 defined as follows:

𝐶 ′
2 (𝜉, 𝜂, 𝜂

′, 𝜎′) = 1
〈𝜂〉〈𝜎′〉〈𝜂′〉Λ(𝜉, 𝜂, 0)

∫
a(𝜎)𝜇𝑅 (𝜎, 𝜂′, 𝜎′)𝜑∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)

𝑝
𝑑𝑝

𝐶 ′′
2 (𝜉, 𝜂, 𝜂′, 𝜎′) = 1

〈𝜂〉〈𝜎′〉〈𝜂′〉

∫
a(𝜎)𝜇𝑅 (𝜎, 𝜂′, 𝜎′) [Λ(𝜉, 𝜂,−𝜄2𝜈𝑝)

− Λ(𝜉, 𝜂, 0)]𝜑∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)
𝑝

𝑑𝑝;

here we changed the integration variable to p, so that 𝜎 is now considered a function of p: 𝜎 = Σ0 − 𝜄2𝜈𝑝,
and denoted

Λ(𝜉, 𝜂, 𝑞) :=
1

Φ(𝜉, 𝜂,Σ0 + 𝑞)〈Σ0 + 𝑞〉 , (5.50)
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which, by equation (5.26), and provided |𝑞 | � 1
𝑅 (𝜂,Σ0) , satisfies���𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝑞Λ(𝜉, 𝜂, 𝑞)

��� � 𝑅(𝜂,Σ0)𝑐 . (5.51)

This bound, together with the estimates on 𝜇𝑅 in equations (4.6)–(4.7), and the possible singularity of
a at the origin, lead to the estimate in equation (5.49) on 𝐶 ′

2. In order to bound 𝐶 ′′
2 , observe that

𝑓 (𝜉, 𝜂, 𝑝) = 𝜑∗(𝑝, 𝜂, 𝜎) [Λ(𝜉, 𝜂,−𝜄2𝜈𝑝) − Λ(𝜉, 𝜂, 0)] 𝜙(𝑝)
𝑝

(5.52)

satisfies, by equation (5.26),

Supp 𝑓 ⊂ {|𝑝 | � 𝑅(𝜂,Σ0)−1} and
���𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝑝 𝑓 (𝜉, 𝜂, 𝑝)��� � 𝑅(𝜂,Σ0)1+𝑐 .

In other words, we can think of 𝑓 (𝑝, 𝜂, 𝜎) as a normalised cutoff function (in p) at scale 𝑅(𝜂, Σ0)−1,
such as 𝑅(𝜂, Σ0)𝜒(𝑅(𝜂,Σ0)𝑝). Coming back to 𝐶 ′′

2 , it can be written

𝐶 ′′
2 (𝜉, 𝜂, 𝜂′, 𝜎′) = 1

〈𝜂〉〈𝜎′〉〈𝜂′〉

∫
a(𝜎)𝜇𝑅 (𝜎, 𝜂′, 𝜎′) 𝑓 (𝜉, 𝜂, 𝑝) 𝑑𝑝,

from which the desired estimate in equation (5.49) follows. �

5.6.2. The remainder from integrating 𝑴
1
𝒙 ,𝜹

Dropping irrelevant indexes and constants, the integral in 𝜎 of 𝑀 1
𝑥 , 𝛿 can be written as

a(𝜉)a(𝜂)a(𝜂′)a(𝜎′)
〈𝜂〉〈𝜎′〉〈𝜂′〉

∫
𝐴(𝜎)

Φ(𝜉, 𝜂, 𝜎)〈𝜎〉 𝜑
∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)

𝑝
𝛿(𝑝′) 𝑑𝜎.

The following lemma extracts the leading order contribution and bounds the remainder term.

Lemma 5.5. Recalling the definitions of p, 𝑝′, Σ0, Σ1 in equation (5.42) as well as 𝑝∗ in equation (5.43),
we have the following decomposition∫

𝐴(𝜎)
Φ(𝜉, 𝜂, 𝜎)〈𝜎〉 𝜑

∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)
𝑝

𝛿(𝑝′) 𝑑𝜎 = −𝜄2𝜈
𝐴(Σ0)

Φ(𝜉, 𝜂, Σ0)〈Σ0〉
𝜙(𝑝∗)
𝑝∗

+ 𝐶 (𝜉, 𝜂, 𝜂′, 𝑝∗),

where, for any 𝑎, 𝑏, 𝑐, 𝑑 ∈ N0,

|𝜕𝑎𝜉 𝜕
𝑏
𝜂𝜕
𝑐
𝜂′𝜕𝑑𝑝∗𝐶 (𝜉, 𝜂, 𝜂′, 𝑝∗) | �

1
(|𝑝∗ | + 1

𝑅 (𝜂,Σ0) )
1+𝑑

.

Remark 5.6. In the above lemma, we chose to parametrise C as a function of 𝑝∗, 𝜉, 𝜂 and 𝜂′. Of course,
other choices are also possible; the main point is that derivatives across level sets of 𝑝∗ are more singular
(larger) than along them.

Proof of Lemma 5.5. First, note that, due to the fast decay of 𝜙, we can assume |𝑝∗ | = |Σ0 − Σ1 | � 1,
hence 𝑅(𝜂, Σ0) ≈ 𝑅(𝜂,Σ1). By definition of Σ0 and Σ1 in equation (5.42), and recalling the formula for
Λ in equation (5.50),∫

𝐴(𝜎)
Φ(𝜉, 𝜂, 𝜎)〈𝜎〉 𝜑

∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)
𝑝

𝛿(𝑝′) 𝑑𝜎 = 𝜄2𝜈𝜑
∗(𝑝∗, 𝜂, Σ1)𝐴(Σ1)Λ(𝜉, 𝜂, Σ1 − Σ0)

𝜙(𝑝∗)
𝑝∗

.
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We can now decompose

𝜄2𝜈𝜑
∗(𝑝∗, 𝜂,Σ1)𝐴(Σ1)Λ(𝜉, 𝜂,Σ1 − Σ0)

𝜙(𝑝∗)
𝑝∗

= 𝜄2𝜈𝐴(Σ0)Λ(𝜉, 𝜂, 0) 𝜙(𝑝∗)
𝑝∗

+ 𝜄2𝜈𝐴(Σ0)Λ(𝜉, 𝜂, 0) [𝜑∗(𝑝∗, 𝜂,Σ1) − 1] 𝜙(𝑝∗)
𝑝∗

+ 𝜄2𝜈𝜑
∗(𝑝∗, 𝜂,Σ1) [𝐴(Σ1)Λ(𝜉, 𝜂, Σ1 − Σ0) − 𝐴(Σ0)Λ(𝜉, 𝜂, 0)] 𝜙(𝑝∗)

𝑝∗

= 𝐼 + 𝐼 𝐼 + 𝐼 𝐼 𝐼 .

The term I is the desired leading order term. As for 𝐼 𝐼 and 𝐼 𝐼 𝐼, they make up the error term𝐶 (𝜉, 𝜂, 𝜂′, 𝜎′),
and it follows from equation (5.51) that they satisfy the desired estimates. �

5.6.3. The remainder from integrating 𝑴
1
𝒙 ,

1
𝒙

Dropping irrelevant indexes,
∫
𝑀

1
𝑥 ,

1
𝑥 𝑑𝜎 can be written as

a(𝜉)a(𝜂)a(𝜂′)a(𝜎′)
〈𝜂〉〈𝜎′〉〈𝜂′〉

∫
𝐴(𝜎)

Φ(𝜉, 𝜂, 𝜎)〈𝜎〉 𝜑
∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)

𝑝

𝜙(𝑝′)
𝑝′ 𝑑𝜎.

The following lemma extracts the leading order contribution and bounds the remainder term.

Lemma 5.7. Recalling the definitions of p, 𝑝′, Σ0, Σ1 in equation (5.42) as well as 𝑝∗ in equation (5.43),
we have the following decomposition∫

𝐴(𝜎)
Φ(𝜉, 𝜂, 𝜎)〈𝜎〉 𝜑

∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)
𝑝

𝜙(𝑝′)
𝑝′ 𝑑𝜎 = −𝜈𝜆′ 𝜋

2
𝐴(Σ0)

Φ(𝜉, 𝜂,Σ0)〈Σ0〉
𝛿(𝑝∗) + 𝐶 (𝜉, 𝜂, 𝜂′, 𝑝∗),

where, for any 𝑎, 𝑏, 𝑐, 𝑑 ∈ N0,

|𝜕𝑎𝜉 𝜕
𝑏
𝜂𝜕
𝑐
𝜂′𝜕𝑑𝑝∗𝐶 (𝜉, 𝜂, 𝜂′, 𝑝∗) | �

1
(|𝑝∗ | + 1

𝑅 (𝜂,Σ0) )
1+𝑑

.

Proof. It will be convenient to adopt lighter notations by setting

𝛼 = −𝜄2𝜈, 𝛼′ = 𝜄2𝜆
′,

so that

𝑝 = 𝛼(𝜎 − Σ0) and 𝑝′ = 𝛼′(𝜎 − Σ1).

The integral can be decomposed as follows:∫
𝐴(𝜎)Λ(𝜉, 𝜂, 𝜎 − Σ0)𝜑∗(𝑝, 𝜂, 𝜎) 𝜙(𝑝)

𝑝

𝜙(𝑝′)
𝑝′ 𝑑𝜎

= 𝐴(Σ0)Λ(𝜉, 𝜂, 0)
∫

𝜙(𝑝)
𝑝

𝜙(𝑝′)
𝑝′ 𝑑𝜎 + 𝐴(Σ0)Λ(𝜉, 𝜂, 0)

∫
[𝜑∗(𝑝, 𝜂, 𝜎) − 1] 𝜙(𝑝)

𝑝

𝜙(𝑝′)
𝑝′ 𝑑𝜎

+
∫

𝜑∗(𝑝, 𝜂, 𝜎) [𝐴(𝜎)Λ(𝜉, 𝜂, 𝑝) − 𝐴(Σ0)Λ(𝜉, 𝜂, 0)] 𝜙(𝑝)
𝑝

𝜙(𝑝′)
𝑝′ 𝑑𝜎

= 𝐼 + 𝐼 𝐼 + 𝐼 𝐼 𝐼 .
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Using that 𝜙 (𝜎)
𝜎 = 𝑖

2 F̂[𝜙 ∗ sign], 𝑓̂ ∗ 𝑔̂ =
√

2𝜋 𝑓̂ 𝑔 and 1̂ =
√

2𝜋𝛿, we get that

∫
𝜙(𝑝)
𝑝

𝜙(𝑝′)
𝑝′ 𝑑𝜎 =

∫
𝜙(𝛼(𝜎 − Σ0 + Σ1)
𝛼(𝜎 − Σ0 + Σ1)

𝜙(𝛼′𝜎)
𝛼′𝜎

𝑑𝜎 = −𝛼𝛼′

[
𝜙(𝜎)
𝜎

∗ 𝜙(𝜎)
𝜎

]
(Σ0 − Σ1)

= 𝛼𝛼′
√

2𝜋
4

F̂[(𝜙 ∗ sign)2] (Σ0 − Σ1) =
√

2𝜋
4

𝛼𝛼′F̂[1 + F̂−1
𝐺0] (Σ0 − Σ1)

=
𝜋

2
𝛼𝛼′𝛿(Σ0 − Σ1) +

√
2𝜋
4

𝛼𝛼′𝐺0(Σ0 − Σ1),

where 𝐺0 is a Schwartz function. Therefore, modifying the definition of 𝐺0 to take the constant factor
into account,

𝐼 =
𝜋

2
𝛼𝛼′𝐴(Σ0)Λ(𝜉, 𝜂, 0)𝛿(Σ0 − Σ1) + 𝐴(Σ0)Λ(𝜉, 𝜂, 0)𝐺0(Σ0 − Σ1).

Turning to 𝐼 𝐼, it can be written

𝐼 𝐼 = 𝐴(Σ0)Λ(𝜉, 𝜂, 0)
∫

[𝜑∗(𝑝, 𝜂, 𝜎) − 1] 𝜙(𝑝)
𝑝

𝜙(𝑝′)
𝑝′ 𝑑𝜎

= −𝐴(Σ0)Λ(𝜉, 𝜂, 0)
∫

𝜑>−𝐷0 (𝑅(𝜂, Σ0)𝑝)
𝜙(𝑝)
𝑝

𝜙(𝑝′)
𝑝′ 𝑑𝜎

− Λ(𝜉, 𝜂, 0)
∫

[𝜑>−𝐷0 (𝑅(𝜂, 𝜎)𝑝) − 𝜑>−𝐷0 (𝑅(𝜂,Σ0)𝑝)]
𝜙(𝑝)
𝑝

𝜙(𝑝′)
𝑝′ 𝑑𝜎

= 𝐼 𝐼 ′ + 𝐼 𝐼 ′′.

The term 𝐼 𝐼 ′′ is an error term that enjoys better bounds than 𝐼 𝐼 ′, so we only focus on the latter, which
can be written as

𝐼 𝐼 ′ = −𝐴(Σ0)Λ(𝜉, 𝜂, 0)
√

2𝜋𝑖
2

𝛼𝛼′F̂
[
( 3𝐹𝑅 (𝜂,Σ0) ∗ sign) (𝜙 ∗ sign)

]
(𝑝∗),

where 𝐹𝑅 = 𝜑>−𝐷0 (𝑅·)𝜙. Essentially, 𝐹𝑅 can be written as
∑

2−𝐷0
𝑅 (𝜂,Σ0 ) <2 𝑗<1

𝜑 𝑗 , and therefore we need to

bound ��������
∑

2−𝐷0
𝑅 (𝜂,Σ0 ) <2 𝑗<1

F̂[(𝜑̂ 𝑗 ∗ sign) (𝜙 ∗ sign) (𝑝∗)]

�������� .
Since the average of 𝜑̂ 𝑗 is zero, the convolution 𝜑̂ 𝑗 ∗sign can be written 𝜒(2 𝑗 ·) for a Schwartz function 𝜒.
Then (𝜑̂ 𝑗 ∗sign) (𝜙∗sign) enjoys the same bounds as 𝜒(2 𝑗 ·), and therefore, the above can be bounded by∑

2−𝐷0
𝑅 (𝜂,Σ0 ) <2 𝑗<1

2− 𝑗 𝜒̂(2− 𝑗 𝑝∗) �
1

1
𝑅 (𝜂,Σ0) + |𝑝∗ |

,

with natural bounds on the derivatives.
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We are left with 𝐼 𝐼 𝐼, which can be written (up to the factor A, which does not affect the estimates) as∫
𝑓 (𝑝, 𝜂, 𝜎) 𝜙(𝑝′)

𝑝′ 𝑑𝑝,

where 𝑓 (𝑝, 𝜂, 𝜎) was introduced in equation (5.52) (notice that we changed the integration variable to
p, so that 𝑝′ and 𝜎 are now thought of as functions of p). As we saw earlier, the function 𝑓 (𝜉, 𝜂, 𝑝) can
be thought of as normalised smooth function in p on a scale 𝑅(𝜂,Σ0)−1, such as 𝑅(𝜂, Σ0)𝜒(𝑅(𝜂,Σ0)𝑝),
with 𝜒 ∈ C∞

0 . The desired result follows. �

5.7. Final decomposition and renormalised profile

Let us summarise here our findings from the previous subsections regarding the decomposition of the
nonlinearity.

We define the renormalised profile f by

𝑓 := 𝑔 − 𝑇 (𝑔, 𝑔), 𝑇 (𝑔, 𝑔) :=
∑
𝜄1 , 𝜄2

𝑇+
𝜄1 𝜄2 (𝑔, 𝑔) + 𝑇−

𝜄1 𝜄2 (𝑔, 𝑔), (5.53)

where, according to equation (5.29), we have

F̃𝑇±
𝜄1 𝜄2 (𝑔, 𝑔) (𝑡) =

∬
𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝑔̃(𝑡, 𝜂)𝑔̃(𝑡, 𝜎)𝔪±

𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎

𝔪±
𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) := −𝜄1𝜄2

∑
𝜆,𝜇,𝜈

𝑍±
− 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎)

𝑖Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) ,
(5.54)

where the symbol Z is defined in equation (5.11). We then see that f satisfies

𝜕𝑡 𝑓̃ = Q𝑅 (𝑔, 𝑔) + C𝑆 (𝑔, 𝑔, 𝑔) + C𝑅 (𝑔, 𝑔, 𝑔), (5.55)

where:

• The regular quadratic term is given by

Q𝑅 (𝑎, 𝑏) =
∑
𝜄1 , 𝜄2

Q𝑅𝜄1 𝜄2 (𝑎, 𝑏)

Q𝑅𝜄1 𝜄2 [𝑎, 𝑏] (𝑡, 𝜉) =
∬

𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝔮(𝜉, 𝜂, 𝜎) 𝑎 𝜄1 (𝑡, 𝜂) 𝑏̃ 𝜄2 (𝑡, 𝜎) 𝑑𝜂 𝑑𝜎

Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) := 〈𝜉〉 − 𝜄1〈𝜂〉 − 𝜄2〈𝜎〉,

(5.56)

with equations (5.15)–(5.18).
Notation convention for the parentheses. Note that in equation (5.56) above, we have used both
square and round parentheses for the arguments of Q𝑅. When only a pair of arguments appear, we
will mostly use round brackets when the arguments are either time and frequency (𝑡, 𝜉) or a pair of
functions (such as (𝑎, 𝑏) above, or (𝑔, 𝑔) in equation (5.55)). In cases where we write both the input
functions and the independent variables, we will often highlight the distinction between them by
using square parentheses for the input functions, as done in the second line of equation (5.56) above,
equation (6.20), equation (8.8), and so on. We will adopt a similar notation for other similar
multilinear expressions (see, for example, equations (8.28) and (8.32)).

Also, when the arguments of the bilinear form Q𝑅 are given by other multilinear expressions, we
will use square parentheses (throughout the given formula) to provide a clearer distinction; see, for
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example, equation (7.36). We will adopt a similar notation for the trilinear terms in equations (5.57)
and (5.59).

• The singular cubic term is given by

C𝑆 (𝑎, 𝑏, 𝑐) =
∑
𝜅1𝜅2𝜅3

C𝑆𝜅1𝜅2𝜅3 (𝑎, 𝑏, 𝑐)

C𝑆𝜅1𝜅2𝜅3 [𝑎, 𝑏, 𝑐] (𝑡, 𝜉) =
∭

𝑒𝑖𝑡Φ𝜅1𝜅2𝜅3 ( 𝜉 ,𝜂,𝜎,𝜃)𝔠𝑆𝜅1𝜅2𝜅3 (𝜉, 𝜂, 𝜎, 𝜃) 𝑎̃𝜅1 (𝑡, 𝜂) 𝑏̃𝜅2 (𝑡, 𝜎)𝑐̃𝜅3 (𝑡, 𝜃) 𝑑𝜂 𝑑𝜎 𝑑𝜃,

Φ𝜅1𝜅2𝜅3 (𝜉, 𝜂, 𝜂′, 𝜎′) := 〈𝜉〉 − 𝜅1〈𝜂〉 − 𝜅2〈𝜎〉 − 𝜅3〈𝜃〉,
(5.57)

with the exact formula for the symbol 𝔠𝑆 appearing in equation (5.46). The operator C𝑆𝜅1𝜅2𝜅3 can be
further decomposed into

C𝑆𝜅1𝜅2𝜅3 = C𝑆,1𝜅1𝜅2𝜅3 + C𝑆,2𝜅1𝜅2𝜅3 (5.58)

(see equation (5.47)).
• The regular cubic term is given by

C𝑅 (𝑎, 𝑏, 𝑐) =
∑
𝜅1𝜅2𝜅3

C𝑅𝜅1𝜅2𝜅3 (𝑎, 𝑏, 𝑐)

C𝑅𝜅1𝜅2𝜅3 [𝑎, 𝑏, 𝑐] (𝑡, 𝜉) =
∭

𝑒𝑖𝑡Φ𝜅1𝜅2𝜅3 ( 𝜉 ,𝜂,𝜎,𝜃)𝔠𝑅𝜅1𝜅2𝜅3 (𝜉, 𝜂, 𝜎, 𝜃) 𝑎̃ 𝜄1 (𝑡, 𝜂) 𝑏̃ 𝜄2 (𝑡, 𝜎)𝑐̃ 𝜄3 (𝑡, 𝜃) 𝑑𝜂 𝑑𝜎 𝑑𝜃,

(5.59)

where, in view of the estimates for the symbols appearing in Lemmas 5.4, 5.5 and 5.7, we have that
𝔠𝑅 enjoys bounds of the form��𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜎𝜕𝑑𝜃 𝔠𝑅𝜅1𝜅2𝜅3 (𝜉, 𝜂, 𝜎, 𝜃)�� � 1

〈𝜂〉〈𝜎〉〈𝜃〉
med(|𝜂 |, |𝜎 |, |𝜃 |)1+𝑎+𝑏+𝑐+𝑑

〈𝜉 − 𝜂 − 𝜎 − 𝜃〉𝑁
, (5.60)

up to possible logarithmic losses like those appearing in equation (5.49); recall also the notation for
med from the end of Section 2.5.1. We are again adopting the convention explained at the beginning
of Section 5.5 of disregarding singularities at 0 in the variables of the inputs of equation (5.59).
We then note that the terms in equation (5.59) are essentially a cubic version of the regular quadratic
terms Q𝑅 in equation (5.56). A good way to think of them is that they are essentially of the form
𝑇 [F̃−1Q𝑅♯ (𝑔, 𝑔), 𝑔]. Therefore, estimating equation (5.59) is much easier than estimating equation
(5.56) or other cubic terms that appear in our arguments, such as those in Section 9; see also
Propositions 11.5 and 11.6, where terms similar to equation (5.59) are treated. Therefore, in all that
follows, we will skip the estimate for the C𝑅 terms from equation (5.55).

The next Lemma shows that the renormalised profile satisfies the key assumption about vanishing at
the zero frequency like the original profile g.

Lemma 5.8. The renormalised profile equation (5.53) satisfies 𝑓̃ (0) = 0. Moreover, when V is excep-
tional and even, f has the same parity of g (even/odd in the case of odd/even resonance).

Proof. In the generic case, 𝑓̃ (0) = 0 is automatically satisfied; see Proposition 3.6.12 Moreover, in the
case where 𝑢̃(0) = 0 because of the structure of the equations as for (KG2), the claimed property for 𝑓̃
is easy to verify because the quadratic symbols under consideration will vanish at 𝜉 = 0.

12Technically, one should check 𝑓 ∈ 𝐿1 (for fixed t), but this is not hard to do and, in fact, we will prove this type of control
later; see, for example, Proposition 7.2.
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We now verify the statement in the exceptional case by distinguishing between the case of odd versus
even solutions. Note that an odd, respectively even, solution u corresponds to an odd, respectively even,
profile 𝑔̃ in distorted Fourier space; see equations (5.2)–(5.5) and Lemma 3.7.

In the case of odd solutions, our assumptions dictate that the zero energy resonance is even – that is,
𝑇 (0) = 1 – and the the coefficient 𝑎(𝑥) is odd; hence ℓ+∞ = −ℓ−∞. In the case of even solutions instead,
we have that the zero energy resonance is odd – that is, 𝑇 (0) = −1 – and the the coefficient 𝑎(𝑥) is even;
hence ℓ+∞ = ℓ−∞.

In both exceptional cases, since V is even, we have 𝑚+(−𝑥, 𝜉) = 𝑚−(𝑥, 𝜉) and 𝑅+(𝜉) = 𝑅−(𝜉); see
equation (3.13). In particular, the coefficients defined in equation (4.5) satisfy the symmetry

a𝜖𝜆 (𝜉) = a−𝜖
𝜆 (−𝜉), 𝜆, 𝜖 ∈ {+,−}, (5.61)

and 𝑅±(0) = 0.
Next, we inspect the formulas in equation (5.54) with equation (5.11). Since 𝑔̃(0) = 0, it suffices to

prove that, for fixed 𝜄1, 𝜄2, we have that F̃
(
𝑇+
𝜄1 𝜄2 (𝑔, 𝑔) + 𝑇−

𝜄1 𝜄2 (𝑔, 𝑔)
)

vanishes at 𝜉 = 0. The contribution
to 𝑇 𝜖𝜄1 𝜄2 (𝑔, 𝑔) at fixed 𝜆, 𝜇, 𝜈 when 𝜉 → 0 is

lim
𝜉→0

(
𝐼𝜖 (𝜉) + 𝐼−𝜖 (𝜉)

)
,

where

𝐼𝜖 (𝜉) := −𝜄1𝜄2
∬

𝑒𝑖𝑡Φ𝜄1 𝜄2 (0,𝜂,𝜎) 𝑔̃ 𝜄1 (𝑡, 𝜂)𝑔̃ 𝜄2 (𝑡, 𝜎)
𝑎 𝜖𝜄0 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎)

8𝜋𝑖〈𝜂〉〈𝜎〉Φ 𝜄1 𝜄2 (0, 𝜂, 𝜎)

× ℓ𝜖∞

[√
𝜋

2
𝛿(𝑝0) + 𝜖𝜑∗(𝑝0, 𝜂, 𝜎) p.v.

𝜙(𝑝0)
𝑖𝑝0

]
𝑑𝜂 𝑑𝜎, 𝑝0 = 𝜄1𝜇𝜂 − 𝜄2𝜈𝜎.

(5.62)

Note that the coefficient a𝜖𝜆 (𝜉) may be discontinuous at 0, and this is why we kept the dependence on 𝜉
for the coefficient ‘a’ in equation (5.62) and the limit in 𝜉.

Next, we change variables (𝜂, 𝜎) ↦→ (−𝜂,−𝜎) in the expression in equation (5.62); note that
𝑝0 ↦→ −𝑝0, and recall that 𝜙 is even. In the case of odd 𝑔̃, using equation (5.61) and lim𝜉→0 a𝜖+ (𝜉) = 1,
lim𝜉→0 a𝜖− (𝜉) = 0 (here the coefficients are continuous; see (equation (4.5))), we see that

𝑎 𝜖𝜄0 𝜄1 𝜄2
𝜆𝜇𝜈

(0,−𝜂,−𝜎) = 𝑎−𝜖
𝜄0 𝜄1 𝜄2
𝜆𝜇𝜈

(0, 𝜂, 𝜎).

Since ℓ+∞ = −ℓ−∞, it follows that 𝐼𝜖 (0) = −𝐼−𝜖 (0), hence the desired conclusion.
In the case of even 𝑔̃, we have instead lim𝜉→0(a𝜖+ (𝜉)+a−𝜖

+ (𝜉)) = 0 and lim𝜉→0 a𝜖− (𝜉) = 0, which give

lim
𝜉→0

(
𝑎 𝜖𝜄0 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉,−𝜂,−𝜎) + 𝑎−𝜖
𝜄0 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎)
)
= 0.

Then, changing (𝜂, 𝜎) ↦→ (−𝜂,−𝜎) and taking the 𝜉 → 0 in equation (5.62), using that ℓ+∞ = ℓ−∞ here,
we see that lim𝜉→0(𝐼𝜖 (𝜉) + 𝐼−𝜖 (𝜉)) = 0.

To show that f has the same parity of g, we can use similar arguments. Let us just look at the case
when g is even (which corresponds to an odd resonance), as the odd case is analogous. It suffices to
show that for even 𝑔̃, we have that 𝑇 (𝑔, 𝑔) is even. Looking again at the definition of T in equation (5.54)
and of Z in equations (5.11) and (4.4), we see that

𝑍 𝜖𝜄0 𝜄1 𝜄2
𝜆𝜇𝜈

(−𝜉,−𝜂,−𝜎) = ℓ𝜖∞

𝑎−𝜖
𝜄0 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎)

8𝜋〈𝜂〉〈𝜎〉

[√
𝜋

2
𝛿(𝑝) + 𝜖𝜑∗(𝑝, 𝜂, 𝜎) p.v.

𝜙(𝑝)
−𝑖𝑝

]
= 𝑍−𝜖

𝜄0 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎)

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.9


66 Pierre Germain and Fabio Pusateri

having used equation (5.61) and ℓ+∞ = ℓ−∞. It then follows that F̃𝑇+
𝜄1 𝜄2 (𝑔, 𝑔) (−𝜉) = F̃𝑇−

𝜄1 𝜄2 (𝑔, 𝑔) (𝜉) and
therefore (see equation (5.53)) 𝑇 (𝑔, 𝑔) (𝜉) is even. �

The next lemmas give regularity properties for the symbols of the bilinear operators Q𝑅 (Lemma
5.9) and T and C𝑆 (Lemma 5.10). These are based on the results from Sections 3 and 4, but we chose to
place them here (although they were refereed to, and used, before) since parts of the proofs are similar
to the proof of Lemma 5.8 above.

Lemma 5.9. Let Q𝑅 = Q𝑅𝜄1 𝜄2 be the bilinear operator defined in equation (5.15), with symbol 𝔮 = 𝔮𝜄1 , 𝜄2
as in equation (5.16), where 𝜇𝑅 = 𝜇𝑅𝜄1 𝜄2 is given by equations (4.6)–(4.7). Then under the assumptions
of Theorem 1.1, we have that

𝜕𝜉Q𝑅𝜄1 𝜄2 = 𝑖𝑡
𝜉

〈𝜉〉Q
𝑅
𝜄1 𝜄2 − 𝜄1𝜄2

∬
𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎)𝔮′

𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) 𝑔̃ 𝜄1 (𝑡, 𝜂)𝑔̃ 𝜄2 (𝑡, 𝜎) 𝑑𝜂 𝑑𝜎, (5.63)

where

𝔮′
𝜄1 𝜄2 := 𝔮1 + 𝔮2 + 𝔮3,

𝔮1 (𝜉, 𝜂, 𝜎) :=
1

8𝜋〈𝜂〉〈𝜎〉
∑

𝜖1 , 𝜖2 , 𝜖3 ∈{+,−}
1𝜖1 (𝜉)1𝜖2 (𝜂)1𝜖3 (𝜎)𝜕𝜉 𝔯𝜖1 𝜖2 𝜖3 (𝜉, 𝜂, 𝜎), (5.64)

𝔮2 (𝜉, 𝜂, 𝜎) :=
1

8𝜋〈𝜂〉〈𝜎〉
∑
𝜖 ,𝜆,𝜇,𝜈

𝜖 b𝜖𝜆 (𝜉)a
𝜖
𝜇, 𝜄1 (𝜂)a

𝜖
𝜈, 𝜄2 (𝜎)

[ (
1 − 𝜑∗(𝑝, 𝜂, 𝜎)

) 𝜙(𝑝)
𝑖𝑝

]
, (5.65)

𝔮3 (𝜉, 𝜂, 𝜎) :=
1

8𝜋〈𝜂〉〈𝜎〉
∑
𝜆,𝜇,𝜈,𝜖

𝜖𝑎 𝜖− 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎) 𝜕𝜉
[ (

1 − 𝜑∗(𝑝, 𝜂, 𝜎)
) 𝜙(𝑝)
𝑖𝑝

]
, (5.66)

where b𝜖𝜆 (𝜉) is the function defined for 𝜉 ≠ 0 by b𝜖𝜆 (𝜉) = 𝜕𝜉a𝜖𝜆 (𝜉) (see equation (4.5)).

Proof. For notational convenience, let us define the operator (we will often drop the time variable,
which is a fixed parameter here, and omit the 𝜄1𝜄2 signs since they do not play any role)

𝑇𝔪 [𝐹] (𝜉) :=
∬

𝔪 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) 𝐹 (𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎, (5.67)

so that

𝜕𝜉Q𝑅𝜄1 𝜄2 (𝑡, 𝜉) = 𝑖𝑡
𝜉

〈𝜉〉Q
𝑅
𝜄1 𝜄2 (𝑡, 𝜉) [𝑔, 𝑔] + 𝑇𝜕𝜉𝔮𝜄1 𝜄2

[𝐺] (𝜉). (5.68)

For the second term on the right-hand side of equation (5.68), we have, recalling the definition of 𝔮 from
equation (5.16),

𝑇𝜕𝜉𝔮 [𝐺] = 𝑇𝔪1 [𝐺] + 𝑇𝔪2 [𝐺] + 𝑇𝔮3 [𝐺],

where

𝔪1(𝜉, 𝜂, 𝜎) :=
1

8𝜋〈𝜂〉〈𝜎〉 𝜕𝜉 𝜇
𝑅 (𝜉, 𝜂, 𝜎), (5.69)

𝔪2(𝜉, 𝜂, 𝜎) :=
1

8𝜋〈𝜂〉〈𝜎〉
∑
𝜖 ,𝜆,𝜇,𝜈

𝜖 𝜕𝜉a𝜖𝜆 (𝜉)a
𝜖
𝜇, 𝜄1 (𝜂)a

𝜖
𝜈, 𝜄2 (𝜎)

[ (
1 − 𝜑∗(𝑝, 𝜂, 𝜎)

) 𝜙(𝑝)
𝑖𝑝

]
, (5.70)
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with 𝑝 = 𝜆𝜉 − 𝜄1𝜇𝜂 − 𝜄2𝜈𝜎, and 𝔮3 the symbol in equation (5.66). To prove the lemma, it then suffices
to show that

𝑇𝔪1 [𝐺] = 𝑇𝔮1 [𝐺], (5.71)

𝑇𝔪2 [𝐺] = 𝑇𝔮2 [𝐺] . (5.72)

Proof of equation (5.71). We look back at the definition of 𝜇𝑅 in equations (4.6)–(4.7) and see that
equation (5.71) amounts to showing that the 𝛿 contribution that arises from 𝜕𝜉 𝜇

𝑅 vanishes. Recall the
description of 𝜇𝑅 = 𝜇𝑅1 + 𝜇𝑅2 in equations (4.20)–(4.22). Note that all the integrals under consideration
are absolutely convergent because of the fast decay of 𝜓𝑅. We first look at 𝜇𝑅1 and distinguish between
the generic and exceptional cases.

In the generic case, since 𝑇 (0) = 0 and 𝑅±(0) = −1 (see Lemma 3.3), we have 𝜕𝜉𝜓𝐴(𝑥, 𝜉 = 0) = 0,
with 𝐴 = 𝑆 or R, which suffices.

In the exceptional cases, let us write 𝜓(𝑥, 𝜉) = 1+(𝜉)𝜓> (𝑥, 𝜉) + 1−(𝜉)𝜓< (𝑥, 𝜉), where 𝜓> is
given in equation (3.26) and 𝜓< in equation (3.27), and similarly let 𝜓𝐴(𝑥, 𝜉) = 1+(𝜉)𝜓𝐴,> (𝑥, 𝜉) +
1−(𝜉)𝜓𝐴,< (𝑥, 𝜉), with 𝐴 = 𝑆, 𝑅, according to the formulas in equations (3.29) and (3.30). Differentiat-
ing equation (4.21), we get the singular contribution

𝔪𝑅1, 𝛿 (𝜉, 𝜂, 𝜎) := 𝛿(𝜉)
∑

(𝐴,𝐵,𝐶) ∈𝑋𝑅

∫
𝑎(𝑥)

[
𝜓𝐴,> (𝑥, 𝜉) − 𝜓𝐴,< (𝑥, 𝜉)

]
𝜓𝐵𝜄1 (𝑥, 𝜂)𝜓

𝐶
𝜄2 (𝑥, 𝜎) 𝑑𝑥. (5.73)

In the case 𝑎 := 𝑓+(−∞, 0) = 1, we have 𝑇 (0) = 1 and 𝑅±(0) = 0 (see Lemma 3.16), which shows,
looking at the formulas in equations (3.26)–(3.30), that equation (5.73) vanishes.

When instead 𝑎 = −1, we have 𝑇 (0) = −1 and 𝑅±(0) = 0, and we need to look at the bilinear
operator associated to equation (5.73): that is, 𝑇𝔪𝑅1, 𝛿 [𝐺] with G as in equation (5.68). Changing
variables (𝜂, 𝜎) → (−𝜂,−𝜎) leaves G unchanged in view of Lemma 3.7. At the same time, using that
𝑎(𝑥) is even and 𝜓𝐴,> (𝑥, 𝜉) = 𝜓𝐴,< (−𝑥,−𝜉) (since 𝑅+ = 𝑅−, and 𝑚+(𝑥, 𝜉) = 𝑚−(−𝑥, 𝜉)), changing
𝑥 → −𝑥 in equation (5.73) shows that

𝔪𝑅1, 𝛿 (𝜉,−𝜂,−𝜎) = 𝛿(𝜉)
∑

(𝐴,𝐵,𝐶) ∈𝑋𝑅

∫
𝑎(𝑥)

[
𝜓𝐴,> (−𝑥, 0) − 𝜓𝐴,< (−𝑥, 0)

]
𝜓𝐵𝜄1 (𝑥, 𝜂)𝜓

𝐶
𝜄2 (𝑥, 𝜎) 𝑑𝑥

= −𝔪𝑅1, 𝛿 (𝜉, 𝜂, 𝜎).

This gives 𝑇𝔪1, 𝛿 [𝐺] = 0, as desired.
For 𝜇𝑅2, we start from the formula in equation (4.26); upon applying 𝜕𝜉 , we need to look at the

symbol containing a 𝛿(𝜉) contribution: that is,

𝔪𝑅2, 𝛿 (𝜉, 𝜂, 𝜎) =
∑

𝜖1 , 𝜖2 , 𝜖3 ,𝜆,𝜇,𝜈

4𝜒𝜖1 𝜖2 𝜖3 (𝜆𝜉 − 𝜇𝜂 − 𝜈𝜎)
[
𝜕𝜉a𝜖1𝜆 (𝜉) − b𝜖1𝜆 (𝜉)

]
a𝜖2𝜇 (𝜂)a𝜖3𝜈 (𝜎), (5.74)

where, recall, the sum is over triples of signs (𝜖1, 𝜖2, 𝜖3) ≠ (+, +, +), (−,−,−), and we have 𝜒𝜖1 𝜖2 𝜖3 (𝑥) =
𝑎(𝑥)𝜒𝜖1 𝜒𝜖2 𝜒𝜖3 (𝑥). To show that this symbol gives a vanishing contribution, we first recall the definition
of the a𝜖𝜆 coefficients from equation (4.5) and see that in the generic case, we have 𝜕𝜉a𝜖𝜆 (𝜉) = b𝜖𝜆 (𝜉) −
𝜖𝜆𝛿(𝜉). Then the right-hand side of equation (5.74) is

−𝛿(𝜉)
∑

𝜖1 , 𝜖2 , 𝜖3 ,𝜆,𝜇,𝜈

4𝜒𝜖1 𝜖2 𝜖3 (−𝜇𝜂 − 𝜈𝜎)𝜖1𝜆 a𝜖2𝜇 (𝜂)a𝜖3𝜈 (𝜎),

which vanishes upon summing over 𝜆 = + and −.

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.9


68 Pierre Germain and Fabio Pusateri

In the exceptional cases, using Lemma 3.4, we have

𝜕𝜉a𝜖𝜆 (𝜉) = b𝜖𝜆 (𝜉) − 𝜖𝛿(𝜉) ·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − 2𝑎

1 + 𝑎2 if 𝜆 = + ,
𝑎2 − 1
1 + 𝑎2 if 𝜆 = − .

(5.75)

Note that we can then use the formula in equation (5.75) in all cases, with the convention that 𝑎 = 0 in the
generic case. When 𝑎 = 1, the vanishing of equation (5.74) is obvious since the coefficients of the 𝛿 in
equation (5.75) vanish. In the case 𝑎 = −1, instead, only the 𝜆 = + term remains in equation (5.75), and
we look at the bilinear operator associated to equation (5.74): that is, 𝑇𝔪𝑅2, 𝛿 [𝐺] with G as in equation
(5.68). More precisely, we can see that changing signs to (𝜂, 𝜎) in 𝑇𝔪𝑅2, 𝛿 [𝐺] leaves G invariant, while

𝔪𝑅2, 𝛿 (𝜉,−𝜂,−𝜎) = 𝛿(𝜉)
∑

𝜖1 , 𝜖2 , 𝜖3 ,𝜇,𝜈

4𝜒𝜖1 𝜖2 𝜖3 (𝜇𝜂 + 𝜈𝜎) (−2𝜖1)a𝜖2𝜇 (−𝜂)a𝜖3𝜈 (−𝜎)

= 𝛿(𝜉)
∑

𝜖1 , 𝜖2 , 𝜖3 ,𝜇,𝜈

4𝜒𝜖1 𝜖2 𝜖3 (−𝜇𝜂 − 𝜈𝜎) (2𝜖1)a𝜖2𝜇 (𝜂)a𝜖3𝜈 (𝜎) = −𝔪𝑅2, 𝛿 (𝜉, 𝜂, 𝜎),

having used equation (5.61) and changed the signs of the 𝜖’s to get the second identity, also using that
𝜒𝜖1 𝜖2 𝜖3 (−𝑥) = 𝜒−(𝜖1 𝜖2 𝜖3) (𝑥), since 𝜒+(−𝑥) = 𝜒−(𝑥) and 𝑎(𝑥) is even.
Proof of equation (5.72). We can use arguments similar to those used above for equation (5.71). As
before, it suffices to show that the contribution to equation (5.70) that contains the 𝛿 factor from equation
(5.75) vanishes. In the generic case (using equation (5.75) with 𝑎 = 0) this contribution is

𝔪2, 𝛿 (𝜉, 𝜂, 𝜎) :=
1

8𝜋〈𝜂〉〈𝜎〉
∑
𝜖 ,𝜆,𝜇,𝜈

𝜖
[
− 𝜖𝜆𝛿(𝜉)

]
a𝜖𝜇, 𝜄1 (𝜂)a

𝜖
𝜈, 𝜄2 (𝜎)

[ (
1 − 𝜑∗(𝑝0, 𝜂, 𝜎)

) 𝜙(𝑝0)
𝑖𝑝0

]
, (5.76)

with 𝑝0 := −𝜄1𝜇𝜂− 𝜄2𝜈𝜎, and vanishes upon summing over 𝜆 = +,−. For 𝑎 = 1 the vanishing is obvious
since the coefficient of the 𝛿 in equation (5.75) vanish. To see the cancellation in the case 𝑎 = −1,
similarly to what was done in the previous paragraph, we look at the bilinear operator with symbol

𝔪2, 𝛿 (𝜉, 𝜂, 𝜎) :=
1

8𝜋〈𝜂〉〈𝜎〉
∑
𝜖 ,𝜇,𝜈

[
− 2𝛿(𝜉)

]
a𝜖𝜇, 𝜄1 (𝜂)a

𝜖
𝜈, 𝜄2 (𝜎)

[ (
1 − 𝜑∗(𝑝0, 𝜂, 𝜎)

) 𝜙(𝑝0)
𝑖𝑝0

]
.

Notice that the 𝜖 factor from equation (5.75) and the one present initially in equation (5.70) canceled
out. Using equation (5.61) and the fact that 𝜙 is even, recalling the definition of 𝜑∗ (see equation (5.12))
and then changing the sign of 𝜖 in the sum, we have

𝔪2, 𝛿 (𝜉,−𝜂,−𝜎) = 1
8𝜋〈𝜂〉〈𝜎〉

∑
𝜖 ,𝜇,𝜈

[
− 2𝛿(𝜉)

]
a−𝜖
𝜇, 𝜄1 (𝜂)a

−𝜖
𝜈, 𝜄2 (𝜎)

[ (
1 − 𝜑∗(𝑝0, 𝜂, 𝜎)

) 𝜙(𝑝0)
−𝑖𝑝0

]
= −𝔪2, 𝛿 (𝜉, 𝜂, 𝜎),

which completes the proof. �

Lemma 5.10. Let 𝑇 = 𝑇𝜄1 𝜄2 be the bilinear operator defined in equation (5.29) with the definitions in
equations (5.11) and (5.8). Then under the assumptions of Theorem 1.1, we have that

𝜕𝜉 F̃𝑇𝜄1 𝜄2 = 𝑖𝑡
𝜉

〈𝜉〉𝑇𝜄1 𝜄2 − 𝜄1𝜄2

∬
𝑒𝑖𝑡Φ𝜄1 𝜄2 𝔱′𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) 𝑔̃ 𝜄1 (𝑡, 𝜂)𝑔̃ 𝜄2 (𝑡, 𝜎) 𝑑𝜂 𝑑𝜎 (5.77)
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with

𝔱′𝜄1 𝜄2 := 𝔱1 + 𝔱2,

𝔱1(𝜉, 𝜂, 𝜎) :=
∑
𝜖 ,𝜆,𝜇,𝜈

ℓ𝜖∞
8𝑖𝜋〈𝜂〉〈𝜎〉

b𝜖𝜆 (𝜉)a
𝜖
𝜇, 𝜄1 (𝜂)a

𝜖
𝜈, 𝜄2 (𝜎)

Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)

(√
𝜋

2
𝛿(𝑝) + 𝜖𝜑∗(𝑝, 𝜂, 𝜎) p.v.

𝜙(𝑝)
𝑖𝑝

)
, (5.78)

𝔱2(𝜉, 𝜂, 𝜎) :=
∑
𝜖 ,𝜆,𝜇,𝜈

ℓ𝜖∞

𝑎 𝜖− 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎)

8𝑖𝜋〈𝜂〉〈𝜎〉 𝜕𝜉

[
1

Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)

(√
𝜋

2
𝛿(𝑝) + 𝜖𝜑∗(𝑝, 𝜂, 𝜎) p.v.

𝜙(𝑝)
𝑖𝑝

)]
,

(5.79)

where b𝜖𝜆 (𝜉) is the function defined for 𝜉 ≠ 0 by b𝜖𝜆 (𝜉) = 𝜕𝜉a𝜖𝜆 (𝜉) (see equation (4.5)).

Proof. The proof follows along the same lines of the proof of Lemma 5.9 above; compare equations
(5.65)–(5.66) with equations (5.78)–(5.79). Starting from the definition of the coefficient equation
(5.11), we see that the only thing to prove is that the 𝛿(𝜉) contribution that arises when differentiating
the a𝜖𝜆 (𝜉) factor in the numerator vanishes. This can be shown exactly as in the proof of equation (5.72);
see the formulas for the symbols in equations (5.70) and (5.65). In particular, if we let 𝔱1, 𝛿 denote the
𝛿(𝜉) contribution, that is, a symbol as in equation (5.78) with b𝜖𝜆 replaced by 𝜕𝜉a𝜖𝜆 − b𝜖𝜆 , and look
at the exceptional case with odd resonance, we can use ℓ+∞ = −ℓ−∞ and equation (5.61) to see that
𝔱1, 𝛿 (𝜉,−𝜂,−𝜎) = −𝔱1, 𝛿 (𝜉, 𝜂, 𝜎). We can then conclude as before. �

Remark 5.11. Here are some remarks that we will often use in what follows:

(i) Lemmas 5.9 and 5.10 show that the derivatives of the symbols of the bilinear operators Q𝑅 and T
are smooth up to up to (possible) singularities along the axis 𝜉, 𝜂 or 𝜎 = 0. These latter can then
be handled as in Remark 5.1.

(ii) Note that the statements of Lemmas 5.9 and 5.10 remain valid when the operators are applied to
any other two inputs in the generic case. In the exceptional cases, they remain valid for inputs with
the same parity of g (even/odd in the case of odd/even resonance), such as (𝑔, 𝑓 ) or (𝑔, 𝑇 (𝑔, 𝑔));
see Lemma 5.8. In the rest of our analysis, it will always be the case that the parity of the inputs is
the proper one.

(iii) Also notice that formulas similar to equations (5.77)–(5.79) hold for the cubic bulk equations (5.34)
and (5.35), as can be seen from equation (5.30) and the fact that 𝜕𝑠𝑔 has the same parity of g.

6. Multilinear estimates

In this section, we first examine general multilinear estimates that will be useful in particular in Section 9
and then establish multilinear estimates for all the operators appearing in Section 5.7.

6.1. Bilinear operators

General bilinear operators can be written as

𝐵𝔞 ( 𝑓 , 𝑔) (𝑥) = F̂−1
𝜉→𝑥

∬
𝔞(𝜉, 𝜂, 𝜁) 𝑓̂ (𝜂)𝑔̂(𝜁) 𝑑𝜂 𝑑𝜁 .

As far as the present paper is concerned, we are mostly interested in two classes of bilinear operators:
those whose symbol 𝔞 contains a singular factor 𝛿(𝜉 − 𝜂 − 𝜁), and those whose symbol contains a
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singular factor p.v. 𝜙 ( 𝜉−𝜂−𝜁 )
𝜉−𝜂−𝜁 ; for simplicity, we will drop the p.v. sign in what follows. We parametrise

these operators as

𝐶𝔞 ( 𝑓 , 𝑔) (𝑥) := F̂−1
𝜉→𝑥

∫
𝔞(𝜂, 𝜉 − 𝜂) 𝑓̂ (𝜂)𝑔̂(𝜉 − 𝜂) 𝑑𝜂

=
1

√
2𝜋

∬
𝔞(𝜂, 𝜁) 𝑓̂ (𝜂)𝑔̂(𝜁)𝑒𝑖𝑥 (𝜂+𝜁 ) 𝑑𝜂 𝑑𝜁

(6.1)

and

𝐷𝔟 ( 𝑓 , 𝑔) (𝑥) := F̂−1
𝜉→𝑥

∬
𝔟(𝜂, 𝜁 , 𝜉 − 𝜂 − 𝜁) 𝑓̂ (𝜂)𝑔̂(𝜁) 𝜙(𝜉 − 𝜂 − 𝜁)

𝜉 − 𝜂 − 𝜁
𝑑𝜂 𝑑𝜁

=
1

√
2𝜋

∭
𝔟(𝜂, 𝜁 , 𝜃) 𝑓̂ (𝜂)𝑔̂(𝜁)𝑒𝑖𝑥 (𝜂+𝜁+𝜃) 𝜙(𝜃)

𝜃
𝑑𝜂 𝑑𝜁 𝑑𝜃.

(6.2)

Notice that 𝐶𝔞 operators fall into the category of pseudo-products. As for 𝐷𝔟 operators, they are
translation invariant to leading order since their symbol is smooth outside of the set {𝜃 = 0}.

A short computation shows that one can express these in physical space as

𝐶𝔞 ( 𝑓 , 𝑔) (𝑥) =
1

√
2𝜋

∬
𝔞̂(𝑦 − 𝑥, 𝑧 − 𝑥) 𝑓 (𝑦)𝑔(𝑧) 𝑑𝑦 𝑑𝑧,

𝐷𝔟 ( 𝑓 , 𝑔) (𝑥) =
1

√
2𝜋

∬
𝐾 (𝑥, 𝑦, 𝑧) 𝑓 (𝑦)𝑔(𝑧) 𝑑𝑦 𝑑𝑧,

with 𝐾 (𝑥, 𝑦, 𝑧) :=
∫

𝔟̂(𝑦 − 𝑥, 𝑧 − 𝑥, 𝑤 − 𝑥)𝑍 (𝑤) 𝑑𝑤, 𝑍 := F̂−1 𝜙(𝜃)
𝜃

.

(6.3)

For 𝐷𝔟, this can be seen as follows (we omit the computation for 𝐶𝔞 , which is more elementary):

𝐷𝔟 ( 𝑓 , 𝑔) (𝑥) =
1

√
2𝜋

∭
𝔟(𝜂, 𝜁 , 𝜃) 𝑓̂ (𝜂)𝑔̂(𝜁)𝑒𝑖𝑥 (𝜂+𝜁+𝜃) 𝜙(𝜃)

𝜃
𝑑𝜂 𝑑𝜁 𝑑𝜃

=
1

(2𝜋)2

∫
· · ·

∫
𝔟(𝜂, 𝜁 , 𝜃) 𝑓 (𝑦)𝑔(𝑧)𝑍 (𝑤)𝑒𝑖𝜂 (𝑥−𝑦)𝑒𝑖𝜁 (𝑥−𝑧)𝑒𝑖 𝜃 (𝑥−𝑤) 𝑑𝜃 𝑑𝜂 𝑑𝜁 𝑑𝑦 𝑑𝑧 𝑑𝑤

=
1

√
2𝜋

∭
𝔟̂(𝑦 − 𝑥, 𝑧 − 𝑥, 𝑤 − 𝑥)𝑍 (𝑤) 𝑓 (𝑦)𝑔(𝑧) 𝑑𝑤 𝑑𝑦 𝑑𝑧.

Lemma 6.1 (Boundedness for the 𝐶𝔞 operators). If 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞ satisfy 1
𝑝 + 1

𝑞 = 1
𝑟 ,

‖𝐶𝔞 ‖𝐿𝑝×𝐿𝑞→𝐿𝑟 �
�� 𝔞̂ ��

𝐿1 .

This is a standard result; see, for example, [33, Lemma 5.2].

Remark 6.2 (Bounds on symbols). Given a symbol 𝔞, we will often bound its Fourier transform in 𝐿1

using the following criterion: if 𝔞 is supported on (𝜂, 𝜁) ∈ [𝑡1 − 𝑟1, 𝑡1 + 𝑟1] × [𝑡2 − 𝑟2, 𝑡2 + 𝑟2] with���𝜕𝑘1
𝜂 𝜕

𝑘2
𝜁 𝔞

��� � 𝑟−𝑘1
1 𝑟−𝑘2

2 ,

then ��̂𝔞(𝑥, 𝑦)
�� � 𝑟1

(1 + 𝑟1𝑥)𝑁
𝑟2

(1 + 𝑟2𝑦)𝑁
,
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so that in particular ‖𝔞̂‖𝐿1 � 1. Indeed, the assumption on 𝔞 implies that���𝜕𝑘1
𝜂 𝜕

𝑘2
𝜁 𝔞(𝜂, 𝜁)

��� � 𝑟−𝑘1
1 𝑟−𝑘2

2 𝜒

(
𝜂 − 𝑡1
𝑟1

)
𝜒

(
𝜁 − 𝑡2
𝑟2

)
,

where 𝜒 is a cutoff function. Taking the Fourier transform and using that it maps 𝐿1 to 𝐿∞ gives��𝑥𝑘1 𝑦𝑘2 𝔞̂(𝑥, 𝑦)
�� � 𝑟−𝑘1

1 𝑟−𝑘2
2 𝑟1𝑟2,

which is the desired result.
The criterion mentioned above can be combined with a change of coordinates since, if L is a

nondegenerate linear transformation, then

‖�𝔞 ◦ 𝐿‖𝐿1 = ‖𝔞̂‖𝐿1 .

Lemma 6.3 (Boundedness for the 𝐷𝔟 operators). Assume that there exists 𝐹 ∈ 𝐿1 such that����∫ 𝔟̂(𝑥, 𝑦, 𝑧) 𝑑𝑧
���� ≤ 𝐹 (𝑥, 𝑦).

Then if 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞ satisfy 1
𝑝 + 1

𝑞 = 1
𝑟 ,

‖𝐷𝔟‖𝐿𝑝×𝐿𝑞→𝐿𝑟 � ‖𝐹‖𝐿1 .

Proof. Using the physical space representation in equation (6.3), the proof reduces to that of Lemma
6.1 after noticing that 𝑍 ∈ 𝐿∞. �

Remark 6.4. In order for the condition of Lemma 6.3 to be satisfied, it suffices that 𝔟 be supported on
(𝜂, 𝜁 , 𝜃) ∈ [𝑡1 − 𝑟1, 𝑡1 + 𝑟1] × [𝑡2 − 𝑟2, 𝑡2 + 𝑟2] × [𝑡3 − 𝑟3, 𝑡3 + 𝑟3] with���𝜕𝑘1

𝜂 𝜕
𝑘2
𝜁 𝜕

𝑘3
𝜃 𝔟

��� � 𝑟−𝑘1
1 𝑟−𝑘2

2 𝑟−𝑘3
3 .

Indeed, this implies that ���̂𝔟(𝑥, 𝑦, 𝑧)��� � 𝑟1

(1 + 𝑟1𝑥)𝑁
𝑟2

(1 + 𝑟2𝑦)𝑁
𝑟1

(1 + 𝑟3𝑧)𝑁
.

This observation can be combined with a change of coordinates: it actually suffices that, for a nonde-
generate linear transformation L,���𝜕𝑘1

𝜂 𝜕
𝑘2
𝜁 𝜕

𝑘3
𝜃 𝔟(𝐿(𝜂, 𝜁), 𝜃)

��� � 𝑟−𝑘1
1 𝑟−𝑘2

2 𝑟−𝑘3
3 .

6.2. Trilinear operators

General trilinear operators can be written as

𝑇𝔪 ( 𝑓 , 𝑔, ℎ) (𝑥) = F̂−1
𝜉→𝑥

∬
𝔪(𝜉, 𝜂, 𝜁 , 𝜃) 𝑓̂ (𝜂)𝑔̂(𝜁) ℎ̂(𝜃) 𝑑𝜂 𝑑𝜁 𝑑𝜃. (6.4)
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Two classes of trilinear operators of particular relevance in the present paper are given by

𝑈𝔪 ( 𝑓 , 𝑔, ℎ) (𝑥) = F̂−1
𝜉→𝑥

∬
𝔪(𝜉, 𝜂, 𝜁) 𝑓̂ (𝜉 − 𝜂)𝑔̂(𝜉 − 𝜂 − 𝜁) ℎ̂(𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁,

𝑉𝔫 ( 𝑓 , 𝑔, ℎ) (𝑥) = F̂−1
𝜉→𝑥

∭
𝔫(𝜉, 𝜂, 𝜁 , 𝜃) 𝑓̂ (𝜉 − 𝜂)𝑔̂(𝜉 − 𝜂 − 𝜁 − 𝜃) ℎ̂(𝜉 − 𝜁) 𝜙(𝜃)

𝜃
𝑑𝜂 𝑑𝜁 𝑑𝜃.

(6.5)

Of course, other parametrisations of 𝑈𝔪 and 𝑉𝔫 would be possible; but the parametrisation above will
be particularly relevant since it is the one adopted in Section 9.

In physical space, these are given by

𝑈𝔪 ( 𝑓 , 𝑔, ℎ) (𝑤) = 1
√

2𝜋

∫
𝔪̂(−𝑤 + 𝑥 + 𝑦 + 𝑧,−𝑥 − 𝑦,−𝑦 − 𝑧) 𝑓 (𝑥)𝑔(𝑦)ℎ(𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧,

𝑉𝔫 ( 𝑓 , 𝑔, ℎ) (𝑤) =
∭

𝐾 (𝑤, 𝑥, 𝑦, 𝑧) 𝑓 (𝑥)𝑔(𝑦)ℎ(𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧,

with 𝐾 (𝑤, 𝑥, 𝑦, 𝑧) :=
1

√
2𝜋

∫
𝔫̂(−𝑤 + 𝑥 + 𝑦 + 𝑧,−𝑥 − 𝑦,−𝑦 − 𝑧, 𝑦′ − 𝑦)𝑍 (𝑦′) 𝑑𝑦′,

(6.6)

with Z as in equation (6.3).
We have the following standard trilinear analogue of Lemma 6.1.

Lemma 6.5 (boundedness for the 𝑈𝔪 operators). If 1 ≤ 𝑝, 𝑞, 𝑟, 𝑠 ≤ ∞ satisfy 1
𝑝 + 1

𝑞 + 1
𝑟 = 1

𝑠 ,

‖𝑈𝔪‖𝐿𝑝×𝐿𝑞×𝐿𝑟→𝐿𝑠 � ‖𝔪̂‖𝐿1 .

Remark 6.6. Given a symbol 𝔪, to check in practice that its Fourier transform is in 𝐿1, we will use the
following principles:

• If 𝔪 is supported on (𝜉, 𝜂, 𝜁) ∈ [𝑡1 − 𝑟1, 𝑡1 + 𝑟1] × [𝑡2 − 𝑟2, 𝑡2 + 𝑟2] × [𝑡3 − 𝑟3, 𝑡3 + 𝑟3] with���𝜕𝑘1
𝜉 𝜕

𝑘2
𝜂 𝜕

𝑘3
𝜁 𝔪

��� � 𝑟−𝑘1
1 𝑟−𝑘2

2 𝑟−𝑘3
3 ,

then ��𝔪̂(𝑥, 𝑦, 𝑧)
�� � 𝑟1

(1 + 𝑟1𝑥)𝑁
𝑟2

(1 + 𝑟2𝑥)𝑁
𝑟3

(1 + 𝑟3𝑥)𝑁
,

so that in particular ‖𝔪̂‖𝐿1 � 1.
• By the algebra property of the space F𝐿1 (Wiener algebra), there holds

‖F(𝔪𝔫)‖𝐿1 � ‖𝔪̂‖𝐿1 ‖𝔫̂‖𝐿1 .

• The previous point can be generalised to the case where 𝔫 is 𝐿1 in a single direction and constant in
the others. For instance, for any 𝑎, 𝑏, 𝑐 such that |𝑎 | + |𝑏 | + |𝑐 | ∼ 1,���F̂[𝔪(𝜉, 𝜂, 𝜁)𝜑 𝑗 (𝑎𝜉 + 𝑏𝜂 + 𝑐𝜁)]

���
𝐿1
� ‖𝔪̂‖𝐿1 .

This remains true if 𝜑 𝑗 is replaced by 𝜑< 𝑗 or 𝜑> 𝑗 . Indeed, for any linear transformation L of R3 of
determinant one, ‖𝔪̂‖𝐿1 = ‖4𝔪 ◦ 𝐿‖𝐿1 . Therefore, it suffices to examine the case 𝑎 = 1 and
𝑏 = 𝑐 = 0, which immediately reduces to the fact that 𝐿1 is an algebra for convolution.
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Lemma 6.7 (Boundedness for the 𝑉𝔫 operators). Assume that there exists 𝐹 ∈ 𝐿1 such that����∫ 𝔫̂(𝑥, 𝑦, 𝑧, 𝑡) 𝑑𝑡
���� ≤ 𝐹 (𝑥, 𝑦, 𝑧).

Then if 1 ≤ 𝑝, 𝑞, 𝑟, 𝑠 ≤ ∞ satisfy 1
𝑝 + 1

𝑞 + 1
𝑟 = 1

𝑠 ,

‖𝑉𝔫 ‖𝐿𝑝×𝐿𝑞×𝐿𝑟→𝐿𝑠 � ‖𝐹‖𝐿1 .

Proof. Since 𝑍 ∈ 𝐿∞, the proof reduces to that of Lemma 6.5. �

Remark 6.8. Given a symbol 𝔫, to check in practice that it satisfies the condition of Lemma 6.7, we
will mostly rely on the following principles:

• It suffices that

|𝔫̂(𝑥, 𝑦, 𝑧, 𝑡) | � 𝐹 (𝑥, 𝑦, 𝑧)𝐺 (𝑡 − 𝐿(𝑥, 𝑦, 𝑧)), (6.7)

where L is a linear function, and 𝐹, 𝐺 are rapidly decaying functions with 𝐿1 norm equal to 1.
• If the condition in equation (6.7) holds for 𝔫(𝜉, 𝜂, 𝜁 , 𝜃), it also does for
𝔫(𝜉, 𝜂, 𝜁 , 𝜃)𝜑 𝑗 (𝑎𝜉 + 𝑏𝜂 + 𝑐𝜁 + 𝑑𝜃) (for a nondegenerate choice of 𝑎, 𝑏, 𝑐, 𝑑). The same holds if 𝜑 𝑗 is
replaced by 𝜑< 𝑗 or 𝜑> 𝑗 .

• Finally, if 𝔫 is supported on (𝜉, 𝜂, 𝜁 , 𝜃) ∈ [−𝑟1, 𝑟1] × [−𝑟2, 𝑟2] × [𝑟3 × 𝑟3] × [−𝑟4, 𝑟4] with���𝜕𝑘1
𝜉 𝜕

𝑘2
𝜂 𝜕

𝑘3
𝜁 𝜕

𝑘4
𝜃 𝔫

��� � 𝑟−𝑘1
1 𝑟−𝑘2

2 𝑟−𝑘3
3 𝑟−𝑘4

4 ,

then the condition equation (6.7) is satisfied.

6.3. The normal form operator T

Recall the definition of 𝑇±
𝜄1 𝜄2 in equation (5.54). Before bounding the full operator, we focus on an

operator (𝐵±
𝔪𝜄1 𝜄2

below), which shares the same symbol as 𝑇±
𝜄1 𝜄2 , but where the phase 𝑒𝑖𝑡Φ𝜄1 𝜄2 is replaced

by 1, and the distorted Fourier transform by the flat Fourier transform.

Lemma 6.9. Let 𝔪±
𝜄1 𝜄2 (𝜉, 𝜂, 𝜁) be the symbol defined in equation (5.54). Then for any 𝜄1, 𝜄2 ∈ {+,−},

the bilinear operator

𝐵𝔪±
𝜄1 𝜄2

: ( 𝑓 , 𝑔) ↦→ F̂−1
∬

𝑓̂ (𝜂)𝑔̂(𝜁)𝔪±
𝜄1 𝜄2 (𝜉, 𝜂, 𝜁) 𝑑𝜂 𝑑𝜁 (6.8)

is bounded from 𝐿 𝑝 × 𝐿𝑞 to 𝐿𝑟 , where 1
𝑝 + 1

𝑞 = 1
𝑟 , and 1 < 𝑝, 𝑞, 𝑟 < ∞, and almost gains a derivative:

‖𝐵𝔪±
𝜄1 𝜄2

( 𝑓 , 𝑔)‖
𝐿𝑟
� min

(
‖〈𝜕𝑥〉−1+ 𝑓 ‖𝐿𝑝 ‖𝑔

��
𝐿𝑞
, ‖ 𝑓 ‖𝐿𝑝 ‖〈𝜕𝑥〉−1+𝑔‖𝐿𝑞

)
. (6.9)

Here we are using the notation ‘−1+’ from the end of Section 2.5.1 to denote any number that is strictly
larger than −1.

Proof. First observe that the Fourier multipliers a𝜖𝜆 (𝐷), 𝜖, 𝜆 ∈ {+,−} are bounded on 𝐿 𝑝 , 1 < 𝑝 < ∞, by
equation (3.14) and Mikhlin’s multiplier theorem. Three different phase functions have to be considered.
The case (𝜄1, 𝜄2) = (−,−) is clearly the simplest and will not be examined any further. This leaves us
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with the cases (+, +) and (+,−): in other words, it suffices to treat the operators 𝐶𝔭1 , 𝐶𝔭2 , 𝐷𝔮1 and 𝐷𝔮2

(these notations being defined in equations (6.1) and (6.2)) with

𝔭1(𝜂, 𝜁) = 1
〈𝜂〉〈𝜁〉

1
〈𝜂 + 𝜁〉 − 〈𝜂〉 − 〈𝜁〉 ,

𝔭2(𝜂, 𝜁) = 1
〈𝜂〉〈𝜁〉

1
〈𝜂 + 𝜁〉 + 〈𝜂〉 − 〈𝜁〉 ,

(6.10)

and

𝔮1 (𝜂, 𝜁 , 𝜃) = 1
〈𝜂〉〈𝜁〉

1
〈𝜂 + 𝜁 + 𝜃〉 − 〈𝜂〉 − 〈𝜁〉 𝜑<−𝐷0 (𝑅(𝜂, 𝜁)𝜃),

𝔮2 (𝜂, 𝜁 , 𝜃) = 1
〈𝜂〉〈𝜁〉

1
〈𝜂 + 𝜁 + 𝜃〉 + 〈𝜂〉 − 〈𝜁〉 𝜑<−𝐷0 (𝑅(𝜂, 𝜁)𝜃).

(6.11)

We observe that bounds for the symbols 1
〈𝜂+𝜁 〉−〈𝜂〉−〈𝜁 〉 and 1

〈𝜂+𝜁 〉+〈𝜂〉−〈𝜁 〉 , on the one hand, and
1

〈𝜂+𝜁+𝜃 〉−〈𝜂〉−〈𝜁 〉 and 1
〈𝜂+𝜁+𝜃 〉+〈𝜂〉−〈𝜁 〉 , on the other hand, can be deduced one from the other by duality.

They are not quite equivalent due to the factors 1
〈𝜂〉 〈𝜁 〉 and 𝜑<−𝐷0 (𝑅(𝜂, 𝜁)𝜃), but the required changes

in the proofs are superficial, and we shall only focus on 𝔭1 and 𝔮1.
With the definition of 𝜒𝜖 in equation (3.25) and the definition in equation (2.24), we localise the

symbols by setting

𝔭1
𝑗 ,𝑘
𝜖1 , 𝜖2

(𝜂, 𝜁) = 𝔭1(𝜂, 𝜁)𝜒𝜖1 (𝜂)𝜑
(0)
𝑗 (𝜂)𝜒𝜖2 (𝜁)𝜑

(0)
𝑘 (𝜁),

with a similar definition for 𝔮1
𝑗 ,𝑘
𝜖1 , 𝜖2

.

Case 1: 𝜖1 = 𝜖2. It follows from equation (5.24) that

|𝜕𝑎𝜂𝜕𝑏𝜁 𝔭
1
𝑗 ,𝑘
𝜖1 , 𝜖2

(𝜂, 𝜁) | � 2−max( 𝑗 ,𝑘)2−𝑎 𝑗2−𝑏𝑘 (6.12)

|𝜕𝑎𝜂𝜕𝑏𝜁 𝜕
𝑐
𝜃𝔮

1
𝑗 ,𝑘
𝜖1 , 𝜖2

(𝜂, 𝜁 , 𝜃) | � 2−max( 𝑗 ,𝑘)2𝑐min( 𝑗 ,𝑘)2−𝑎 𝑗2−𝑏𝑘 . (6.13)

By remarks 6.2 and 6.4 and Lemmas 6.1 and 6.3,���𝐶𝔭1
𝑗 ,𝑘
𝜖1 , 𝜖2

���
𝐿𝑝×𝐿𝑞→𝐿𝑟

+
���𝐷𝔮1

𝑗 ,𝑘
𝜖1 , 𝜖2

���
𝐿𝑝×𝐿𝑞→𝐿𝑟

� 2−max( 𝑗 ,𝑘)

and therefore, for 𝛿 > 0,���𝐶〈𝜂〉1−𝛿𝔭1
𝑗 ,𝑘
𝜖1 , 𝜖2

���
𝐿𝑝×𝐿𝑞→𝐿𝑟

+

�����𝐷 〈𝜂〉1−𝛿𝔮1
𝑗 ,𝑘
𝜖1 , 𝜖2

�����
𝐿𝑝×𝐿𝑞→𝐿𝑟

� 2−𝛿max( 𝑗 ,𝑘) .

Summing over 𝑘, 𝑗 ≥ 0 gives the desired result.
Case 2: 𝜖1 ≠ 𝜖2. Adding a localisation in 𝜂 + 𝜁 , let

𝔭1
𝑗 ,𝑘,ℓ
𝜖1 , 𝜖2 , 𝜖3

(𝜂, 𝜁) = 𝔭1 (𝜂, 𝜁)𝜒𝜖1 (𝜂)𝜑
(0)
𝑗 (𝜂)𝜒𝜖2 (𝜁)𝜑

(0)
𝑘 (𝜁)𝜒𝜖3 (𝜂 + 𝜁)𝜑 (0)

ℓ (𝜂 + 𝜁),

𝔮1
𝑗 ,𝑘,ℓ
𝜖1 , 𝜖2 , 𝜖3

(𝜂, 𝜁 , 𝜃) = 𝔮1 (𝜂, 𝜁 , 𝜃)𝜒𝜖1 (𝜂)𝜑
(0)
𝑗 (𝜂)𝜒𝜖2 (𝜁)𝜑

(0)
𝑘 (𝜁)𝜒𝜖3 (𝜂 + 𝜁)𝜑 (0)

ℓ (𝜂 + 𝜁).
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Without loss of generality, we can assume that 𝜂 > 0, 𝜁 < 0, and |𝜂 | > |𝜁 |. Changing variables to
𝛼 = 𝜂 + 𝜁 and 𝛽 = −𝜁 , the above symbols become

𝔓1
𝑗 ,𝑘,ℓ
𝜖1 , 𝜖2 , 𝜖3

(𝛼, 𝛽) = 𝔭1 (𝛼 + 𝛽,−𝛽)𝜒+(𝛼 + 𝛽)𝜑 (0)
𝑗 (𝛼 + 𝛽)𝜒+(𝛽)𝜑 (0)

𝑘 (𝛽)𝜒+(𝛼)𝜑 (0)
ℓ (𝛼),

𝔔1
𝑗 ,𝑘,ℓ
𝜖1 , 𝜖2 , 𝜖3

(𝛼, 𝛽, 𝜃) = 𝔮1(𝛼 + 𝛽,−𝛽, 𝜃)𝜒+(𝛼 + 𝛽)𝜑 (0)
𝑗 (𝛼 + 𝛽)𝜒+(𝛽)𝜑 (0)

𝑘 (𝛽)𝜒+(𝛼)𝜑 (0)
ℓ (𝛼),

where 𝑗 ≥ max(𝑘, ℓ) + 𝐶. By equations (5.24) and (5.25),���𝜕𝑎𝛼𝜕𝑏𝛽𝔓1
𝑗 ,𝑘,ℓ
𝜖1 , 𝜖2 , 𝜖3

(𝛼, 𝛽)
��� � 2− 𝑗−𝑘2−𝑎ℓ2−𝑏𝑘 ,���𝜕𝑎𝛼𝜕𝑏𝛽 𝜕𝑐𝜃 𝔔1

𝑗 ,𝑘,ℓ (𝛼, 𝛽, 𝜃)
��� � 2− 𝑗−𝑘2−𝑎ℓ2−𝑏𝑘2𝑐𝑘 .

The desired estimate follows through Remarks 6.2 and 6.4 (in particular the paragraphs on change of
coordinates) and Lemmas 6.1 and 6.3. �

In the previous lemma we derived bounds for the bilinear operator 𝐵𝔪±
𝜄1 𝜄2

. In order to deduce bounds
for 𝑇±

𝜄1 𝜄2 itself, we need to substitute the distorted Fourier transform to the flat Fourier transform (this is
achieved through the wave operator W; see equation (3.24)) and take into account the phase 𝑒𝑖Φ𝜄1 𝜄2 .

Lemma 6.10 (Estimates for T). Consider the operators 𝑇±
𝜄1 𝜄2 defined in equations (5.53)–(5.54). For all

𝑝, 𝑝1, 𝑝2 ∈ (1,∞) with 1
𝑝1

+ 1
𝑝2

= 1
𝑝 , we have��𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇±

𝜄1 𝜄2 ( 𝑓1, 𝑓2) (𝑡)
��
𝐿𝑝 � min

(��〈𝜕𝑥〉−1+𝑒− 𝜄1𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓1
��
𝐿𝑝1

��𝑒− 𝜄2𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓2
��
𝐿𝑝2 ,��𝑒− 𝜄1𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓1

��
𝐿𝑝1

��〈𝜕𝑥〉−1+𝑒− 𝜄2𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓2
��
𝐿𝑝2

)
.

(6.14)

Furthermore, for any 𝑘 ≥ 0��𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇±
𝜄1 𝜄2 ( 𝑓1, 𝑓2) (𝑡)

��
𝑊 𝑘,𝑝 � ‖〈𝜕𝑥〉𝑘−1+𝑒− 𝜄1𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓1‖𝐿𝑝1

��𝑒− 𝜄2𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓2
��
𝐿𝑝2

+
��𝑒− 𝜄1𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓1

��
𝐿𝑝3 ‖〈𝜕𝑥〉

𝑘−1+𝑒− 𝜄2𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓2‖𝐿𝑝4 ,
(6.15)

with (𝑝3, 𝑝4) satisfying the same constraints as (𝑝1, 𝑝2) above.
Finally, if 𝑝 ∈ (1,∞) and f is a function that satisfies the (second and third) assumptions in equation

(7.10), then, for all 𝑡 ∈ [0, 𝑇]��𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇±
𝜄1 𝜄2

(
𝑓 , 𝑓2

)
(𝑡)

��
𝐿𝑝 �

𝜀1√
𝑡
·
��〈𝜕𝑥〉−1+𝑒− 𝜄2𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓2

��
𝐿𝑝 . (6.16)

Proof. We can write

𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇±
𝜄1 𝜄2 ( 𝑓1, 𝑓2) (𝑡) = F̂−1

𝑒−𝑖𝑡 〈𝜉 〉F̃𝑇±
𝜄1 𝜄2 ( 𝑓1, 𝑓2) (𝑡)

= F̂−1
∬

𝑒−𝑖𝑡 𝜄1 〈𝜂〉 𝑓̃1(𝑡, 𝜂) 𝑒−𝑖𝑡 𝜄2 〈𝜎〉 𝑓̃2(𝑡, 𝜎)𝔪±
𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎

= 𝐵𝔪±
𝜄1 𝜄2

(
𝑒−𝑖𝑡 𝜄1 〈𝜕𝑥 〉W∗ 𝑓1(𝑡), 𝑒−𝑖𝑡 𝜄2 〈𝜕𝑥 〉W∗ 𝑓2 (𝑡)

)
,

(6.17)

see the notation of Lemma 6.9. Applying the conclusion of Lemma 6.9 immediately gives equation
(6.14).

To prove equation (6.15), we first write

‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇±
𝜄1 𝜄2 ( 𝑓1, 𝑓2) (𝑡)‖𝑊 𝑘,𝑝 �

��𝐵 〈𝜉 〉𝑘𝔪𝜄1 𝜄2

(
𝑒−𝑖𝑡 𝜄1 〈𝜕𝑥 〉 〈𝐷〉𝑘W∗ 𝑓1(𝑡), 𝑒−𝑖𝑡 𝜄2 〈𝜕𝑥 〉W∗ 𝑓2(𝑡)

)��
𝐿𝑝
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(we are dropping the irrelevant ± apex). Without loss of generality, we may assume that |𝜂 | ≥ |𝜎 | and
|𝜉 | ≥ 1 on the support of equation (6.17). We then want to estimate the 𝐿 𝑝 norm of

F̂−1
∬

𝑒−𝑖𝑡 𝜄1 〈𝜂〉 〈𝜂〉𝑘 𝑓̃1(𝑡, 𝜂) 𝑒−𝑖𝑡 𝜄1 〈𝜎〉 𝑓̃2(𝑡, 𝜎)
[
〈𝜉〉𝑘 〈𝜂〉−𝑘𝔪 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)

]
𝑑𝜂 𝑑𝜎

= 𝐵𝔪′
𝜄1 𝜄2

(
𝑒−𝑖𝑡 𝜄1 〈𝜕𝑥 〉W∗ 𝑓1(𝑡), 𝑒−𝑖𝑡 𝜄2 〈𝜕𝑥 〉W∗ 𝑓2 (𝑡)

) (6.18)

with the obvious definition of 𝔪′
𝜄1 𝜄2 . Note that from the definition in equation (5.54) with equation

(5.11), 𝔪′
𝜄1 𝜄2 can be written, up to irrelevant constants, as 𝔪′

𝜄1 𝜄2 = 𝔞 𝜄1 𝜄2 + 𝔟𝜄1 𝜄2 , with

𝔞 𝜄1 𝜄2 :=
〈𝜉〉𝑘

〈𝜂〉𝑘
∑
𝜆,𝜇,𝜈

𝑎±
− 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎) 1
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)〈𝜂〉〈𝜎〉 𝛿(𝑝),

𝔟𝜄1 𝜄2 :=
〈𝜉〉𝑘

〈𝜂〉𝑘
∑
𝜆,𝜇,𝜈

𝑎±
− 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎) 𝜑∗(𝑝, 𝜂, 𝜎)
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)〈𝜂〉〈𝜎〉 p.v.

𝜙(𝑝)
𝑖𝑝

, 𝑝 := 𝜆𝜉 − 𝜇𝜂 − 𝜈𝜎.

(6.19)

On the support of 𝔞 𝜄1 𝜄2 we automatically must have 〈𝜉〉 � max(〈𝜂〉, 〈𝜎〉) = 〈𝜂〉, so that 𝔞 𝜄1 𝜄2 is a
regular bounded symbol with the same properties as 𝔪±

𝜄1 𝜄2 ; from the result of Lemma 6.9, we deduce

‖𝐵𝔞 𝜄1 𝜄2

(
𝑒−𝑖𝑡 𝜄1 〈𝜕𝑥 〉 〈𝜕𝑥〉𝑘W∗ 𝑓1(𝑡), 𝑒−𝑖𝑡 𝜄2 〈𝜕𝑥 〉W∗ 𝑓2(𝑡)

)
‖
𝐿𝑝

� ‖〈𝜕𝑥〉𝑘−1+𝑒−𝑖𝑡 𝜄1 〈𝜕𝑥 〉W∗ 𝑓1(𝑡)‖𝐿𝑝1 ‖𝑒−𝑖𝑡 𝜄2 〈𝜕𝑥 〉W∗ 𝑓2(𝑡)‖𝐿𝑝2 ,

consistently with the right-hand side of equation (6.15).
On the support of the p.v. component 𝔟𝜄1 𝜄2 , we might not have that 〈𝜉〉 � 〈𝜂〉. However, if 〈𝜉〉 � 〈𝜂〉,

then |𝑝 | � |𝜉 | (in particular the p.v. is not singular), and one can absorb the factor of 〈𝜉〉𝑘 . More
precisely, we can write (dispensing of the 𝜄1𝜄2 indexes)

𝔟 = 𝔟1 + 𝔟2, 𝔟1 := 𝜑≤10(|𝜉 |/|𝜂 |)𝔟

and observe that 𝔟1 has the same properties as (the p.v. part of) 𝔪 so that Lemma 6.9 applies and��𝐵𝔟1

(
𝑒−𝑖𝑡 𝜄1 〈𝜕𝑥 〉 〈𝜕𝑥〉𝑘W∗ 𝑓1(𝑡), 𝑒−𝑖𝑡 𝜄2 〈𝜕𝑥 〉W∗ 𝑓2 (𝑡)

)��
𝐿𝑝

� ‖〈𝜕𝑥〉𝑘−1+𝑒−𝑖𝑡 𝜄1 〈𝜕𝑥 〉W∗ 𝑓1‖𝐿𝑝1

��𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓2
��
𝐿𝑝2 .

The contribution from the remaining piece 𝔟2 can be written as

𝐵𝔟2

(
𝑒−𝑖𝑡 𝜄1 〈𝜕𝑥 〉 〈𝜕𝑥〉𝑘W∗ 𝑓1(𝑡), 𝑒−𝑖𝑡 𝜄2 〈𝜕𝑥 〉W∗ 𝑓2(𝑡)

)
= 𝐵𝔟′

(
𝑒−𝑖𝑡 𝜄1 〈𝜕𝑥 〉W∗ 𝑓1 (𝑡), 𝑒−𝑖𝑡 𝜄2 〈𝜕𝑥 〉W∗ 𝑓2(𝑡)

)
where

𝔟′ :=
∑
𝜆,𝜇,𝜈

𝑎±
− 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎) 𝜑∗(𝜉, 𝜂, 𝑝)
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)〈𝜂〉〈𝜎〉 · 𝜙(𝑝)

𝑖𝑝
· 〈𝜉〉𝑘𝜑>10 (|𝜉 |/|𝜂 |)𝜑≥0 (|𝑝 |/|𝜉 |).

Since |𝑝 | � |𝜉 | and 𝜙 is a Schwartz function, the symbol 𝔟′ has the same properties as 𝔪; using an
𝐿𝑝1 × 𝐿 𝑝2 estimate from Lemma 6.9 gives��𝐵𝔟′

(
𝑒−𝑖𝑡 𝜄1 〈𝜕𝑥 〉W∗ 𝑓1(𝑡), 𝑒−𝑖𝑡 𝜄2 〈𝜕𝑥 〉W∗ 𝑓2(𝑡)

)��
𝐿𝑝 � ‖𝑒−𝑖𝑡 𝜄1 〈𝜕𝑥 〉W∗ 𝑓1‖𝐿𝑝1

��𝑒−𝑖𝑡 𝜄2 〈𝜕𝑥 〉W∗ 𝑓2
��
𝐿𝑝2 ,

which is better than the desired conclusion.
Finally, to prove equation (6.16), we use the linear dispersive estimate in equation (3.34) to take care

of the a𝜖𝜆 multipliers, instead of the Mikhlin multiplier theorem. �
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6.4. The smooth bilinear operator Q𝑹

Lemma 6.11 (Estimates for Q𝑅). Let Q𝑅 be the bilinear term defined in equations (5.56) and (5.15)–
(5.16). Then for any

𝑝1, 𝑝2 ∈ [2,∞), 1
𝑝1

+ 1
𝑝2

<
1
2
,

one has the improved Hölder-type inequality��Q𝑅𝜄1 𝜄2 [ 𝑓1, 𝑓2] (𝑡, 𝜉)��𝐿2 � min
(
‖〈𝜕𝑥〉−1+𝑒−𝑖 𝜄1𝑡 〈𝜕𝑥 〉W∗ 𝑓1‖𝐿𝑝1 ‖𝑒−𝑖 𝜄2𝑡 〈𝜕𝑥 〉W∗ 𝑓2‖𝐿𝑝2 ,

‖𝑒−𝑖 𝜄1𝑡 〈𝜕𝑥 〉W∗ 𝑓1‖𝐿𝑝1 ‖〈𝜕𝑥〉−1+𝑒−𝑖 𝜄2𝑡 〈𝜕𝑥 〉W∗ 𝑓2‖𝐿𝑝2

)
.

(6.20)

Moreover, for 𝑘 ≥ 0,��〈𝜉〉𝑘Q𝑅𝜄1 𝜄2 [ 𝑓1, 𝑓2] (𝑡, 𝜉)��𝐿2 � ‖〈𝜕𝑥〉𝑘−1+𝑒−𝑖 𝜄1𝑡 〈𝜕𝑥 〉W∗ 𝑓1‖𝐿𝑝1 ‖𝑒−𝑖 𝜄2𝑡 〈𝜕𝑥 〉W∗ 𝑓2‖𝐿𝑝2

+ ‖𝑒−𝑖 𝜄1𝑡 〈𝜕𝑥 〉W∗ 𝑓1‖𝐿𝑝3 ‖〈𝜕𝑥〉𝑘−1+𝑒−𝑖 𝜄2𝑡 〈𝜕𝑥 〉W∗ 𝑓2‖𝐿𝑝4

(6.21)

for (𝑝3, 𝑝4) satisfying the same constraints as (𝑝1, 𝑝2) above.
Proof. Recall the structure of the symbol of Q𝑅 from equations (5.15)–(5.16) and (4.6)–(4.7). For the
piece coming from 𝜇𝑅𝜄1 𝜄2 , estimates stronger than the desired equations (6.20)–(6.21) follow directly
from Lemma 4.2. We then only need to look at operators of the form

Q[𝑎, 𝑏] (𝜉) =
∬

𝔮(𝜉, 𝜂, 𝜎) 𝑎̂(𝜂) 𝑏̂(𝜎) 𝑑𝜂 𝑑𝜎

𝔮(𝜉, 𝜂, 𝜎) =
𝑎±
𝜄0 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎)

〈𝜂〉〈𝜎〉
(
1 − 𝜑∗(𝑝, 𝜂, 𝜎)

) 𝜙(𝑝)
𝑝

, 𝑝 = 𝜆𝜉 − 𝜄1𝜇𝜂 − 𝜄2𝜈𝜎,

(6.22)

and prove that ��F̂−1 (
Q[𝑎, 𝑏] (𝜉)

)��
𝐿𝑝 � ‖〈𝜕𝑥〉−1+𝑎‖𝐿𝑝1 ‖𝑏‖𝐿𝑝2 , (6.23)

since by symmetry between the arguments a and b it follows that the right-hand side above can be
replaced by min

(
‖〈𝜕𝑥〉−1+𝑎‖𝐿𝑝1 ‖𝑏‖𝐿𝑝2 , ‖𝑎‖𝐿𝑝1 ‖〈𝜕𝑥〉−1+𝑏‖𝐿𝑝2

)
and that��〈𝜉〉𝑙Q[𝑎, 𝑏] (𝜉)

��
𝐿2 � ‖〈𝜕𝑥〉𝑙−1+𝑎‖𝐿𝑝1 ‖𝑏‖𝐿𝑝2 + ‖𝑎‖𝐿𝑝3 ‖〈𝜕𝑥〉𝑙−1+𝑏‖𝐿𝑝4 . (6.24)

Proof of equation (6.23). As usual, the first step is to observe that the multipliers 𝑎±
𝜄0 𝜄1 𝜄2
𝜆𝜇𝜈

(𝜉, 𝜂, 𝜎) can be

discarded. Also, we may assume without loss of generality that 𝑝 = 𝜉−𝜂−𝜎. Next, we insert Littlewood-
Paley cutoffs in each of the variables 𝜂, 𝜎 and p and consider the localised operator Q𝑘 [𝑎, 𝑏] (𝜉), with
the same form as Q in equation (6.22) but a localised symbol

𝔮𝑘 (𝜉, 𝜂, 𝜎) =
𝔪𝑘 (𝜉, 𝜂, 𝜎)

〈𝜂〉〈𝜎〉
𝜙(𝑝)
𝑝

𝔪𝑘 (𝜉, 𝜂, 𝜎) = 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎)𝜑𝑘3 (𝑝) (1 − 𝜑∗(𝑝, 𝜂, 𝜎)).
(6.25)

We then make the following restrictions on the indexes

𝑘1 ≥ 𝑘2 ≥ 0, and 0 ≥ 𝑘3 ≥ −𝑘+
2 − 𝐷.

These can be explained as follows: 𝑘1 ≥ 𝑘2 is the harder case, since it implies that the derivative gain
in equation (6.23) will be on the larger input frequency; 𝑘2 ≥ 0 amounts to restricting to the case of
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frequencies � 1, which is also the hardest case; 𝑘3 ≤ 0 is a consequence of 𝜙 being Schwartz: values of
|𝑝 | � 1 are exponentially damped, and we will not worry about them here; and finally, 𝑘3 ≥ −𝑘+

2 − 𝐷
follows from the definition of 𝜑∗.

The idea then is to regard Q𝑘 (𝑎, 𝑏) as a trilinear operator acting on a, b and 𝜓 = F−1(𝜙/𝑝), and note
that the symbol 𝔫𝑘 (𝜂, 𝜎, 𝑝) := 𝔪𝑘 (𝜉, 𝜂, 𝜎) satisfies��𝜕𝑎𝜂𝜕𝑏𝜎𝜕𝑐𝑝𝔪𝑘 (𝜂, 𝜎, 𝑝)�� � 2−𝑎𝑘1−𝑏𝑘2−𝑐𝑘3 .

Up to a change of coordinates, Lemma 6.5 and Remark 6.6 apply, leading to the estimate, for any
1 < 𝑞, 𝑝1, 𝑝2 < ∞ such that 1

𝑞 + 1
𝑝1

+ 1
𝑝2

= 1
𝑝 ,��Q𝑘 (𝑎, 𝑏)��𝐿𝑝 � ‖𝑃𝑘3𝜓‖𝐿𝑞 ‖𝑃𝑘1 〈𝜕𝑥〉−1𝑎‖𝐿𝑝1 ‖𝑃𝑘2 〈𝜕𝑥〉−1𝑏‖𝐿𝑝2

� 2− 𝑘3
𝑞 −𝑘2 2−(0+)𝑘1 ‖〈𝜕𝑥〉−1+𝑃𝑘1𝑎‖𝐿𝑝1 ‖𝑃𝑘2𝑏‖𝐿𝑝2 .

It remains to observe that, provided 1 < 𝑞 < ∞,∑
0≥𝑘3 ≥−𝑘+2
𝑘1 ≥𝑘2 ≥0

2− 𝑘3
𝑞 −𝑘2 2−(0+)𝑘1 < ∞.

Proof of equation (6.24). One can proceed as above, modifying the definition of 𝔪𝑘 to

𝔪𝑘 (𝜉, 𝜂, 𝜎) = 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎)𝜑𝑘3 (𝑝) (1 − 𝜑∗(𝜉, 𝜂, 𝜎)) 〈𝜉〉𝑘

〈𝜂〉𝑘 + 〈𝜎〉𝑘
.

and observing that if |𝜉 | ≥ 3max(|𝜂 |, |𝜎 |), then |𝑝 | � |𝜉 |, and any power of 〈𝜉〉 can absorbed by
𝜙(𝑝). �

From the proof of Lemma 6.11 above, we can also deduce the following property, which will be
useful in Section 7.3.

Claim 6.12. We have the following schematic identity for the operator Q𝑅 in equation (5.56):

〈𝜉〉𝜕𝜉Q𝑅 [ 𝑓1, 𝑓2] ≈ 𝑡 · 〈𝜉〉Q𝑅 [ 𝑓1, 𝑓2] + 〈𝜉〉Q𝑅
[
F̃−1(𝜕𝜉 𝑓̃1), 𝑓2

]
. (6.26)

In particular, equations (6.26) and (6.20) imply the following Hölder-type estimate for 〈𝜉〉𝜕𝜉Q𝑅, up
to lower-order terms that can be discarded:

‖〈𝜉〉𝜕𝜉Q𝑅 ( 𝑓1, 𝑓2)‖𝐿2 � 〈𝑡〉
��𝑒−𝑖𝑡 〈𝜕𝑥 〉 〈𝜕𝑥〉0+W∗ 𝑓1

��
𝐿∞−

��𝑒−𝑖𝑡 〈𝜕𝑥 〉 〈𝜕𝑥〉0+W∗ 𝑓2
��
𝐿∞−

+
��〈𝜉〉0+𝜕𝜉 𝑓̃1

��
𝐿2

��〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓2
��
𝐿∞− .

(6.27)

Here, we are using ∞− to denote any arbitrarily large number (see the notation at the end of Section
2.5.1). Note that this last bound is technically a little worse than what one could get: that is, a bound
with only one term at a time carrying a 〈𝜉〉0+ factor in the last product.

An analogous claim holds for the operator T; see Remark 7.7. For the case of T, the proof is contained
in the proof of Lemma 7.6; we refer the reader to that for more details on the type of argument that leads
to equation (6.26) and provide a more succinct argument below.

Proof of Claim 6.12. To see the validity of equation (6.26), we look at the expression in equations
(5.15)–(5.16). Applying 〈𝜉〉𝜕𝜉 gives two contributions: one where 〈𝜉〉𝜕𝜉 hits the exponential phase and
one where it hits the symbol 𝔮. The first contribution is 𝑡𝜉 ·Q𝑅 [ 𝑓1, 𝑓2], which appears on the right-hand
side of equation (6.26).
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When 𝜕𝜉 hits the symbol, we get a few more contributions. First, we observe that 𝜕𝜉 𝜇𝑅0 behaves
exactly like 𝜇𝑅0 , so this is a lower-order term that we can disregard; see Proposition 4.1 and Lemma 4.2.
When 𝜕𝜉 hits 𝔮, we get similar lower-order terms, with the exception of the contributions coming from
𝜕𝜉 hitting p.v.1/𝑝 or 𝜑∗. Under the assumption that |𝜂 | � |𝜎 |, in view of the definition of p, we convert
𝜕𝜉 to 𝜕𝜂 and integrate by parts in 𝜂. When 𝜕𝜂 hits the profile 𝑓̃1(𝜂), we get the second term on the
right-hand side of equation (6.26). When 𝜕𝜂 hits the oscillating phase, we get a term like the first one
in equation (6.26). The other terms where 𝜕𝜂 hits the remaining part of the symbol only contribute
lower-order terms that satisfy stronger estimates than the terms in equation (6.26). �

6.5. The singular cubic terms C𝑺

The next Lemma is a Hölder-type estimate for the singular cubic terms.

Lemma 6.13 (Estimates for ‘cubic singular’ symbols). With the definition in equations (5.57)–(5.58),
consider C𝑆 = C𝑆𝑟𝜄1 𝜄2 𝜄3 , for 𝑟 = 1 or 2, and any combination of signs 𝜄. Then for all 𝑝, 𝑝1, 𝑝2, 𝑝3 ∈ (1,∞)
with 1

𝑝1
+ 1
𝑝2

+ 1
𝑝3

= 1
𝑝 ,

‖𝑒−𝑖𝑡 〈𝜕𝑥 〉F̂−1C𝑆 (𝑎, 𝑏, 𝑐)‖𝐿𝑝

� ‖〈𝜕𝑥〉−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑎‖𝐿𝑝1 ‖〈𝜕𝑥〉−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑏‖𝐿𝑝2 ‖〈𝜕𝑥〉−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑐‖𝐿𝑝3 .
(6.28)

Furthermore, if 𝑘 ≥ 0, and with (𝑝4, 𝑝5, 𝑝6) and (𝑝7, 𝑝8, 𝑝9) satisfying the same conditions as
(𝑝1, 𝑝2, 𝑝3),

‖𝑒−𝑖𝑡 〈𝜕𝑥 〉F̂−1C𝑆 (𝑎, 𝑏, 𝑐)‖𝑊 𝑘,𝑝

� ‖〈𝜕𝑥〉𝑘−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑎‖𝐿𝑝1 ‖〈𝜕𝑥〉−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑏‖𝐿𝑝2 ‖〈𝜕𝑥〉−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑐‖𝐿𝑝3

+ ‖〈𝜕𝑥〉−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑎‖𝐿𝑝4 ‖〈𝜕𝑥〉𝑘−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑏‖𝐿𝑝5 ‖〈𝜕𝑥〉−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑐‖𝐿𝑝6

+ ‖〈𝜕𝑥〉−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑎‖𝐿𝑝7 ‖〈𝜕𝑥〉−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑏‖𝐿𝑝8 ‖〈𝜕𝑥〉𝑘−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑐‖𝐿𝑝9 .

(6.29)

Finally, if 𝑝1 = ∞, and f is a function that satisfies the (second and third) assumptions in equation
(7.10), then for all 𝑡 ∈ [0, 𝑇] and 1

𝑝2
+ 1
𝑝3

= 1
𝑝 , we have

‖𝑒−𝑖𝑡 〈𝜕𝑥 〉F̂−1C𝑆 ( 𝑓 , 𝑏, 𝑐)‖𝐿𝑝 �
𝜀1√
𝑡
‖〈𝜕𝑥〉−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑏‖𝐿𝑝2 ‖〈𝜕𝑥〉−1+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑐‖𝐿𝑝3 , (6.30)

with a similar statement if 𝑝1 = 𝑝2 = ∞.

Proof. Starting from the formulas in equation (5.46) giving 𝔠𝑆1 and 𝔠𝑆2, we first discard the factors

𝑎 𝜖 , 𝜖
′

𝜆,𝜇,𝜇′,𝜈′
−,𝜅1 ,𝜅2 ,𝜅3

(𝜉, 𝜂, 𝜂′, 𝜎′),

which is possible thanks to the Mikhlin multiplier theorem. Omitting these factors and irrelevant
constants and indexes, it suffices to deal with 𝑇𝔢1 and 𝑇𝔢2 (recall the definition in equation (6.4)), where

𝔢1(𝜉, 𝜂, 𝜁 , 𝜃) = 𝐴(𝜉 ± 𝜂)
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜉 ± 𝜂)

1
〈𝜂〉〈𝜉 ± 𝜂〉〈𝜁〉〈𝜃〉 𝛿(𝜉 ± 𝜂 ± 𝜁 ± 𝜃),

𝔢2(𝜉, 𝜂, 𝜁 , 𝜃) = 𝐴(𝜉 ± 𝜂)
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜉 ± 𝜂)

1
〈𝜂〉〈𝜉 ± 𝜂〉〈𝜁〉〈𝜃〉

𝜙(𝜉 ± 𝜂 ± 𝜁 ± 𝜃)
𝜉 ± 𝜂 ± 𝜁 ± 𝜃

.
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For the sake of concreteness, we make a choice of signs (which one it is exactly does not matter):

𝔢1(𝜉, 𝜂, 𝜁 , 𝜃) = 𝐴(𝜉 + 𝜂)
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜉 + 𝜂)

1
〈𝜂〉〈𝜉 + 𝜂〉〈𝜁〉〈𝜃〉 𝛿(𝜉 − 𝜂 + 𝜁 − 𝜃),

𝔢2(𝜉, 𝜂, 𝜁 , 𝜃) = 𝐴(𝜉 + 𝜂)
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜉 + 𝜂)

1
〈𝜂〉〈𝜉 + 𝜂〉〈𝜁〉〈𝜃〉

𝜙(𝜉 − 𝜂 + 𝜁 − 𝜃)
𝜉 − 𝜂 + 𝜁 − 𝜃

.

With the convention for U and V operators (see equation (6.5)), this corresponds, respectively, to the
symbols

𝔣1 (𝜉, 𝜂, 𝜁) = 𝐴(2𝜉 − 𝜂)
Φ 𝜄1 𝜄2 (𝜉, 𝜉 − 𝜂, 2𝜉 − 𝜂)

1
〈𝜉 − 𝜂〉〈2𝜉 − 𝜂〉〈𝜉 − 𝜂 − 𝜁〉〈𝜉 − 𝜁〉

𝔣2 (𝜉, 𝜂, 𝜁 , 𝜃) = 𝐴(2𝜉 − 𝜂)
Φ 𝜄1 𝜄2 (𝜉, 𝜉 − 𝜂, 2𝜉 − 𝜂)

1
〈𝜉 − 𝜂〉〈2𝜉 − 𝜂〉〈𝜉 − 𝜂 − 𝜁 − 𝜃〉〈𝜉 − 𝜁〉 .

We will now only focus on 𝔣1, since 𝔣2 can be treated nearly identically. Different signs 𝜄1, 𝜄2 can-
not be treated identically; for the sake of brevity, we will only treat the most delicate case, namely
(𝜄1, 𝜄2) = (+, +). Changing coordinates to 𝛼 = −𝜉+𝜂, 𝛽 = 2𝜉−𝜂, 𝛾 = 𝜉−𝜁 , and localising dyadically, this
becomes

𝔤1 (𝛼, 𝛽, 𝛾)𝑘 =
𝐴(𝛽)

Φ 𝜄1 𝜄2 (𝛼 + 𝛽, 𝛼, 𝛽)
1

〈𝛼〉〈𝛽〉〈𝛾〉 𝜑
(0)
𝑘1

(𝛼)𝜑 (0)
𝑘2

(𝛽)𝜑 (0)
𝑘3

(𝛾)︸�����������������������������������������������������������������︷︷�����������������������������������������������������������������︸
:= 𝔥1,1

𝑘 (𝛼, 𝛽, 𝛾)

1
〈𝛾 − 2𝛼 − 𝛽〉 𝜑

(0)
𝑘4

(𝛾 − 2𝛼 − 𝛽)︸�����������������������������������︷︷�����������������������������������︸
:= 𝔥1,2

𝑘4
(𝛾 − 2𝛼 − 𝛽)

.

Finally, we need to distinguish cases depending on the signs of 𝛼 and 𝛽; once again, we only consider
the worst case, namely 𝛼, 𝛽 > 0. By equation (6.12), there holds, for all 𝑎, 𝑏, 𝑐,���𝜕𝑎𝛼𝜕𝑏𝛽 𝜕𝑐𝛾𝔥1,1 (𝛼, 𝛽, 𝛾)

��� � 2−(1+𝑎)𝑘1−𝑏𝑘2−(1+𝑐)𝑘3 ,

therefore ‖𝔥1,1
𝑘 ‖𝐿1 � 2−𝑘1−𝑘3 . Since ‖𝔥1,2

𝑘4
‖𝐿1 � 2−𝑘+4 , we obtain that ‖𝔥1

𝑘 ‖𝐿1 � 2−𝑘1−𝑘3−𝑘4 . Applying
Lemma 6.5 and summing over dyadic blocks gives the desired result in equation (6.28). Equation (6.29)
follows in the same way. Finally, using the linear dispersive estimate in equation (3.34) instead of
Mikhlin’s multiplier theorem, we obtain the endpoint estimate in equation (6.30). �

Remark 6.14 (Derivatives of the cubic symbols). In the estimates of Sections 10 and 11, we will perform
various integration by parts arguments in frequency space and will therefore end up differentiating
the cubic symbols appearing in Lemma 6.13 above. The estimates satisfied by the trilinear operators
associated with these differentiated symbols might vary from case to case, depending on the variables
that are differentiated; the localisations imposed in each specific case will determine how these estimates
need to be modified by additional factors. In any case, in all our arguments, the terms obtained when
differentiating the symbols 𝔠𝑆1 and 𝔠𝑆2 will always give lower-order contributions.

7. Bootstrap and basic a priori bounds

In this section, we first give the details of our bootstrap strategy as presented in Sections 2.6 and 2.7; see
equations (2.40)–(2.41). In particular, we close the bootstrap for the profile g, assuming the bootstrap
for the renormalised profile f. In Section 7.2, we give some preliminary bounds on f that will be useful
in later sections. In Section 7.3, we expand the nonlinear expressions in terms of f and establish several
bounds that do not require the analysis of oscillations. Section 7.4 recalls the main equation for 𝑓̃ and
lists all the estimates that are left to be proven in the remainder of the paper.
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7.1. Bootstrap strategy

Recall from equation (1.3) that we are considering initial data such that

‖(〈𝜕𝑥〉𝑢0, 𝑢1)‖𝐻 4 + ‖〈𝑥〉(〈𝜕𝑥〉𝑢0, 𝑢1)‖𝐻 1 ≤ 𝜀0. (7.1)

From the definition of v and g in equations (5.2) and (5.5), we see that 𝑔0 = 𝑢1 − 𝑖
√
𝐻 + 1𝑢0. Therefore,

Proposition 3.6 and Theorem 3.10 imply that

‖〈𝜉〉4𝑔0‖𝐿2 + ‖〈𝜉〉𝜕𝜉𝑔0‖𝐿2 � 𝜀0. (7.2)

From this and the interpolation inequality |𝜑𝑘 (𝜉) ℎ̃(𝜉) |2 � ‖𝜑𝑘 ℎ̃‖𝐿2 ‖𝜕𝜉𝜑𝑘 ℎ̃‖𝐿2 , we see that

‖〈𝜉〉3/2𝑔0‖𝐿∞ � 𝜀0. (7.3)

According to the definition in equations (5.53)–(5.54) for the renormalised profile, we have

𝑓 (𝑡 = 0) =: 𝑓0 = 𝑔0 − 𝑇 (𝑔0, 𝑔0) (𝑡 = 0),

so that using equation (6.15) and estimating as in the proof of Lemma 7.6 below (see in particular
equation (7.29)), we have

‖〈𝜉〉4 𝑓̃0‖𝐿2 + ‖〈𝜉〉𝜕𝜉 𝑓̃0‖𝐿2 � 𝜀0. (7.4)

Again, by interpolation, we obtain

‖〈𝜉〉3/2 𝑓̃0‖𝐿∞ � 𝜀0. (7.5)

In what follows, we consider 𝜀1, 𝜀2 satisfying

𝜀0 � 𝜀1 � 𝜀2, 𝜀2 ≤ 𝜀0 (7.6)

with 𝜀0 sufficiently small. The main bootstrap estimate for g is given by the following:

Proposition 7.1. Assume that, for all 𝑡 ∈ [0, 𝑇],

〈𝑡〉−𝑝0
��〈𝜉〉4𝑔̃(𝑡)

��
𝐿2 + 〈𝑡〉1/2‖𝑒−𝑖𝑡 〈𝜕𝑥 〉1±(𝐷)W∗𝑔(𝑡)‖𝐿∞ ≤ 2𝜀2. (7.7)

Then for all 𝑡 ∈ [0, 𝑇],

〈𝑡〉−𝑝0
��〈𝜉〉4𝑔̃(𝑡)

��
𝐿2 + 〈𝑡〉1/2‖𝑒−𝑖𝑡 〈𝜕𝑥 〉1±(𝐷)W∗𝑔(𝑡)‖𝐿∞ ≤ 𝜀2. (7.8)

Moreover, we also have

‖𝑒−𝑖𝑡 〈𝐷̃〉𝑔(𝑡)‖𝐿∞ � 𝜀2〈𝑡〉−1/2. (7.9)

Proposition 7.1 above implies global-in-time bounds on g and 𝑣 = 𝑒𝑖𝑡 〈𝐷̃〉𝑔(𝑡), hence on the solution u
of equation (KG) (see equation (5.3)); in particular, together with equation (7.28), it gives the the bounds
in equations (1.4) and (1.5) and (1.7) stated in Theorem 1.1. However, since we cannot bootstrap directly
bounds on norms of g, we reduce the proof of Proposition 7.1 to bootstrap estimates on the renormalised
profile 𝑓 := 𝑔 − 𝑇 (𝑔, 𝑔); see equations (5.53)–(5.54). This is our main bootstrap proposition for f :

Proposition 7.2. Assume that for all 𝑡 ∈ [0, 𝑇], we have

〈𝑡〉−𝑝0
��〈𝜉〉4 𝑓̃ (𝑡)

��
𝐿2 + ‖〈𝜉〉𝜕𝜉 𝑓̃ ‖𝑊𝑡

+ ‖〈𝜉〉3/2 𝑓̃ (𝑡)‖𝐿∞ ≤ 2𝜀1 (7.10)
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and that the bounds in equation (7.7) on g hold with 𝜀2 = 𝜀2/3
1 . Then for all 𝑡 ∈ [0, 𝑇],

〈𝑡〉−𝑝0
��〈𝜉〉4 𝑓̃ (𝑡)

��
𝐿2 + ‖〈𝜉〉𝜕𝜉 𝑓̃ ‖𝑊𝑡

+ ‖〈𝜉〉3/2 𝑓̃ (𝑡)‖𝐿∞ ≤ 𝜀1. (7.11)

The proof of Proposition 7.2 will occupy the rest of the paper, Sections 8–11. For now, we show how
Proposition 7.2 implies Proposition 7.1 by using the estimates on the operator T from Lemma 6.10.
First let us make the following remarks:

Remark 7.3. Note that the a priori assumptions in equation (7.10) and the linear dispersive estimates
in equations (3.32) and (3.31) imply��𝑒−𝑖𝑡 〈𝐷̃〉 𝑓 (𝑡)

��
𝐿∞ +

��𝑒−𝑖𝑡 〈𝜕𝑥 〉1±(𝐷)W∗ 𝑓 (𝑡)
��
𝐿∞ � 𝜀1〈𝑡〉−1/2. (7.12)

Also note that, in view of the conservation of the energy equation (1.1), we have that, for all times,

‖𝑔(𝑡)‖𝐿2 + ‖ 𝑓 (𝑡)‖𝐿2 ≤ 𝜀1. (7.13)

The bound for g follows from its definition, and the bound for f can be deduced from 𝑓 = 𝑔 − 𝑇 (𝑔, 𝑔),
the bilinear bound for T in equation (6.14) and the a priori assumptions in equation (7.7).

Remark 7.4. For 𝜄, 𝜅 ∈ {+,−},

𝑓̃ 𝜅𝜄 (𝜉) := 𝑓̃ 𝜄 (𝜉)1𝜅 (𝜉), (7.14)

enjoys the same bootstrap assumptions as 𝑓̃ , since 𝑓̃ (0) = 0; see Lemma 5.8.

Proof of Proposition 7.1 assuming Proposition 7.2. Recall from equation (5.53) that 𝑔 = 𝑓 + 𝑇 (𝑔, 𝑔).
From this, using the bounds on the Sobolev-type norms

〈𝑡〉−𝑝0
��〈𝜉〉4 𝑓̃ (𝑡)

��
𝐿2 ≤ 𝜀1, 〈𝑡〉−𝑝0

��〈𝜉〉4𝑔̃(𝑡)
��
𝐿2 ≤ 2𝜀2,

the bilinear bound in equation (6.15), and the decay estimate from equation (7.7), we get��〈𝜉〉4𝑔̃(𝑡)
��
𝐿2 ≤

��〈𝜉〉4 𝑓̃ (𝑡)
��
𝐿2 +

��〈𝜉〉4F̃𝑇 (𝑔, 𝑔) (𝑡)
��
𝐿2 ≤ 𝜀1〈𝑡〉𝑝0 +

��W∗𝑇 (𝑔, 𝑔) (𝑡)
��
𝐻 4

≤ 𝜀1〈𝑡〉𝑝0 + 𝐶
��W∗𝑔(𝑡)

��
𝐻 4 ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉1±(𝐷)W∗𝑔(𝑡)‖𝐿∞

≤ 𝜀1〈𝑡〉𝑝0 + 𝐶𝜀2〈𝑡〉𝑝0 · 𝜀2〈𝑡〉−1/2

≤ 𝜀1〈𝑡〉𝑝0 + 𝐶𝜀2
2.

This gives the first bound in equation (7.8).
To estimate the 𝐿∞

𝑥 -norm in equation (7.8) we use successively the estimate in equation (7.12),
Sobolev’s embedding and equation (6.15) to get

‖𝑒−𝑖𝑡 〈𝜕𝑥 〉1±(𝐷)W∗𝑔‖𝐿∞ ≤ 𝐶𝜀1〈𝑡〉−1/2 + 𝐶‖𝑒−𝑖𝑡 〈𝜕𝑥 〉1±(𝐷)W∗𝑇 (𝑔, 𝑔)‖𝐿∞

≤ 𝐶𝜀1〈𝑡〉−1/2 + 𝐶‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇 (𝑔, 𝑔)‖𝑊 0+,∞−

≤ 𝐶𝜀1〈𝑡〉−1/2 + 𝐶‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔‖2
𝐿∞−

≤ 𝐶〈𝑡〉−1/2(𝜀1 + 𝜀2
2)

≤ 〈𝑡〉−1/2𝜀2

as desired. We have used here the notation ∞− to denote an arbitrarily large (but finite) number (which
may be different from line to line) consistently with the notation introduced in Section 2.5.1.
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Finally, we show equation (7.9). Note that this does not follow at once from equation (7.8) since W∗ is
not necessarily bounded on 𝐿∞. Observe that, by interpolation of equations (7.12) and (7.13), we have

‖𝑒−𝑖𝑡 〈𝐷̃〉 𝑓 ‖𝐿𝑞 + ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉1±(𝜕𝑥)W∗ 𝑓 ‖𝐿𝑞 ≤ 𝐶𝜀1〈𝑡〉−1/2(1−2/𝑞) . (7.15)

Therefore, for finite q, we have

‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔‖𝐿𝑞 ≤ 𝐶𝜀1〈𝑡〉−1/2(1−2/𝑞) + ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇 (𝑔, 𝑔)‖𝐿𝑞

≤ 𝐶𝜀1〈𝑡〉−1/2(1−2/𝑞) + 𝐶‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔‖2
𝐿2𝑞

≤ 𝐶〈𝑡〉−1/2(1−2/𝑞) (𝜀1 + 𝜀2
2)

≤ 〈𝑡〉−1/2(1−2/𝑞)𝜀2.

Using Gagliardo-Nirenberg interpolation, with the Sobolev-type norm bound in equation (7.7), we
obtain, provided q is large enough,

‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔‖𝑊 1,𝑞 � 〈𝑡〉−1/3𝜀2. (7.16)

Then we can estimate, using equation (7.12) and Sobolev’s embedding,

〈𝑡〉1/2‖𝑒−𝑖𝑡 〈𝐷̃〉𝑔‖𝐿∞ ≤ 𝐶𝜀1 + 〈𝑡〉1/2 · 𝐶‖𝑒−𝑖𝑡 〈𝐷̃〉𝑇 (𝑔, 𝑔)‖𝐿∞

≤ 𝐶𝜀1 + 〈𝑡〉1/2 · 𝐶‖𝑒−𝑖𝑡 〈𝐷̃〉𝑇 (𝑔, 𝑔)‖𝑊 1,∞− .
(7.17)

Using equation (6.15), we have

‖𝑒−𝑖𝑡 〈𝐷̃〉𝑇 (𝑔, 𝑔)‖𝑊 1,∞− � ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇 (𝑔, 𝑔)‖𝐿∞− + ‖〈𝜕𝑥〉𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇 (𝑔, 𝑔)‖𝐿∞−

� ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔‖2
𝑊 1,∞− � 𝜀2

2〈𝑡〉
−2/3.

Plugging this into equation (7.17) gives equation (7.9) provided 𝜀2 is sufficiently small. �

7.2. Preliminary bounds

Recall that our main aim from now on is to prove Proposition 7.2. Therefore, we will work under the
a priori assumptions in equation (7.10) on f, as well as the a priori assumptions in equation (7.7) on g.
We collect below several bounds on f that are immediate consequences of the a priori assumptions.

Lemma 7.5. Under the a priori assumptions in equation (7.10), for all 𝑡 ∈ [0, 𝑇], the following hold
true:

(i) (Basic bounds for f) We have

‖ 𝑓̃ (𝑡)‖𝐿2 + ‖〈𝜉〉3/2 𝑓̃ (𝑡)‖𝐿∞ � 𝜀1, (7.18)

‖〈𝜉〉𝜕𝜉 𝑓̃ (𝑡)‖𝐿2 � 𝜀1〈𝑡〉𝛼+𝛽𝛾 , (7.19)

‖𝜒ℓ,√3𝜕𝜉 𝑓̃ (𝑡)‖𝐿1 � 𝜀12𝛽
′ℓ 〈𝑡〉𝛼, 〈𝑡〉−𝛾 ≤ 2ℓ ≤ 1. (7.20)
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(ii) (Improved low-frequency bounds) For all 𝑘 ≤ −5,

‖𝜑≤𝑘+2𝜕𝜉 𝑓̃ ‖𝐿2 ≤ 𝜀1〈𝑡〉𝛼, (7.21)

‖𝜑𝑘 𝑓̃ (𝑡)‖𝐿∞
𝜉
� 𝜀12𝑘/2〈𝑡〉𝛼, (7.22)

‖𝜑𝑘 𝑓̃ (𝑡)‖𝐿1
𝜉
� 𝜀123𝑘/2〈𝑡〉𝛼, (7.23)

and for all 𝑘 ∈ Z, ��𝜕𝜉 (𝜑𝑘 𝑓̃ ) (𝑡)��𝐿1
𝜉
� 𝜀1min(2𝑘/2, 1)〈𝑡〉𝛼 . (7.24)

(iii) (Linear dispersive estimates) For all 𝑡 ∈ R, we have��𝑒−𝑖𝑡 〈𝐷̃〉 𝑓 (𝑡)
��
𝐿∞ +

��𝑒−𝑖𝑡 〈𝜕𝑥 〉1±(𝜕𝑥)W∗ 𝑓 (𝑡)
��
𝐿∞ � 𝜀1〈𝑡〉−1/2. (7.25)

Proof. Proof of (i): The first norm in equation (7.18) is bounded in view of the conservation of the
Hamiltonian (see equation (7.13)), while the second is part of the a priori assumptions in equation (7.10).
Equation (7.19) follows from equation (7.10) and the definition of 𝑊𝑡 in equation (2.30) by summation
over ℓ with 𝑐〈𝑡〉−𝛾 ≤ 2ℓ ≤ 1. For equation (7.20), we apply the Cauchy-Schwarz inequality and the a
priori bound on the 𝑊𝑡 norm to estimate

‖𝜒ℓ,√3𝜕𝜉 𝑓̃ ‖𝐿1 � 2ℓ/2‖𝜒ℓ,√3𝜕𝜉 𝑓̃ ‖𝐿2 � 𝜀12ℓ/22−𝛽ℓ 〈𝑡〉𝛼 = 𝜀12𝛽
′ℓ 〈𝑡〉𝛼 .

Proof of (ii): Equation (7.21) follows from the definition of the norm in equation (2.30). Since 𝑓̃ (0) = 0,
we have, for 𝑘 ≤ −5,

|𝜑𝑘 (𝜉) 𝑓̃ (𝜉) | = 𝜑𝑘 (𝜉)
��� ∫ 𝜉

0
𝜕𝑦 𝑓̃ (𝑦) 𝑑𝑦

��� ≤ 𝜑𝑘 (𝜉) |𝜉 |1/2‖𝜑≤𝑘+2𝜕𝑦 𝑓̃ ‖𝐿2
𝑦
� 2𝑘/2𝜀1〈𝑡〉𝛼, (7.26)

and

‖𝜑𝑘 𝑓̃ ‖𝐿1 � 2𝑘 ‖𝜑𝑘 𝑓̃ ‖𝐿∞ � 𝜀123𝑘/2〈𝑡〉𝛼 . (7.27)

The estimate in equation (7.24) follows from the a priori if assumption on the weighted norm in equation
(7.10) and from equations (7.22)–(7.23) above as long as | |𝜉 | −

√
3| ≥ 1, and it follows from equation

(7.20) when | |𝜉 | −
√

3| ≤ 1 (which implies |𝑘 | ≤ 5).
Proof of (iii). These estimates follow directly from the linear dispersive estimate in equations (3.31)

and (3.32) and the a priori bounds in equation (7.10). �

We now prove a weak bound on the basic weighted norm of g. This and the a priori bounds in equation
(7.7) will help us to estimate various remainders that come from expanding the nonlinear expressions
in g; see the right-hand side of equation (5.55), in terms of the renormalised profile f ; see Section 7.3.

Lemma 7.6. Under the a priori assumptions in equations (7.10) and (7.7), for all 𝑡 ∈ [0, 𝑇],

‖〈𝜉〉𝜕𝜉 𝑔̃‖𝐿2
𝜉

≤ 𝐶𝜀1〈𝑡〉1/2+𝑝0/2. (7.28)

Proof. We obtain equation (7.28) through a bootstrap argument. More precisely, assuming that for some
C large enough, equation (7.28) holds, it suffices to show the same inequality with 𝐶/2 instead of C.
In view of the formula 𝑔 = 𝑓 + 𝑇 (𝑔, 𝑔) in equations (5.53)–(5.54), the bootstrap assumptions on f (in
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particular the bound in equation (7.19), with C above chosen much larger than the implicit constant
there), it is enough to prove that

‖〈𝜉〉𝜕𝜉𝑇 (𝑔, 𝑔)‖𝐿2
𝜉
� 𝜀2

2〈𝑡〉
1/2+𝑝0/2 (7.29)

under the assumptions in equations (7.28) and (7.7) (recall 𝜀2 = 𝜀2/3
1 ).

From the explicit formula in equation (5.54), we see that

〈𝜉〉𝜕𝜉 F̃𝑇±
𝜄1 𝜄2 (𝑔, 𝑔) = 𝑇1 (𝑔, 𝑔) + 𝑇2 (𝑔, 𝑔),
𝑇1 ( 𝑓1, 𝑓2) := 𝑖𝑡𝜉 F̃𝑇±

𝜄1 𝜄2 ( 𝑓1, 𝑓2),

𝑇2 ( 𝑓1, 𝑓2) :=
∬

𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝑓̃1(𝑡, 𝜂) 𝑓̃2(𝑡, 𝜎) 〈𝜉〉𝜕𝜉𝔪±
𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎.

(7.30)

We need to analyse the formula for 𝔪±
𝜄1 𝜄2 from equations (5.54), (5.11) and (4.4). We can restrict our

attention to the more complicated contribution involving the p.v., since the 𝛿 part is easier to estimate.
This main contribution is (we are dropping all the irrelevant signs, such as 𝜆, 𝜇, 𝜈, and numerical
constants from our notation)

𝔪p.v. :=
1

Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) · 𝑎(𝜉, 𝜂, 𝜎)
〈𝜂〉〈𝜎〉 𝜑∗(𝑝, 𝜂, 𝜎) p.v.

𝜙(𝑝)
𝑖𝑝

,

𝜑∗(𝜉, 𝜂, 𝑝) = 𝜑≤−𝐷0

(
𝑝𝑅(𝜂, 𝜎)) 𝑝 := 𝜆𝜉 − 𝜄1𝜇𝜂 − 𝜄2𝜈𝜎.

(7.31)

For 𝑇1, we can use equation (6.15), the 𝐿∞ decay in equation (7.7) and the interpolation of equation
(7.13) and the Sobolev bound in equation (7.7) to obtain

‖𝑇1 [𝑔, 𝑔] (𝑡)‖𝐿2 � 〈𝑡〉‖〈𝜕𝑥〉W∗𝑇 [𝑔, 𝑔] (𝑡)‖𝐿2 � 〈𝑡〉
��𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔

��
𝐿∞ ‖〈𝜕𝑥〉0+𝑔‖𝐿2

� 〈𝑡〉 · 𝜀2〈𝑡〉−1/2 · 𝜀2〈𝑡〉0+ � 𝜀2
2〈𝑡〉

1/2+.

To handle 𝑇2, we need to look more closely at the formulas in equation (5.54) and equation (5.11)
for 𝔪±

𝜄1 𝜄2 .We apply 𝜕𝜉 and write the result as

〈𝜉〉𝜕𝜉𝔪p.v. := 𝔞 + 𝔟,

𝔞 := 〈𝜉〉𝜕𝜉
[ 1
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) · 𝑎(𝜉, 𝜂, 𝜎)

〈𝜂〉〈𝜎〉 𝜑∗(𝑝, 𝜂, 𝜎)
]

p.v.
𝜙(𝑝)
𝑖𝑝

𝔟 := 〈𝜉〉 1
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) · 𝑎(𝜉, 𝜂, 𝜎)

〈𝜂〉〈𝜎〉 𝜑∗(𝑝, 𝜂, 𝜎) 𝜕𝜉 p.v.
𝜙(𝑝)
𝑖𝑝

,

(7.32)

and, according to this, we define 𝑇𝔞 and 𝑇𝔟 similarly to 𝑇2 in equation (7.30).
By the estimate in equation (5.26), we deduce that𝔞 is a symbol that behaves like (the p.v. contribution

to) 𝔪±
𝜄1 𝜄2 times an extra factor of 〈𝜉〉 · 𝑅(𝜂, 𝜎). In practice, the factor of R loses one derivative on the

input with smaller frequency. Using the Hölder bound from Lemma 6.10, estimating in 𝐿∞ the input
with higher frequency and in 𝐿2 the one with lower frequency, we obtain

‖𝑇𝔞 [𝑔, 𝑔] (𝑡)‖𝐿2 �
��〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔

��
𝐿∞ ‖〈𝜕𝑥〉W∗𝑔‖𝐿2 � 𝜀2

2〈𝑡〉
−1/2+𝑝0/2,

having used interpolation of the Sobolev a priori bound in equations (7.7) and (7.13) on both norms in
the last inequality.

We now estimate the contribution involving 𝔟, assuming without loss of generality that |𝜂 | ≥ |𝜎 |.
The idea is to use that 𝑝 = 𝜆𝜉 − 𝜄1𝜇𝜂 − 𝜄2𝜈𝜎 to convert 𝜕𝜉 into 𝜕𝜂 and integrate by parts in 𝜂; this gives
three types of terms: (1) a term where 𝜕𝜂 hits the profile 𝑓̃ (𝜂), (2) a term where 𝜕𝜂 hits 𝑒𝑖𝑡Φ𝜄1 𝜄2 and (3)
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a term where its hits the rest of the symbol. This last term is essentially the same as 𝔞 in equation (7.32)
(with 𝜕𝜂 replacing 𝜕𝜉 there) and can be handled identically, so we skip it. The contribution from (2) is
of the same form as that of 𝑇1 in equation (7.30), with (𝜂/〈𝜂〉) 𝑓̃1 instead of 𝑓̃1, and therefore satisfies
the same bound. The remaining term is∬

𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎)𝜕𝜂 𝑔̃(𝑡, 𝜂)𝑔̃(𝑡, 𝜎) 〈𝜉〉𝔪p.v. (𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎. (7.33)

This term is of the form 〈𝜉〉𝑇
(
F̃−1

𝜕𝜂 𝑔̃, 𝑔
)
, where the symbol is given by the p.v. part of the full

symbol 𝔪±
𝜄1 𝜄2 . An application of Lemma 6.10 with the bounds in equations (7.28) and (7.7) gives the

following upper bound:

‖𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (7.33)‖𝐿2 �
��F̂−1

〈𝜉〉0+𝜕𝜉 𝑔̃
��
𝐿2

��〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔
��
𝐿∞

� 𝜀2〈𝑡〉1/2+𝑝0/2 · 𝜀2〈𝑡〉−1/2+ � 𝜀2
2〈𝑡〉

𝑝0/2+.

This concludes the estimate in equation (7.29). �

Remark 7.7. The argument in the proof of Lemma 7.6 shows that we have the following schematic
identity for the operator 𝑇 in equation (5.54):

〈𝜉〉𝜕𝜉𝑇 ( 𝑓1, 𝑓2) ≈ 𝑡 · 〈𝜉〉𝑇 ( 𝑓1, 𝑓2) + 〈𝜉〉𝑇
(
F̃−1

𝜕𝜉 𝑓̃1, 𝑓2
)
. (7.34)

This is the analogue of equation (6.26) for Q𝑅. In particular, equation (7.34) implies, via Lemma 6.10,
that

‖𝑒−𝑖𝑡 〈𝜕𝑥 〉F̂−1
〈𝜉〉𝜕𝜉𝑇 ( 𝑓1, 𝑓2)‖𝐿2+𝐿∞−

� 〈𝑡〉‖𝑒−𝑖𝑡 〈𝜕𝑥 〉F̂−1
〈𝜉〉𝑇 ( 𝑓1, 𝑓2)‖𝐿∞− + ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉F̂−1

〈𝜉〉𝑇
(
F̃−1

𝜕𝜉 𝑓̃1, 𝑓2
)
‖𝐿2

� 〈𝑡〉‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇 ( 𝑓1, 𝑓2)‖𝑊 1,∞− + ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇
(
F̃−1

𝜕𝜉 𝑓̃1, 𝑓2
)
‖𝐻 1

� 〈𝑡〉
��𝑒−𝑖𝑡 〈𝜕𝑥 〉 〈𝜕𝑥〉0+W∗ 𝑓1

��
𝐿∞−

��𝑒−𝑖𝑡 〈𝜕𝑥 〉 〈𝜕𝑥〉0+W∗ 𝑓2
��
𝐿∞−

+
��〈𝜉〉0+𝜕𝜉 𝑓̃1

��
𝐿2

��〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓2
��
𝐿∞− .

(7.35)

7.3. Expansions of the nonlinear terms

Our starting point to prove Proposition 7.2 is equation (5.55). To obtain the desired bounds, we first need
to convert the nonlinear terms on the right-hand side of equation (5.55) into multilinear expressions
that depend only on f, plus remainders that depend on both f and g but have a higher degree of
homogeneity (they are at least quartic terms) and, therefore, are easier to bound. This is done by
expanding 𝑔 = 𝑓 +𝑇 (𝑔, 𝑔); see equations (5.53)–(5.54). Thanks to the expansions below, we will obtain
leading order quadratic and cubic (and some quartic) terms that only depend on the renormalised f. For
these leading orders, we can use the stronger bootstrap assumptions in equation (7.10), but the analysis
is still quite involved and will occupy Sections 8–11. The higher-order remainder terms involving both
f and g are taken care of in Lemmas 7.8 and 7.9 below.

Recall the bracket notation introduced after equation (5.56). The following Lemma gives an expansion
for the regular quadratic terms.
Lemma 7.8 (Expansion of Q𝑅). Consider Q𝑅 as defined in equation (5.56) and T as in equations
(5.53)–(5.54). Under the a priori assumptions in equations (7.7) and (7.10), we can write

Q𝑅 [𝑔, 𝑔] = Q𝑅 [ 𝑓 , 𝑓 ] + R1( 𝑓 , 𝑔)
= Q𝑅 [ 𝑓 , 𝑓 ] + Q𝑅 [ 𝑓 , 𝑇 ( 𝑓 , 𝑓 )] + Q𝑅 [𝑇 ( 𝑓 , 𝑓 ), 𝑓 ] + R2( 𝑓 , 𝑔)

(7.36)
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with

〈𝑡〉−𝑝0 ‖〈𝜉〉4R1( 𝑓 , 𝑔) (𝑡)‖𝐿2 + 〈𝑡〉−𝛼‖〈𝜉〉𝜕𝜉R2( 𝑓 , 𝑔) (𝑡)‖𝐿2 � 𝜀2
2〈𝑡〉

−1. (7.37)

Proof. For any bilinear form A, using 𝑔 = 𝑓 + 𝑇 (𝑔, 𝑔), we have 𝐴(𝑔, 𝑔) − 𝐴( 𝑓 , 𝑓 ) = 𝐴( 𝑓 , 𝑇 (𝑔, 𝑔)) +
𝐴(𝑇 (𝑔, 𝑔), 𝑔). Thus, we see that the remainders in equation (7.36) are given by

R1( 𝑓 , 𝑔) = Q𝑅 [ 𝑓 , 𝑇 (𝑔, 𝑔)] + Q𝑅 [𝑇 (𝑔, 𝑔), 𝑔], (7.38)

and

R2( 𝑓 , 𝑔) = Q𝑅 [ 𝑓 , 𝑇 (𝑔, 𝑔) − 𝑇 ( 𝑓 , 𝑓 )] + Q𝑅 [𝑇 (𝑔, 𝑔) − 𝑇 ( 𝑓 , 𝑓 ), 𝑓 ] + Q𝑅 [𝑇 (𝑔, 𝑔), 𝑔 − 𝑓 ]
= Q𝑅 [ 𝑓 , 𝑇 ( 𝑓 , 𝑇 (𝑔, 𝑔))] + Q𝑅 [ 𝑓 , 𝑇 (𝑇 (𝑔, 𝑔), 𝑔)]

+ Q𝑅 [𝑇 ( 𝑓 , 𝑇 (𝑔, 𝑔)), 𝑓 ] + Q𝑅 [𝑇 (𝑇 (𝑔, 𝑔), 𝑔), 𝑓 ] + Q𝑅 [𝑇 (𝑔, 𝑔), 𝑇 (𝑔, 𝑔)] .
(7.39)

Let us first show how to obtain the Sobolev type bound in equation (7.37). Since f enjoys better
estimates than g, it suffices to bound

‖〈𝜉〉4Q𝑅 [𝑇 (𝑔, 𝑔), 𝑔]‖𝐿2 � 𝜀2
2〈𝑡〉

𝑝0−1. (7.40)

From equation (6.21), we get��〈𝜉〉4Q𝑅 [𝑎, 𝑏] (𝑡)
��
𝐿2 � ‖〈𝜉〉3+𝑎̃‖𝐿2 ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑏‖𝐿∞− + ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑎‖𝐿∞− ‖〈𝜉〉3+𝑏̃‖𝐿2 . (7.41)

Interpolating between equations (7.7) and (7.13), and using the bilinear bounds in equations (6.14) and
(6.15), we have

‖〈𝜉〉4Q𝑅 [𝑇 (𝑔, 𝑔), 𝑔]‖𝐿2

� ‖〈𝜉〉3+𝑔̃‖𝐿2 ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇 (𝑔, 𝑔)‖𝐿∞− + ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔‖𝐿∞− ‖〈𝜉〉3+𝑇 (𝑔, 𝑔)‖𝐿2

� 𝜀2〈𝑡〉 (3/4+) 𝑝0 ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔‖2
𝐿∞− + 𝜀2〈𝑡〉−1/2+ · ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔‖𝐿∞− ‖〈𝜉〉3𝑔̃‖𝐿2

� 𝜀3
2〈𝑡〉

(3/4+) 𝑝0 · 〈𝑡〉−1+,

which is bounded by 𝜀3
2〈𝑡〉

𝑝0−1.
We now show how to obtain the weighted bound in equation (7.37) for each of the terms on the

right-hand side of equation (7.39). We will use the identity in equation (6.26), which we restate here for
ease of reference,

〈𝜉〉𝜕𝜉Q𝑅 [ 𝑓1, 𝑓2] ≈ 𝑡 · 〈𝜉〉Q𝑅 [ 𝑓1, 𝑓2] + 〈𝜉〉Q𝑅 [F̃−1
𝜕𝜉 𝑓̃1, 𝑓2], (7.42)

and the bilinear estimate in equation (6.21). The idea is that applying 〈𝜉〉𝜕𝜉 to the quartic expressions
in equation (7.39) will cost at most a factor of t as we see from equation (7.42). Then estimating all the
inputs in 𝐿∞− will give a decaying factor of 𝜀2〈𝑡〉−1/2+ for each of them, for a total gain of 𝜀4

2〈𝑡〉
−2+, and

this will suffice to obtain equation (7.37).
Let us look more in detail at the term Q𝑅 [𝑇 (𝑔, 𝑔), 𝑇 (𝑔, 𝑔)], the other terms being similar or better

since they contain at least one f. According to equation (7.42), we need to estimate

𝑡‖Q𝑅 [F̃−1〈𝜉〉𝑇 (𝑔, 𝑔), 𝑇 (𝑔, 𝑔)]‖𝐿2 , and ‖〈𝜉〉Q𝑅 [F̃−1
𝜕𝜉𝑇 (𝑔, 𝑔), 𝑇 (𝑔, 𝑔)]‖𝐿2 . (7.43)
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For the first term, we use equation (6.21) followed by equation (6.14):

𝑡‖〈𝜉〉Q𝑅 [𝑇 (𝑔, 𝑔), 𝑇 (𝑔, 𝑔)] (𝑡)‖𝐿2

� 〈𝑡〉‖〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇 (𝑔, 𝑔)‖𝐿∞− ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇 (𝑔, 𝑔)‖𝐿∞−

� 〈𝑡〉‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔‖4
𝐿∞− � 𝜀4

2〈𝑡〉
−1+.

For the second term in equation (7.43), we first estimate the first input: using equation (7.35), the a
priori bounds and equation (7.28), give us��〈𝜕𝑥〉𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗(F̃−1

𝜕𝜉𝑇 (𝑔, 𝑔))
��
𝐿2+𝐿∞−

� 〈𝑡〉
��〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔

��
𝐿∞−

��〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔
��
𝐿∞−

+
��〈𝜉〉0+𝜕𝜉 𝑔̃

��
𝐿2

��〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉1±(𝐷)W∗𝑔
��
𝐿∞

� 〈𝑡〉 · 𝜀2〈𝑡〉−1/2+ · 𝜀2〈𝑡〉−1/2+ + 𝜀2〈𝑡〉1/2+𝑝0/2 · 𝜀2〈𝑡〉−1/2 � 𝜀2
2〈𝑡〉

𝑝0/2.

(7.44)

Then, using equation (6.21) with 𝑝2 = 𝑝4 = ∞− and 𝑝1 = 𝑝3 = 2+ or ∞−, and equation (6.15), we
have

‖〈𝜉〉Q𝑅 [F̃−1
𝜕𝜉𝑇 (𝑔, 𝑔), 𝑇 (𝑔, 𝑔)] (𝑡)‖𝐿2

�
��〈𝜕𝑥〉𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗(F̃−1

𝜕𝜉𝑇 (𝑔, 𝑔))
��
𝐿2+𝐿∞− · ‖〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇 (𝑔, 𝑔)‖𝐿∞−

� 𝜀2
2〈𝑡〉

𝑝0/2 · 𝜀2
2〈𝑡〉

−1+,

which is sufficient since 𝑝0 < 𝛼.
The remaining terms in equation (7.39) can be treated similarly, using the estimates of Lemmas 6.10

and 6.11 see also the expressions for 〈𝜉〉𝜕𝜉Q𝑅 and 〈𝜉〉𝜕𝜉𝑇 in equations (6.26)–(6.27) and (7.34)–(7.35)
and the weighted bound in equation (7.28) for 〈𝜉〉𝜕𝜉 𝑔̃. �

Here is a similar expansion for the cubic terms.

Lemma 7.9 (Expansion of C𝑆). Consider C𝑆 defined in equation (5.57). Under the a priori assumptions
in equations (7.7) and (7.10), we have

C𝑆 [𝑔, 𝑔, 𝑔] = C𝑆 [ 𝑓 , 𝑓 , 𝑓 ] + C𝑆 [𝑇 ( 𝑓 , 𝑓 ), 𝑓 , 𝑓 ] + C𝑆 [ 𝑓 , 𝑇 ( 𝑓 , 𝑓 ), 𝑓 ] + C𝑆 [ 𝑓 , 𝑓 , 𝑇 ( 𝑓 , 𝑓 )] + R3 ( 𝑓 , 𝑔)
(7.45)

with

‖〈𝜉〉𝜕𝜉R3 ( 𝑓 , 𝑔) (𝑡)‖𝐿2 � 𝜀3
2〈𝑡〉

−1+𝛼 . (7.46)

Moreover,

‖〈𝜉〉4C𝑆 (𝑔, 𝑔, 𝑔)‖𝐿2 � 𝜀3
2〈𝑡〉

−1+𝑝0 . (7.47)

Proof. We have

R3 ( 𝑓 , 𝑔) = C𝑆 [𝑇 (𝑔, 𝑔), 𝑔, 𝑔] − C𝑆 [𝑇 ( 𝑓 , 𝑓 ), 𝑓 , 𝑓 ] + C𝑆 [ 𝑓 , 𝑇 (𝑔, 𝑔), 𝑔] − C𝑆 [ 𝑓 , 𝑇 ( 𝑓 , 𝑓 ), 𝑓 ]
+ C𝑆 [ 𝑓 , 𝑓 , 𝑇 (𝑔, 𝑔)] − C𝑆 [ 𝑓 , 𝑓 , 𝑇 ( 𝑓 , 𝑓 )] .

(7.48)
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Let us analyse the first two terms, the others being similar, and write the difference as a sum of 5-linear
terms:

C𝑆 [𝑇 (𝑔, 𝑔), 𝑔, 𝑔] − C𝑆 [𝑇 ( 𝑓 , 𝑓 ), 𝑓 , 𝑓 ] = C𝑆 [𝑇 (𝑇 (𝑔, 𝑔), 𝑔), 𝑔, 𝑔] + C𝑆 [𝑇 ( 𝑓 , 𝑇 (𝑔, 𝑔)), 𝑔, 𝑔]
+ C𝑆 [𝑇 ( 𝑓 , 𝑓 ), 𝑇 (𝑔, 𝑔), 𝑔] + C𝑆 [𝑇 ( 𝑓 , 𝑓 ), 𝑓 , 𝑇 (𝑔, 𝑔)] .

(7.49)

The terms on the right-hand side of equation (7.49) are all 5-linear convolution terms with bounded
and sufficiently regular symbols, where each entry, f or g, satisfies a linear decay estimate at the rate
of 〈𝑡〉−1/2 (see equations (7.7) and (7.12)) and an 𝐿2-weighted bound (see equations (7.28) and (7.19)).
It suffices to look at the first term on the right-hand side of equation (7.49) – the other terms are better
since they contain a factor of f, which satisfies stronger assumptions – and show that

‖〈𝜉〉𝜕𝜉C𝑆 [𝑇 (𝑇 (𝑔, 𝑔), 𝑔), 𝑔, 𝑔]‖𝐿2 � 𝜀3
1〈𝑡〉

−1. (7.50)

Inspecting the formula for C𝑆 , we see that applying 𝜕𝜉 gives three types of terms: (1) a term where
𝜕𝜉 hits the exponential, which will cost a factor of t; (2) terms where 𝜕𝜉 hits the symbol; and (3) terms
where 𝜕𝜉 hits 𝛿 or p.v. In the terms (3), we can convert 𝜕𝜉 into 𝜕𝜂 , integrate by parts in 𝜂 and obtain
terms like (1) and (2) above, plus terms where the derivatives hit one of the three inputs; see the similar
argument detailed in the proof of Lemma 7.6.

The terms (2) are lower-order, so we skip them. The main contribution comes from the terms of the
type (1). In the case of equation (7.50), this gives a term whose 𝐿2 norm can be bounded using the
trilinear estimate of Lemma 6.13 and the bilinear bounds for T in Lemma 6.10 as follows:

〈𝑡〉‖〈𝜉〉C𝑆 [𝑇 (𝑇 (𝑔, 𝑔), 𝑔), 𝑔, 𝑔]‖𝐿2

� 〈𝑡〉‖〈𝜕𝑥〉0+W∗𝑇 (𝑇 (𝑔, 𝑔), 𝑔)‖𝐿2 ‖〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔‖2
𝐿∞

� 〈𝑡〉‖W∗𝑇 (𝑔, 𝑔)‖𝐿2 ‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔‖𝐿∞ · 𝜀2
2〈𝑡〉

−1+

� 〈𝑡〉‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔‖2
𝐿∞ ‖𝑔‖𝐿2 · 𝜀2

2〈𝑡〉
−1+ � 𝜀5

2〈𝑡〉
−1+

having also used the a priori assumptions on g in equations (7.7) and (7.13).
Terms of the type (3) above are of the form

‖〈𝜉〉C𝑆 [F̃−1
𝜕𝜉𝑇 (𝑇 (𝑔, 𝑔), 𝑔), 𝑔, 𝑔]‖𝐿2 and ‖〈𝜉〉C𝑆 [𝑇 (𝑇 (𝑔, 𝑔), 𝑔), F̃−1(𝜕𝜉𝑔), 𝑔]‖𝐿2 . (7.51)

The second one is estimated directly using the weak weighted bound in equation (7.28) for ‖𝜕𝜉 𝑔̃‖𝐿2 ,
and estimating the other 4 terms in 𝐿∞ via Lemma 6.13 followed by Lemma 6.10: this gives a bound of
𝜀5

2〈𝑡〉
−3/2+. The first term in equation (7.51) can be handled similarly to the proof of Lemma 7.8 above.

In particular, iterating the identity in equation (7.34) gives

‖〈𝜉〉𝜕𝜉𝑇 (𝑇 (𝑔, 𝑔), 𝑔)‖𝐿2 � 𝜀3
2〈𝑡〉

𝑝0/2. (7.52)

Then up to faster-decaying terms, we can use Lemma 6.13 to bound the 𝐿2-norm of the first term in
equation (7.51) by

𝐶‖〈𝜉〉0+𝜕𝜉𝑇 (𝑇 (𝑔, 𝑔), 𝑔)‖𝐿2 ‖〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔‖2
𝐿∞ � 𝜀3

2 · 𝜀2
2〈𝑡〉

−1+𝑝0/2+,

which suffices for equation (7.46).
The last estimate in equation (7.47) follows from a direct application of Lemma 6.13 and the a priori

bounds in equation (7.7). �

Since we will need to look at iterations of Duhamel’s formula, it is also useful to establish some
bounds for 𝜕𝑡 𝑓 .
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Lemma 7.10 (Estimates for 𝜕𝑡 𝑓 ). Let f be the renormalised profile defined in equations (5.54)–(5.53).
Following the notation in equations (5.55)–(5.57), we can write, under the a priori assumptions in
equations (7.7) and (7.10),

𝜕𝑡 𝑓̃ = C𝑆 ( 𝑓 , 𝑓 , 𝑓 ) + R( 𝑓 , 𝑔), (7.53)

where

‖R(𝑡)‖𝐿2
𝜉
� 𝜀3

2〈𝑡〉
−3/2+2𝛼 . (7.54)

In particular, we have

‖𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝜕𝑡 𝑓 ‖𝐿2+𝐿∞− � 𝜀3
2〈𝑡〉

−3/2+2𝛼 (7.55)

and

‖𝜕𝑡 𝑓 ‖𝐿2 � 𝜀2
1〈𝑡〉

−1. (7.56)

Proof. From equation (5.55), we can write

𝜕𝑡 𝑓̃ = Q𝑅 (𝑔, 𝑔) + C𝑆 (𝑔, 𝑔, 𝑔) + C𝑅 (𝑔, 𝑔, 𝑔) = C𝑆 ( 𝑓 , 𝑓 , 𝑓 ) + R( 𝑓 , 𝑔) (7.57)

with (recall the notation introduced after equation (5.56))

R( 𝑓 , 𝑔) := Q𝑅 [ 𝑓 , 𝑓 ] + Q𝑅 [ 𝑓 , 𝑇 (𝑔, 𝑔)] + Q𝑅 [𝑇 (𝑔, 𝑔), 𝑔] + C𝑅 (𝑔, 𝑔, 𝑔)
+ C𝑆 [𝑇 (𝑔, 𝑔), 𝑔, 𝑔] + C𝑆 [ 𝑓 , 𝑇 (𝑔, 𝑔), 𝑔] + C𝑆 [ 𝑓 , 𝑓 , 𝑇 (𝑔, 𝑔)] .

(7.58)

We estimate each of the terms above, with the exception of Q𝑅 [ 𝑓 , 𝑓 ]. The treatment of this term is
postponed to Section 11.3, where the desired bound is given in equation (11.45) (and proven using an
argument from Section 8).

Recall the multilinear estimates of Lemmas 6.10, 6.11 and 6.13. For the second term on the right-
hand side of equation (7.58), we use equation (6.20) followed by equation (6.14) and the a priori decay
estimate in equation (7.25) to obtain

‖Q𝑅 [ 𝑓 , 𝑇 (𝑔, 𝑔)]‖𝐿2 �
��𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓

��
𝐿∞−

��𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇 (𝑔, 𝑔)
��
𝐿∞−

�
��𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓

��
𝐿∞− ·

��𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔
��2
𝐿∞−

� 𝜀1〈𝑡〉−1/2(𝜀2〈𝑡〉−1/2+)2,

which suffices for equation (7.54). The third term on the right-hand side of equation (7.58) can be
estimated identically. For the fifth term, we have

‖C𝑆 [𝑇 (𝑔, 𝑔), 𝑔, 𝑔]‖𝐿2 �
��𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑇 (𝑔, 𝑔)

��
𝐿2

��𝑒−𝑖𝑡 〈𝜕𝑥 〉1±(𝐷)W∗𝑔
��2
𝐿∞

�
��𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗𝑔

��
𝐿2

��𝑒−𝑖𝑡 〈𝜕𝑥 〉1±(𝐷)W∗𝑔
��3
𝐿∞ � 𝜀4

2〈𝑡〉
−3/2.

The remaining two terms involving C𝑆 can be estimated in the same way. �

7.4. Summary and remaining estimates

Recall equation (5.55) for the evolution of 𝑓̃ . According to Lemmas 7.8 and 7.9, the right-hand side of
equation (5.55) can be expressed in terms of 𝑓̃ itself, up to remainders of sufficiently high homogeneity
(in f and g), depending on the norms that one wants to bound.
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For further reference, we recall here (see equations (7.36) and (7.45)) that we can write

𝜕𝑡 𝑓̃ = Q𝑅 [ 𝑓 , 𝑓 ] + C𝑆 [𝑔, 𝑔, 𝑔] + R1( 𝑓 , 𝑔)
= Q𝑅 [ 𝑓 , 𝑓 ] + Q𝑅 [ 𝑓 , 𝑇 ( 𝑓 , 𝑓 )] + Q𝑅 [𝑇 ( 𝑓 , 𝑓 ), 𝑓 ] + C𝑆 [ 𝑓 , 𝑓 , 𝑓 ]

+ C𝑆 [𝑇 ( 𝑓 , 𝑓 ), 𝑓 , 𝑓 ] + C𝑆 [ 𝑓 , 𝑇 ( 𝑓 , 𝑓 ), 𝑓 ] + C𝑆 [ 𝑓 , 𝑓 , 𝑇 ( 𝑓 , 𝑓 )] + R2( 𝑓 , 𝑔) + R3( 𝑓 , 𝑔).
(7.59)

Notice that, compared to equation (5.55), here we are discarding the C𝑅 terms, according to the discussion
in Section 5.7. The remainder terms R1, respectively R2 and R3, decay sufficiently fast in the Sobolev-
type, respectively, weighted norm, that they can be bounded by simply integrating in time the estimates
in equation (7.37), respectively equations (7.37) and (7.46).

We now list the terms that we still need to handle in order to conclude the proof of the main bootstrap
Proposition 7.2.
Sobolev estimate. In view of equations (7.59) and (7.47), only Q𝑅 ( 𝑓 , 𝑓 ) remains to be bounded in the
Sobolev type norm; we do this in Section 11.2.
Weighted estimate. So far, we have only taken care of higher-order remainder terms, which did not
require any refined multilinear analysis. The estimate for the main terms, which are much more delicate,
are distributed as follows:

• Q𝑅 ( 𝑓 , 𝑓 ) is treated in Section 8 for the main interacting frequencies and in Section 11.1 for the rest
of the interactions.

• The terms Q𝑅 [ 𝑓 , 𝑇 ( 𝑓 , 𝑓 )] and Q𝑅 [𝑇 ( 𝑓 , 𝑓 ), 𝑓 ] are estimated in Section 11.3.
• For C𝑆 ( 𝑓 , 𝑓 , 𝑓 ), see Section 9 for the main interactions and Section 11.4 for the other interactions.
• The terms C𝑆 [𝑇 ( 𝑓 , 𝑓 ), 𝑓 , 𝑓 ], C𝑆 [ 𝑓 , 𝑇 ( 𝑓 , 𝑓 ), 𝑓 ] and C𝑆 [ 𝑓 , 𝑓 , 𝑇 ( 𝑓 , 𝑓 )] are estimated in

Section 11.3.

Distorted Fourier 𝐿∞-norm. We deal with the last piece of the bootstrap norm in equation (7.10) as
follows:

• Section 10 contains the main part of the argument: we analyse the cubic terms of the form
C𝑆 ( 𝑓 , 𝑓 , 𝑓 ) and derive an asymptotic expression for them as 𝑡 → ∞. We first do this with formal
stationary phase arguments in Section 10.1. The expressions obtained will lead to an ODE for 𝜕𝑡 𝑓̃ ,
which we show is Hamiltonian at leading order, and preserves | 𝑓̃ (𝑘) |2 + | 𝑓̃ (−𝑘) |2; see Section 10.2.
From this, we derive a long-range scattering correction and estimates for the leading order terms in
the 𝐿∞

𝜉 -type norm. Then, in Section 10.3, we show how to rigorously justify the above asymptotics
and complete the control over the 𝐿∞

𝜉 norm of the ‘singular’ cubic terms.
• The results in Section 11.3 give us integrable-in-time decay for the 𝐿∞

𝜉 -norm of Q𝑅 ( 𝑓 , 𝑓 ) and of all
the other cubic and quartic order terms on the right-hand side of equation (7.59).

8. Weighted estimates part I: the main ‘regular’ interaction

The weighted estimates for the ‘regular’ interactions are one of the most technical parts of the paper due
to the presence of a fully coherent interaction at output frequencies ±

√
3. Our main goal is to show the

following:

Proposition 8.1. Consider the u solution of equation (KG) such that the a priori assumptions in equation
(7.10) on the renormalised profile f hold. The ‘regular’ quadratic term Q𝑅 = Q𝑅 ( 𝑓 , 𝑓 ) (see equation
(5.15)) satisfies ����〈𝜉〉𝜕𝜉 ∫ 𝑡

0
Q𝑅 [ 𝑓 , 𝑓 ] (𝑠, 𝜉) 𝑑𝑠

����
𝑊𝑇

� 𝜀2
1. (8.1)
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After setting up the framework for the proof of equation (8.1), in the rest of this section we will focus
on the main interactions within Q𝑅, which, using the notation from equation (5.15), are those involving
frequencies

|𝜂 | + |𝜎 | + |〈𝜉〉 − 2| � 1. (8.2)

We will leave the rest of the interactions, for example those with |𝜂 | ≈ 1 or |𝜉 | �
√

3, for later; see
Section 11.1.

For ease of reference, we recall the definition of the norm we are estimating (see equations (2.26)–
(2.30)):

‖𝑔‖𝑊𝑇
:= sup
𝑛≥0

sup
ℓ∈Z∩[ �−𝛾𝑛�,0]

‖𝜒 [−𝛾𝑛,0]
ℓ,

√
3

( · ) 𝜏𝑛 (𝑡)1[0,𝑇 ] (𝑡) 𝑔(𝑡, ·)‖
𝐿∞
𝑡 𝐿

2
𝜉

2𝛽ℓ2−𝛼𝑛, (8.3)

where our parameters satisfy 0 < 𝛼, 𝛽, 𝛾 < 1/2 with

𝛾𝛽′ < 𝛼 <
1
2
𝛽′, 𝛾′ :=

1
2

− 𝛾 < 𝛽′ :=
1
2

− 𝛽 � 1. (8.4)

We also recall the a priori assumptions in equation (7.10) that we will use throughout the proof:

sup
𝑡 ∈[0,𝑇 ]

[
‖〈𝜉〉3/2 𝑓̃ (𝑡)‖𝐿∞ + 〈𝑡〉−𝑝0 ‖〈𝜉〉4 𝑓̃ ‖𝐿2

]
+ ‖〈𝜉〉𝜕𝜉 𝑓̃ ‖𝑊𝑇

≤ 2𝜀1. (8.5)

8.1. Setup and reductions

In view of the definitions, we aim to show that for any integer 𝑛 = 0, 1, . . . , [log2 (𝑇 + 2)] + 1 and ℓ ∈ Z,
we have, for 𝑡 ≈ 2𝑛,

2−𝛼𝑛2𝛽ℓ
���𝜒 [−𝛾𝑛,0]
ℓ,

√
3

(𝜉) 𝜕𝜉
∫ 𝑡

0
Q𝑅 ( 𝑓 , 𝑓 ) (𝑠) 𝑑𝑠

���
𝐿2
� 𝜀2

1. (8.6)

Recall from equation (5.15) and Remarks 5.1 and 7.4 that we can effectively work with

Q𝑅 (𝑡, 𝜉) =
∑

𝜄1 , 𝜄2 ∈{+,−}
𝜅0 ,𝜅1 ,𝜅2 ∈{+,−}

Q𝑅𝜄1 𝜄2
𝜅0𝜅1𝜅2

(𝑡, 𝜉), (8.7)

where

Q𝑅𝜄1 𝜄2
𝜅0𝜅1𝜅2

[ 𝑓 , 𝑓 ] (𝑡, 𝜉) = −𝜄1𝜄21𝜅0 (𝜉)
∬

𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝔮 𝜄1 𝜄2
𝜅0𝜅1𝜅2

(𝜉, 𝜂, 𝜎) 𝑓̃ 𝜅1𝜄1 (𝑡, 𝜂) 𝑓̃ 𝜅2𝜄2 (𝑡, 𝜎) 𝑑𝜂 𝑑𝜎,

Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) := 〈𝜉〉 − 𝜄1〈𝜂〉 − 𝜄2〈𝜎〉,
(8.8)

and the symbols satisfy for any 𝑎, 𝑏, 𝑐

|𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎)𝜕𝑎𝜉 𝜕
𝑏
𝜂𝜕
𝑐
𝜎 𝔮 𝜄1 𝜄2𝜅0𝜅1𝜅2

(𝜉, 𝜂, 𝜎) | � 2−max(𝑘1 ,𝑘2)2(𝑎+𝑏+𝑐)min(𝑘1 ,𝑘2) . (8.9)

Notation convention for the indexes. For notational simplicity, we will drop the superscripts 𝜅 𝑗 , which
play no role. We will also drop the subscripts 𝜄1, 𝜄2 from the profiles 𝑓̃ , since 𝑓̃ 𝜅𝜄 enjoys the same
bootstrap bounds as 𝑓̃ . We do keep the signs 𝜄1, 𝜄2 for the phases Φ 𝜄1 , 𝜄2 as these do play a role in the
estimates. Also, recall that we are adopting the notation introduced after equation (5.56).

When applying 𝜕𝜉 to Q𝑅𝜄1 𝜄2 , we can, by Lemma 5.9, omit the prefactor 1𝜅0 (𝜉); furthermore, we only
need to estimate the terms where 𝜕𝜉 hits the phase as the terms where 𝜕𝜉 hits the symbols 𝔮 are much
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easier to treat. In other words, we can consider that

〈𝜉〉𝜕𝜉Q𝑅𝜄1 𝜄2 (𝑡, 𝜉) ≈ I𝑅𝜄1 𝜄2 (𝑡, 𝜉),

where

I𝑅𝜄1 𝜄2 (𝑡, 𝜉) := 𝑡𝜉

∬
𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝔮(𝜉, 𝜂, 𝜎) 𝑓̃ (𝑡, 𝜂) 𝑓̃ (𝑡, 𝜎) 𝑑𝜂 𝑑𝜎, (8.10)

and restrict all our attention to these terms.
In view of equation (8.6) and the definitions in equations (2.26)–(2.28), it will suffice to show that

for 𝑛 = 0, 1, . . . , [log2(𝑇 + 2)] + 1 and 𝑡 ≈ 2𝑛 (𝑡 ∈ [0, 𝑇]), we have���𝜑≤−𝛾𝑛 (|𝜉 | −
√

3)
∫ 𝑡

0
I𝑅𝜄1 𝜄2 (𝑠, ·) 𝑑𝑠

���
𝐿2
𝜉

� 𝜀2
1 2𝛼𝑛2𝛽𝛾𝑛 (8.11)

and that for all 𝑛 = 1, . . . , [log2 (𝑇 + 2)] + 1, any ℓ ∈ Z ∩ (−𝛾𝑛, 0), and for any 𝑚 = 0, 1, . . . , we have,
for all 𝑡 ≈ 2𝑛, ���𝜒ℓ,√3(𝜉)

∫ 𝑡

0
I𝑅𝜄1 𝜄2 (𝑠, ·) 𝜏𝑚(𝑠) 𝑑𝑠

���
𝐿2
𝜉

� 𝜀2
1 2𝛼𝑚2−𝛽ℓ , (8.12)

where the functions 𝜏0, 𝜏1, . . . in equation (8.12) are a partition of the interval [0, 𝑡], with properties as
in equation (2.26).

We begin with a reduction of the main bounds in equations (8.11)–(8.12) to estimates for each fixed m.

Lemma 8.2. To prove equations (8.10)–(8.12), it suffices to show the following three inequalities:

(1) For all 𝑚 = 0, 1, . . .���𝜑≤ℓ0 (|𝜉 | −
√

3)
∫ 𝑡

0
I𝑅𝜄1 𝜄2 (𝑠) 𝜏𝑚(𝑠) 𝑑𝑠

���
𝐿2
𝜉

� 𝜀2
1 2𝛼𝑚2𝛽𝛾𝑚, ℓ0 := −1

2
𝑚 − 3𝛽′𝑚; (8.13a)

(2) For all 𝑚 = 1, 2, . . . , and ℓ ∈ (ℓ0,−𝛾𝑚] ∩ Z���𝜑ℓ (|𝜉 | − √
3)

∫ 𝑡

0
I𝑅𝜄1 𝜄2 (𝑠) 𝜏𝑚(𝑠) 𝑑𝑠

���
𝐿2
𝜉

� 𝜀2
1 2𝛼𝑚2−𝛽ℓ · 2−2𝛽′𝑚; (8.13b)

(3) For all 𝑚 = 1, 2, . . . , and ℓ ∈ (−𝛾𝑚, 0] ∩ Z���𝜑ℓ (|𝜉 | − √
3)

∫ 𝑡

0
I𝑅𝜄1 𝜄2 (𝑠) 𝜏𝑚 (𝑠) 𝑑𝑠

���
𝐿2
𝜉

� 𝜀2
1 2𝛼𝑚2−𝛽ℓ . (8.13c)

Proof. Let us first show how equations (8.13a)–(8.13b) imply equation (8.11). For all 𝑛 = 0, 1, . . . , we
estimate���𝜑≤−𝛾𝑛 (|𝜉 | −

√
3)

∫ 𝑡

0
I𝑅𝜄1 𝜄2 (𝑠) 𝑑𝑠

���
𝐿2
𝜉

≤
∑

0≤𝑚≤𝑛

���𝜑≤−𝛾𝑚(|𝜉 | −
√

3)
∫ 𝑡

0
I𝑅𝜄1 𝜄2 (𝑠) 𝜏𝑚(𝑠) 𝑑𝑠

���
𝐿2
𝜉

≤
∑

0≤𝑚≤𝑛

���𝜑≤ℓ0 (|𝜉 | −
√

3)
∫ 𝑡

0
I𝑅𝜄1 𝜄2 (𝑠) 𝜏𝑚(𝑠) 𝑑𝑠

���
𝐿2
𝜉

(8.14)

+
∑

0≤𝑚≤𝑛

∑
ℓ0<ℓ≤−𝛾𝑚

���𝜑ℓ (|𝜉 | − √
3)

∫ 𝑡

0
I𝑅𝜄1 𝜄2 (𝑠) 𝜏𝑚(𝑠) 𝑑𝑠

���
𝐿2
𝜉

. (8.15)
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The inequality in equation (8.13a) takes care directly of equation (8.14) giving a bound of 𝜀2
1 2𝛼𝑛2𝛽𝛾𝑛

as desired. For equation (8.15), we use equation (8.13b) to obtain

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (8.15) � 𝜀2
1

∑
0≤𝑚≤𝑛

2𝛼𝑚2−𝛽ℓ0 · 2−2𝛽′𝑚 = 𝜀2
1 2𝛼𝑛2𝛽 (1/2+3𝛽′)𝑛 · 2−2𝛽′𝑛 � 𝜀2

1 2𝛼𝑛2𝛽𝛾𝑛,

where the last inequality follows from 𝛽(1/2 + 3𝛽′) − 2𝛽′ = 𝛽/2 + 𝛽′(3𝛽 − 2) ≤ 𝛽/2 − 𝛽𝛾′ = 𝛽𝛾; see
equation (8.4).

Next, observe that the inequalities in equations (8.13b) and (8.13c) directly imply equation (8.12)
when ℓ ∈ (ℓ0, 0] ∩ Z. When −𝛾𝑛 < ℓ ≤ ℓ0, equation (8.13a) gives���𝜑ℓ (|𝜉 | − √

3)
∫ 𝑡

0
I𝑅𝜄1 𝜄2 (𝑠) 𝜏𝑚(𝑠) 𝑑𝑠

���
𝐿2
𝜉

� 𝜀2
1 2𝛼𝑚2𝛽𝛾𝑚 � 𝜀2

1 2𝛼𝑚2−𝛽ℓ ,

since 𝛾 < 1/2 < 1
2 + 3𝛽′. �

8.2. Proof of equation (8.13a)

For any function c, 𝑚 = 0, 1, . . . and 𝑘 ≤ 0, we define

𝑋𝑘,𝑚(𝑐) := min
(
‖𝜑𝑘 𝑐̃‖𝐿1 , 2−𝑚−𝑘 (‖𝜕𝜉 (𝜑𝑘 𝑐̃)‖𝐿1 + 2−𝑘 ‖𝜑 [𝑘−5,𝑘+5] 𝑐̃‖𝐿1

) )
. (8.16)

A more general variant of this quantity will appear in equation (11.11) when we will also include the
treatment of input frequencies � 1. Note that in view of the a priori assumptions in equation (8.5) and
the consequent bounds in equations (7.23)–(7.24), for the profile f, we have, for 𝑘 < 0,

𝑋𝑘,𝑚 := 𝑋𝑘,𝑚
(
𝑓 (𝑡)𝜏𝑚(𝑡)

)
� 𝜀1min

(
23𝑘/2, 2−𝑚−𝑘/2)2𝛼𝑚,∑

𝑘<0
𝑋𝑘,𝑚 � 𝜀12−3𝑚/42𝛼𝑚. (8.17)

We have the following lemma.

Lemma 8.3. Let I𝑅𝜄1 𝜄2 be the term defined in equation (8.10). Then, under the a priori assumptions in
equation (8.5), we have ��I𝑅𝜄1 𝜄2 (𝑠, ·)��𝐿∞

𝜉
� 𝜀2

12−𝑚/2+2𝛼𝑚, 𝑠 ≈ 2𝑚. (8.18)

Proof. The signs (𝜄1𝜄2) are not relevant for this bound, so we drop them from our notation and denote
I𝑅𝜄1 𝜄2 simply as I. We look at the expression in equation (8.10) and decompose dyadically the frequencies
𝜂 and 𝜎, estimating

sup
𝑠≈2𝑚

|I(𝑠, 𝜉) | � 2𝑚
∑
𝑘1 ,𝑘2

sup
𝑠≈2𝑚

|𝐼𝑘1 ,𝑘2 (𝑠, 𝜉) |,

𝐼𝑘1 ,𝑘2 (𝑠, 𝜉) := 𝐼𝑘1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠, 𝜉),

𝐼𝑘1 ,𝑘2 [𝑎, 𝑏] (𝑠, 𝜉) :=
∬

𝑒𝑖𝑠Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝔮(𝜉, 𝜂, 𝜎) 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎) 𝑎̃(𝑡, 𝜂) 𝑏̃(𝑡, 𝜎) 𝑑𝜂 𝑑𝜎.

(8.19)

Note that we are adopting the same notation used for Q𝑅 (see below equation (5.56)) for the above
bilinear terms. We claim that for any two functions 𝑎, 𝑏, we have

|𝐼𝑘1 ,𝑘2 [𝑎, 𝑏] (𝑠, 𝜉) | � 𝑋𝑘1 ,𝑚(𝑎) · 𝑋𝑘2 ,𝑚(𝑏), 𝑠 ≈ 2𝑚. (8.20)
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Then equations (8.19), (8.20) and (8.17) give the desired conclusion in equation (8.18).
Let us prove equation (8.20). A first estimate is obtained by using |𝔮 | � 1:

|𝐼𝑘1 ,𝑘2 [𝑎, 𝑏] (𝑠, 𝜉) | � ‖𝜑𝑘1 𝑎̃‖𝐿1 ‖𝜑𝑘2 𝑏̃‖𝐿1 . (8.21)

For our second estimate, we integrate by parts in 𝜂 to obtain

|𝐼𝑘1 ,𝑘2 [𝑎, 𝑏] (𝑠, 𝜉) |

�
1
𝑠

���∬ 𝑒𝑖𝑠Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝜕𝜂
[ 〈𝜂〉
𝜂

𝔮(𝜉, 𝜂, 𝜎) 𝜑𝑘1 (𝜂) 𝑎̃(𝑠, 𝜂)
]
𝜑𝑘2 (𝜎) 𝑏̃(𝑠, 𝜎) 𝑑𝜂 𝑑𝜎

���. (8.22)

We then have a few different contributions depending on the term upon which 𝜕𝜂 falls. The term when
𝜕𝜂 hits 𝜑𝑘1𝑎 is bounded by

𝐶2−𝑚2−𝑘1 ‖𝜕𝜂 (𝜑𝑘1 𝑎̃(𝑠))‖𝐿1 ‖𝜑𝑘2 𝑏̃(𝑠)‖𝐿1 , (8.23)

and the term when 𝜕𝜂 hits the factor 1/𝜂 is upper bounded by

𝐶2−𝑚2−2𝑘1 ‖𝜑𝑘1 𝑎̃(𝑠)‖𝐿1 ‖𝜑𝑘2 𝑏̃(𝑠)‖𝐿1 . (8.24)

The term where 𝜕𝜂 hits 𝔮 is a lower-order term since |𝜕𝜂𝔮 | � 1, so we can disregard it.
Finally, for our last estimate, we can integrate by parts in equation (8.22) also in the 𝜎 variable.

Arguing as above, we obtain

|𝐼𝑘1 ,𝑘2 [𝑎, 𝑏] (𝑠, 𝜉) | � 𝑋𝑘1 ,𝑚(𝑎)
×

(
2−𝑚2−𝑘2 ‖𝜕𝜂 (𝜑𝑘2 𝑏̃(𝑠))‖𝐿1 + 2−𝑚2−2𝑘2 ‖𝜑𝑘2 𝑏̃(𝑠))‖𝐿1

)
.

(8.25)

Putting together equations (8.21), (8.24) and (8.25) gives equation (8.20) and completes the proof. �

As an immediate application of Lemma 8.3, we complete the proof of equation (8.13a). Using
Hölder’s and equation (8.18), recalling that ℓ0 := −𝑚/2 − 3𝛽′𝑚, we have

2−𝛼𝑚2−𝛽𝛾𝑚
���𝜑≤ℓ0 (|𝜉 | −

√
3)

∫ 𝑡

0
I𝑅𝜄1 𝜄2 𝜏𝑚(𝑠)𝑑𝑠

���
𝐿2
� 2−𝛼𝑚2−𝛽𝛾𝑚2ℓ0/2 · 2𝑚 sup

𝑠≈2𝑚

��I𝑅𝜄1 𝜄2 (𝑠)��𝐿∞

� 2−𝛽𝛾𝑚 · 2−𝑚/4−(3/2)𝛽′𝑚 · 𝜀2
12𝑚/22𝛼𝑚 � 𝜀2

1,

since, by equation (8.4),

−𝛽𝛾 + 1/4 − (3/2)𝛽′ + 𝛼 = 𝛽′/2 + 𝛾′/2 − 𝛽′𝛾′ − (3/2)𝛽′ + 𝛼 ≤ −𝛽′/2 + 𝛼 ≤ 0.

In view of the above estimate and Lemma 8.2, to show the desired bounds in equations (8.11)–(8.12),
it remains to prove equations (8.13b)–(8.13c).

8.3. Proof of equations (8.13b)–(8.13c): preliminary decompositions

We proceed with the proofs of equations (8.13b) and (8.13c) by looking at various subcases depending
on the sizes of the modulation and frequencies relative to time. For the remainder of the section, we
assume furthermore that

ℓ ≤ −7𝛽′𝑚. (8.26)

We will deal with ℓ > −7𝛽′𝑚 in Section 11.1.
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For notational convenience, we slightly redefine the time-cutoff function appearing in the expression
in equation (8.10) for I𝑅𝜄1 𝜄2 (𝑡) to be 2−𝑚𝑡𝜏𝑚(𝑡) (but still denote it with the same letter 𝜏𝑚) so that we can
estimate���𝜒ℓ,√3

∫ 𝑡

0
I𝑅𝜄1 𝜄2 (𝑠) 𝜏𝑚(𝑠) 𝑑𝑠

��� � 2𝑚
∑

𝑝≥𝑝0 , 𝑘1 ,𝑘2

���𝜒ℓ,√3

∫ 𝑡

0
𝐼 𝑝,𝑘1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠, 𝜉) 𝜏𝑚(𝑠) 𝑑𝑠

���, (8.27)

where, for any two functions 𝑎, 𝑏, we denote

𝐼 𝑝,𝑘1 ,𝑘2
𝜄1 𝜄2 [𝑎, 𝑏] (𝑡, 𝜉) :=

∬
𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝜑 (𝑝0)

𝑝

(
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)

)
𝔮𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)

× 𝜑𝑘1 (𝜂)𝑎̃ 𝜄1 (𝜂) 𝜑𝑘2 (𝜎) 𝑏̃ 𝜄2 (𝜎) 𝑑𝜂 𝑑𝜎, 𝑝0 := −𝑚 + 𝛿𝑚,

Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) := 〈𝜉〉 − 𝜄1〈𝜂〉 − 𝜄2〈𝜎〉,

(8.28)

for some fixed 𝛿 ∈ (0, 10−3). Note that we have inserted a localisation 𝜑 (𝑝0)
𝑝 (Φ 𝜄1 𝜄2) in the size of the

phase; see the notation in equations (2.23)–(2.24). Also note that the parameter 𝑝0 here is not the same
as the one appearing in the a priori estimates, such as in equation (7.10); however, this should not cause
any confusion here since the one in equation (8.28) is the only 𝑝0 that will appear in this section.

To better focus on the main interactions, for the remainder of this section, we will assume in addition
that

𝑘1, 𝑘2 ≤ −10 (8.29)

(see equation (8.2)), and we will deal with the complementary case in Section 11.1. Note that equations
(8.29) and (8.26) imply that 𝑝 ≤ 10. Without loss of generality, we can also assume that

𝑘1 ≥ 𝑘2.

The a priori bound in equation (7.23) gives���𝜒ℓ,√3

∫ 𝑡

0
I𝑅𝜄1 𝜄2 (𝑠) 𝜏𝑚(𝑠) 𝑑𝑠

��� � 22𝑚
∑
𝑝,𝑘1 ,𝑘2

sup
𝑠≈2𝑚

‖𝜑𝑘1 𝑓̃ (𝑠)‖𝐿1 ‖𝜑𝑘2 𝑓̃ (𝑠)‖𝐿1

� 22𝑚
∑
𝑝,𝑘1 ,𝑘2

23𝑘1/22𝛼𝑚𝜀1 · 23𝑘2/22𝛼𝑚𝜀1.
(8.30)

Since there are at most𝑂 (𝑚) indexes p (because 𝑝0 ≤ 𝑝 ≤ 10), if we take the sum in equation (8.30) over
𝑘2 < −2𝑚 or 𝑘1 < −2𝑚/3, we obtain an upper bound of 𝐶𝜀2

122𝛼𝑚𝑚, which, also in view of equations
(8.26) and 𝛼 < 𝛽′/2, gives equations (8.13b)–(8.13c). We can then assume 𝑘2 ≥ −2𝑚 and 𝑘1 ≥ −2𝑚/3.

At this point we also restrict our estimates to the case

(𝜄1𝜄2) = (++) (8.31)

in equation (8.28) and will deal with the other relatively simpler cases in Section 11.1. We drop the
signs from the expression in equation (8.28) by denoting

𝐼 𝑝,𝑘1 ,𝑘2 (𝑡, 𝜉) := 𝐼 𝑝,𝑘1 ,𝑘2
++ [ 𝑓 , 𝑓 ] (𝑡, 𝜉)

:=
∬

𝑒𝑖𝑡Φ( 𝜉 ,𝜂,𝜎) 𝜑 (𝑝0)
𝑝

(
Φ(𝜉, 𝜂, 𝜎)

)
𝔮(𝜉, 𝜂, 𝜎)𝜑𝑘1 (𝜂) 𝑓̃ (𝑡, 𝜂) 𝜑𝑘2 (𝜎) 𝑓̃ (𝑡, 𝜎) 𝑑𝜂 𝑑𝜎,

Φ(𝜉, 𝜂, 𝜎) := 〈𝜉〉 − 〈𝜂〉 − 〈𝜎〉.
(8.32)
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Note that, since |𝜂 |, |𝜎 | ≤ 1/100, we have

Φ(𝜉, 𝜂, 𝜎) =
√

3
2

(|𝜉 | −
√

3) − 1
2
𝜂2 − 1

2
𝜎2 +𝑂 ((|𝜉 | −

√
3)2 + 𝜂4 + 𝜎4). (8.33)

Moreover, on the support of the integrals in equation (8.32), we have, when 𝑝 > 𝑝0,

|Φ(𝜉, 𝜂, 𝜎) | ≈ 2𝑝 , |𝜂 | ≈ 2𝑘1 , |𝜉2 − 3| ≈ 2ℓ .

Then in particular, ⎧⎪⎪⎨⎪⎪⎩
2𝑝 ≈ 2ℓ if 2ℓ � 22𝑘1 ,
2𝑝 ≈ 22𝑘1 if 2ℓ � 22𝑘1 ,
2𝑝 � 2ℓ if 2ℓ ≈ 22𝑘1 .

(8.34)

In the case 𝑝 = 𝑝0, we have |Φ| � 2−𝑚+𝛿𝑚 � 2ℓ since ℓ > ℓ0 = −𝑚/2 − 3𝛽′𝑚 (see equation (8.13a)).
Summarizing the reductions above, we have the following lemma:

Lemma 8.4. Let 𝐼 𝑝,𝑘1 ,𝑘2 be as in equation (8.32). To prove equations (8.13b)–(8.13c) for (𝜄1𝜄2) = (++),
it will suffice to show that for all 𝑚 = 1, 2, . . .

2𝑚
����𝜒ℓ,√3(·)

∫ 𝑡

0
𝐼 𝑝,𝑘1 ,𝑘2 (·, 𝑠) 𝜏𝑚 (𝑠) 𝑑𝑠

����
𝐿2
𝜉

� 𝜀2
1 2−𝛽ℓ2−2𝛽′𝑚 (8.35)

for all

− (1/2 + 3𝛽′)𝑚 =: ℓ0 < ℓ ≤ −7𝛽′𝑚,

− 𝑚 + 𝛿𝑚 =: 𝑝0 ≤ 𝑝 ≤ 0,
− 2𝑚 ≤ 𝑘2 ≤ 𝑘1 ≤ −10, 𝑘1 ≥ −2𝑚/3.

(8.36)

Note that the quantity on the right-hand side of equation (8.35), with no 2𝛼𝑚 factor, also takes into
consideration the summation over 𝑘1, 𝑘2 and p, which is made of at most 𝑂 (𝑚3) terms. In several cases
we will not need to use cancellations coming from the time integration and will prove the following
stronger version of the bound in equations (8.35)–(8.36):

2𝑚
��𝜒ℓ,√3 (𝜉)𝐼

𝑝,𝑘1 ,𝑘2 (𝑠, 𝜉)
��
𝐿2
𝜉

� 𝜀2
1 2−𝑚2−𝛽ℓ · 2−2𝛽′𝑚, ∀ 𝑠 ≈ 2𝑚. (8.37)

Let us now prove a general lemma that improves on Lemma 8.3 and will help deal with several basic
cases.

Lemma 8.5. With the definition in equation (8.28) (but omitting the signs 𝜄1, 𝜄2 for lighter notation) and
equation (8.16), we have, for all 𝑠 ≈ 2𝑚,��𝜒ℓ,√3 𝐼

𝑝,𝑘1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠, 𝜉)
�� � 𝑋𝑘1 ,𝑚( 𝑓 ) · 𝑋𝑘2 ,𝑚( 𝑓 ), (8.38)

and, in particular, ��𝜒ℓ,√3 𝐼
𝑝,𝑘1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠)

��
𝐿2 � 2ℓ/2 · 𝑋𝑘1 ,𝑚 ( 𝑓 ) · 𝑋𝑘2 ,𝑚( 𝑓 ). (8.39)

Furthermore,��𝜒ℓ,√3 𝐼
𝑝,𝑘1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠)

��
𝐿2 � 2𝑝−𝑘1/2 · 2−𝑚−𝑘1

[
‖𝜕𝜉 [𝜑𝑘1 𝑓̃ ]‖𝐿2 + 2−𝑘1 ‖𝜑 [𝑘1−5,𝑘1+5] 𝑓̃ ‖𝐿2

]
𝑋𝑘2 ,𝑚 ( 𝑓 ).

(8.40)
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As the proof below will show, the estimates of Lemma 8.5 hold for general expressions as in equation
(8.28) with any combination of signs (𝜄1, 𝜄2) and not only for the expression in equation (8.32). In
particular, we can use this result in Section 11.1 for the proof of equation (11.5).

Proof of Lemma 8.5. The bound in equation (8.38) follows similarly to the bound in equation (8.20),
the only difference being the presence of the cutoff 𝜑 (𝑝0)

𝑝 (Φ) in the definition of 𝐼 𝑝,𝑘1 ,𝑘2 (see equation
(8.28)) versus that of 𝐼𝑘1 ,𝑘2 (see equation (8.19)). However, this is easily dealt with by observing that,
for |𝜂 | ≈ 2𝑘1 , ��� 1

𝑠𝜕𝜂Φ
𝜕𝜂𝜑

(𝑝0)
𝑝 (Φ)

��� = ��� 1
𝑠𝜕𝜂Φ

𝜑 (𝑝0)
𝑝

′
(Φ)𝜕𝜂Φ

��� � 2−𝑚−𝑝 ≤ 2−𝑚−𝑝0 = 2−𝛿𝑚,

so that hitting this additional cutoff gives lower-order contributions, and one can iterate the integration
by parts in 𝜂 again.

Remark 8.6. We will apply the above argument several times in what follows and treat as lower-
order remainders all those terms where derivatives in 𝜂 and 𝜎 fall on an expression of the form
𝜒(2−𝑝Φ(𝜉, 𝜂, 𝜎)) for some smooth 𝜒.

Equation (8.39) follows directly from Cauchy-Schwarz in 𝜉. Let us now prove equation (8.40). Notice
that we may assume 𝑝 ≤ 2𝑘1 − 10, for otherwise equation (8.39) already gives the desired inequality.
Indeed, if 𝑝 > 2𝑘1 − 10, then we must have 2ℓ � 2𝑝 and 2ℓ/2 � 2𝑝−𝑘1 so that using

𝑋𝑘1 ,𝑚 � 2−𝑚−𝑘1/2
[
‖𝜕𝜉 [𝜑𝑘1 𝑓̃ ]‖𝐿2 + 2−𝑘1 ‖𝜑 [𝑘1−5,𝑘1+5] 𝑓̃ ‖𝐿2

]
recalls equations (8.16)–(8.17) and we get equation (8.40) from equation (8.39).

We look at the integral in equation (8.28) and begin with an integration by parts in 𝜂 obtaining a
main contribution of

1
𝑠

∬
𝑒𝑖𝑠Φ( 𝜉 ,𝜂,𝜎) 𝜑 (𝑝0)

𝑝

(
Φ(𝜉, 𝜂, 𝜎)

) 〈𝜂〉
𝜂

𝔮(𝜉, 𝜂, 𝜎) 𝜕𝜂
[
𝜑𝑘1 (𝜂) 𝑓̃ (𝑠, 𝜂)

]
𝜑𝑘2 (𝜎) 𝑓̃ (𝑠, 𝜎) 𝑑𝜂 𝑑𝜎. (8.41)

A lower-order contribution comes from 𝜕𝜂 hitting the symbol 𝔮. We can bound in equation (8.41) by

𝐶2−𝑚2−𝑘1

∫
𝐾 (𝜉, 𝜂)

��𝜕𝜂 [𝜑𝑘1 (𝜂) 𝑓̃ (𝑠, 𝜂)]
�� 𝑑𝜂,

𝐾 (𝜉, 𝜂) := 𝜑 [𝑘1−2,𝑘1+2] (𝜂)
∫

𝜑 (𝑝0)
𝑝

(
Φ(𝜉, 𝜂, 𝜎)

)
𝜑𝑘2 (𝜎) | 𝑓̃ (𝑠, 𝜎) | 𝑑𝜎.

(8.42)

We have ∫
𝐾 (𝜉, 𝜂) 𝑑𝜂 �

∫ ( ∫
𝐸𝑘1 , 𝑝

𝑑𝜂
)
𝜑𝑘2 (𝜎) | 𝑓̃ (𝑠, 𝜎) | 𝑑𝜎,

where

𝐸𝑘1 , 𝑝 := {𝜂 ∈ R : |𝜂 | ≈ 2𝑘1 , | − 〈𝜉〉 + 〈𝜂〉 + 〈𝜎〉| ≈ 2𝑝}. (8.43)

Notice that for fixed 𝜉 and 𝜎, the set 𝐸𝑘1 , 𝑝 is contained in at most two intervals of length ≈ 2𝑝−𝑘1 . We
can then estimate

sup
𝜉

∫
𝐾 (𝜉, 𝜂) 𝑑𝜂 � 2𝑝−𝑘1 ‖𝜑𝑘2 𝑓̃ ‖𝐿1 . (8.44)

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.9


Forum of Mathematics, Pi 99

Similarly, we also have

sup
𝜂

∫
𝐾 (𝜉, 𝜂) 𝑑𝜉 � 2𝑝 ‖𝜑𝑘2 𝑓̃ ‖𝐿1 . (8.45)

The first bound needed for equation (8.40) then follows from the definition in equation (8.16), equation
(8.42), equations (8.44)–(8.45) and Schur’s test:��𝜒ℓ,√3 𝐼

𝑝,𝑘1 ,𝑘2 (𝑠)
��
𝐿2 � 2−𝑚−𝑘1

��� ∫
𝐾 (𝜉, 𝜂)

��𝜕𝜂 [𝜑𝑘1 (𝜂) 𝑓̃ (𝑠, 𝜂)]
�� 𝑑𝜂���

𝐿2

� 2−𝑚−𝑘1 · 2𝑝−𝑘1/2 · ‖𝜕𝜂 [𝜑𝑘1 𝑓̃ ]‖𝐿2 ‖𝜑𝑘2 𝑓̃ ‖𝐿1 .

To complete the proof of equation (8.40), we integrate by parts also in 𝜎 in equation (8.41) and then
use Schur’s test as above. �

Before proceeding, let us note that, as a corollary of Lemma 8.5, we may assume the two following
inequalities on our parameters:(

1
2

+ 𝛽

)
ℓ + min(−𝑚 − 𝑘1/2, 3𝑘1/2) + min(−𝑚 − 𝑘2/2, 3𝑘2/2) ≥ −2𝑚 − (2𝛼 + 2𝛽′)𝑚 (8.46)

and

𝛽ℓ + 𝑝 − 3𝑘1/2 + min(−𝑚 − 𝑘2/2, 3𝑘2/2) ≥ −𝑚 − (2𝛼 + 2𝛽′)𝑚. (8.47)

Indeed, if equation (8.46) does not hold, the bound in equation (8.37) follows using equation (8.39).
Similarly, if equation (8.47) does not hold, then we can use equation (8.40) to obtain equation (8.37).

We now proceed with the proof of equations (8.35)–(8.36), or the stronger equation (8.37) when
possible. We will analyse the following regions separately:

Region 1 (Section 8.4): 𝑝 ≤ −𝑚/2 − 3𝛽′𝑚 − 10,

Region 2 (Section 8.5): − 𝑚/2 − 3𝛽′𝑚 − 10 ≤ 𝑝 ≤ −𝑚/3 − 10𝛽′𝑚, ℓ ≥ 𝑝 + 10,

Region 3 (Section 8.6): − 𝑚/2 − 3𝛽′𝑚 − 10 ≤ 𝑝, ℓ ≤ 𝑝 + 10,

Region 4 (Section 8.7): 𝑝 ≥ −𝑚/3 − 10𝛽′𝑚, ℓ ≥ 𝑝 + 10.

(8.48)

8.4. Case 𝒑 ≤ −𝒎/2 − 3𝜷′𝒎 − 10

In this region there is almost no oscillation in time s, and we prove equation (8.37). Since we are working
under the assumptions −𝑚/2 − 3𝛽′𝑚 ≤ ℓ ≤ −10, we have

|ℓ − 2𝑘1 | ≤ 5. (8.49)

Applying equation (8.39) and (8.40), we see that to obtain a bound consistent with equation (8.37), it
suffices to show that

min
(
2ℓ/22−𝑘1/2, 2𝑝−3𝑘1/2) · 2(−3/4+2𝛼)𝑚 � 2−𝑚2−𝛽ℓ2−2𝛽′𝑚.
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In view of equation (8.49), it then suffices that

either 23𝑘1/2 � 2−𝑚/42−2𝛼𝑚2−3𝛽′𝑚 or 2𝑝−𝑘1/2 � 2−𝑚/42−2𝛼𝑚2−3𝛽′𝑚. (8.50)

The verification of equation (8.50) follows from 𝑝 ≤ −𝑚/2.

8.5. Case −𝒎/2 − 3𝜷′𝒎 − 10 ≤ 𝒑 ≤ −𝒎/3 − 10𝜷′𝒎, and ℓ ≥ 𝒑 + 10

In this case, we also have |ℓ−2𝑘1 | ≤ 10. Relying again on equation (8.40), for equation (8.35) it suffices
to prove that

2𝑝−3𝑘1/222𝛼𝑚2−3𝑚/4 � 2−𝑚2−𝛽ℓ2−2𝛽′𝑚. (8.51)

We then consider two possibilities:

- If we use that 𝑝 ≤ 2𝑘1 + 20 and |ℓ − 2𝑘1 | ≤ 10, equation (8.51) is implied by

23𝑘1/2 � 2−(1/4+2𝛼+3𝛽′)𝑚. (8.52)

- If we use that 𝑝 ≤ −𝑚3 − 10𝛽′𝑚 and |ℓ − 2𝑘1 | ≤ 10, equation (8.51) is implied by

2−𝑘1/2 � 2𝑚(1/12−2𝛼+7𝛽′) . (8.53)

Then we observe that equation (8.52) is satisfied if 𝑘1 ≤ −𝑚6 − 2
3 [2𝛼 + 3𝛽′]𝑚, while equation (8.53)

is satisfied if 𝑘1 ≥ −𝑚6 + (4𝛼 − 14𝛽′)𝑚; finally, we notice that these latter two inequalities cover all
possible values of 𝑘1 since 𝛼 < 𝛽′/2.

8.6. Case 𝒑 ≥ −𝒎/2 − 3𝜷′𝒎 − 10, and ℓ ≤ 𝒑 + 10

This case is more delicate than the previous ones. Moreover, many of the arguments that we will
perform here will also be relevant in the last case in Section 8.7. In order to obtain a bound consistent
with equation (8.35) for this case, it suffices to show

2ℓ/2
���𝜒ℓ,√3(𝜉)

∫ 𝑡

0
𝐼 𝑝,𝑘1 ,𝑘2 (𝑠, 𝜉) 𝜏𝑚 (𝑠) 𝑑𝑠

���
𝐿2
� 𝜀2

1 2−𝑚2−3𝛽′𝑚, (8.54)

for all

− 𝑚/2 − 2𝛽′𝑚 − 10 ≤ 𝑝, −(1/2 + 3𝛽′)𝑚 ≤ ℓ ≤ 𝑝 + 10, 𝑘2 ≤ 𝑘1 ≤ −10, 𝑘1 ≥ −2𝑚/3.
(8.55)

Step 1: Integration by parts in time
The first step is to resort to integration by parts in s, using that |Φ| ≈ 2𝑝 � 2ℓ . Let us denote

𝐼 𝑝,𝑘1 ,𝑘2 [𝑔, ℎ] (𝑠, 𝜉) :=
∬

𝑒𝑖𝑠Φ
𝜑𝑝

(
Φ

)
Φ

𝔮(𝜉, 𝜂, 𝜎) 𝜑𝑘1 (𝜂)𝑔̃(𝜂) 𝜑𝑘2 (𝜎) ℎ̃(𝜎) 𝑑𝜂 𝑑𝜎, (8.56)

where we have dropped some of the dependence on the time s and on the frequencies for ease of
notation. Note that we are writing 𝐼 𝑝,𝑘1 ,𝑘2 for a bilinear term similar to 𝐼 𝑝,𝑘1 ,𝑘2 , but there the symbol
has an additional division by Φ.

Integrating by parts in s,���𝜒ℓ,√3(𝜉)
∫ 𝑡

0
𝐼 𝑝,𝑘1 ,𝑘2 (𝑠, 𝜉) 𝜏𝑚(𝑠) 𝑑𝑠

��� � |𝐽 (𝑡, 𝜉) | + |𝐾 (𝑡, 𝜉) | + |𝐿(𝑡, 𝜉) |, (8.57)
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where

𝐽 (𝑡, 𝜉) := 𝜒ℓ,
√

3(𝜉)𝐼
𝑝,𝑘1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑡, 𝜉) − 𝜒ℓ,

√
3(𝜉)𝐼

𝑝,𝑘1 ,𝑘2 [ 𝑓 , 𝑓 ] (0, 𝜉)

− 𝜒ℓ,
√

3 (𝜉)
∫ 𝑡

0
𝐼 𝑝,𝑘1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠, 𝜉) 𝑑𝑑𝑠 𝜏𝑚(𝑠) 𝑑𝑠,

(8.58)

𝐾 (𝑡, 𝜉) := 𝜒ℓ,
√

3 (𝜉)
∫ 𝑡

0
𝐼 𝑝,𝑘1 ,𝑘2 [𝜕𝑠 𝑓 , 𝑓 ] (𝑠, 𝜉) 𝜏𝑚(𝑠) 𝑑𝑠, (8.59)

𝐿(𝑡, 𝜉) := 𝜒ℓ,
√

3 (𝜉)
∫ 𝑡

0
𝐼 𝑝,𝑘1 ,𝑘2 [ 𝑓 , 𝜕𝑠 𝑓 ] (𝑠, 𝜉) 𝜏𝑚(𝑠) 𝑑𝑠. (8.60)

For equation (8.54), it then suffices to prove

2ℓ/2 ��𝐴(𝑡, ·)
��
𝐿2 � 𝜀2

12−𝑚2−3𝛽′𝑚, 𝐴 = 𝐽, 𝐾, 𝐿, (8.61)

or the stronger

2ℓ
��𝐴(𝑡, 𝜉)

�� � 𝜀2
12−𝑚2−3𝛽′𝑚, 𝐴 = 𝐽, 𝐾, 𝐿. (8.62)

In the proof, we will look at K and L in various scenarios (while J is easier and directly estimated)
depending on the size of ℓ, p, 𝑘1 and so on. . .We will also split them into various pieces along the
argument. In most cases, we will show that the contributions we obtain are bounded as in equation
(8.62), while we will bound the 𝐿2 norms as in equation (8.61) only in Section 8.7.

In view of equation (8.38) in Lemma 8.5 and Remark 8.6, we see that the operator defined in equation
(8.56) satisfies the estimates

|𝐼 𝑝,𝑘1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠, 𝜉) | � 2−𝑝 · 𝑋𝑘1 ,𝑚 · 𝑋𝑘2 ,𝑚, 𝑠 ≈ 2𝑚. (8.63)

Estimate of equation (8.58)
J is a boundary term and is easy to deal with. It suffices to show

2ℓ
��𝜒ℓ,√3(𝜉) 𝐼

𝑝,𝑘1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠, 𝜉)
�� � 𝜀2

12−𝑚2−3𝛽′𝑚 (8.64)

for all 𝑠 ≈ 2𝑚. From equation (8.63), we obtain the bound

2ℓ
��𝐼 𝑝,𝑘1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠, 𝜉)

�� � 2ℓ · 2−𝑝 · 𝑋𝑘1 ,𝑚 · 𝑋𝑘2 ,𝑚 � 𝜀2
12(−3/2+2𝛼)𝑚, (8.65)

which is more than sufficient.

Estimate of equation (8.59)
For the other terms in equation (8.57), we need to expand 𝜕𝑠 𝑓̃ and analyse the resulting quartic terms in
more detail. We use the identity in equation (7.53) from Lemma 7.10 and write

𝐾 + 𝐿 =
∑
𝜄1 𝜄2 𝜄3

𝐾𝑆1
𝜄1 𝜄2 𝜄3 + 𝐾𝑆2

𝜄1 𝜄2 𝜄3 + 𝐿𝑆1
𝜄1 𝜄2 𝜄3 + 𝐿𝑆2

𝜄1 𝜄2 𝜄3 + 𝐷𝑅, (8.66)

𝐾𝑆1,2
𝜄1 𝜄2 𝜄3 (𝑡, 𝜉) := 𝜒ℓ,

√
3 (𝜉)

∫ 𝑡

0
𝐼 𝑝,𝑘1 ,𝑘2

[
F̃−1C𝑆1,2

𝜄1 𝜄2 𝜄3 ( 𝑓 , 𝑓 , 𝑓 ), 𝑓
]
(𝑠, 𝜉) 𝜏𝑚(𝑠) 𝑑𝑠, (8.67)

𝐿𝑆1,2
𝜄1 𝜄2 𝜄3 (𝑡, 𝜉) := 𝜒ℓ,

√
3 (𝜉)

∫ 𝑡

0
𝐼 𝑝,𝑘1 ,𝑘2

[
𝑓 , F̃−1C𝑆1,2

𝜄1 𝜄2 𝜄3 ( 𝑓 , 𝑓 , 𝑓 )
]
(𝑠, 𝜉) 𝜏𝑚(𝑠) 𝑑𝑠, (8.68)

𝐷𝑅 (𝑡, 𝜉) := 𝜒ℓ,
√

3 (𝜉)
∫ 𝑡

0

(
𝐼 𝑝,𝑘1 ,𝑘2

[
F̃−1R, 𝑓

[
(𝑠, 𝜉) + 𝐼 𝑝,𝑘1 ,𝑘2

[
𝑓 , F̃−1R

]
(𝑠, 𝜉)

)
𝜏𝑚(𝑠) 𝑑𝑠. (8.69)
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Notice that since we assume 𝑘2 ≤ 𝑘1, the expressions in equations (8.67) and (8.68) are not symmetric.
We proceed to estimate in equations (8.67)–(8.69).

Step 2.1: Estimate of 𝑲𝑺1 in equation (8.67)
In the formulas in equations (5.46) and (5.47) for C𝑆1, observe that the signs 𝜆, 𝜈, . . . do not play any
relevant role, so we can omit them and write 𝐾𝑆1

𝜄1 𝜄2 𝜄3 as a term of the form

𝐾𝑆1
𝜄1 𝜄2 𝜄3 =

∫ 𝑡

0

⨌
𝑒𝑖𝑠Ψ𝜄1 𝜄2 𝜄3 ( 𝜉 ,𝜌,𝜁 ,𝜂,𝜎) 𝜑𝑝

(
Φ(𝜉, 𝜂, 𝜎)

)
Φ(𝜉, 𝜂, 𝜎) 𝔮(𝜉, 𝜂, 𝜎, 𝜌, 𝜁) 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎)

× 𝑓̃ 𝜄1 (𝜌) 𝑓̃ 𝜄2 (𝜁) 𝑓̃ 𝜄3 (𝜂 − 𝜌 − 𝜁) 𝑓̃ (𝜎) 𝑑𝜂 𝑑𝜁 𝑑𝜌 𝑑𝜎 𝜏𝑚(𝑠)𝑑𝑠,
(8.70)

where

Ψ𝜄1 𝜄2 𝜄3 (𝜉, 𝜌, 𝜁 , 𝜂, 𝜎) := 〈𝜉〉 − 𝜄1〈𝜌〉 − 𝜄2〈𝜁〉 − 𝜄3〈𝜂 − 𝜌 − 𝜁〉 − 〈𝜎〉, 𝜄1, 𝜄2, 𝜄3 ∈ {+,−}, (8.71)

and we slightly abuse notation by still denoting 𝔮 for the quartic symbol above, obtained by ‘composing’
the quadratic and cubic one.

We will sometimes denote the oscillating phase equation (8.71) just by Ψ and omit the dependence
on the signs 𝜄𝑖 of the profiles f, since these play no important role.

Remark 8.7. Note that Ψ involves four input frequencies (𝜌, 𝜁 , 𝜂 − 𝜌 − 𝜁, 𝜎): the first three are ‘corre-
lated’, while𝜎 is ‘uncorrelated’. In the following arguments, we will always keep in mind this distinction
and perform different estimates for the ‘correlated’ frequencies and the ‘uncorrelated’ ones.

We further decompose the integral over the frequencies in equation (8.70) according to the sizes of
𝜌, 𝜁 and 𝜂 − 𝜌 − 𝜁 by defining

𝐼 𝑝,𝑘 (𝑠, 𝜉) :=
⨌

𝑒𝑖𝑠Ψ
𝜑𝑝

(
Φ

)
Φ

𝔮 𝜑𝑘 (𝜂, 𝜎, 𝜌, 𝜁) 𝑓̃ (𝜌) 𝑓̃ (𝜁) 𝑓̃ (𝜂 − 𝜌 − 𝜁) 𝑓̃ (𝜎) 𝑑𝜂 𝑑𝜁 𝑑𝜌 𝑑𝜎,

𝜑𝑘 (𝜂, 𝜎, 𝜌, 𝜁) = 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎)𝜑𝑘3 (𝜌)𝜑𝑘4 (𝜁)𝜑𝑘5 (𝜂 − 𝜌 − 𝜁).
(8.72)

Recall that we are aiming to obtain the bound in equation (8.62). Without loss of generality, we may
assume that, on the support of equation (8.72), we have

𝑘5 ≤ 𝑘4 ≤ 𝑘3; (8.73)

for the moment, we also assume that 𝑘3 ≤ −5; see Remark 8.8 below for more on this.
We first dispose of all interactions with 𝑘5 ≤ −3𝑚. In this case, we can estimate all profiles 𝑓̃ in 𝐿∞

and gain 2−3𝑚 from integration (recall also the notation for ‘med’ in Section 2.5.1):

2ℓ
��𝜒ℓ,√3 (𝜉)𝐼

𝑝,𝑘 (𝑠, 𝜉)
��

� 2ℓ ‖ 𝑓̃ ‖4
𝐿∞

⨌
𝜑𝑝 (Φ)
|Φ| 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎)𝜑𝑘3 (𝜌)𝜑𝑘4 (𝜁)𝜑𝑘5 (𝜂 − 𝜌 − 𝜁) 𝑑𝜂𝑑𝜎𝑑𝜌𝑑𝜁

� 2ℓ · 𝜀4
1 · 2−𝑝 · 2𝑘2 2min(𝑘1 ,𝑘3 ,𝑘4)2med(𝑘1 ,𝑘3 ,𝑘4)2𝑘5

� 𝜀4
12−3𝑚,

(8.74)

which is more than enough.
After treating these very small frequencies, we are left with 𝑂 (𝑚3) choices for 𝑘3, 𝑘4 and 𝑘5 in

equation (8.72), and it suffices to show the slightly stronger bound

2ℓ
��𝜒ℓ,√3 (𝜉)𝐼

𝑝,𝑘 (𝑠, 𝜉)
�� � 𝜀2

12−2𝑚2−5𝛽′𝑚, (8.75)
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for all 𝑠 ≈ 2𝑚 and for each 5-tuple of frequencies (𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5) with

|max(𝑘1, 𝑘3) − med(𝑘1, 𝑘3, 𝑘4) | ≤ 5, 𝑘5 ≤ 𝑘4 ≤ 𝑘3 ≤ −5. (8.76)

The first restriction above comes from the fact that 𝜂 = 𝜌+𝜁+(𝜂−𝜌−𝜁), which forces max(|𝜂 |, |𝜌 |, |𝜁 |, |𝜂−
𝜌 − 𝜁 |) ≈ max2(|𝜂 |, |𝜌 |, |𝜁 |, |𝜂 − 𝜌 − 𝜁 |) (recall the notation for ‘max2’ given toward the end of
Section 2.5.1), so that, in view of equation (8.73) (i.e., |𝜌 | � |𝜁 | � |𝜂 − 𝜌 − 𝜁 |), we must have
max(|𝜂 |, |𝜌 |) ≈ med(|𝜂 |, |𝜌 |, |𝜁 |).

Remark 8.8. Concerning the restrictions in equation (8.76), note that we can assume equation (8.73)
without loss of generality but that we are imposing the additional restriction 𝑘3 ≤ −5. In particular, this
means we are not considering here the cases when the sizes of ‘new input frequencies’ (𝜌, 𝜁 , 𝜂 − 𝜌 − 𝜁)
are (a) close to the bad frequency

√
3 or (b) going to infinity. Both of these cases are actually easier to

treat than the case of small frequencies that we will concentrate on.
We will deal with the scenarios (a) and (b) at the level of the (more complicated) quadratic and cubic

interactions in Section 11; see in particular Section 11.1, the discussion at the end of Section 11.1.2
about high frequencies and the estimates in Section 11.1.3, where we deal with the bad frequencies by
relying on equation (11.15) to bound the quantity 𝑋𝑘,𝑚( 𝑓 ).

Finally, recall that, under the assumed frequencies localisation, the symbol 𝔮 in equation (8.72) is
smooth, with 𝑂 (1) bounds on derivatives; see equations (8.9) and (5.57) with equations (5.46)–(5.47).

Before proceeding with the proof of equation (8.75), we discuss how to treat the oscillations in the
‘uncorrelated’ variable 𝜎.

Treatment of the uncorrelated variable 𝝈 and a first basic bound
Examining the definitions in equations (8.70)–(8.72), we see that the only oscillation involving the
variable 𝜎 is 𝑒𝑖𝑠 〈𝜎〉 . To exploit these oscillations, we integrate by parts in 𝜎 when 𝑘2 ≥ −𝑚/2 using
equation (7.24), and otherwise estimate the profile 𝜑𝑘2 𝑓̃ in 𝐿1

𝜎 using equation (7.23).
More precisely, we first estimate

2ℓ
��𝐼 𝑝,𝑘 (𝑠, 𝜉)�� � 2ℓ · 2−𝑝 · ‖𝜑𝑘3 𝑓̃ ‖𝐿∞ ‖𝜑𝑘4 𝑓̃ ‖𝐿∞ ‖𝜑𝑘5 𝑓̃ ‖𝐿∞

×
∭ ( ∫

|𝜑𝑘2 𝑓̃ (𝜎) | 𝑑𝜎
)
𝜑𝑘1 (𝜂)𝜑𝑘3 (𝜌)𝜑𝑘4 (𝜁)𝜑𝑘5 (𝜂 − 𝜌 − 𝜁) 𝑑𝜂𝑑𝜌𝑑𝜁

� ‖𝜑𝑘3 𝑓̃ ‖𝐿∞ ‖𝜑𝑘4 𝑓̃ ‖𝐿∞ ‖𝜑𝑘5 𝑓̃ ‖𝐿∞

× 2𝑘5 2min(𝑘1 ,𝑘3 ,𝑘4)2med(𝑘1 ,𝑘3 ,𝑘4) · ‖𝜑𝑘2 𝑓̃ ‖𝐿1 .

(8.77)

Using equations (7.22)–(7.23), and in view of 𝑘5 ≤ 𝑘4 ≤ 𝑘3 (see equation (8.76)), we obtain

2ℓ
��𝐼 𝑝,𝑘 (𝑠, 𝜉)�� � 𝜀3

123𝛼𝑚 · 2𝑘5+𝑘4+min(𝑘1 ,𝑘3) · 2(1/2) (𝑘3+𝑘4+𝑘5) · ‖𝜑𝑘2 𝑓̃ ‖𝐿1 . (8.78)

When 𝑘2 ≥ −𝑚/2, we integrate by parts in 𝜎 and write

𝐼 𝑝,𝑘 = 𝐾1 + 𝐾2,

𝐾1 =
⨌

𝑒𝑖𝑠Ψ𝜕𝜎𝔨(𝜉, 𝜂, 𝜎, 𝜌, 𝜁) 𝑓̃ (𝜌) 𝑓̃ (𝜁) 𝑓̃ (𝜂 − 𝜌 − 𝜁) 𝜑∼𝑘2 (𝜎) 𝑓̃ (𝜎) 𝑑𝜂 𝑑𝜌 𝑑𝜁 𝑑𝜎,

𝐾2 =
⨌

𝑒𝑖𝑠Ψ𝔨(𝜉, 𝜂, 𝜎, 𝜌, 𝜁) 𝑓̃ (𝜌) 𝑓̃ (𝜁) 𝑓̃ (𝜂 − 𝜌 − 𝜁) 𝜕𝜎
(
𝜑∼𝑘2 (𝜎) 𝑓̃ (𝜎)

)
𝑑𝜂 𝑑𝜌 𝑑𝜁 𝑑𝜎,

(8.79)

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.9


104 Pierre Germain and Fabio Pusateri

where we denoted 𝜑∼𝑘2 (𝜎) = 𝜑𝑘2 (𝜎)2𝑘2 〈𝜎〉/𝜎 a cutoff function with the same properties as 𝜑𝑘2

(𝑘2 ≤ 0), and defined the symbol

𝔨(𝜉, 𝜂, 𝜎, 𝜌, 𝜁) := 2−𝑘2 𝑠−1 𝜑𝑝
(
Φ

)
Φ

𝔮(𝜉, 𝜂, 𝜎, 𝜌, 𝜁) 𝜑𝑘1 (𝜂)𝜑𝑘3 (𝜌)𝜑𝑘4 (𝜁)𝜑𝑘5 (𝜂 − 𝜌 − 𝜁),

|𝔨(𝜉, 𝜂, 𝜎, 𝜌, 𝜁) | � 2−𝑚−𝑝−𝑘2

(8.80)

for 𝑠 ≈ 2𝑚. We then claim that 𝐾2 is the main contribution in equation (8.79), while 𝐾1 gives a term of
the same form of 𝐼 𝑝,𝑘 but with a better symbol that we can treat as a lower-order term and disregard. To
see this, notice that

|𝜕𝜎𝔨 | = 𝑠−12−𝑘2
���𝜕𝜎 [𝜑𝑝 (Φ)

Φ
𝔮
]
𝜑𝑘1 (𝜂)𝜑𝑘3 (𝜌)𝜑𝑘4 (𝜁)𝜑𝑘5 (𝜂 − 𝜌 − 𝜁)

���
� 2−𝑚2−𝑘2

[
2−2𝑝+𝑘2 + 2−𝑝] � 2−𝑚/2+3𝛽′𝑚 · 2−𝑝 ,

having used 𝑝 ≥ −𝑚/2 − 3𝛽′𝑚 − 10 and 𝑘2 ≥ −𝑚/2. In particular, we see that this bound is better than
𝑂 (2−𝑝), which is the trivial bound for the symbol of equation (8.72) used in equation (8.77).

For the term 𝐾2 in equation (8.79), we can use equations (8.80) and (7.22)–(7.24) to obtain

2ℓ
��𝐾2(𝑠, 𝜉)

�� � 2ℓ · 2−𝑝−𝑚−𝑘2 · ‖𝜑𝑘3 𝑓̃ ‖𝐿∞ ‖𝜑𝑘4 𝑓̃ ‖𝐿∞ ‖𝜑𝑘5 𝑓̃ ‖𝐿∞2𝑘5+𝑘4+min(𝑘1 ,𝑘3) · ‖𝜕𝜎 (𝜑∼𝑘2 𝑓̃ )‖𝐿1

� 𝜀3
123𝛼𝑚 · 2𝑘5+𝑘4+min(𝑘1 ,𝑘3) · 2(1/2) (𝑘3+𝑘4+𝑘5) · 2−𝑚−𝑘2 ‖𝜕𝜎 (𝜑∼𝑘2 𝑓̃ )‖𝐿1 . (8.81)

Putting together equations (8.78) and (8.81), we obtain the following bound:

2ℓ
��𝐼 𝑝,𝑘 (𝑠, 𝜉)�� � 𝜀3

1 · 23𝛼𝑚 · 2𝑘5+𝑘4+min(𝑘1 ,𝑘3) · 2(1/2) (𝑘3+𝑘4+𝑘5) · 𝑋𝑘2 ,𝑚. (8.82)

With equation (8.82) in hand, we now proceed with the proof of equation (8.75), subdividing it into two
main cases. In what follows, we fix 𝛿 ∈ (0, 𝛼).
Case 1: 𝑘1 + 𝑘4 ≤ −𝑚 + 𝛿𝑚. This case corresponds to a scenario where integration by parts in the new
‘correlated variables’ – that is, in the directions 𝜕𝜂 + 𝜕𝜌 and 𝜕𝜂 + 𝜕𝜁 – is forbidden; see also equation
(8.84). In this case, the inequality in equation (8.82) suffices to get the desired bound by the right-hand
side of equation (8.75). Indeed, using 𝑋𝑘2 ,𝑚 � 𝜀12−3𝑚/4+𝛼𝑚, equation (8.82) implies

2ℓ
��𝐼 𝑝,𝑘 (𝑠, 𝜉)�� � 𝜀3

12(−3/4+4𝛼)𝑚 · 2𝑘1+3𝑘4 ; (8.83)

recall equation (8.76). Since we are assuming 𝑘1 + 𝑘4 ≤ −𝑚 + 𝛿𝑚, we must also have 𝑘4 ≤ −𝑚/3 + 𝛿𝑚
as a consequence of the lower bound on 𝑘1 in equation (8.55). Then 𝑘1 + 3𝑘4 ≤ −3𝑚/2, and equation
(8.83) suffices for equation (8.75).
Case 2: 𝑘1 + 𝑘4 ≥ −𝑚 + 𝛿𝑚. In this case, we can integrate by parts in both the 𝜕𝜂 + 𝜕𝜌 and 𝜕𝜂 + 𝜕𝜁
directions, using that

(𝜕𝜂 + 𝜕𝜌)Ψ𝜄1 𝜄2 = −𝜄1
𝜌

〈𝜌〉 , | (𝜕𝜂 + 𝜕𝜌)Ψ𝜄1 𝜄2 | ≈ 2𝑘3 ,

(𝜕𝜂 + 𝜕𝜁 )Ψ𝜄1 𝜄2 = −𝜄2
𝜁

〈𝜁〉 , | (𝜕𝜂 + 𝜕𝜁 )Ψ𝜄1 𝜄2 | ≈ 2𝑘4 .
(8.84)

To properly implement this strategy, we first need to pay attention to the cases when 𝑘4 is small.
Subcase 2.1: 𝑘4 ≤ −𝑚/2 + 𝛿𝑚. In this case, 𝑘5 ≤ 𝑘4 ≤ −𝑚/2 + 𝛿𝑚, and we can estimate directly using
equation (8.82):

2ℓ
��𝐼 𝑝,𝑘 (𝑠, 𝜉)�� � 𝜀4

12(−3/4+4𝛼)𝑚 · 2𝑘4+𝑘5 · 2(1/2) (𝑘4+𝑘5) � 𝜀4
12(−3/4+4𝛼+3𝛿)𝑚2−3𝑚/2,

which is sufficient for equation (8.75).
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Subcase 2.2: 𝑘4 ≥ −𝑚/2 + 𝛿𝑚. In this case, we have 𝑘3, 𝑘4 ≥ −𝑚/2 + 𝛿𝑚, and (see equation (8.84)),
we can integrate by parts in both 𝜕𝜂 + 𝜕𝜌 and 𝜕𝜂 + 𝜕𝜁 , also using that 𝑘1 + 𝑘4 ≥ −𝑚 + 𝛿𝑚. Performing
these integrations by parts, we see that��𝐼 𝑝,𝑘 (𝑠, 𝜉)�� � 2−2𝑚 sup

𝑠≈2𝑚

��� ⨌
𝑒𝑖𝑠Ψ (𝜕𝜂 + 𝜕𝜁 )

[ 1
(𝜕𝜂 + 𝜕𝜁 )Ψ

(𝜕𝜂 + 𝜕𝜌)
( 1
(𝜕𝜂 + 𝜕𝜌)Ψ

×
𝜑𝑝

(
Φ

)
Φ

𝔮𝜑𝑘 𝑓̃ (𝜌) 𝑓̃ (𝜁) 𝑓̃ (𝜂 − 𝜌 − 𝜁)
)]
𝑑𝜂 𝑑𝜌 𝑑𝜁 𝑓̃ (𝜎) 𝑑𝜎

���. (8.85)

The expression in equation (8.85) gives many different contributions, depending on which terms are hit
by the derivatives 𝜕𝜂 + 𝜕𝜌 and 𝜕𝜂 + 𝜕𝜁 . By distributing these derivatives, we see that��𝐼 𝑝,𝑘 (𝑠, 𝜉)�� � 2−2𝑚 sup

𝑠≈2𝑚

[
𝐴(𝑠, 𝜉) + 𝐵(𝑠, 𝜉) + 𝐶 (𝑠, 𝜉) + 𝐷 (𝑠, 𝜉)

]
, (8.86)

where

𝐴 :=
��� ⨌

𝑒𝑖𝑠Ψ𝔞(𝜉, 𝜂, 𝜎, 𝜌, 𝜁) 𝑓̃ (𝜌) 𝑓̃ (𝜁) 𝑓̃ (𝜂 − 𝜌 − 𝜁) 𝑑𝜂 𝑑𝜌 𝑑𝜁 𝑓̃ (𝜎)𝑑𝜎
���

𝔞 := (𝜕𝜂 + 𝜕𝜁 )
[ 1
(𝜕𝜂 + 𝜕𝜁 )Ψ

(𝜕𝜂 + 𝜕𝜌)
( 1
(𝜕𝜂 + 𝜕𝜌)Ψ

𝜑𝑝
(
Φ

)
Φ

𝔮𝜑𝑘
)]
,

(8.87)

𝐵 :=
��� ⨌

𝑒𝑖𝑠Ψ𝔟(𝜉, 𝜂, 𝜎, 𝜌, 𝜁)
[
𝜕𝜌 𝑓̃ (𝜌)

]
𝑓̃ (𝜁) 𝑓̃ (𝜂 − 𝜌 − 𝜁) 𝑑𝜂 𝑑𝜌 𝑑𝜁 𝑓̃ (𝜎)𝑑𝜎

���
𝔟 := (𝜕𝜂 + 𝜕𝜁 )

[ 1
(𝜕𝜂 + 𝜕𝜁 )Ψ

1
(𝜕𝜂 + 𝜕𝜌)Ψ

𝜑𝑝
(
Φ

)
Φ

𝔮𝜑𝑘
]
,

(8.88)

𝐶 :=
��� ⨌

𝑒𝑖𝑠Ψ𝔠(𝜉, 𝜂, 𝜎, 𝜌, 𝜁)
[
𝜕𝜌 𝑓̃ (𝜌)

] [
𝜕𝜁 𝑓̃ (𝜁)

]
𝑓̃ (𝜂 − 𝜌 − 𝜁) 𝑑𝜂 𝑑𝜌 𝑑𝜁 𝑓̃ (𝜎)𝑑𝜎

���
𝔠 :=

1
(𝜕𝜂 + 𝜕𝜁 )Ψ

1
(𝜕𝜂 + 𝜕𝜌)Ψ

𝜑𝑝
(
Φ

)
Φ

𝔮𝜑𝑘 ,
(8.89)

𝐷 :=
��� ⨌

𝑒𝑖𝑠Ψ𝔡(𝜉, 𝜂, 𝜎, 𝜌, 𝜁) 𝑓̃ (𝜌)
[
𝜕𝜁 𝑓̃ (𝜁)

]
𝑓̃ (𝜂 − 𝜌 − 𝜁) 𝑑𝜂 𝑑𝜌 𝑑𝜁 𝑓̃ (𝜎)𝑑𝜎

���
𝔡 :=

1
(𝜕𝜂 + 𝜕𝜁 )Ψ

(𝜕𝜂 + 𝜕𝜌)
[ 1
(𝜕𝜂 + 𝜕𝜌)Ψ

𝜑𝑝
(
Φ

)
Φ

𝔮𝜑𝑘
]
.

(8.90)

To obtain the desired bound in equation (8.75), it suffices to show

2ℓ sup
𝑠≈2𝑚

(
|𝐴(𝑠, 𝜉) | + |𝐵(𝑠, 𝜉) | + |𝐶 (𝑠, 𝜉) | + |𝐷 (𝑠, 𝜉) |

)
� 𝜀4

12−5𝛽′𝑚. (8.91)

To estimate equation (8.87), we first observe that, in view of equation (8.84), the symbol satisfies

|𝔞 | � 2−𝑘3−𝑘4−𝑝 · max
(
2−𝑘3 , 2−𝑝+𝑘1 , 2−𝑘1

)
· max

(
2−𝑘4 , 2−𝑝+𝑘1 , 2−𝑘1

)
� 2−𝑘3−𝑘4−𝑝 · max

(
2−𝑘3 , 2−𝑘1

)
· max

(
2−𝑘4 , 2−𝑘1

) (8.92)

having used that 2𝑘1 ≤ 𝑝 + 20. If we iterate the above integration by parts procedure and only keep the
terms where the derivatives never hit the 𝑓̃ , the gain at each step is

2−2𝑚2−𝑘3−𝑘4 max(2−𝑘3 , 2−𝑘1 )max(2−𝑘4 , 2−𝑘1) � 2−2𝛿𝑚,

since 𝑘4 ≥ −𝑚2 + 𝛿𝑚 and 𝑘1 + 𝑘4 ≥ −𝑚 + 𝛿𝑚. Thus, one obtains an arbitrarily large gain in powers of
2𝑚, leading to the desired estimates. There remain the terms where one of the 𝑓̃ is hit, but they are all
better behaved than B and C, to which we now turn.
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To estimate equation (8.88), we first bound, similarly to equation (8.92),

|𝔟 | � 2−𝑘3−𝑘4−𝑝 · 2−min(𝑘4 ,𝑘1) . (8.93)

Using this, integration by parts in the ‘decorrelated’ variable𝜎, and the a priori bounds placing 𝜕𝜌 𝑓̃ ∈ 𝐿2

and the other two profiles in 𝐿∞
𝜉 , we get

2ℓ |𝐵 | � 𝜀3
123𝛼𝑚 · 2−𝑘3−𝑘4 · 2−min(𝑘4 ,𝑘1) · 2min(𝑘5 ,𝑘1)+med(𝑘1 ,𝑘4 ,𝑘5) · 2(1/2) (𝑘3+𝑘4+𝑘5) · 𝑋𝑘2 ,𝑚

� 𝜀4
12−3𝑚/4+4𝛼𝑚.

Finally, equation (8.89) can be dealt with in a similar way by using |𝔠 | � 2−𝑘3−𝑘4−𝑝 , the usual
argument for the ‘decorrelated’ variable giving a factor of 𝑋𝑘2 ,𝑚, estimating in 𝐿2 the two differentiated
profiles, and using the a priori bounds in equation (8.5):

2ℓ |𝐶 | � 𝜀3
123𝛼𝑚 · 2−𝑘3−𝑘4 · 2min(𝑘5 ,𝑘1) · 2(1/2) (𝑘3+𝑘4+𝑘5) · 𝑋𝑘2 ,𝑚 � 𝜀4

12−3𝑚/4+4𝛼𝑚.

Finally, we have equation (8.90), which is similar to equation (8.88), with one profile differentiated
and the other derivative hitting the symbol. The symbol satisfies |𝔡 | � 2−𝑘3−𝑘4−𝑝 · 2−min(𝑘3 ,𝑘1) , and we
can estimate

2ℓ |𝐷 | � 𝜀3
123𝛼𝑚 · 2−𝑘3−𝑘4 · 2−min(𝑘3 ,𝑘1) · 2min(𝑘5 ,𝑘1)+med(𝑘1 ,𝑘3 ,𝑘5) · 2(1/2) (𝑘3+𝑘4+𝑘5) · 𝑋𝑘2 ,𝑚

� 𝜀4
12−3𝑚/4+4𝛼𝑚.

The bound in equation (8.91) is proven, and equation (8.75) follows, thereby completing the estimate
for the term 𝐾𝑆1 in equation (8.67).

Step 2.2: Estimate of 𝑲𝑺2 in equation (8.67)
Recall the definition of C𝑆2 from equations (5.46) and (5.47). We can see that 𝐾𝑆2

𝜄1 𝜄2 𝜄3 has the form

𝐾𝑆2
𝜄1 𝜄2 𝜄3 =

∫ 𝑡

0
𝜏𝑚(𝑠)

⨌
𝑒𝑖𝑠Γ𝜄1 𝜄2 𝜄3

𝜑𝑝
(
Φ

)
Φ

𝔮2 (𝜉, 𝜂, 𝜎, 𝜌, 𝜁 , 𝜔) 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎)

𝑓̃ 𝜄1 (𝜌) 𝑓̃ 𝜄2 (𝜁) 𝑓̃ 𝜄3 (𝜂 − 𝜌 − 𝜁 − 𝜔) 𝑓̃ (𝜎) 𝑑𝜂 𝑑𝜌 𝑑𝜁 𝑑𝜎 p.v.
𝜙(𝜔)
𝜔

𝑑𝜔 𝑑𝑠,

(8.94)

with

Γ𝜄1 𝜄2 𝜄3 (𝜉, 𝜌, 𝜂, 𝜔, 𝜎) := 〈𝜉〉 − 𝜄1〈𝜌〉 − 𝜄2〈𝜁〉 − 𝜄3〈𝜂 − 𝜁 − 𝜌 − 𝜔〉 − 〈𝜎〉, 𝜄1, 𝜄2, 𝜄3 ∈ {+,−}. (8.95)

As before, we may assume that the symbol 𝔮2 is sufficiently regular with bounded derivatives. For
lighter notation, we will often omit the 𝜄𝑖 indexes and some of the arguments when doing so causes no
confusion. Recall that we aim to prove (see equations (8.62) and (8.66))

2ℓ
��𝜒ℓ,√3 (𝜉) 𝐾

𝑆2(𝑡, 𝜉)
�� � 𝜀2

12−𝑚2−3𝛽′𝑚. (8.96)

We start by splitting

𝐾𝑆2(𝑡, 𝜉) =
∫ 𝑡

0

[
𝐴1(𝑠, 𝜉) + 𝐴2(𝑠, 𝜉)

]
𝜏𝑚(𝑠)𝑑𝑠, (8.97)
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where

𝐴1(𝑠, 𝜉) =
∫

𝐹 (𝑠, 𝜉, 𝜔) p.v.
𝜙(𝜔)𝜑≤−5𝑚(𝜔)

𝜔
𝑑𝜔, 𝐴2 (𝑠, 𝜉) =

∫
𝐹 (𝑠, 𝜉, 𝜔) 𝜙(𝜔)𝜑>−5𝑚(𝜔)

𝜔
𝑑𝜔,

(8.98)

with

𝐹 (𝑠, 𝜉, 𝜔) :=
⨌

𝑒𝑖𝑠Γ
𝜑𝑝

(
Φ

)
Φ

𝔮2 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎) 𝑓̃ (𝜌) 𝑓̃ (𝜁) 𝑓̃ (𝜂 − 𝜌 − 𝜁 − 𝜔) 𝑓̃ (𝜎) 𝑑𝜂 𝑑𝜌 𝑑𝜁 𝑑𝜎.

(8.99)

Estimate of 𝑨1
In this case, 𝜔 is very small, and we need to use the principal value. We estimate, for 𝑠 ≈ 2𝑚,

|𝐴1 (𝑠, 𝜉) | �
∫ ���𝐹 (𝑠, 𝜉, 𝜔) − 𝐹 (𝑠, 𝜉, 0)

���𝜑≤−5𝑚(𝜔)
|𝜔| 𝑑𝜔

� 2−5𝑚 · sup
𝑠≈2𝑚

sup
|𝜔 |�2−5𝑚

��𝜕𝜔𝐹 (𝑠, 𝜉, 𝜔)
��. (8.100)

Inspecting the formula in equation (8.99), we see that 𝜕𝜔𝐹 has three contributions corresponding to the
derivative hitting the phase Γ, the symbol 𝔮2 or the profile 𝑓̃ (𝜂 − 𝜌 − 𝜁 − 𝜔). The main term is the first
one so that, up to lower-order (faster-decaying) terms, we have

𝜕𝜔𝐹 (𝑠, 𝜉, 𝜔) ≈
∭

𝑖𝑠(𝜕𝜔Γ) 𝑒𝑖𝑠Γ
𝜑𝑝

(
Φ

)
Φ

𝔮2 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎)

× 𝑓̃ (𝜌) 𝑓̃ (𝜁) 𝑓̃ (𝜂 − 𝜌 − 𝜁 − 𝜔) 𝑓̃ (𝜎) 𝑑𝜂 𝑑𝜌 𝑑𝜁 𝑑𝜎,

from which we deduce that, for 𝑠 ≈ 2𝑚,

|𝜕𝜔𝐹 (𝑠, 𝜉, 𝜔) | � 2𝑚 · 2−𝑝𝜀3
1. (8.101)

From this and equation (8.100), we obtain the desired bound in equation (8.96) for 𝐴1.

Estimate of 𝑨2
We decompose the support of the integral according to the size of the input frequencies 𝜌,𝜁 ,𝜂− 𝜌− 𝜁 −𝜔
and 𝜔 by defining

𝐴𝑘,𝑞 (𝑡, 𝜉) :=
∫

𝐹𝑘 (𝑠, 𝜉, 𝜔)
𝜑𝑞 (𝜔)
𝜔

𝑑𝜔, (8.102)

where

𝐹𝑘 (𝑠, 𝜉, 𝜔) :=
⨌

𝑒𝑖𝑠Γ
𝜑𝑝

(
Φ

)
Φ

𝔮2 𝜑𝑘 (𝜂, 𝜎, 𝜌, 𝜁 , 𝜔) 𝑓̃ (𝜌) 𝑓̃ (𝜁) 𝑓̃ (𝜂 − 𝜌 − 𝜁 − 𝜔) 𝑓̃ (𝜎) 𝑑𝜂 𝑑𝜌 𝑑𝜁 𝑑𝜎,

𝜑𝑘 (𝜂, 𝜎, 𝜌, 𝜁 , 𝜔) := 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎)𝜑𝑘3 (𝜌)𝜑𝑘4 (𝜁)𝜑𝑘5 (𝜂 − 𝜌 − 𝜁 − 𝜔).
(8.103)

Since we can easily dispose of the cases with min(𝑘1, . . . , 𝑘5) ≤ −5𝑚 (see, for example, the estimate
in equation (8.74)) or max(𝑘1, . . . , 𝑘5) ≥ 𝑚 (using the Sobolev-type bound in equation (7.10)), we are
only left with 𝑂 (𝑚5) terms like 𝐴𝑘,𝑞 . We can then reduce the proof of equation (8.96) to showing the
slightly stronger bound

2ℓ
��𝜒ℓ,√3(𝜉)𝐴𝑘,𝑞 (𝑡, 𝜉)

�� � 𝜀2
12−2𝑚2−4𝛽′𝑚, (8.104)
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for each fixed set of frequencies with

|med(𝑘1, 𝑘3, 𝑘4) − max(𝑘1, 𝑘3) | ≤ 5, 𝑘5 ≤ 𝑘4 ≤ 𝑘3 ≤ −5, −5𝑚 ≤ 𝑞 ≤ −𝐷0,

where 𝐷0 is a sufficiently large absolute constant, with the main constraints in equation (8.55) holding
as well. See Remark 8.8 for a justification of the second restriction above, and notice that the case
𝑞 ≥ −𝐷0 is much easier to deal with since the p.v. is not singular.

Notice that on the support of equation (8.103), we have (see equation (8.95))��(𝜕𝜂 + 𝜕𝜌)Γ
�� = �� 𝜌

〈𝜌〉
�� ≈ 2𝑘3 , | (𝜕𝜂 + 𝜕𝜁 )Γ| =

�� 𝜁
〈𝜁〉

�� ≈ 2𝑘4 . (8.105)

This is identical to equation (8.84) in the case of the terms 𝐾𝑆1
𝜄1 𝜄2 in equation (8.70) treated before. We

can then proceed in the same way as we did in Step 2.1 above and estimate equation (8.103) for each
fixed 𝜔 (note that the terms in equation (8.72) are basically the same, up to the smooth 𝔮 and 𝔮2 symbols,
as the expression in equation (8.103) evaluated at 𝜔 = 0). This procedure will give a bound by the right-
hand side of equation (8.75) for 𝐹𝑘 (𝑠, 𝜉, 𝜔), and integrating over 𝜔 in equation (8.102), one arrives at
equation (8.104).

Step 3: Estimate of 𝑳𝑺1,2 in equation (8.68)
As already pointed out after the formulas in equation (8.66), the terms 𝐿𝑆1,2 are not exactly the same as
the terms 𝐾𝑆1,2, since 𝑘1 and 𝑘2 do not play the same role, and we can deduce a little less information
on the smaller frequency |𝜎 | ≈ 2𝑘2 from information on |𝜂 | ≈ 2𝑘1 . Nevertheless, we can apply the same
arguments as in Step 2.1 and Step 2.2 above. In particular, all the proofs based on integration by parts
(see Case 2 starting on page 104) apply verbatim, just by exchanging 𝑘1 and 𝑘2. The only exception is
the argument in Case 1 on page 104 where the constraint 𝑘1 ≥ −2𝑚/3 from equation (8.55) was used.
Since such a lower bound might not hold for 𝑘2, we need some modification of the argument, which we
give below.

First, analogously to equation (8.70), we use the formulas in equation (5.57) and write 𝐿𝑆1 as a term
of the form

𝐿𝑆1
𝜄1 𝜄2 𝜄3 =

∫ 𝑡

0

⨌
𝑒𝑖𝑠Ψ

′
𝜄1 𝜄2 𝜄3

𝜑𝑝
(
Φ

)
Φ

𝔮′ 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎)

× 𝑓̃ (𝜂) 𝑓̃ (𝜌) 𝑓̃ (𝜁) 𝑓̃ (𝜎 − 𝜌 − 𝜁) 𝑑𝜂 𝑑𝜎 𝑑𝜁 𝑑𝜌 𝜏𝑚(𝑠)𝑑𝑠,
Ψ′
𝜄1 𝜄2 𝜄3 := 〈𝜉〉 − 〈𝜂〉 − 𝜄1〈𝜌〉 − 𝜄2〈𝜁〉 − 𝜄2〈𝜎 − 𝜌 − 𝜁〉, 𝜄1, 𝜄2, 𝜄3 ∈ {+,−},

(8.106)

where, abusing notation, we still denote by 𝔮 the quartic symbol. Introducing frequency cutoffs for the
new correlated variables, we can reduce matters to estimating

(𝐼 𝑝,𝑘 )′(𝑠, 𝜉) :=
⨌

𝑒𝑖𝑠Ψ
′
𝜄1 𝜄2

𝜑𝑝
(
Φ

)
Φ

𝔮′ 𝜑′
𝑘 (𝜂, 𝜎, 𝜌, 𝜁) 𝑓̃ (𝜂) 𝑓̃ (𝜌) 𝑓̃ (𝜁) 𝑓̃ (𝜎 − 𝜌 − 𝜁) 𝑑𝜂 𝑑𝜎 𝑑𝜁 𝑑𝜌,

𝜑′
𝑘 (𝜂, 𝜎, 𝜌, 𝜁) := 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎)𝜑𝑘3 (𝜌)𝜑𝑘4 (𝜁)𝜑𝑘5 (𝜎 − 𝜌 − 𝜁),

(8.107)

as follows: for all 𝑠 ≈ 2𝑚

2ℓ
��𝜒ℓ,√3 (𝐼

𝑝,𝑘 )′(𝑠, 𝜉)
�� � 𝜀3

12−2𝑚2−5𝛽′𝑚, (8.108)

|max(𝑘2, 𝑘3) − med(𝑘2, 𝑘3, 𝑘4) | ≤ 5, 𝑘5 ≤ 𝑘4 ≤ 𝑘3 ≤ −5, (8.109)

under the constraints in equation (8.55). Compare with equations (8.75)–(8.76).
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Applying the same exact reasoning as in pages 103–104, we can obtain the analogue of equation
(8.82) for this term: that is,

2ℓ
��(𝐼 𝑝,𝑘 )′(𝑠, 𝜉)�� � 𝜀3

1 · 23𝛼𝑚 · 2𝑘5+𝑘4+min(𝑘2 ,𝑘3) · 2(1/2) (𝑘3+𝑘4+𝑘5) · 𝑋𝑘1 ,𝑚. (8.110)

As in Step 2.1 above, we distinguish two main scenarios: in the first (Case 1 below), integration by parts
in the new correlated variables 𝜕𝜎+𝜁 and 𝜕𝜎+𝜌 is forbidden and we need an argument based on equation
(8.110); in the second, integration by parts is possible, and we can proceed as in Case 2 of Step 2.1.
Case 1: 𝑘2 + 𝑘4 ≤ −𝑚 + 𝛿𝑚. Equation (8.110) with equation (8.17) yields

2ℓ
��(𝐼 𝑝,𝑘 )′(𝑠, 𝜉)�� � 𝜀4

12(−3/4+4𝛼)𝑚 · 2𝑘2+3𝑘4 .

Since we are assuming 𝑘2 + 𝑘4 ≤ −𝑚 + 𝛿𝑚, the above bound suffices to obtain equation (8.108) if
𝑘4 ≤ −𝑚/7, since in this case

2(−3/4+4𝛼)𝑚 · 2𝑘2+3𝑘4 � 2(−3/4+5𝛼)𝑚 · 22𝑘4 � 2(−57/28+5𝛼)𝑚.

Notice that we indeed must have 𝑘4 ≤ −𝑚/7, for otherwise we would have 𝑘2 ≤ −6𝑚/7 + 𝛿𝑚, which
implies

−3𝑚/4 + 3𝑘2/2 ≤ −57𝑚/28 + 3𝛿𝑚/2,

contradicting the constraint in equation (8.46) for 𝛿, 𝛼, 𝛽′ small enough.
Case 2: 𝑘2 + 𝑘4 ≥ −𝑚 + 𝛿𝑚. This case can be treated by integration by parts as in Case 2 on page 104,
so we skip the details.

Finally, notice that 𝐿𝑆2
𝜄1 𝜄2 𝜄3 can be treated similarly to 𝐿𝑆1

𝜄1 𝜄2 𝜄3 , in the same way that 𝐾𝑆2
𝜄1 𝜄2 𝜄3 was treated

similarly to 𝐾𝑆1
𝜄1 𝜄2 𝜄3 , after taking care of the p.v. as in equations (8.97)–(8.101); we omit the details.

Step 4: Estimate of 𝑫𝑹 in equation (8.69)
These terms are relatively easy to estimate under the current assumption ℓ ≤ 𝑝 + 10, relying on the
estimate in equation (7.54) for the remainder term R. From equation (8.69), we see that

2ℓ |𝐷𝑅 (𝑡, 𝜉) | � 2ℓ · 2𝑚 sup
𝑠≈2𝑚

(��𝐼 𝑝,𝑘1 ,𝑘2
[
F̃−1R, 𝑓

]
(𝑠, 𝜉)

�� + ��𝐼 𝑝,𝑘1 ,𝑘2
[
𝑓 , F̃−1R

]
(𝑠, 𝜉)

��) , (8.111)

where 𝐼 𝑝,𝑘1 ,𝑘2 is the bilinear operator defined in equation (8.56). Let us look at the first of the two terms
on the right-hand side of equation (8.111); the other one can be treated identically. Using the integration
by parts argument on the profile f (whose frequency is uncorrelated to that of R), we can see that

2ℓ
��𝐼 𝑝,𝑘1 ,𝑘2

[
R, 𝑓

]
(𝑠, 𝜉)

�� � 2ℓ · 2−𝑝 · 2𝑘1/2‖R(𝑠)‖𝐿2 · 𝑋𝑘2 ,𝑚

� 𝜀4
12−3𝑚/2+2𝛼𝑚 · 2−3𝑚/4+𝛼𝑚

consistently with equations (8.62) and (8.66). This completes the proof of the bound in equations
(8.54)–(8.55).

8.7. Case 𝒑 ≥ −𝒎/3 − 10𝜷′𝒎 and 𝒑 ≤ ℓ − 10

First notice that we must have

|ℓ − 2𝑘1 | ≤ 10, 𝑘1 ≥ 𝑝/2 + 10 ≥ −𝑚/6 − 5𝛽′𝑚 + 10. (8.112)
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The analysis in this case is similar to the one in Section 8.6, but we have decided to separate it for
better clarity and to better highlight the difficulties of the case treated in Section 8.6. Since Φ has a
strong lower bound, our starting point is again the integration by parts in s giving the terms in equations
(8.57)–(8.60), and we aim to prove the bound in equation (8.61) (or equation (8.62)).

Estimating as in equation (8.65) suffices to deal with the boundary term J,

2ℓ
��𝐼 𝑝,𝑘1 ,𝑘2 ( 𝑓 , 𝑓 ) (𝑠, 𝜉)

�� � 2ℓ · 2−𝑝 · 𝑋𝑘1 ,𝑚 · 𝑋𝑘2 ,𝑚

� 𝜀2
12−𝑝2(−3/2+2𝛼)𝑚 � 𝜀2

12−𝑚2−3𝛽′𝑚,

since 𝑝 ≥ −𝑚/3 − 10𝛽′𝑚, and 2𝛼 < 𝛽′ sufficiently small.
Next, we write out the terms K and L in equations (8.59)–(8.60) as in equations (8.66)–(8.69) and

aim to show (as usual we dispense with the 𝜄s)

2ℓ
(
|𝐾𝑆1 | + |𝐾𝑆2 | + |𝐿𝑆1 | + |𝐿𝑆2 |) + 2ℓ/2‖𝐷𝑅 ‖𝐿2 � 𝜀3

12−𝑚2−3𝛽′𝑚, (8.113)

which will imply the main conclusion in equation (8.35).
The terms 𝐾𝑆2 and 𝐿𝑆2 can be treated in the same way that we will treat the terms 𝐾𝑆1 and 𝐿𝑆1

below, in analogy to how the terms 𝐾𝑆2 and 𝐿𝑆2 were treated in Step 2.2 on page 106 in the previous
case ℓ ≤ 𝑝 + 10. Recalling the definitions of 𝐾𝑆1 and 𝐷𝑅 in equations (8.67) and (8.69), we may then
reduce the bound in equation (8.113) to showing the following:

2ℓ sup
𝑠≈2𝑚

|𝐼 𝑝,𝑘1 ,𝑘2 [F̃−1C𝑆1, 𝑓 ] (𝑠, 𝜉) | � 𝜀3
12−2𝑚2−3𝛽′𝑚, (8.114)

2ℓ sup
𝑠≈2𝑚

|𝐼 𝑝,𝑘1 ,𝑘2 [ 𝑓 , F̃−1C𝑆1] (𝑠, 𝜉) | � 𝜀3
12−2𝑚2−3𝛽′𝑚, (8.115)

and

2ℓ/2 sup
𝑠≈2𝑚

��𝐼 𝑝,𝑘1 ,𝑘2 [F̃−1R, 𝑓 ] (𝑠, 𝜉)
��
𝐿2 � 𝜀3

12−2𝑚2−3𝛽′𝑚, (8.116)

2ℓ sup
𝑠≈2𝑚

��𝐼 𝑝,𝑘1 ,𝑘2 [ 𝑓 , F̃−1R] (𝑠, 𝜉)
�� � 𝜀3

12−2𝑚2−3𝛽′𝑚. (8.117)

8.7.1. Proof of equation (8.114)
We proceed in a way similar to Step 2.1 on page 102. Many of the initial computations are the same, so
we will not repeat them. The way that some terms are eventually estimated differs, and we will detail this.

We write out the term C𝑆1 (with the usual notation simplifications) and further localise the expression
by considering

𝐼 𝑝,𝑘 (𝑠, 𝜉) :=
⨌

𝑒𝑖𝑠Ψ𝜄1 𝜄2 𝜄3
𝜑𝑝

(
Φ

)
Φ

𝔮 𝜑𝑘 (𝜂, 𝜎, 𝜌, 𝜁) 𝑓̃ (𝜌) 𝑓̃ (𝜁) 𝑓̃ (𝜂 − 𝜌 − 𝜁) 𝑓̃ (𝜎) 𝑑𝜂 𝑑𝜁 𝑑𝜌 𝑑𝜎,

𝜑𝑘 (𝜂, 𝜎, 𝜌, 𝜁) := 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎)𝜑𝑘3 (𝜌)𝜑𝑘4 (𝜁)𝜑𝑘5 (𝜂 − 𝜌 − 𝜁),
Ψ𝜄1 𝜄2 𝜄3 (𝜉, 𝜌, 𝜁 , 𝜂, 𝜎) := 〈𝜉〉 − 𝜄1〈𝜌〉 − 𝜄2〈𝜁〉 − 𝜄3〈𝜂 − 𝜌 − 𝜁〉 − 〈𝜎〉, 𝜄1, 𝜄2, 𝜄3 = ±,
|max(𝑘1, 𝑘3) − med(𝑘1, 𝑘3, 𝑘4) | ≤ 5, −3𝑚 ≤ 𝑘5 ≤ 𝑘4 ≤ 𝑘3 ≤ −5;

(8.118)

compare with equations (8.71)–(8.72), and notice that we are using the same notation 𝐼 𝑝,𝑘 although
the terms are slightly different. Our aim then is to obtain for this term a slightly stronger bound than
equation (8.114), with an extra factor of 2−𝛽′𝑚.
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The estimates in equations (8.78) and (8.81) apply here verbatim and lead to the inequality in equation
(8.82), the only difference being the 2ℓ−𝑝 factor that was dropped there and must be kept here. This gives

2ℓ
��𝐼 𝑝,𝑘 �� � 𝜀4

1 · 23𝛼𝑚 · 2ℓ · 2−𝑝 · 2𝑘5+𝑘4+min(𝑘1 ,𝑘3) · 2(1/2) (𝑘3+𝑘4+𝑘5) · 𝑋𝑘2 ,𝑚. (8.119)

We fix 𝛿 ∈ (0, 𝛼) and look at three different cases.

Case 1: 𝑘1 + 𝑘4 ≤ −𝑚 + 𝛿𝑚. The inequality in equation (8.119) and ℓ ≤ 2𝑘1 + 10 imply

2ℓ
��𝐼 𝑝,𝑘 �� � 𝜀4

1 · 2−𝑝 · 2(−3/4+4𝛼)𝑚 · 23(𝑘1+𝑘4) � 𝜀4
12−𝑝2−7𝑚/2, (8.120)

which is easily bounded by the right-hand side of equation (8.114).

Case 2: 𝑘4 ≤ −𝑚/2 + 𝛿𝑚. We can integrate by parts in the formula in equation (8.118) in the direction
𝜕𝜂 + 𝜕𝜌, using | (𝜕𝜂 + 𝜕𝜌)Ψ| = |𝜌/〈𝜌〉| ≈ 2𝑘3 . Up to faster-decaying remainders, this gives a term of the
form

𝐼1 :=
⨌

𝑒𝑖𝑠Ψ𝔦1(𝜉, 𝜂, 𝜎, 𝜌, 𝜁)
[
𝜕𝜌 𝑓̃ (𝜌)

]
𝑓̃ (𝜁) 𝑓̃ (𝜂 − 𝜌 − 𝜁) 𝑑𝜂 𝑑𝜌 𝑑𝜁 𝑓̃ (𝜎)𝑑𝜎,

𝔦1 :=
1

𝑠(𝜕𝜂 + 𝜕𝜌)Ψ
𝜑𝑝

(
Φ

)
Φ

𝔮𝜑𝑘 .
(8.121)

Estimating |𝔦1 | � 2−𝑚−𝑘3−𝑝 , applying the usual argument to treat the uncorrelated variable 𝜎, and using
the a priori bounds in equation (8.5), we obtain

2ℓ
��𝐼1�� � 𝜀4

1 · 2ℓ · 2−𝑚−𝑝−𝑘3 · 2(−3/4+𝛼)𝑚 · 2𝑘3/22𝛼𝑚 · 2(3/2) (𝑘4+𝑘5)22𝛼𝑚

� 𝜀4
124𝛼𝑚 · 2−7𝑚/4 · 23𝑘4/2 · 2−𝑝;

using 𝑘4 ≤ −𝑚/2 + 𝛿𝑚 and 𝑝 ≥ −𝑚/3 − 10𝛽′𝑚, we can comfortably bound this by the right-hand side
of equation (8.114) as desired.

Case 3: 𝑘4 ≥ −𝑚/2 + 𝛿𝑚 and 𝑘1 + 𝑘4 ≥ −𝑚 + 𝛿𝑚. In this case, we can integrate by parts in both
𝜕𝜂 + 𝜕𝜌 and 𝜕𝜂 + 𝜕𝜁 using equation (8.84). This case corresponds to Subcase 2.2 on page 104, and the
integration by parts produces the terms in equations (8.87)–(8.90). As before, the main contribution is
the one where the derivatives hit the profiles: that is,

𝐼2 :=
��� ⨌

𝑒𝑖𝑠Ψ𝔦2(𝜉, 𝜂, 𝜎, 𝜌, 𝜁)
[
𝜕𝜌 𝑓̃ (𝜌)

] [
𝜕𝜁 𝑓̃ (𝜁)

]
𝑓̃ (𝜂 − 𝜌 − 𝜁) 𝑑𝜂 𝑑𝜌 𝑑𝜁 𝑓̃ (𝜎)𝑑𝜎

���
𝔦2 :=

1
𝑠(𝜕𝜂 + 𝜕𝜁 )Ψ

1
𝑠(𝜕𝜂 + 𝜕𝜌)Ψ

𝜑𝑝
(
Φ

)
Φ

𝔮𝜑𝑘 , |𝔦2 | � 2−2𝑚−𝑘3−𝑘4−𝑝;
(8.122)

see equation (8.89). The usual integration by parts argument in 𝜎, and the a priori bounds, give

2ℓ
��𝐼2�� � 𝜀4

1 · 2ℓ · 2−2𝑚−𝑝−𝑘3−𝑘4 · 2(−3/4+𝛼)𝑚 · 2𝑘3/22𝛼𝑚 · 2𝑘4/22𝛼𝑚 · 2𝑘5

� 𝜀4
123𝛼𝑚 · 2−11𝑚/4 · 2−𝑝 ,

which is enough. This concludes the proof of equation (8.114).
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8.7.2. Proof of equation (8.115)
The proof of this estimate is not too dissimilar from the previous one, but we need to pay some
more attention to a few additional frequency configurations. Again, the issue is that the expressions
𝐼 𝑝,𝑘1 ,𝑘2 [F̃−1C𝑆1, 𝑓 ] (𝑠, 𝜉) and 𝐼 𝑝,𝑘1 ,𝑘2 [ 𝑓 , F̃−1C𝑆1] (𝑠, 𝜉) are not symmetric and we have fewer restrictions
on 𝑘2 than on 𝑘1; see equation (8.112). We detail below all the terms that need different treatment than
before and only sketch the estimates for the others ones.

Writing out C𝑆1, we further localise the expression and consider

(𝐼 𝑝,𝑘 )′ :=
⨌

𝑒𝑖𝑠Ψ
′
𝜄1 𝜄2 𝜄3

𝜑𝑝
(
Φ

)
Φ

𝔮′ 𝜑′
𝑘 (𝜂, 𝜎, 𝜌, 𝜁) 𝑓̃ (𝜌) 𝑓̃ (𝜁) 𝑓̃ (𝜎 − 𝜌 − 𝜁) 𝑓̃ (𝜂) 𝑑𝜎 𝑑𝜁 𝑑𝜌 𝑑𝜂,

𝜑′
𝑘 (𝜂, 𝜎, 𝜌, 𝜁) := 𝜑𝑘1 (𝜂)𝜑𝑘2 (𝜎)𝜑𝑘3 (𝜌)𝜑𝑘4 (𝜁)𝜑𝑘5 (𝜎 − 𝜌 − 𝜁),

Ψ′
𝜄1 𝜄2 𝜄3 (𝜉, 𝜌, 𝜁 , 𝜂, 𝜎) := 〈𝜉〉 − 𝜄1〈𝜌〉 − 𝜄2〈𝜁〉 − 𝜄3〈𝜎 − 𝜌 − 𝜁〉 − 〈𝜂〉, 𝜄1, 𝜄2, 𝜄3 = ±,

|max(𝑘2, 𝑘3) − med(𝑘2, 𝑘3, 𝑘4) | ≤ 5, −3𝑚 ≤ 𝑘5 ≤ 𝑘4 ≤ 𝑘3 ≤ −5;
(8.123)

compare with equations (8.107) and (8.109). For equation (8.115), it suffices to show

2ℓ sup
𝑠≈2𝑚

| (𝐼 𝑝,𝑘 )′| � 2−2𝑚2−4𝛽′𝑚.

Recall the inequality in equation (8.110) proved earlier; it applies here with an additional 2ℓ−𝑝 factor
that was discarded there

2ℓ
��(𝐼 𝑝,𝑘 )′�� � 𝜀3

1 · 23𝛼𝑚 · 2ℓ · 𝑋𝑘1 ,𝑚 · 2−𝑝 · 2𝑘5+𝑘4+min(𝑘2 ,𝑘3) · 2(1/2) (𝑘3+𝑘4+𝑘5) . (8.124)

Note that, using ℓ ≤ 2𝑘1 + 10, we have 2ℓ · 𝑋𝑘1 ,𝑚 ≤ 2−𝑚+𝛼𝑚. Then the inequality in equation (8.124),
and 𝑘5 ≤ 𝑘4, give

2ℓ
��(𝐼 𝑝,𝑘 )′�� � 𝜀4

1 · 24𝛼𝑚 · 2−𝑚 · 2−𝑝 · 2min(𝑘2 ,𝑘3)+3𝑘4 . (8.125)

As in the proof of equation (8.114), we fix 𝛿 ∈ (0, 𝛼) and look at three cases.

Case 1: 𝑘2 + 𝑘4 ≤ −𝑚 + 𝛿𝑚. In this case, equation (8.125) gives

2ℓ
��(𝐼 𝑝,𝑘 )′�� � 𝜀4

1 · 24𝛼𝑚 · 2−𝑚 · 2−𝑝 · 2𝑘2+3𝑘4

� 𝜀4
1 · 25𝛼𝑚 · 2−2𝑚 · 2−𝑝 · 22𝑘4 .

(8.126)

Since 𝑝 ≥ −𝑚/3−10𝛽′𝑚, we see that equation (8.126) would suffice if, for example, 2𝑘4 ≤ −4𝑚/9+2𝛿𝑚.
To see that this condition is satisfied, assume by contradiction that instead, 𝑘4 ≥ −2𝑚/9 + 𝛿𝑚. Then we
must have 𝑘2 ≤ −7𝑚/9, which implies (1/2 + 𝛽)ℓ − 𝑚 − 𝑘1/2 + 3𝑘2/2 ≤ −2𝑚 − 𝑚/6, violating the
constraint on the parameters in equation (8.46).

Case 2: 𝑘4 ≤ −𝑚/2+𝛿𝑚. Again using equation (8.125), we see that 2ℓ
��(𝐼 𝑝,𝑘 )′�� � 𝜀4

1 ·27𝛼𝑚 ·2−5𝑚/2 ·2−𝑝 ,
which suffices.

Case 3: 𝑘2 + 𝑘4 ≥ −𝑚 + 𝛿𝑚 and 𝑘4 ≥ −𝑚/2 + 𝛿𝑚. In this case, which is analogous to Subcase 2 on
page 104 and Case 3 on page 111 above, we have 𝑘2 + 𝑘4 ≥ −𝑚 + 𝛿𝑚 (and thus 𝑘2 + 𝑘3 ≥ −𝑚 + 𝛿𝑚
as well) and have the possibility of integrating by parts in 𝜕𝜎 + 𝜕𝜁 and 𝜕𝜎 + 𝜕𝜌. Once again, the main
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term is the one where derivatives hit the profiles, all the other contributions being of lower order. We
then want to estimate

𝐻 :=
��� ⨌

𝑒𝑖𝑠Ψ
′
𝔥(𝜉, 𝜂, 𝜎, 𝜌, 𝜁)

[
𝜕𝜌 𝑓̃ (𝜌)

] [
𝜕𝜁 𝑓̃ (𝜁)

]
𝑓̃ (𝜎 − 𝜌 − 𝜁) 𝑑𝜎 𝑑𝜌 𝑑𝜁 𝑓̃ (𝜂)𝑑𝜂

���,
𝔥 :=

1
𝑠(𝜕𝜂 + 𝜕𝜁 )Ψ

1
𝑠(𝜕𝜂 + 𝜕𝜌)Ψ

𝜑𝑝
(
Φ

)
Φ

𝔮′𝜑′
𝑘 , |𝔥| � 2−2𝑚−𝑘3−𝑘4−𝑝;

(8.127)

see the analogous term in equation (8.122). Applying the usual treatment to the uncorrelated variable 𝜂
together with 2ℓ𝑋𝑘1 ,𝑚 ≤ 2−𝑚+𝛼𝑚, and using the a priori bounds in equation (8.5), we obtain

2ℓ
��𝐻�� � 𝜀3

1 · 2−2𝑚−𝑝−𝑘3−𝑘4 · 2ℓ𝑋𝑘1 ,𝑚 · 2𝑘3/22𝛼𝑚 · 2𝑘4/22𝛼𝑚 · 2𝑘5

� 𝜀4
123𝛼𝑚 · 2−3𝑚 · 2−𝑝 ,

which is more than enough. This concludes the proof of equation (8.115).

8.7.3. Proof of equations (8.116) and (8.117)
To estimate these terms, we rely on the fast decay of R from equation (7.54). Arguing as in the proof of
Lemma 8.5 (without integrating by parts in 𝜂 in equation (8.41)), we can see that the following variant
of equation (8.40) holds:

‖𝐼 𝑝,𝑘1 ,𝑘2 [F̃−1R, 𝑓 ] (𝑠, 𝜉)‖𝐿2 � 2−𝑘1/2 · ‖R(𝑠)‖𝐿2 · 𝑋𝑘2 ,𝑚. (8.128)

Using equation (7.54), 2ℓ/2 � 2𝑘1 and equation (8.128), we see that for 𝑠 ≈ 2𝑚

2ℓ/2‖𝐼 𝑝,𝑘1 ,𝑘2 [F̃−1R, 𝑓 ] (𝑠, 𝜉)‖𝐿2 � 2ℓ/2 · 2−𝑘1/2 · ‖R(𝑠)‖𝐿2 · 𝑋𝑘2 ,𝑚

� 𝜀3
12−3𝑚/2+2𝛼𝑚 · 2−3𝑚/4+𝛼𝑚,

which implies equation (8.116).
For equation (8.117), we use another simple variant of equation (8.38) in Lemma 8.5 to estimate

2ℓ
��𝐼 𝑝,𝑘1 ,𝑘2 [ 𝑓 , F̃−1R] (𝑠, 𝜉)

�� � 2ℓ · 2−𝑝 · 𝑋𝑘1 ,𝑚 · ‖𝜑𝑘2 R(𝑠)‖𝐿1

� 𝜀3
1 · 2−𝑝 · 2−𝑚 · 2𝑘2/22−3𝑚/2+2𝛼𝑚.

This is enough since 𝑝 ≥ −𝑚/3 − 10𝛽′𝑚.
We have concluded the proof of equation (8.113) and obtained the bound in equation (8.35) in

Lemma 8.4. This gives the proof of the main bound in equation (8.1) for the main interactions with
equation (8.2).

9. Weighted estimates part II: the main ‘singular’ interaction

9.1. Setup

The aim of this section is to prove the weighted bound on the norm in equation (2.30) of the singular cubic
terms C𝑆1

+−+( 𝑓 , 𝑓 , 𝑓 ) and C𝑆2
+−+( 𝑓 , 𝑓 , 𝑓 ) defined in equations (5.57)–(5.58), with a restriction to interacting

frequencies close to
√

3. Interactions of other frequencies and other singular cubic contributions (namely
C𝑆1,2
𝜄1 𝜄2 𝜄3 , with {𝜄1, 𝜄2, 𝜄3} ≠ {+, +,−}) will be dealt with in Section 11, together with the higher-order terms

coming from C𝑆1,2
+−+ (𝑔, 𝑔, 𝑔) − C𝑆1,2

+−+ ( 𝑓 , 𝑓 , 𝑓 ) (see equation (7.59)). In particular, this section contains the
first and main step in the proof of the following:
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Proposition 9.1. Let 𝑊𝑇 be the space defined by the norm in equation (2.30), and consider u, solution
of equation (KG) such that the a priori assumptions in equation (7.10) hold for the renormalised profile
f. Then ����∫ 𝑡

0
C𝑆1
+−+( 𝑓 , 𝑓 , 𝑓 ) 𝑑𝑠

����
𝑊𝑇

+
����∫ 𝑡

0
C𝑆2
+−+( 𝑓 , 𝑓 , 𝑓 ) 𝑑𝑠

����
𝑊𝑇

� 𝜀3
1.

The proof of Proposition 9.1 will be completed in Section 11.4.
The terms C𝑆1

+−+ and C𝑆2
+−+ are as the sum over 𝜆, 𝜇, 𝜈, 𝜆′, 𝜇′, 𝜈′, 𝜄2 of more elementary terms; see

equation (5.46). In the present section, we will simply focus on one of them since all the corresponding
estimates are identical, up to flipping the sign of various frequencies. Furthermore, we discard the
complex conjugation signs over 𝑓̃ since they do not play any role in the estimates. More precisely, we
consider

C𝑆1
+−+( 𝑓 , 𝑓 , 𝑓 ) =

∬
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 )𝔭(𝜉, 𝜂, 𝜁) 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁

where Ψ(𝜉, 𝜂, 𝜁) = Φ+−+(𝜉, 𝜉 − 𝜂, 𝜉 − 𝜂 − 𝜁, 𝜉 − 𝜁)
= 〈𝜉〉 − 〈𝜉 − 𝜂〉 + 〈𝜉 − 𝜂 − 𝜁〉 − 〈𝜉 − 𝜁〉

(9.1)

and

C𝑆2
+−+( 𝑓 , 𝑓 , 𝑓 ) =

∭
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 , 𝜃)𝔭(𝜉, 𝜂, 𝜁 , 𝜃) 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 𝜁) 𝜙(𝜃)

𝜃
𝑑𝜂 𝑑𝜁 𝑑𝜃

where Ψ(𝜉, 𝜂, 𝜁 , 𝜃) = Φ+−+(𝜉, 𝜉 − 𝜂, 𝜉 − 𝜂 − 𝜁 − 𝜃, 𝜉 − 𝜁)
= 〈𝜉〉 − 〈𝜉 − 𝜂〉 + 〈𝜉 − 𝜂 − 𝜁 − 𝜃〉 − 〈𝜉 − 𝜁〉.

We omit the p.v. sign for lighter notation and slightly abuse notation in denoting the symbols 𝔭 and the
phases Ψ with the same letter in the two different expressions above; the presence of the extra variable
𝜃 should resolve any confusion.

Let us say a word about the parametrisation of the frequencies chosen above. If we were dealing with
the nonlinear Schrödinger equation, the phase resulting from the above parametrisation would be (say,
for C𝑆1

+−+)

𝜉2 − (𝜉 − 𝜂)2 + (𝜉 − 𝜂 − 𝜁)2 − (𝜉 − 𝜁)2 = 2𝜂𝜁,

which does not depend on 𝜉 and is thus very favorable to deriving estimates. Of course, we are not
dealing with the nonlinear Schrödinger equation, but close to interactions of the type (𝜉, 𝜉, 𝜉) → 𝜉, the
above identity holds to leading order; this should be kept in mind in the estimates that follow.

Finally, we will assume in this section that the symbols 𝔭 satisfy

𝔭(𝜉, 𝜂, 𝜁) = 𝔭(𝜉, 𝜂, 𝜁)𝜑≤−10(|𝜉 −
√

3| + |𝜂 | + |𝜁 |),

𝔭(𝜉, 𝜂, 𝜁 , 𝜃) = 𝔭(𝜉, 𝜂, 𝜁 , 𝜃)𝜑≤−10(|𝜉 −
√

3| + |𝜂 | + |𝜁 | + |𝜃 |).
(9.2)

That is, the frequencies are localised to |𝜉 −
√

3| � 1 and |𝜂 |, |𝜁 |, |𝜃 | � 1, and they are in C∞
0 with 𝑂 (1)

bounds on their derivatives. This latter assumption is justified (in the current frequency configuration)
in view of the explicit formula in equation (5.46) and the smoothness of the coefficients involved in it,
and the estimate of Lemma 5.3.
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9.2. The bound for C𝑺1
+−+

First note that for 𝜏(𝜉) = 〈𝜉〉, one has 𝜏′(𝜉) = 𝜉
〈𝜉 〉 , 𝜏′′(𝜉) = 1

〈𝜉 〉3 and 𝜏′′′(𝜉) = − 3𝜉
〈𝜉 〉5 . Therefore, in the

regime which interests us here (|𝜉 −
√

3| � 1 and |𝜂 |, |𝜁 | � 1), we have the expansions

Ψ(𝜉, 𝜂, 𝜁) = 1
〈𝜉〉3 2𝜂𝜁 +𝑂 (|𝜂, 𝜁 |3),

𝜕𝜉Ψ(𝜉, 𝜂, 𝜁) = − 3𝜉
〈𝜉〉5 𝜂𝜁 +𝑂 (|𝜂, 𝜁 |3),

𝜕𝜂Ψ(𝜉, 𝜂, 𝜁) = 1
〈𝜉 − 𝜂〉3 𝜁 +𝑂 (|𝜁 |2),

(𝜕𝜂 − 𝜕𝜁 )Ψ(𝜉, 𝜂, 𝜁) = 1
〈𝜉 − 𝜂〉3 (𝜁 − 𝜂) +𝑂 (|𝜂 − 𝜁 |2),

𝜕2
𝜂Ψ(𝜉, 𝜂, 𝜁) = 3(𝜉 − 𝜂)

〈𝜉 − 𝜂〉5 𝜁 +𝑂 (|𝜁 |2),

𝜕𝜂𝜕𝜁Ψ(𝜉, 𝜂, 𝜁) = 1
〈𝜉 − 𝜂 − 𝜁〉3 .

(9.3)

Applying 𝜕𝜉 to equation (9.1) gives

J1 + J2 + J3 + {symmetrical or easier terms},

where

J1 =
∬

𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 )𝔭(𝜉, 𝜂, 𝜁)𝑖𝑠𝜕𝜉Ψ(𝜉, 𝜂, 𝜁) 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁,

J2 =
∬

𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 )𝔭(𝜉, 𝜂, 𝜁)𝜕𝜉 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁,

J3 =
∬

𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 )𝔭(𝜉, 𝜂, 𝜁) 𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁 .

First observe that J1 can be reduced to the other cases. Indeed, 𝜕𝜉Ψ/𝜕𝜂Ψ is a smooth function, and
therefore, it is possible to integrate by parts in 𝜂 in J1 via the identity 1

𝑖𝑠𝜕𝜂Ψ
𝜕𝜂𝑒

𝑖𝑠Ψ = 𝑒𝑖𝑠Ψ, obtaining
terms similar to J2 and J3. Therefore, it will be sufficient to treat J2 and J3.

In what follows, we will localise the variables 𝜉, 𝜉 − 𝜂, 𝜉 − 𝜂 − 𝜁 , 𝜉 − 𝜁 and s, on the dyadic scales

𝑠 ≈ 2𝑚, |𝜉 −
√

3| ≈ 2ℓ ,

|𝜉 − 𝜂 −
√

3| ≈ 2 𝑗1 , |𝜉 − 𝜂 − 𝜁 −
√

3| ≈ 2 𝑗2 , |𝜉 − 𝜁 −
√

3| ≈ 2 𝑗3 .
(9.4)

Consistently with equation (2.30), our aim will be to show that under the a priori assumptions in equation
(7.10), we have

sup
ℓ∈Z∩[ �−𝛾𝑛�,0]

����𝜏𝑛 (𝑡)𝜑 [−𝛾𝑛,0]
ℓ (𝜉 −

√
3)

∫ 𝑡

0
J2,3 (𝑠, 𝜉) 𝑑𝑠

����
𝐿∞
𝑡 ( [0,𝑇 ])𝐿2

𝜉 (R)
� 2𝛼𝑛2−𝛽ℓ𝜀3

1. (9.5)

9.2.1. Bound for J2

We add a localisation in time in the integrand and consider

J2
𝑚 =

∬
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 )𝜏𝑚(𝑠)𝔭(𝜉, 𝜂, 𝜁)𝜕𝜉 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁 .
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Case 1: |ℓ + 𝛾𝑛| ≤ 5. By taking the inverse Fourier transform of this expression, using Plancherel’s
equality, the a priori bounds in equations (7.19) and (7.25) and Lemma 6.5,����∫ 𝑡

0
J2
𝑚 (𝑠, 𝜉) 𝑑𝑠

����
𝐿2
�

∫ 𝑡

0
𝜏𝑚 (𝑠)‖𝜕𝜉 𝑓̃ ‖𝐿2 ‖𝑒𝑖𝑠 〈𝐷〉W∗ 𝑓 ‖2

𝐿∞ 𝑑𝑠 � 2(𝛼+𝛽𝛾)𝑚𝜀3
1.

Therefore, ∑
𝑚≤𝑛

����∫ 𝑡

0
J2
𝑚 (𝑠, 𝜉) 𝑑𝑠

����
𝐿2
� 2(𝛼+𝛽𝛾)𝑛𝜀3

1.

Case 2: −𝛾𝑛 ≤ ℓ ≤ −𝛾𝑚. Similarly to the previous case,����∫ 𝑡

0
J2
𝑚 (𝑠, 𝜉) 𝑑𝑠

����
𝐿2
�

∫ 𝑡

0
𝜏𝑚 (𝑠)‖𝜕𝜉 𝑓̃ ‖𝐿2 ‖𝑒𝑖𝑠 〈𝐷〉W∗ 𝑓 ‖2

𝐿∞ 𝑑𝑠 � 2(𝛼+𝛽𝛾)𝑚𝜀3
1.

This suffices since if −𝛾𝑛 ≤ ℓ ≤ −𝛾𝑚,∑
𝑚<−ℓ/𝛾
𝑚≤𝑛

����∫ 𝑡

0
J2
𝑚(𝑠, 𝜉) 𝑑𝑠

����
𝐿2
�

∑
𝑚≤−ℓ/𝛾
𝑚≤𝑛

2(𝛼+𝛽𝛾)𝑚𝜀3
1 � 2𝛼𝑛−𝛽ℓ𝜀3

1.

Case 3: 𝑗1 > ℓ − 100. We now localise in 𝜉 − 𝜂, by defining

J2, (3)
𝑚,ℓ =

∬
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 )𝔪(𝜉, 𝜂, 𝜁)𝜕𝜉 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁,

where

𝔪(𝜉, 𝜂, 𝜁) = 𝔪J2, (3)

𝑚,ℓ (𝜉, 𝜂, 𝜁) = 𝔭(𝜉, 𝜂, 𝜁)𝜑ℓ (𝜉 −
√

3)𝜑>ℓ−100(𝜉 − 𝜂 −
√

3)𝜏𝑚(𝑠).

Estimating as above, we have����∫ 𝑡

0
J2, (3)
𝑚,ℓ (𝑠, 𝜉) 𝑑𝑠

����
𝐿2
�

∫ 𝑡

0
𝜏𝑚 (𝑠)‖𝜑>ℓ−100(· −

√
3)𝜕𝜉 𝑓̃ (𝜉)‖𝐿2 ‖𝑒𝑖𝑠 〈𝐷〉W∗ 𝑓 ‖2

𝐿∞ 𝑑𝑠 � 2𝛼𝑚2−𝛽ℓ𝜀3
1.

Therefore, ∑
𝑚≤𝑛

����∫ 𝑡

0
J2, (3)
𝑚,ℓ (𝑠, 𝜉) 𝑑𝑠

����
𝐿2
� 2𝛼𝑛−𝛽ℓ𝜀3

1.

Case 4: ℓ > −𝛾𝑚 and 𝑗1 ≤ ℓ − 100. Let us now consider

J2, (4)
𝑚,ℓ =

∬
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 )𝔪(𝜉, 𝜂, 𝜁)𝜕𝜉 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁,

where

𝔪(𝜉, 𝜂, 𝜁) = 𝔪J2, (4)

𝑚,ℓ (𝜉, 𝜂, 𝜁) = 𝔭(𝜉, 𝜂, 𝜁)𝜑ℓ (𝜉 −
√

3)𝜑<ℓ−100(𝜉 − 𝜂 −
√

3)𝜏𝑚(𝑠).

Observe that, on the support of the integrand, |𝜂 | ∼ 2ℓ , which implies (see equation (9.3))���� 1
𝜕𝜁Ψ

���� ∼ 2−ℓ ,

����� 𝜕2
𝜁Ψ

(𝜕𝜁Ψ)2

����� ∼ 2−ℓ .
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Integrating by parts in 𝜁 , we obtain (we are omitting irrelevant numerical constants)

J2, (4)
𝑚,ℓ (𝑠, 𝜉) =

∬
𝑒𝑖𝑠Ψ𝜕𝜁

[
𝔪

𝑠𝜕𝜁Ψ

]
𝜕𝜉 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁

+
∬

𝑒𝑖𝑠Ψ
𝔪

𝑠𝜕𝜁Ψ
𝜕𝜉 𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁 + {symmetrical term}

= J2, (4)♭
𝑚,ℓ + J2, (4)♯

𝑚,ℓ + {symmetrical term}.

We notice first that the term J2, (4)♭
𝑚,ℓ is much simpler to estimate than J2, (4)♯

𝑚,ℓ . Indeed, both symbols
enjoy the same estimates, but two functions 𝑓̃ are differentiated in the latter and only one in the former.
Therefore, we only concentrate on J2, (4)♯

𝑚,ℓ , for which we would like to apply Lemma 6.5, using that����F (
𝔪
𝜕𝜁Ψ

)����
𝐿1
� 2−ℓ . (9.6)

To see why this is true, notice that, on the support of 𝔪, the variables 𝜉 and 𝜂 enjoy the localisation
|𝜉 −

√
3| + |𝜂 | � 2ℓ , while for any 𝑎, 𝑏, 𝑐,����𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜁 1

𝜕𝜁Ψ

���� � 2−(𝑏+1)ℓ and
���𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜁𝔪��� � 2−(𝑎+𝑏)ℓ .

By Remark 6.6 following Lemma 6.5, we obtain equation (9.6).
Thus, we can apply Lemma 6.5, using the bounds in equations (7.19), (7.20) and (7.25), to obtain����∫ 𝑡

0
J2, (4)♭
𝑚,ℓ 𝑑𝑠

����
𝐿2
�

∫ 𝑡

0

����F (
𝔪
𝜕𝜁Ψ

)����
𝐿1

‖𝜑<ℓ (· −
√

3)𝜕𝜉 𝑓̃ ‖𝐿1 ‖𝜕𝜉 𝑓̃ ‖𝐿2 ‖𝑒𝑖𝑠 〈𝐷〉W∗ 𝑓 ‖𝐿∞
𝑑𝑠

𝑠

� 2−ℓ ‖𝜑<ℓ (· −
√

3)𝜕𝜉 𝑓̃ ‖𝐿1 ‖𝜕𝜉 𝑓̃ ‖𝐿2 ‖𝑒𝑖𝑠 〈𝐷〉W∗ 𝑓 ‖𝐿∞

� 2−ℓ · 2𝛽
′ℓ+𝛼𝑚𝜀1 · 2(𝛼+𝛽𝛾)𝑚𝜀1 · 2−𝑚/2𝜀1

� 2−𝛽ℓ+𝛼𝑚𝜀3
1,

(9.7)

where we used that ℓ > −𝛾𝑚 and 𝛼 + 𝛽𝛾 < 1
4 . We abused notations slightly by simply denoting 𝐿∞

instead of 𝐿∞
𝑠≈2𝑚𝐿

∞
𝑥 ; we will use this shorthand repeatedly in the following.

9.2.2. Bound for J3

Cases 1,2,3: ℓ < −𝛾𝑚 or 𝑗2 > ℓ − 100. These cases are identical to cases 1, 2 and 3 of the estimate for
J2, except that the roles of 𝑗1 and 𝑗2 are exchanged.
Case 4: ℓ > −𝛾𝑚 and 𝑗2 < ℓ − 100. Without loss of generality, we can assume that 𝑗1 ≥ 𝑗3. In the
following, we will add an index 𝑗4 to track the localisation of 𝜂 − 𝜁 :

|𝜂 − 𝜁 | ≈ 2 𝑗4 .

Due to the definitions of ℓ, 𝑗1, 𝑗2, 𝑗3 (see equation (9.4)), it suffices to consider three regions (up to the
symmetry between 𝑗1 and 𝑗3):

• Case 4.1: 2ℓ ≈ 2 𝑗1 � 2 𝑗3 and 𝑗4 > ℓ − 100;
• Case 4.2: 2ℓ ≈ 2 𝑗1 ≈ 2 𝑗3 and 𝑗4 < ℓ − 100;
• Case 4.3: 2 𝑗1 ≈ 2 𝑗3 ≈ 2 𝑗4 � 2ℓ .
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Case 4.1: ℓ > −𝛾𝑚, 𝑗2 < ℓ − 100, 2ℓ ≈ 2 𝑗1 � 2 𝑗3 and 𝑗4 > ℓ − 100. In other words, we are considering
here

J3, (1)
𝑚,ℓ =

∬
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 )𝔪(𝜉, 𝜂, 𝜁) 𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁,

where

𝔪(𝜉, 𝜂, 𝜁) = 𝔪J3, (1)

𝑚,ℓ (𝜉, 𝜂, 𝜁)

= 𝔭(𝜉, 𝜂, 𝜁)𝜑ℓ (𝜉 −
√

3)𝜑∼ℓ (𝜉 − 𝜂 −
√

3)𝜑<ℓ−100(𝜉 − 𝜂 − 𝜁 −
√

3)

𝜑≤ℓ (𝜉 − 𝜁 −
√

3)𝜑>ℓ−100(𝜂 − 𝜁)𝜏𝑚(𝑠).

On the support of the symbol,

| (𝜕𝜂 − 𝜕𝜁 )Ψ| ∼ |𝜂 − 𝜁 | ≈ 2ℓ , | (𝜕𝜂 − 𝜕𝜁 )2Ψ| ≈ 1.

Integrating by parts using the identity 1
𝑖𝑠 (𝜕𝜂−𝜕𝜁 )Ψ (𝜕𝜂 − 𝜕𝜁 )𝑒𝑖𝑠Ψ = 𝑒𝑖𝑠Ψ gives

J3, (1)
𝑚,ℓ =

∬
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 ) (𝜕𝜂 − 𝜕𝜁 )

[
𝔪(𝜉, 𝜂, 𝜁)

𝑖𝑠(𝜕𝜂 − 𝜕𝜁 )Ψ)

]
𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁

+
∬

𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 ) 1
𝑖𝑠(𝜕𝜂 − 𝜕𝜁 )Ψ

𝔪(𝜉, 𝜂, 𝜁) 𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 𝜂 − 𝜁)𝜕𝜉 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁

+ {symmetrical terms}

= J3, (1)♭
𝑚,ℓ + J3, (1)♯

𝑚,ℓ + {symmetrical terms}.

In order to estimate J3, (1)♭
𝑚,ℓ , we claim that����F (

(𝜕𝜂 − 𝜕𝜁 )
[

𝔪(𝜉, 𝜂, 𝜁)
𝑖(𝜕𝜂 − 𝜕𝜁 )Ψ)

] )����
𝐿1
� 2−2ℓ .

This follows from the remark after Lemma 6.5 since on the support of 𝔪, the variables 𝜉, 𝜂 and 𝜁 are
such that |𝜉 |, |𝜂 |, |𝜁 | � 2ℓ , and for any 𝑎, 𝑏, 𝑐,����𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜁 1

(𝜕𝜂 − 𝜕𝜁 )Ψ

���� � 2−ℓ (1+𝑏+𝑐) while
���𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜁𝔪��� � 2−ℓ (𝑎+𝑏+𝑐) .

Thus we can apply Lemma 6.5 together with equations (7.18) and (7.20) to obtain����∫ 𝑡

0
J3, (1)♭
𝑚,ℓ 𝑑𝑠

����
𝐿2
� 2−2ℓ ‖𝜑<ℓ (· −

√
3) 𝑓̃ ‖𝐿1 ‖𝜑<ℓ (· −

√
3)𝜕𝜉 𝑓̃ ‖𝐿1 ‖𝜑<ℓ (· −

√
3) 𝑓̃ ‖𝐿2

� 2−2ℓ · 2ℓ𝜀1 · 2𝛽
′ℓ+𝛼𝑚𝜀1 · 2ℓ/2𝜀1 = 2−𝛽ℓ+𝛼𝑚𝜀3

1.

Turning to J3, (1)♯
𝑚,ℓ , by the arguments given above,����F (

𝔪(𝜉, 𝜂, 𝜁)
(𝜕𝜂 − 𝜕𝜁 )Ψ

)����
𝐿1
� 2−ℓ .
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Thus we can apply Lemma 6.5 to obtain����∫ 𝑡

0
J3, (1)♯
𝑚,ℓ 𝑑𝑠

����
𝐿2
� 2−ℓ ‖𝑒𝑖𝑠 〈𝐷〉W∗ 𝑓 ‖𝐿∞ ‖𝜑<ℓ (· −

√
3)𝜕𝜉 𝑓̃ ‖𝐿1 ‖𝜕𝜉 𝑓̃ ‖𝐿2 .

From here, the estimate proceeds just as for equation (9.7) above.
Case 4.2: ℓ > −𝛾𝑚, 𝑗2 < ℓ − 100, 2ℓ ≈ 2 𝑗1 ≈ 2 𝑗3 and 𝑗4 < ℓ − 100. In other words, we are considering
here

J3, (2)
𝑚,ℓ =

∬
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 )𝔪(𝜉, 𝜂, 𝜁) 𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁,

where

𝔪(𝜉, 𝜂, 𝜁) = 𝔪J3, (2)

𝑚,ℓ (𝜉, 𝜂, 𝜁)

= 𝔭(𝜉, 𝜂, 𝜁)𝜑ℓ (𝜉 −
√

3)𝜑∼ℓ (𝜉 − 𝜂 −
√

3)

𝜑<ℓ−100 (𝜉 − 𝜂 − 𝜁 −
√

3)𝜑∼ℓ (𝜉 − 𝜁 −
√

3)𝜑<ℓ−100(𝜂 − 𝜁)𝜏𝑚(𝑠).

Notice that, on the support of 𝔪,

|𝜉 − 𝜂 −
√

3| ≈ |𝜉 − 𝜁 −
√

3| ≈ |𝜂 | ≈ |𝜁 | ∼ 2ℓ ,

so that

|Ψ| ≈ |𝜕𝜉Ψ| ≈ 22ℓ and |𝜕𝜂Ψ| ≈ |𝜕𝜁Ψ| ≈ 2ℓ .

In the expression above giving J3, (2)
𝑚,ℓ , we write 𝜕𝜉 𝑓̃ (𝜉 − 𝜂 − 𝜁) = −𝜕𝜂 𝑓̃ (𝜉 − 𝜂 − 𝜁) and integrate by

parts in 𝜂. This results in

J3, (2)
𝑚,ℓ =

∬
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 )𝜕𝜂𝔪(𝜉, 𝜂, 𝜁) 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁

−
∬

𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 )𝔪(𝜉, 𝜂, 𝜁)𝜕𝜉 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁

+
∬

𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 ) 𝑖𝑠𝜕𝜂Ψ𝔪(𝜉, 𝜂, 𝜁) 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁

= J3, (2)♭
𝑚,ℓ + J3, (2)♯

𝑚,ℓ + J3, (2)♮
𝑚,ℓ .

We claim that the first term in the above right-hand side, namely J3, (2)♭
𝑚,ℓ , is easier to treat than the third,

J3, (2)♮
𝑚,ℓ , because |𝜕𝜂𝔪 | ≈ 2−ℓ � 2𝑚+ℓ ≈ |𝑠𝜕𝜂Ψ| with corresponding bounds for the 𝐿1 norm of their

Fourier transform. The second term, J3, (2)♯
𝑚,ℓ , can be treated like Case 3 for J2; thus we are left with

analysing the third term. In order to bound it, we integrate by parts in s:∫ 𝑡

0
J3, (2)♮
𝑚,ℓ 𝑑𝑠 =

∫ 𝑡

0

∬
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 ) 𝜕𝜂Ψ

Ψ
𝑠𝔪(𝜉, 𝜂, 𝜁)𝜕𝑠 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁 𝑑𝑠

+
∫ 𝑡

0

∬
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 ) 𝜕𝜂Ψ

Ψ
𝜕𝑠 [𝑠𝔪(𝜉, 𝜂, 𝜁)] 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁 𝑑𝑠

+ {similar or easier terms}.

The ‘similar or easier’ terms here also include the boundary terms coming from the integration by parts,
which can be estimated like the other two terms.
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We show how to bound the first term in the right-hand side above, since the second term can be
bounded the same way. First observe that Lemma 6.5 applies since on the support of 𝔪, the variables
are such that |𝜉 −

√
3| + |𝜂 | + |𝜁 | � 2ℓ ; and for any 𝑎, 𝑏, 𝑐,����𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜁 𝜕𝜂ΨΨ ���� � 2−ℓ (1+𝑏+𝑐) .

We write ∫ 𝑡

0

∬
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 ) 𝑖

𝜕𝜂Ψ

Ψ
𝑠𝔪(𝜉, 𝜂, 𝜁)𝜕𝑠 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁 𝑑𝑠

=
∑
𝜄1 𝜄2 𝜄3

∫ 𝑡

0

⨌
𝑒𝑖𝑠Λ𝜄1 𝜄2 𝜄3 ( 𝜉 ,𝜂,𝜁 ,𝜎,𝜌) 𝑖

𝜕𝜂Ψ

Ψ
𝑠𝔪′(𝜉, 𝜂, 𝜁 , 𝜌, 𝜎)

× 𝑓̃ (𝜉 − 𝜂 − 𝜎 − 𝜌) 𝑓̃ (𝜎) 𝑓̃ (𝜌) 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁 𝑑𝜎 𝑑𝜌 𝑑𝑠

+ {similar terms}.

(9.8)

In the above equation, we denoted 𝔪′ for the 5-linear symbol arising when one replaces 𝜕𝑠 𝑓 by C𝑆1; we
omitted various indexes and complex conjugate signs to alleviate the notations, and denoted

Λ 𝜄1 𝜄2 𝜄3 (𝜉, 𝜂, 𝜁 , 𝜎, 𝜌) = 〈𝜉〉 − 𝜄1〈𝜉 − 𝜂 − 𝜎 − 𝜌〉 − 𝜄2〈𝜎〉 − 𝜄3〈𝜌〉 − 〈𝜉 − 𝜂 − 𝜁〉 + 〈𝜉 − 𝜁〉.

By Lemma equation (6.13), the 5-linear term satisfies Hölder estimates and can be bounded by

‖ . . . ‖𝐿2 � 2−ℓ22𝑚‖𝑒𝑖𝑠 〈𝐷〉W∗ 𝑓 ‖4
𝐿∞ ‖𝜑∼ℓ (· −

√
3) 𝑓̃ ‖𝐿2 � 2−ℓ/2𝜀5

1 � 2−𝛽ℓ+𝛼𝑚𝜀5
1,

where the last inequality holds since ℓ > −𝛾𝑚 and 𝛼 > 𝛽′𝛾.
The ‘similar terms’ in equation (9.8) are of various types: some involve principal value operators

instead of 𝛿, but these can be treated identically; other contain the regular quadratic term, which can be
treated similarly using (see equation (11.45)):

‖𝜑ℓ (· −
√

3)Q𝑅 ( 𝑓 , 𝑓 )‖𝐿2 � 2ℓ/22−𝑚.

Case 4.3: ℓ > −𝛾𝑚, 𝑗2 < ℓ − 100, 2 𝑗1 ≈ 2 𝑗3 � 2ℓ . We would like to estimate here
∑
𝑗1 �ℓ J 3, (3)

𝑚,ℓ, 𝑗1
, with

J3, (3)
𝑚,ℓ, 𝑗1

=
∬

𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 )𝔪(𝜉, 𝜂, 𝜁) 𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁,

where

𝔪(𝜉, 𝜂, 𝜁) = 𝔪J3, (3)

𝑚,ℓ, 𝑗1
(𝜉, 𝜂, 𝜁)

= 𝔭(𝜉, 𝜂, 𝜁)𝜑ℓ (𝜉 −
√

3)𝜑 𝑗1 (𝜉 − 𝜂 −
√

3)𝜑<ℓ−100(𝜉 − 𝜂 − 𝜁 −
√

3)

𝜑∼ 𝑗1 (𝜉 − 𝜁 −
√

3)𝜑∼ 𝑗1 (𝜂 − 𝜁)𝜏𝑚(𝑠).

On the support of this symbol,

| (𝜕𝜂 − 𝜕𝜁 )Ψ| ≈ |𝜂 − 𝜁 | ≈ 2 𝑗1 , | (𝜕𝜂 − 𝜕𝜁 )2Ψ| ≈ 1.
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Integrating by parts through the identity 1
𝑖𝑠 (𝜕𝜂−𝜕𝜁 )Ψ (𝜕𝜂 − 𝜕𝜁 )𝑒𝑖𝑠Ψ = 𝑒𝑖𝑠Ψ gives

J3, (3)
𝑚,ℓ, 𝑗1

=
∬

𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 ) (𝜕𝜂 − 𝜕𝜁 )
[

𝔪(𝜉, 𝜂, 𝜁)
𝑖𝑠(𝜕𝜂 − 𝜕𝜁 )Ψ)

]
𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 𝜂 − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁

+
∬

𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 ) 1
𝑖𝑠(𝜕𝜂 − 𝜕𝜁 )Ψ

𝔪(𝜉, 𝜂, 𝜁) 𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 𝜂 − 𝜁)𝜕𝜉 𝑓̃ (𝜉 − 𝜁) 𝑑𝜂 𝑑𝜁

+ {symmetrical terms}

= J3, (3)♭
𝑚,ℓ, 𝑗1

+ J3, (3)♯
𝑚,ℓ, 𝑗1

+ {symmetrical terms}.

Both of these terms can be estimated very similarly to the corresponding terms in Case 4.1; for
completeness, we show how to bound J3, (3)♯

𝑚,ℓ, 𝑗1
.

We claim first that ����F [
𝔪(𝜉, 𝜂, 𝜁)

(𝜕𝜂 − 𝜕𝜁 )Ψ)

]����
𝐿1
� 2− 𝑗1 . (9.9)

Indeed, we can write 𝔪 = 𝔫𝜑<ℓ−100 (𝜉 − 𝜂 − 𝜁 −
√

3) with

𝔫(𝜉, 𝜂, 𝜁) = 𝔭(𝜉, 𝜂, 𝜁)𝜑ℓ (𝜉 −
√

3)𝜑 𝑗1 (𝜉 − 𝜂 −
√

3)𝜑∼ 𝑗1 (𝜉 − 𝜁 −
√

3)𝜑∼ 𝑗1 (𝜂 − 𝜁)𝜑� 𝑗1 (𝜂 − 𝜁)𝜏𝑚(𝑠).

On the support of 𝔫, the variables are constrained by |𝜉 −
√

3| ∼ 2ℓ , |𝜂 | � 2 𝑗1 and |𝜁 | � 2 𝑗1 , and for any
𝑎, 𝑏, 𝑐, we have ����𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜁 1

(𝜕𝜂 − 𝜕𝜁 )Ψ

���� � 2− 𝑗1 (1+𝑏+𝑐) ,
���𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜁 𝔫��� � 2−𝑎ℓ−(𝑏+𝑐) 𝑗1 .

From Remark 6.6 after Lemma 6.5, we deduce����F [
𝔫(𝜉, 𝜂, 𝜁)

(𝜕𝜂 − 𝜕𝜁 )Ψ)

]����
𝐿1
� 2− 𝑗1 ,

hence equation (9.9).
Applying Lemma 6.5, we obtain����∫ 𝑡

0
J3, (1)♯
𝑚,ℓ, 𝑗1

𝑑𝑠

����
𝐿2
� 2− 𝑗1 ‖𝑒𝑖𝑠 〈𝐷〉W∗ 𝑓 ‖𝐿∞ ‖𝜑<ℓ (· −

√
3)𝜕𝜉 𝑓̃ ‖𝐿1 ‖𝜕𝜉 𝑓̃ ‖𝐿2 ,

from which, after summing in 𝑗1 � ℓ, one can proceed as in equation (9.7).

9.3. The bound for C𝑺2
+−+

We now look at the ‘p.v.’ contributions of the form∭
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 , 𝜃)𝔭(𝜉, 𝜂, 𝜁 , 𝜃) 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 𝜁) 𝜙(𝜃)

𝜃
𝑑𝜂 𝑑𝜁 𝑑𝜃

Ψ(𝜉, 𝜂, 𝜁 , 𝜃) := Φ+−+(𝜉, 𝜉 − 𝜂, 𝜉 − 𝜂 − 𝜁 − 𝜃, 𝜉 − 𝜁)
= 〈𝜉〉 − 〈𝜉 − 𝜂〉 + 〈𝜉 − 𝜂 − 𝜁 − 𝜃〉 − 〈𝜉 − 𝜁〉.

(9.10)
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In the regime that interests us here (|𝜉 −
√

3| � 1 and |𝜂 |, |𝜁 |, |𝜃 | � 1), we have the expansions

Ψ(𝜉, 𝜂, 𝜁 , 𝜃) = − 𝜉

〈𝜉〉 𝜃 + 1
〈𝜉〉3

(
𝜃2

2
+ 𝜂𝜁 + 𝜂𝜃 + 𝜁𝜃

)
+𝑂 (|𝜂, 𝜁 , 𝜃 |3) = − 𝜉

〈𝜉〉 𝜃 +𝑂 (|𝜂, 𝜁 , 𝜃 |2),

𝜕𝜉Ψ(𝜉, 𝜂, 𝜁 , 𝜃) = − 1
〈𝜉〉3 𝜃 +𝑂 (|𝜂, 𝜁 , 𝜃 |2),

𝜕𝜂Ψ(𝜉, 𝜂, 𝜁 , 𝜃) = 1
〈𝜉 − 𝜂〉3 (𝜁 + 𝜃) +𝑂 (|𝜁 + 𝜃 |2),

𝜕2
𝜂Ψ(𝜉, 𝜂, 𝜁 , 𝜃) = 3(𝜉 − 𝜂)

〈𝜉 − 𝜂〉5 (𝜁 + 𝜃) +𝑂 (|𝜁 + 𝜃 |2),

(𝜕𝜂 − 𝜕𝜁 )Ψ =
1

〈𝜉 − 𝜂〉3 (𝜁 − 𝜂) +𝑂 (|𝜂 − 𝜁 |2).

9.3.1. Commuting 〈𝝃〉𝝏𝝃 with equation (9.10)
In order to perform this commutation, it is convenient to adopt a new set of coordinates, namely write

(9.10) =
∭

𝑒𝑖𝑠Φ+−+ ( 𝜉 ,𝜂,𝜎,𝜃)𝔭(𝜉, 𝜂, 𝜎, 𝜃) 𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃) 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝜃,

with 𝑝 = 𝜉 − 𝜂 − 𝜎 − 𝜃. In the expression above, we have abused notation slightly by also denoting 𝔭
the symbol in the new coordinates, and by omitting irrelevant sign changes. To commute 〈𝜉〉𝜕𝜉 with
equation (9.10), we will rely on the following elegant identity: observe that

(〈𝜉〉𝜕𝜉 + 𝑋𝜂,𝜎,𝜃 )Φ+−+ = 𝑝, 𝑋𝜂,𝜎,𝜃 := 〈𝜂〉𝜕𝜂 − 〈𝜎〉𝜕𝜎 + 〈𝜃〉𝜕𝜃 . (9.11)

When applying 〈𝜉〉𝜕𝜉 to equation (9.10), we can use this identity to integrate by parts in 𝜂, 𝜎 and
𝜃. Since the adjoint satisfies 𝑋∗

𝜂,𝜎,𝜃 = −𝑋𝜂,𝜎,𝜃 , up to terms that are easier to estimate, we see that
estimating 〈𝜉〉𝜕𝜉 of equation (9.10) reduces to bounding

𝑖𝑡

∭
𝑒𝑖𝑡Φ+−+𝔭(𝜉, 𝜂, 𝜎, 𝜃) 𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃)𝜙(𝑝) 𝑑𝜂 𝑑𝜎 𝑑𝜃 (9.12a)

+
∭

𝑒𝑖𝑡Φ+−+𝔭(𝜉, 𝜂, 𝜎, 𝜃)𝑋𝜂,𝜎,𝜃
(
𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃)

) 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝜃 (9.12b)

+
∭

𝑒𝑖𝑡Φ+−+𝔭(𝜉, 𝜂, 𝜎, 𝜃) 𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃)
(
〈𝜉〉𝜕𝜉 + 𝑋𝜂,𝜎,𝜃

) [𝜙(𝑝)
𝑝

]
𝑑𝜂 𝑑𝜎 𝑑𝜃 (9.12c)

+
∭

𝑒𝑖𝑡Φ+−+𝑋𝜂,𝜎,𝜃 𝔭(𝜉, 𝜂, 𝜎, 𝜃) 𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃) 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝜃. (9.12d)

Estimate of equation (9.12a). This term does not have a singularity and can be estimated by integrating
by parts in the ‘uncorrelated’ variables 𝜂, 𝜎 and 𝜃. Each of the three inputs would then give a gain of
〈𝑡〉−3/4+𝛼, which is sufficient to absorb the power of t in front and integrate over time. Similar (in fact,
harder) terms have been treated in Section 8, so we can skip the details.
Estimate of equation (9.12c). For this term, we observe (see equation (11.71)) that(

〈𝜉〉𝜕𝜉 + 𝑋𝜂,𝜎,𝜃
) [𝜙(𝑝)

𝑝

]
= Φ+−+(𝜉, 𝜂, 𝜎, 𝜃)𝜕𝑝

[𝜙(𝑝)
𝑝

]
. (9.13)

Note that this identity is formal as it is written, since 𝜕𝑝 (1/𝑝) does not converge (even in the p.v. sense);
however, it can be made rigorous by localising a little away from 𝑝 = 0 and using the p.v. to deal with
very small values of p.

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.9


Forum of Mathematics, Pi 123

From equation (9.13), we obtain, upon integration by parts in s, that∫ 𝑡

0
𝑖(9.12𝑐) 𝑑𝑠 =

∭
𝑒𝑖𝑠Φ+−+𝔭(𝜉, 𝜂, 𝜎, 𝜃) 𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃) 𝜕𝑝

𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝜃
���𝑠=𝑡
𝑠=0

(9.14)

−
∫ 𝑡

0

∭
𝑒𝑖𝑠Φ+−+𝔭(𝜉, 𝜂, 𝜎, 𝜃) 𝜕𝑠

[
𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃)

]
𝜕𝑝

𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝜃 𝑑𝑠. (9.15)

To estimate equation (9.14), we convert the 𝜕𝑝 into 𝜕𝜂 and integrate by parts in 𝜂. The worst term is
when 𝜕𝜂 hits the exponential; this causes a loss of t, but an 𝐿2 × 𝐿∞ × 𝐿∞ Hölder estimate using Lemma
6.13 suffices to recover it.

The term in equation (9.15) is similar. We may assume that 𝜕𝑠 hits 𝑓̃ (𝜎). Again we convert 𝜕𝑝 into
𝜕𝜂 and integrate by parts in 𝜂. This causes a loss of s when hitting the exponential phase, which is offset
by an 𝐿∞ × 𝐿2 × 𝐿∞ estimate with 𝜕𝑠 𝑓̃ placed in 𝐿2 and giving 〈𝑡〉−1 decay using equation (7.56).
Estimate of equation (9.12d). This term can be estimated directly using the trilinear estimates from
Lemma 6.13.

This leaves us with equation (9.12b), which, coming back to the original coordinates, and taking into
account the symmetry between the 𝜂 and 𝜁 variables, reduces to the two following terms

H2 =
∭

𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 , 𝜃)𝔭(𝜉, 𝜂, 𝜁 , 𝜃)𝜕𝜉 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 𝜁) 𝜙(𝜃)
𝜃

𝑑𝜂 𝑑𝜁 𝑑𝜃,

H3 =
∭

𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 , 𝜃)𝔭(𝜉, 𝜂, 𝜁 , 𝜃) 𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 𝜁) 𝜙(𝜃)
𝜃

𝑑𝜂 𝑑𝜁 𝑑𝜃.

In order to bound these terms, we will dyadically localise the variables in the problem as follows:

𝑠 ≈ 2𝑚, |𝜉 −
√

3| ≈ 2ℓ , |𝜃 | ≈ 2ℎ ,

|𝜉 − 𝜂 −
√

3| ≈ 2 𝑗1 , |𝜉 − 𝜂 − 𝜁 − 𝜃 −
√

3| ≈ 2 𝑗2 , |𝜉 − 𝜁 −
√

3| ≈ 2 𝑗3 .
(9.16)

9.3.2. Bound for H2

Cases 1,2,3: ℓ < −𝛾𝑚 or 𝑗1 > ℓ − 100. These cases can be dealt with as in Section 9.2.1, relying on
Lemma 6.7 instead of Lemma 6.5.
Case 4.1: ℓ > −𝛾𝑚, 𝑗1 < ℓ − 100 and |𝜃 + 𝜉 −

√
3| ≥ 2ℓ−10. We want to bound here

∑
ℎ>ℓ−10 H2, (1)

𝑚,ℓ,ℎ ,
where

H2, (1)
𝑚,ℓ,ℎ :=

∭
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 , 𝜃)𝔪(𝜉, 𝜂, 𝜁 , 𝜃)𝜕𝜉 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 𝜁) 𝜙(𝜃)

𝜃
𝑑𝜂 𝑑𝜁 𝑑𝜃

with

𝔪(𝜉, 𝜂, 𝜁 , 𝜃) = 𝔪H2, (1)

𝑚,ℓ,ℎ (𝜉, 𝜂, 𝜁 , 𝜃)

= 𝔭(𝜉, 𝜂, 𝜁)𝜑ℓ (𝜉 −
√

3)𝜑<ℓ−100(𝜉 − 𝜂 −
√

3)𝜑ℎ (𝜃 + 𝜉 −
√

3)𝜏𝑚(𝑠).

On the support of 𝔪(𝜉, 𝜂, 𝜁), |𝜕𝜁Ψ| ≈ |𝜂 + 𝜃 | � |𝜂 | and |𝜉 −
√

3|, |𝜂 | ∼ 2ℓ and |𝜃 | � 2ℎ; moreover, for
any a, b, c, ����𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜁 𝜕𝑑𝜃 1

𝜕𝜁Ψ

���� � 2−ℎ (1+𝑏+𝑑) .

Therefore, Lemma 6.7 applies and we can proceed exactly as in Case 4 of Section 9.2.1, since the sum
over ℎ > ℓ of 2−ℎ gives the same factor of 2ℓ there.
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Case 4.2: ℓ > −𝛾𝑚, 𝑗1 < ℓ − 100 and |𝜃 + 𝜉 −
√

3| < 2ℓ−10. We want to bound here

H2, (2)
𝑚,ℓ =

∭
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 , 𝜃)𝔪(𝜉, 𝜂, 𝜁)𝜕𝜉 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 𝜁) 𝜙(𝜃)

𝜃
𝑑𝜂 𝑑𝜁 𝑑𝜃,

where

𝔪(𝜉, 𝜂, 𝜁) = 𝔪H2, (2)

𝑚,ℓ (𝜉, 𝜂, 𝜁)

= 𝔭(𝜉, 𝜂, 𝜁)𝜑ℓ (𝜉 −
√

3)𝜑<ℓ−100(𝜉 − 𝜂 −
√

3)𝜑<ℓ−10(𝜃 + 𝜉 −
√

3)𝜏𝑚(𝑠).

On the support of the integrand, |𝜃 | ≈ 2ℓ . Therefore, noticing that 𝜕𝜃Ψ is smooth and bounded away
from zero, we integrate by parts in 𝜃 to obtain

H2, (2)
𝑚,ℓ =

∭
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 , 𝜃)𝜕𝜉 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 𝜁)𝜕𝜃

[
𝔪

𝑠𝜕𝜃Ψ
𝜙(𝜃)
𝜃

]
𝑑𝜂 𝑑𝜁 𝑑𝜃

+
∭

𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 , 𝜃) 𝔪
𝑠𝜕𝜃Ψ

𝜕𝜉 𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 𝜁) 𝜙(𝜃)
𝜃

𝑑𝜂 𝑑𝜁 𝑑𝜃

= H2, (2)♭
𝑚,ℓ + H2, (2)♯

𝑚,ℓ .

Using that |𝜉 |, |𝜂 |, |𝜃 | � 2ℓ and |𝜕𝑎𝜉 𝜕
𝑏
𝜂𝜕
𝑐
𝜁 𝜕
𝑑
𝜃𝔪 | � 2−ℓ (𝑎+𝑏+𝑑) , we get by Lemma 6.7 equations (7.18),

(7.20) and (7.25),∫ 𝑡

0

���H2, (2)♭
𝑚,ℓ

���
𝐿2

𝑑𝑠 � 2−ℓ ‖𝜑<ℓ (· −
√

3)𝜕𝜉 𝑓̃ ‖𝐿1 ‖ 𝑓̃ ‖𝐿2 ‖𝑒−𝑖𝑡 〈𝐷〉W∗ 𝑓 ‖𝐿∞

� 2−ℓ2𝛽
′ℓ+𝛼𝑚2−𝑚/2𝜀3

1 � 2−𝛽ℓ+𝛼𝑚𝜀3
1.

Similarly, by Lemma 6.7, we get equations (7.19), (7.20) and (7.25),∫ 𝑡

0

���H2, (2)♯
𝑚,ℓ

���
𝐿2

𝑑𝑠 � ‖𝜑<ℓ (· −
√

3)𝜕𝜉 𝑓̃ ‖𝐿1 ‖𝜕𝜉 𝑓̃ ‖𝐿2 ‖𝑒−𝑖𝑡 〈𝐷〉W∗ 𝑓 ‖𝐿∞

� 2𝛽
′ℓ+𝛼𝑚2(𝛼+𝛽𝛾)𝑚2−𝑚/2𝜀3

1 � 2−𝛽ℓ+𝛼𝑚𝜀3
1.

9.3.3. Bound for H3

Cases 1,2,3: ℓ < −𝛾𝑚 or 𝑗2 > ℓ−100. With the help of Lemma 6.7 instead of Lemma 6.5, these cases are
dealt with exactly as for J3 in Section 9.2.2. We introduce one further index to record the size of |𝜂− 𝜁 |:

|𝜂 − 𝜁 | ≈ 2 𝑗4 .

From now on, we can assume that ℓ > −𝛾𝑚 and 𝑗1 < ℓ−100. The cases that remain to be distinguished
are

• Case 4.1: 2 𝑗1 , 2 𝑗3 � 2ℓ , 2 𝑗4 � 2ℓ ;
• Case 4.2.1: 2 𝑗1 , 2 𝑗3 � 2ℓ , 2 𝑗4 � 2ℓ , 22ℓ � 2ℎ � 2ℓ ;
• Case 4.2.2: 2 𝑗1 , 2 𝑗3 � 2ℓ , 2 𝑗4 � 2ℓ , 2ℎ � 22ℓ ;
• Case 4.3.1: 2 𝑗1 ≈ 2 𝑗3 � 2ℓ , 2ℎ � 2 𝑗1 ;
• Case 4.3.2: 2 𝑗1 � 2ℓ , 2ℎ � 2 𝑗1 .

Case 4.1: ℓ > −𝛾𝑚, 𝑗2 < ℓ − 100, 2 𝑗1 , 2 𝑗3 � 2ℓ and 𝑗4 > ℓ − 100. This corresponds to the symbol

𝔪H3, (1)

ℓ,𝑚 = 𝜑ℓ (𝜉 −
√

3)𝜑<ℓ+10(𝜉 − 𝜂 −
√

3)𝜑<ℓ−100(𝜉 − 𝜂 − 𝜁 − 𝜃 −
√

3)
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𝜑<ℓ+10 (𝜉 − 𝜁 −
√

3)𝜑>ℓ−100(𝜂 − 𝜁).

On the support of this symbol, the frequency variables enjoy the localisations |𝜉 −
√

3|, |𝜂 |, |𝜁 |, |𝜃 | � 2ℓ ,
and the symbol satisfies the estimates

|𝜕𝑎𝜉 𝜕
𝑏
𝜂𝜕
𝑐
𝜁 𝜕
𝑑
𝜃𝔪 | � 2−(𝑎+𝑏+𝑐+𝑑)ℓ .

Furthermore, | (𝜕𝜂 − 𝜕𝜁 )Ψ| � 2ℓ , and therefore one can proceed as in Case 4.1 of Section 9.2.2. Indeed,
(𝜕𝜂 − 𝜕𝜁 )Ψ is independent of 𝜃 and, on the support of the symbol,

���𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜁 𝜕𝑑𝜃 1
(𝜕𝜂−𝜕𝜁 )Ψ

��� � 2−ℓ (1+𝑏+𝑐)

for any 𝑎, 𝑏, 𝑐, 𝑑.
Case 4.2.1: ℓ > −𝛾𝑚, 𝑗2 < ℓ − 100, 2 𝑗1 , 2 𝑗3 � 2ℓ , 𝑗4 ≤ ℓ − 100 andℎ > 2ℓ − 100. After the change of
variables 𝜂′ = 𝜂 + 𝜃, let

H3, (2)
ℎ,ℓ,𝑚 =

∭
𝑒𝑖𝑠Φ( 𝜉 ,𝜂′,𝜁 , 𝜃)𝔪(𝜉, 𝜂′, 𝜁 , 𝜃) 𝑓̃ (𝜉 − 𝜂′ + 𝜃)𝜕𝜉 𝑓̃ (𝜉 − 𝜂′ − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝜙(𝜃)

𝜃
𝑑𝜂′ 𝑑𝜁 𝑑𝜃,

where

Φ(𝜉, 𝜂′, 𝜁 , 𝜃) = 〈𝜉〉 − 〈𝜉 − 𝜂′ + 𝜃〉 + 〈𝜉 − 𝜂′ − 𝜁〉 − 〈𝜉 − 𝜁〉

and

𝔪(𝜉, 𝜂′, 𝜁) = 𝔪H3, (2)

ℎ,ℓ,𝑚 (𝜉, 𝜂′, 𝜁)

= 𝜑ℓ (𝜉 −
√

3)𝜑<ℓ−100(𝜉 − 𝜂′ − 𝜁 −
√

3)𝜑<ℓ+10(𝜉 − 𝜂′ + 𝜃 −
√

3)𝜑<ℓ+10(𝜉 − 𝜁 −
√

3)
𝜑<ℓ−100 (𝜂′ − 𝜃 − 𝜁)𝜑ℎ (𝜃)𝜏𝑚(𝑠)𝔭(𝜉, 𝜂′ − 𝜃, 𝜁).

On the support of this symbol, 2ℎ � 2ℓ ; therefore, in the following we will bound∑
2ℓ−100<ℎ<ℓ+100 H3, (2)

ℎ,ℓ,𝑚. Noticing that 𝜕𝜃Φ = 𝜉−𝜂′−𝜃
〈𝜉−𝜂′−𝜃 〉 is smooth and � 1, we integrate by parts in 𝜃

to obtain

H3, (2)
ℎ,ℓ,𝑚 =

∭
𝑒𝑖𝑠Φ( 𝜉 ,𝜂′,𝜁 , 𝜃) 𝔪

𝑖𝑠𝜕𝜃Φ
𝜕𝜉 𝑓̃ (𝜉 − 𝜂′ + 𝜃)𝜕𝜉 𝑓̃ (𝜉 − 𝜂′ − 𝜁) 𝑓̃ (𝜉 − 𝜁) 𝜙(𝜃)

𝜃
𝑑𝜂′ 𝑑𝜁 𝑑𝜃

−
∭

𝑒𝑖𝑠Φ( 𝜉 ,𝜂′,𝜁 , 𝜃) 𝑓̃ (𝜉 − 𝜂′ + 𝜃)𝜕𝜉 𝑓̃ (𝜉 − 𝜂′ − 𝜁) 𝑓̃ (𝜉 − 𝜁)𝜕𝜃

[
𝔪

𝑖𝑠𝜕𝜃Φ
𝜙(𝜃)
𝜃

]
𝑑𝜂′ 𝑑𝜁 𝑑𝜃

= H3, (2)♭
ℎ,ℓ,𝑚 + H3, (2)♯

ℎ,ℓ,𝑚 .

Estimating H3, (2)♭
ℎ,ℓ,𝑚 is now straightforward, using that |𝜉 −

√
3|, |𝜂′ |, |𝜁 | � 2ℓ , |𝜃 | ≈ 2ℎ and

|𝜕𝑎𝜉 𝜕
𝑏
𝜂′𝜕𝑐𝜁 𝜕

𝑑
𝜃𝔪 | � 2−(𝑎+𝑏+𝑐)ℓ−𝑑ℎ:∫ 𝑡

0

∑
2ℓ−100<ℎ<ℓ+100

���H3, (2)♭
ℎ,ℓ,𝑚

���
𝐿2

𝑑𝑠 � |ℓ |‖𝜑∼ℓ (· −
√

3)𝜕𝜉 𝑓̃ ‖𝐿2 ‖𝜑<ℓ (· −
√

3)𝜕𝜉 𝑓̃ ‖𝐿1 ‖𝑒−𝑖𝑡 〈𝐷〉W∗ 𝑓 ‖𝐿∞

� |ℓ |2−𝛽ℓ+𝛼𝑚2𝛽
′ℓ+𝛼𝑚2−𝑚/2𝜀3

1 � 2−𝛽ℓ+𝛼𝑚𝜀3
1.

To estimate H3, (2)♯
ℎ,ℓ,𝑚, observe that �����F

(
𝜕𝜃

[
𝔪
𝜕𝜃Φ

𝜙(𝜃)
𝜃

])�����
𝐿1

� 2−ℎ
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and, therefore,∫ 𝑡

0

����� ∑
2ℓ−100<ℎ<ℓ+100

H3, (2)♯
ℎ,ℓ,𝑚

�����
𝐿2

𝑑𝑠

�
∑

2ℓ−100<ℎ<ℓ+100
2−ℎ ‖𝜑<ℓ (· −

√
3) 𝑓̃ ‖𝐿2 ‖𝜑<ℓ (· −

√
3)𝜕𝜉 𝑓̃ ‖𝐿1 ‖𝑒−𝑖𝑡 〈𝐷〉W∗ 𝑓 ‖𝐿∞

�
∑

2ℓ−100<ℎ<ℓ+100
2−ℎ2ℓ/22𝛽

′ℓ+𝛼𝑚2−𝑚/2𝜀3
1 � 2−𝛽ℓ+𝛼𝑚𝜀3

1,

where we used that ℓ > −𝛾𝑚 > −𝑚/2.
Case 4.2.2: ℓ > −𝛾𝑚, 𝑗2 < ℓ − 100, 2ℓ ∼ 2 𝑗1 ∼ 2 𝑗3 , 𝑗4 < ℓ − 100 andℎ < 2ℓ − 100. In this case,
|𝜂 |, |𝜁 | ≈

���𝜉 −
√

3
��� ≈ 2ℓ and |𝜃 | � 2ℓ , so that |Ψ| ≈ 22ℓ , |𝜕𝜂Ψ| ≈ 2ℓ , and, for any 𝑎, 𝑏, 𝑐, 𝑑,����𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜁 𝜕𝑑𝜃 𝜕𝜂ΨΨ ���� � 2−ℓ (1+𝑏+𝑐)−2ℓ𝑑 .

Therefore, this case can be dealt with as in Case 4.2 of Section 9.2.2.
Case 4.3.1: ℓ > −𝛾𝑚, 𝑗2 < ℓ − 100, 2ℓ � 2 𝑗1 ≈ 2 𝑗3 , 2ℎ � 2 𝑗1 . This corresponds to the symbol

𝔪(𝜉, 𝜂, 𝜁 , 𝜃) = 𝔪H3, (3)

ℓ, 𝑗1 ,𝑚
(𝜉, 𝜂, 𝜁 , 𝜃) = 𝜑ℓ (𝜉 −

√
3)𝜑 𝑗1 (𝜉 − 𝜂 −

√
3)𝜑<ℓ−100(𝜉 − 𝜂 − 𝜁 − 𝜃 −

√
3)

𝜑∼ 𝑗1 (𝜉 − 𝜁 −
√

3)𝜑∼ 𝑗1 (𝜂 − 𝜁)𝜑< 𝑗1−100(𝜃)𝜏𝑚(𝑠),

which is such that, on its support, |𝜂 |, |𝜁 |, |𝜂 − 𝜁 | ≈ 2 𝑗1 and |𝜃 | � 2 𝑗1 .
This case can mostly be treated like Case 4.3 in Section 9.2.2 since (𝜕𝜂 − 𝜕𝜁 )Ψ is independent of 𝜃.

The only delicate point is that Lemma 6.7 and the remark following it do not directly apply here. For
this reason, we let 𝔪(𝜉, 𝜂, 𝜁 , 𝜃) = 𝔫(𝜉, 𝜂, 𝜁 , 𝜃)𝜑<ℓ−100(𝜉 − 𝜂 − 𝜁 − 𝜃 −

√
3) and consider the symbol

𝔪1(𝜉, 𝜂, 𝜁 , 𝜃) =
𝔪(𝜉, 𝜂, 𝜁 , 𝜃)
(𝜕𝜂 − 𝜕𝜁 )Ψ

=
𝔫(𝜉, 𝜂, 𝜁 , 𝜃)
(𝜕𝜂 − 𝜕𝜁 )Ψ

𝜑<ℓ−100(𝜉 − 𝜂 − 𝜁 − 𝜃 −
√

3),

which appears if one follows the proof of Case 4.3 in J3. Following the same argument used to show
equation (9.9), one can see that����F [

𝔫
(𝜕𝜂 − 𝜕𝜁 )Ψ

]
(𝑥, 𝑦, 𝑧, 𝑡)

���� � 2ℓ+2 𝑗1𝐹 (2ℓ𝑥)𝐹 (2 𝑗1 (𝑦, 𝑧, 𝑡)),

where we denote as F a generic rapidly decaying function of size 𝑂 (1) together with its derivatives.
The Fourier transform of 𝔪1 is bounded by the convolution of the above right-hand side with���F𝜑<ℓ−100 (𝜉 − 𝜂 − 𝜁 − 𝜃 −

√
3)

��� = 2ℓ𝐹 (2ℓ𝑥)𝛿(−𝑥 = 𝑦 = 𝑧 = 𝑡) :

that is,

|𝔪1 (𝑥, 𝑦, 𝑧, 𝑡) | � 22ℓ+ 𝑗1𝐹 (2ℓ𝑥)𝐹 (2ℓ 𝑦)𝐹 (2 𝑗1 (𝑦 − 𝑧))𝐹 (2 𝑗1 (𝑦 − 𝑡)).

Therefore, ����∫ 𝔪1(𝑥, 𝑦, 𝑧, 𝑡) 𝑑𝑡
���� � 22ℓ𝐹 (2ℓ𝑥)𝐹 (2ℓ 𝑦)𝐹 (2 𝑗1 (𝑦 − 𝑧))
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and Lemma 6.7 applies, giving that the norm of 𝑉𝔪1 between Lebesgue spaces at the Hölder scaling is
� 2− 𝑗1 .
Case 4.3.2: ℓ > −𝛾𝑚, 𝑗2 < ℓ − 100, 2ℓ � 2 𝑗1 , 2ℎ � 2 𝑗1 . This corresponds to the symbol

𝔪(𝜉, 𝜂, 𝜁 , 𝜃) = 𝔪H3, (3)

ℓ, 𝑗1 ,𝑚
(𝜉, 𝜂, 𝜁 , 𝜃)

= 𝜑ℓ (𝜉 −
√

3)𝜑 𝑗1 (𝜉 − 𝜂 −
√

3)𝜑<ℓ−100(𝜉 − 𝜂 − 𝜁 − 𝜃 −
√

3)𝜑ℎ (𝜃)𝜏𝑚(𝑠).

In this case, it is possible to integrate by parts in 𝜃 and argue exactly as in Case 4.2.1. The only thing to
check is that Lemma 6.7 applies; therefore, we need to bound the Fourier transform of 𝔪. A computation
reveals that ��𝔪̂(𝑥, 𝑦, 𝑧, 𝑡)

�� � 22ℓ+ 𝑗1+ℎ𝐹 (2ℓ 𝑧)𝐹 (2ℓ (𝑥 + 𝑧))𝐹 (2 𝑗1 (𝑦 − 𝑧))𝐹 (2ℎ (𝑡 − 𝑧)),

so that ����∫ 𝔪1(𝑥, 𝑦, 𝑧, 𝑡) 𝑑𝑡
���� � 22ℓ+ 𝑗1𝐹 (2ℓ 𝑧)𝐹 (2ℓ (𝑥 + 𝑧))𝐹 (2 𝑗1 (𝑦 − 𝑧)).

By Lemma 6.7, the norm of 𝑉𝔪 between Lebesgue spaces at the Hölder scaling is � 1.

10. Pointwise estimates for the ‘singular’ part

The aim of this section is to prove the following proposition:

Proposition 10.1. Under the assumptions of Theorem 1.1, consider u solution of equation (KG) and
assume the a priori bounds in equation (7.10) on the renormalised profile 𝑓̃ . Let C𝑆 = C𝑆1 + C𝑆2 be the
cubic singular terms defined in equations (5.57)–(5.58) with equation (5.46).

Denote

𝑋 (𝜉) = (𝑋+(𝜉), 𝑋−(𝜉)) := ( 𝑓̃ (𝜉), 𝑓̃ (−𝜉)), 𝜉 > 0. (10.1)

Then

• There exists a real valued Hamiltonian 𝐻 = 𝐻 (𝑋+, 𝑋−) such that, for 𝜉 > 0,

C𝑆 ( 𝑓 , 𝑓 , 𝑓 ) (𝑡, 𝜉) = − 𝑖
𝑡

𝑑

𝑑𝑋+
𝐻 + 𝑅+(𝑡, 𝜉),

C𝑆 ( 𝑓 , 𝑓 , 𝑓 ) (𝑡,−𝜉) = − 𝑖
𝑡

𝑑

𝑑𝑋−
𝐻 + 𝑅−(𝑡, 𝜉),

(10.2)

for all 𝑡 ≥ 1; see equation (10.27) for the exact formula for H.
• There exists 𝛿0 > 0 such that the remainders satisfy, for all 𝑚 = 0, 1, . . . ,���〈𝜉〉3/2

∫ 𝑡

0
𝑅𝜖 (𝑠, 𝜉) 𝜏𝑚 (𝑠)𝑑𝑠

���
𝐿∞
𝜉

� 𝜀3
12−𝛿0𝑚, 𝜖 ∈ {+,−}. (10.3)

• There exists an asymptotic profile 𝑊∞ = (𝑊∞
+ ,𝑊

∞
− ) ∈

(
〈𝜉〉−3/2𝐿∞

𝜉

)2 such that, for all 𝑡 ≥ 0,

〈𝜉〉3/2
���𝑋 (𝑡, 𝜉) − 𝑆−1(𝜉) exp

(
− (5𝑖/12) (log 𝑡) diag

(
ℓ2
+∞

��𝑊∞
+

��2, ℓ2
−∞

��𝑊∞
−

��2) )𝑊∞(𝜉)
��� � 𝜀3

1〈𝑡〉
−𝛿0 ,

(10.4)

where 𝑆(𝜉) is the scattering matrix associated to the potential V defined in equation (3.12).

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.9


128 Pierre Germain and Fabio Pusateri

Here are a few remarks about the statement above and its consequences:

• From the inequality in equation (10.9) appearing in the proof of equation (10.4), we deduce in
particular the bound ‖〈𝜉〉3/2 𝑓̃ ‖𝐿∞ ≤ 𝜀1; this is one of the bounds needed for the main bootstrap
Proposition 7.2.

• The behaviour at negative times can be obtained by using time-reversal symmetry. In the context of
our distorted Fourier space asymptotics, this ends up involving a conjugation by the scattering
matrix S. We refer the reader to the explicit calculation in [7, Remark 1.2]. When applied to equation
(10.4) this conjugation will simplify the formula and give asymptotics akin to the flat ones that do
not involve S; see equation (10.25).

• It is of course possible to derive asymptotics in physical space from the asymptotics in Fourier
space, both in 𝐿∞

𝑥 and 𝐿2
𝑥 . This can be done by putting together the linear asymptotics in equation

(3.33) with equation (10.4), passing from f to g using equation (5.53) (note that 𝑇 (𝑔, 𝑔) is a
fast-decaying remainder in 𝐿∞

𝑥 ) and eventually passing from g to u using equation (1.6). We refer the
reader to [36] for the details of such an argument in the context of water waves and to [29] for the
nonlinear Schrödinger equation.

Let us show first how to obtain the final asymptotic formula in equation (10.4) given equations (10.2)
and (10.3). The argument is fairly standard as it appears in similar forms in [29, 39, 32, 24]. We refer
the reader to these papers for more detailed presentations.

Proof of equation (10.4). Recall that the evolution of 𝑓̃ is given by equation (7.59). In Section 11.3, we
show that all the terms on the right-hand side of equation (7.59), with the exception of the cubic terms
C𝑆 , satisfy bounds of the same type as the remainders in equation (10.3); see in particular Propositions
11.5 and 11.7. Then with the notation in equation (10.1), the asymptotics in equations (10.2)–(10.3)
imply, for 𝜉 > 0,

𝜕𝑡𝑋+ = − 𝑖
𝑡

𝜕

𝜕𝑋+
𝐻 + 𝑅1 (𝑡, 𝜉),

𝜕𝑡𝑋− = − 𝑖
𝑡

𝜕

𝜕𝑋−
𝐻 + 𝑅2 (𝑡, 𝜉),

(10.5)

with 𝑅𝑖 satisfying bounds as in equation (10.3). In the rest of the proof of equation (10.4), we will
denote just by 𝑅 = 𝑅(𝑡, 𝜉) any generic remainder terms satisfying equation (10.3). This should not be
confused with 𝑅+ and 𝑅−, the transmission coefficients. Note that such a bound implies that 𝑅(𝑡) has a
well defined anti-derivative that is uniformly bounded in time in 〈𝜉〉−3/2𝐿∞

𝜉 .
Equation (10.5) with equation (10.27) can be written as

𝜕𝑡𝑋+ = − 5𝑖
12 𝑡

[
ℓ2
+∞

��(𝑆𝑋)1
��2 (𝑆𝑋)1𝑇 (𝜉) + ℓ2

−∞
��(𝑆𝑋)2

��2 (𝑆𝑋)2𝑅−(𝜉)
]
+ 𝑅(𝑡, 𝜉),

𝜕𝑡𝑋− = − 5𝑖
12 𝑡

[
ℓ2
+∞

��(𝑆𝑋)1
��2 (𝑆𝑋)1𝑅+(𝜉) + ℓ2

−∞
��(𝑆𝑋)2

��2(𝑆𝑋)2𝑇 (𝜉)
]
+ 𝑅(𝑡, 𝜉),

where S is the scattering matrix in equation (3.12). If we denote (𝑍+(𝜉), 𝑍−(𝜉))𝑡 := 𝑆(𝜉) (𝑋+(𝜉), 𝑋−(𝜉))𝑡
and use equation (3.11), this simplifies to give

𝜕𝑡𝑍± = − 5𝑖
12 𝑡

ℓ2
±∞|𝑍±|2𝑍± + 𝑅(𝑡, 𝜉). (10.6)
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Defining the modified profile 𝑊 = (𝑊+(𝜉),𝑊−(𝜉))𝑡 by

𝑊±(𝑡, 𝜉) := exp
( 5𝑖
12

ℓ2
±∞

∫ 𝑡

0
|𝑍±(𝑠, 𝜉) |2 𝑑𝑠

𝑠 + 1

)
𝑍±(𝑡, 𝜉),

|𝑊±(𝑡, 𝜉) | = |𝑍±(𝑡, 𝜉) |,
(10.7)

we see that

𝜕𝑡𝑊±(𝑡, 𝜉) = exp
( 5𝑖
12

ℓ2
±∞

∫ 𝑡

0
|𝑍±|2 𝑑𝑠

𝑠 + 1

)
𝑅(𝑡, 𝜉). (10.8)

In particular this implies that 𝜕𝑡 |𝑊±|2 = 2Re
(
𝑅(𝑡, 𝜉)𝑍±

)
and therefore, since S is unitary,

〈𝜉〉3
(
| 𝑓̃ (𝑡, 𝜉) |2 − | 𝑓̃ (0, 𝜉) |2

)
�

���Re
∫ 𝑡

0
〈𝜉〉3/2𝑅(𝑠, 𝜉) · 〈𝜉〉3/2𝑍±(𝑠, 𝜉) 𝑑𝑠

��� � 𝜀4
1. (10.9)

For this last inequality, we have used the bounds in equation (10.3) (which in particular imply that R
has a well-defined anti-derivative), integration by parts in s, equation (10.6) and the a priori assumption
|〈𝜉〉3/2𝑍±(𝑡, 𝜉) | � 𝜀1.

Similarly, from equation (10.8), using that the remainders satisfy estimates like equation (10.3),
integrating by parts in s and using that the time derivative of the exponential factor is 𝑂 (𝜀2

1〈𝑡〉
−1), we

can see that, for all 0 < 𝑡1 < 𝑡2,

〈𝜉〉3/2��𝑊 (𝑡1, 𝜉) −𝑊 (𝑡2, 𝜉)
�� � 𝜀3

1 𝑡
−𝛿0
1 .

By letting 𝑊∞
𝜖 (𝜉) := lim𝑡→∞𝑊𝜖 (𝑡, 𝜉) in the space 〈𝜉〉−3/2𝐿∞, it follows that

〈𝜉〉3/2
���|𝑍±(𝑡, 𝜉) | − |𝑊∞

± (𝜉) |
��� � 𝜀3

1 〈𝑡〉−𝛿0 . (10.10)

The conclusion in equation (10.4) follows from equations (10.7) and (10.10), up to possibly redefining
the asymptotic profile 𝑊∞

± by a constant phase. �

The rest of this section is organised as follows. In Section 10.1, we provide asymptotic formulas
for oscillatory integrals like those defining C𝑆1,2. These formulas are first obtained at a formal level
by applying heuristic stationary phase type estimates. In Section 10.2, we use these formulas to derive
the leading order of equation (10.2) with the proper Hamiltonian structure. The precise bounds needed
to rigorously justify these formulas – that is, the error estimates in equation (10.3) – are proved in
Section 10.3.

10.1. Heuristic asymptotics

Our first aim is to compute the asymptotics as 𝑡 → ∞ for the main model operators

𝐼𝛿 (𝑡) :=
∭

𝑒𝑖𝑡Φ𝜅1𝜅2𝜅3 ( 𝜉 ,𝜂,𝜂′,𝜎′)𝐹 (𝜉, 𝜂, 𝜂′, 𝜎′)𝛿(𝑝∗) 𝑑𝜂 𝑑𝜂′ 𝑑𝜎′, (10.11)

𝐼p.v. (𝑡) :=
∭

𝑒𝑖𝑡Φ𝜅1𝜅2𝜅3 ( 𝜉 ,𝜂,𝜂′,𝜎′)𝐹 (𝜉, 𝜂, 𝜂′, 𝜎′) 𝜙(𝑝∗)
𝑝∗

𝑑𝜂 𝑑𝜂′ 𝑑𝜎′, (10.12)

where

𝑝∗ = 𝜆∗𝜉 − 𝜇∗𝜂 − 𝜇′
∗𝜂

′ − 𝜈′
∗𝜎

′, (10.13)
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and

Φ𝜅1𝜅2𝜅3 (𝜉, 𝜂, 𝜂′, 𝜆∗𝜉 − 𝜇∗𝜂 − 𝜇′
∗𝜂

′ − 𝑝∗) = 〈𝜉〉 − 𝜅1〈𝜂〉 − 𝜅2〈𝜂′〉 − 𝜅3〈𝜆∗𝜉 − 𝜇∗𝜂 − 𝜇′
∗𝜂

′ − 𝑝∗〉.
(10.14)

Note that the operators C𝑆1,2 are of the form in equations (10.11)–(10.12) above.
We begin by examining the phase, which we sometimes denote just by Φ = Φ(𝜉, 𝜂, 𝜂′, 𝜎′), keeping

the dependence on the various parameters 𝜅1, 𝜅2, 𝜅3, 𝜆∗, 𝜇∗, 𝜇
′
∗, 𝜈

′
∗ implicit.

Observing that ∇𝜂,𝜂′Φ = 0 implies that 𝜂′ = 𝜅1𝜅2𝜇
′
∗𝜇∗𝜂, a small computation shows that the

stationary point with respect to 𝜂 and 𝜂′ is given by

∇𝜂,𝜂′Φ = 0 ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜂 = 𝜂𝑆 = 𝜅3𝜇∗(𝜅1 + 𝜅3 + 𝜅1𝜅2𝜅3)−1(𝜆∗𝜉 − 𝑝∗).

𝜂′ = 𝜂′
𝑆 = 𝜅1𝜅2𝜅3𝜇

′
∗ (𝜅1 + 𝜅3 + 𝜅1𝜅2𝜅3)−1(𝜆∗𝜉 − 𝑝∗),

𝜎′ = 𝜎′
𝑆 = 𝜈′

∗𝜅1 (𝜅1 + 𝜅3 + 𝜅1𝜅2𝜅3)−1(𝜆∗𝜉 − 𝑝∗).

(10.15)

Furthermore, at the stationary point,

Hess𝜂,𝜂′ Φ =
)*+
−𝜅1𝜏

′′(𝜂𝑆) − 𝜅3𝜏
′′(𝜎′

𝑆) −𝜅3𝜇∗𝜇
′
∗𝜏

′′(𝜎′
𝑆)

−𝜅3𝜇∗𝜇
′
∗𝜏

′′(𝜎′
𝑆) −𝜅2𝜏

′′(𝜂′
𝑆) − 𝜅3𝜏

′′(𝜎′
𝑆)

,-. , 𝜏(𝑥) := 〈𝑥〉. (10.16)

Asymptotics for 𝑰𝜹

In this case, 𝑝∗ = 0, and the stationary point is

𝜂 = 𝜂𝑆0 = 𝜅3𝜇∗(𝜅1 + 𝜅3 + 𝜅1𝜅2𝜅3)−1𝜆∗𝜉,
𝜂′ = 𝜂′

𝑆0 = 𝜅1𝜅2𝜅3𝜇
′
∗ (𝜅1 + 𝜅3 + 𝜅1𝜅2𝜅3)−1𝜆∗𝜉,

𝜎′ = 𝜎′
𝑆0 = 𝜈′

∗𝜅1 (𝜅1 + 𝜅3 + 𝜅1𝜅2𝜅3)−1𝜆∗𝜉.
(10.17)

We distinguish two cases:

• If |𝜅1 + 𝜅3 + 𝜅1𝜅2𝜅3 | = 1, then |𝜂𝑆0 | = |𝜂′
𝑆0 | = |𝜎′

𝑆0 | = |𝜉 | and

Φ(𝜉, 𝜂𝑆0, 𝜂
′
𝑆0, 𝜎

′
𝑆0) = (1 − 𝜅1 − 𝜅2 − 𝜅3)〈𝜉〉,

det HessΦ(𝜉, 𝜂𝑆0, 𝜂
′
𝑆0, 𝜎

′
𝑆0) = [(𝜅1 + 𝜅3) (𝜅2 + 𝜅3) − 1]𝜏′′(𝜉)2 = −𝜏′′(𝜉)2,

sign HessΦ(𝜉, 𝜂𝑆0, 𝜂
′
𝑆0, 𝜎

′
𝑆0) = 0,

(10.18)

where we denote by sign 𝑀 the number of positive minus the number of negative eigenvalues of a
matrix M.

• If |𝜅1 + 𝜅3 + 𝜅1𝜅2𝜅3 | = 3, then |𝜂𝑆0 | = |𝜂′
𝑆0 | = |𝜎′

𝑆0 | = |𝜉 |/3 and

Φ(𝜉, 𝜂𝑆0, 𝜂
′
𝑆0, 𝜎

′
𝑆0) = 〈𝜉〉 − (𝜅1 + 𝜅2 + 𝜅3)〈𝜉/3〉,

det HessΦ(𝜉, 𝜂𝑆0, 𝜂
′
𝑆0, 𝜎

′
𝑆0) = [(𝜅1 + 𝜅3) (𝜅2 + 𝜅3) − 1]𝜏′′(𝜉/3)2,

Tr HessΦ(𝜉, 𝜂𝑆0, 𝜂
′
𝑆0, 𝜎

′
𝑆0) = −(𝜅1 + 𝜅2 + 2𝜅3)𝜏′′(𝜉/3).

In both cases, by the stationary phase lemma,

𝐼𝛿 (𝑡)
𝑡→+∞∼ 2𝜋

𝑡

𝑒𝑖
𝜋
4 sign HessΦ

| det HessΦ|1/2 𝑒
𝑖𝑡Φ( 𝜉 ,𝜂𝑆0 ,𝜂

′
𝑆0 ,𝜎

′
𝑆0)𝐹 (𝜉, 𝜂𝑆0, 𝜂

′
𝑆0, 𝜎

′
𝑆0).
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If Φ = 0 (hence {𝜅1, 𝜅2, 𝜅3} = {+, +,−}),

𝐼𝛿 (𝑡)
𝑡→+∞∼ 2𝜋

𝑡

1
𝜏′′(𝜉) 𝐹 (𝜉, 𝜂𝑆0, 𝜂

′
𝑆0, 𝜎

′
𝑆0). (10.19)

Asymptotics for 𝑰p.v.

Here 𝑝∗ ≠ 0 and, to leading order in 𝑝∗ small, Φ and det HessΦ(𝜉, 𝜂𝑆 , 𝜂′
𝑆 , 𝜎

′
𝑆) agree with their value at

𝑝∗ = 0 computed above. We also compute the next order in 𝑝∗ of Φ:

• If |𝜅1 + 𝜅3 + 𝜅1𝜅2𝜅3 | = 1, then

Φ(𝜉, 𝜂𝑆 , 𝜂′
𝑆 , 𝜎

′
𝑆) = 〈𝜉〉 − (𝜅1 + 𝜅2 + 𝜅3) [〈𝜉〉 − 𝜏′(𝜆∗𝜉)𝑝∗] +𝑂 (𝑝2

∗).

• If |𝜅1 + 𝜅3 + 𝜅1𝜅2𝜅3 | = 3, then

Φ(𝜉, 𝜂𝑆 , 𝜂′
𝑆 , 𝜎

′
𝑆) = 〈𝜉〉 − (𝜅1 + 𝜅2 + 𝜅3)

[
〈𝜉/3〉 − 1

3
𝜏′

(
𝜆∗𝜉

3

)
𝑝∗

]
+𝑂 (𝑝2

∗).

In order to give asymptotics, we focus on the former case (|𝜅1 + 𝜅3 + 𝜅1𝜅2𝜅3 | = 1) since it is the most
relevant. Applying the stationary phase lemma for 𝑝∗ fixed,

𝐼p.v. (𝑡)
𝑡→+∞∼ 2𝜋

𝑡

1
𝜏′′(𝜉) 𝑒

𝑖𝑡 〈𝜉 〉 (1−𝜅1−𝜅2−𝜅3)𝐹 (𝜉, 𝜂𝑆0, 𝜂
′
𝑆0, 𝜎

′
𝑆0)

∫
𝑒𝑖𝑡 𝜏

′ (𝜆∗ 𝜉 ) (𝜅1+𝜅2+𝜅3) 𝑝∗ 𝜙(𝑝∗)
𝑝∗

𝑑𝑝∗.

Since F̂ 𝜙 (𝑥)
𝑥 = 1√

2𝜋
F̂(1/𝑥) ∗ 𝜙 = − 𝑖2 sign ∗ 𝜙 (see equation (4.8)),

𝐼p.v. (𝑡)
𝑡→+∞∼ 𝑖

𝜋
√

2𝜋
𝑡

1
𝜏′′(𝜉) 𝑒

𝑖𝑡 〈𝜉 〉 (1−𝜅1−𝜅2−𝜅3)𝐹 (𝜉, 𝜂𝑆0, 𝜂
′
𝑆0, 𝜎

′
𝑆0)sign(𝜏′(𝜆∗𝜉) (𝜅1 + 𝜅2 + 𝜅3)).

If Φ = 0,

𝐼p.v. (𝑡)
𝑡→+∞∼ 𝑖

𝜋
√

2𝜋
𝑡

1
𝜏′′(𝜉) 𝐹 (𝜉, 𝜂𝑆0, 𝜂

′
𝑆0, 𝜎

′
𝑆0)sign(𝜆∗𝜉). (10.20)

Asymptotics for ˜𝒇

We apply the above asymptotics to the situation that interests us to derive (formally, for the moment)
asymptotics for 𝜕𝑡 𝑓̃ ; see equation (7.59).

The only relevant terms in the expansion are equations (10.19) and (10.20) for which Φ = 0 and that
correspond to {𝜅1, 𝜅2, 𝜅3} = {+, +,−}. Comparing the definition of 𝑝∗ in equation (10.13) with equation
(5.43), we obtain (recall 𝜅1 = 𝜄1)

𝜆∗ = 𝜄2𝜆𝜈, 𝜇∗ = 𝜅1𝜄2𝜇𝜈, 𝜇′
∗ = 𝜅2𝜄2𝜆

′𝜇′, 𝜈′
∗ = 𝜅3𝜄2𝜆

′𝜈′

and find that

𝜂𝑆0 = 𝜆𝜇𝜉, 𝜂′
𝑆0 = 𝜆𝜈𝜆′𝜇′𝜉, 𝜎′

𝑆0 = 𝜆𝜈𝜆′𝜈′𝜉.

Comparing with the definition of Σ0 in equation (5.42), we get that the value of Σ0 at these points is

Σ0 =

{
2𝜄2𝜈𝜆𝜉 if (𝜅1, 𝜅2, 𝜅3) = (−, +, +),
0 if (𝜅1, 𝜅2, 𝜅3) = (+,−, +) or (+, +,−).

(10.21)
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Recall the formula in equation (5.46) for the leading order symbol in the cubic terms appearing
in equations (5.57)–(5.58). We can compute their asymptotics as 𝑡 → ∞ using equations (10.19) and
(10.20), obtaining

C𝑆𝜅1𝜅2𝜅3 ( 𝑓 , 𝑓 , 𝑓 ) (𝜉)

∼ − 1
32𝑖𝑡

〈𝜉〉3
∑
𝜖 , 𝜖 ′, 𝜄2

𝜆,𝜇,𝜈,𝜆′,𝜇′,𝜈′

1
𝜋2((1 − 𝜅1)〈𝜉〉 − 𝜄2〈Σ0〉)〈𝜉〉3〈Σ0〉

(
𝐴𝜖 , 𝜖

′

𝜈,𝜆′ (Σ0)
)
𝜄2

× a𝜖𝜆,−(𝜉)a𝜖𝜇,𝜅1 (𝜆𝜇𝜉)a
𝜖 ′

𝜇′,𝜅2
(𝜆𝜈𝜆′𝜇′𝜉)a𝜖 ′

𝜈′,𝜅3
(𝜆𝜈𝜆′𝜈′𝜉) 𝑓̃𝜅1 (𝜆𝜇𝜉) 𝑓̃𝜅2 (𝜆𝜈𝜆′𝜇′𝜉) 𝑓̃𝜅3 (𝜆𝜈𝜆′𝜈′𝜉)

× ℓ𝜖∞ℓ𝜖 ′∞
[
𝜋2 (1 + 𝜖𝜖 ′𝜈𝜆′)𝜄2 + 𝜋2(𝜖 ′𝜆′ + 𝜖𝜈) sign(𝜄2𝜆𝜈𝜉)

]
.

Changing 𝜆′ to 𝜆𝜈𝜆′, this becomes

C𝑆𝜅1𝜅2𝜅3 ( 𝑓 , 𝑓 , 𝑓 ) (𝜉) ∼ 𝑖

32𝑡

∑
𝜖 , 𝜖 ′, 𝜄2

𝜆,𝜇,𝜈,𝜆′,𝜇′,𝜈′

𝜄2
((1 − 𝜅1)〈𝜉〉 − 𝜄2〈Σ0〉)〈Σ0〉

(
𝐴𝜖 , 𝜖

′

𝜈,𝜆𝜈𝜆′ (Σ0)
)
𝜄2

× a𝜖𝜆,−(𝜉)a𝜖𝜇,𝜅1 (𝜆𝜇𝜉)a
𝜖 ′

𝜇′,𝜅2
(𝜆′𝜇′𝜉)a𝜖 ′

𝜈′,𝜅3
(𝜆′𝜈′𝜉) 𝑓̃𝜅1 (𝜆𝜇𝜉) 𝑓̃𝜅2 (𝜆′𝜇′𝜉) 𝑓̃𝜅3 (𝜆′𝜈′𝜉)

× ℓ𝜖∞ℓ𝜖 ′∞
[
1 + 𝜖𝜖 ′𝜆𝜆′ + (𝜖 ′𝜆′ + 𝜖𝜆) sign(𝜉)

]
.

(10.22)

10.2. Structure of modified scattering

In this subsection, we analyse the leading orders in the (resonant) asymptotic terms. In view of equation
(10.22), we are interested in the structure of the term

𝑁𝜅1𝜅2𝜅3 ( 𝑓 , 𝑓 , 𝑓 ) (𝑡, 𝜉) :=
1

〈Σ0〉
∑
𝜖 , 𝜖 ′, 𝜄2

𝜆,𝜇,𝜈,𝜆′,𝜇′,𝜈′

𝜄2
(1 − 𝜅1)〈𝜉〉 − 𝜄2〈Σ0〉

(
𝐴𝜖 , 𝜖

′

𝜈,𝜆𝜈𝜆′ (Σ0)
)
𝜄2

× a𝜖𝜆,−(𝜉) a𝜖𝜇,𝜅1 (𝜆𝜇𝜉) a𝜖 ′

𝜇′,𝜅2
(𝜆′𝜇′𝜉) a𝜖 ′

𝜈′,𝜅3
(𝜆′𝜈′𝜉)

× 𝑓̃𝜅1 (𝜆𝜇𝜉) 𝑓̃𝜅2 (𝜆′𝜇′𝜉) 𝑓̃𝜅3 (𝜆′𝜈′𝜉) ℓ𝜖∞ℓ𝜖 ′∞
[
1 + 𝜖𝜖 ′𝜆𝜆′ + [𝜖𝜆 + 𝜖 ′𝜆′] sign(𝜉)

]
.

(10.23)

For the term
[
1+ 𝜖𝜖 ′𝜆𝜆′ + [𝜖𝜆+ 𝜖 ′𝜆′] sign(𝜉)

]
to be nonzero, we need 𝜖𝜆 = 𝜖 ′𝜆′. In view of the formulas

in equation (5.41) for 𝐴𝜖 , 𝜖
′

𝜆,𝜆′ , this further imposes that 𝜖 = 𝜖 ′ and 𝜆 = 𝜆′, in which case 𝐴𝜖 , 𝜖
′

𝜆,𝜆′ = 1/2.
Finally, one can sum over 𝜈, which does not appear in the expression, and equation (10.23) becomes

𝑁𝜅1𝜅2𝜅3 ( 𝑓 , 𝑓 , 𝑓 ) (𝑡, 𝜉) :=
2

〈Σ0〉
∑
𝜖 , 𝜄2

𝜆,𝜇,𝜇′,𝜈′

𝜄2
(1 − 𝜅1)〈𝜉〉 − 𝜄2〈Σ0〉

× a𝜖𝜆,−(𝜉) a𝜖𝜇,𝜅1 (𝜆𝜇𝜉) a𝜖𝜇′,𝜅2
(𝜆𝜇′𝜉) a𝜖𝜈′,𝜅3 (𝜆𝜈

′𝜉)

× 𝑓̃𝜅1 (𝜆𝜇𝜉) 𝑓̃𝜅2 (𝜆𝜇′𝜉) 𝑓̃𝜅3 (𝜆𝜈′𝜉) ℓ2
𝜖∞

[
1 + 𝜖𝜆 sign(𝜉)

]
.

The flat case. For the reader’s convenience, we first look at the simpler case 𝑉 = 0, for which 𝑇 ≡ 1,
𝑅± ≡ 0, so that equation (4.5) reads

a−
+ (𝜉) = a+

+(𝜉) ≡ 1, a+
−(𝜉) = a−

−(𝜉) ≡ 0,

and ℓ+∞ = −ℓ−∞, which we set to 1 without loss of generality. Then in equation (10.23), only the sum
over 𝜆 = 𝜇 = 𝜇′ = 𝜈′ = + survives. Moreover, summing over 𝜖 eliminates the contribution to the

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.9


Forum of Mathematics, Pi 133

summand from the 𝜖𝜆 sign(𝜉) factor. Overall, this gives

𝑁𝜅1𝜅2𝜅3 ( 𝑓 , 𝑓 , 𝑓 ) (𝑡, 𝜉) =
4

〈Σ0〉
∑
𝜄2

𝜄2
(1 − 𝜅1)〈𝜉〉 − 𝜄2〈Σ0〉

𝑓̃𝜅1 (𝜉) 𝑓̃𝜅2 (𝜉) 𝑓̃𝜅3 (𝜉). (10.24)

When 𝜅1 = +, so that 𝜅2𝜅3 = − and Σ0 = 0, this is

−8 𝑓̃ (𝜉)
�� 𝑓̃ (𝜉)��2.

When 𝜅1 = −, so that 〈Σ0〉 = 〈2𝜉〉, we get

4
〈2𝜉〉

∑
𝜄2

𝜄2
2〈𝜉〉 − 𝜄2〈2𝜉〉

𝑓̃ (𝜉)
(
𝑓̃ (𝜉)

)2
=

8
3

| 𝑓̃ (𝜉) |2 𝑓̃ (𝜉).

Overall, we find that ∑
(𝜅1 ,𝜅2 ,𝜅3)=(+,+,−) ,

(+,−,+) , (−,+,+)

𝑁𝜅1𝜅2𝜅3 ( 𝑓 , 𝑓 , 𝑓 ) (𝑡, 𝜉) = −40
3

| 𝑓̃ (𝜉) |2 𝑓̃ (𝜉).

In particular, from equations (10.22)–(10.23) and the fact that all the other terms in equation (7.59) for
𝜕𝑡 𝑓̃ are lower-orders (in the sense that they satisfy estimates like equation (10.3)), we can deduce

𝜕𝑡 𝑓̃ (𝑡, 𝜉) ≈ − 5𝑖
12𝑡

| 𝑓̃ (𝜉) |2 𝑓̃ (𝜉). (10.25)

This leads to ‘standard’ modified scattering as in [30].
The general case. If (𝜅1, 𝜅2, 𝜅3) = (+, +,−) (which is identical to (𝜅1, 𝜅2, 𝜅3) = (+,−, +)), Σ0 = 0 and

𝑁+−−( 𝑓 , 𝑓 , 𝑓 ) (𝑡, 𝜉) = −4
∑
𝜖 ,

𝜆,𝜇,𝜇′,𝜈′

a𝜖𝜆 (𝜉) a𝜖𝜇 (𝜆𝜇𝜉) a𝜖𝜇′ (𝜆𝜇′𝜉) a𝜖𝜈′ (𝜆𝜈′𝜉)

× 𝑓̃ (𝜆𝜇𝜉) 𝑓̃ (𝜆𝜇′𝜉) 𝑓̃ (𝜆𝜈′𝜉) ℓ2
𝜖∞[1 + 𝜖𝜆 sign(𝜉)] .

If (𝜅1, 𝜅2, 𝜅3) = (−, +, +), Σ0 = 2𝜄2𝜈𝜆𝜉, and we get

𝑁−++( 𝑓 , 𝑓 , 𝑓 ) (𝑡, 𝜉) =
4
3

∑
𝜖 ,

𝜆,𝜇,𝜇′,𝜈′

a𝜖𝜆 (𝜉) a𝜖𝜇 (𝜆𝜇𝜉) a𝜖𝜇′ (𝜆𝜇′𝜉) a𝜖𝜈′ (𝜆𝜈′𝜉)

× 𝑓̃ (𝜆𝜇𝜉) 𝑓̃ (𝜆𝜇′𝜉) 𝑓̃ (𝜆𝜈′𝜉) ℓ2
𝜖∞[1 + 𝜖𝜆 sign(𝜉)] .

Therefore,∑
(𝜅1 ,𝜅2 ,𝜅3)=(+,+,−) ,

(+,−,+) , (−,+,+)

𝑁𝜅1𝜅2𝜅3 ( 𝑓 , 𝑓 , 𝑓 ) (𝑡, 𝜉) = −20
3

∑
𝜖 ,

𝜆,𝜇,𝜇′,𝜈′

a𝜖𝜆 (𝜉) a𝜖𝜇 (𝜆𝜇𝜉) a𝜖𝜇′ (𝜆𝜇′𝜉) a𝜖𝜈′ (𝜆𝜈′𝜉)

× 𝑓̃ (𝜆𝜇𝜉) 𝑓̃ (𝜆𝜇′𝜉) 𝑓̃ (𝜆𝜈′𝜉) ℓ2
𝜖∞[1 + 𝜖𝜆 sign(𝜉)] .

(10.26)

Hamiltonian structure. Recall the evolution equation (7.59) for 𝑓̃ . As we show in Section 11.3, all
the terms on the right-hand side of equation (7.59), with the exception of C𝑆1,2, decay at an integrable-
in-time rate. Then from equations (10.22), (10.23) and (10.26), and letting 𝑡 = log 𝑡 ′, we see that the
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asymptotic evolution of 𝑓̃ is governed to leading order by the ODE

𝜕𝑡′ 𝑓̃ (𝑡 ′, 𝜉) = − 5𝑖
24

∑
𝜖 ,

𝜆,𝜇,𝜇′,𝜈′

a𝜖𝜆 (𝜉) a𝜖𝜇 (𝜆𝜇𝜉) a𝜖𝜇′ (𝜆𝜇′𝜉) a𝜖𝜈′ (𝜆𝜈′𝜉)

× 𝑓̃ (𝑡 ′, 𝜆𝜇𝜉) 𝑓̃ (𝑡 ′, 𝜆𝜇′𝜉) 𝑓̃ (𝑡 ′, 𝜆𝜈′𝜉) ℓ2
𝜖∞[1 + 𝜖𝜆 sign(𝜉)] .

We now show how to view the joint evolution of 𝑓̃ (𝑡 ′, 𝜉) and 𝑓̃ (𝑡 ′,−𝜉) into the form of an Hamiltonian
system. For 𝜉 > 0, we let

𝑋+(𝑡 ′) = 𝑓̃ (𝑡 ′, 𝜉), 𝑋−(𝑡 ′) = 𝑓̃ (𝑡 ′,−𝜉).

Then the evolution is

𝑑

𝑑𝑡 ′
𝑋+ = − 5

12
𝑖

∑
𝜖 ,𝜇,𝜇′,𝜈′

a𝜖𝜖 (𝜉) a𝜖𝜇 (𝜖 𝜇𝜉) a𝜖𝜇′ (𝜖 𝜇′𝜉) a𝜖𝜈′ (𝜖𝜈′𝜉) 𝑋𝜖 𝜇 𝑋𝜖 𝜇′ 𝑋𝜖 𝜈′ ℓ
2
𝜖∞,

𝑑

𝑑𝑡 ′
𝑋− = − 5

12
𝑖

∑
𝜖 ,𝜇,𝜇′,𝜈′

a𝜖−𝜖 (−𝜉) a𝜖𝜇 (𝜖 𝜇𝜉) a𝜖𝜇′ (𝜖 𝜇′𝜉) a𝜖𝜈′ (𝜖𝜈′𝜉) 𝑋𝜖 𝜇 𝑋𝜖 𝜇′ 𝑋𝜖 𝜈′ ℓ
2
𝜖∞.

The main observation is that this derives from the Hamiltonian

𝐻 (𝑋) = 5
24

∑
𝜖

�����∑
𝜇

a𝜖𝜇 (𝜖 𝜇𝜉)𝑋𝜖 𝜇

����� 4ℓ2
𝜖∞

=
5

24
[
ℓ2
+∞|(𝑆(𝜉)𝑋)1 |4 + ℓ2

−∞|(𝑆(𝜉)𝑋)2 |4
]
,

(10.27)

where we regard (𝑋+, 𝑋−) as conjugate variables of (𝑋+, 𝑋−) and consider the standard (complex)
symplectic form 𝐽 = −𝑖; in equation (10.27), S denotes the scattering matrix and X the vector (𝑋+, 𝑋−).
The evolution associated to H is

𝑑

𝑑𝑡 ′
𝑋 = −𝑖 𝜕

𝜕𝑋
𝐻. (10.28)

Note that since H is invariant under phase rotations, the evolution equation (10.28) conserves |𝑋+|2 +
|𝑋−|2.

10.3. Rigorous asymptotics

Here we give the estimates necessary to justify the asymptotic formulas in equations (10.19) and (10.20)
for the integrals in equations (10.11) and (10.12), thus obtaining a proof of the main asymptotics
equations (10.2)–(10.3) in Proposition 10.1 We refer the reader to similar arguments in the literature,
such as those in [32, 34] for fractional NLS equations and in [24, 7] for the NLS with a potential; see also
references therein for other works that use different approaches, as well as [55] and the more recent [57].

In Sections 10.3.1 and 10.3.2, we look at the cases with {𝜅1, 𝜅2, 𝜅3} = {+, +,−} that give the leading
order terms on the right-hand sides of equations (10.19) and (10.20) and, eventually, combined with the
algebraic calculations of Section 10.2, the asymptotics in equation (10.2). In Section 10.3.3, we discuss
how to handle all the other nonresonant and faster-decaying terms.
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10.3.1. Asymptotics for equation (10.11) when {𝜿1, 𝜿2, 𝜿3} = {+, +,−}
For simplicity, and without loss of generality, we may choose a single combination of the signs 𝜆, 𝜇, . . . ,
appearing in equation (10.13), and thus concentrate on the expression

𝐼1(𝑡, 𝜉) :=
∬

𝑒𝑖𝑡Φ1 ( 𝜉 ,𝜂,𝜎)𝐹1 (𝑡, 𝜉, 𝜂, 𝜎) 𝑑𝜂 𝑑𝜎,

Φ1(𝜉, 𝜂, 𝜎) := 〈𝜉〉 − 〈𝜂〉 + 〈𝜎〉 − 〈𝜉 − 𝜂 + 𝜎〉,

𝐹1 (𝑡, 𝜉, 𝜂, 𝜎) := 𝔪1(𝜉, 𝜂, 𝜎) 𝑓̃ (𝑡, 𝜂) 𝑓̃ (𝑡, 𝜎) 𝑓̃ (𝑡, 𝜉 − 𝜂 + 𝜎).

(10.29)

From the explicit formula in equation (5.46) and the bounds in Lemma 5.3 (see also the proofs of
Lemmas 6.9 and 6.13), we can think that the symbol 𝔪1 is smooth and satisfies���𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜎𝔪1(𝜉, 𝜂, 𝜎)

��� � 1
〈𝜂〉〈𝜎〉〈𝜉 − 𝜂 + 𝜎〉 〈med(|𝜂 |, |𝜎 |, |𝜉 − 𝜂 − 𝜎 |)〉𝑎+𝑏+𝑐 . (10.30)

As we calculated earlier in the section (see equation (10.17)), the only (time-frequency) stationary
point of the integral 𝐼1 is at (𝜂, 𝜎) = (𝜉, 𝜉). Although one should think that the hardest case is when
|𝜉 | ≈

√
3, below we do not need to decompose in frequency space with respect to the distance to

√
3,

and it will suffice to use the bounds

‖𝜑 [−5,5]𝜕𝜉 𝑓̃ ‖𝐿2 � 𝜀1〈𝑡〉𝜌, ‖〈𝜉〉(1 − 𝜑 [−5,5] )𝜕𝜉 𝑓̃ ‖𝐿2 � 𝜀1〈𝑡〉𝛼, (10.31)

where 𝜌 := 𝛼 + 𝛽𝛾; see equation (7.19).
We change variables so that the stationary point is at (0, 0) and look at

𝐼1(𝑡, 𝜉) =
∬

𝑒𝑖𝑡Φ1 ( 𝜉 , 𝜉+𝜂, 𝜉+𝜂+𝜎) 𝐹1 (𝑡, 𝜉, 𝜉 + 𝜂, 𝜉 + 𝜂 + 𝜎) 𝑑𝜂 𝑑𝜎,

𝐹1 (𝑡, 𝜉, 𝜉 + 𝜂, 𝜉 + 𝜂 + 𝜎) = 𝔪1(𝜉, 𝜉 + 𝜂, 𝜉 + 𝜂 + 𝜎) 𝑓̃ (𝜉 + 𝜂) 𝑓̃ (𝜉 + 𝜂 + 𝜎) 𝑓̃ (𝜉 + 𝜎).
(10.32)

To verify equation (10.19), we show that

〈𝜉〉3/2
����∫ 𝑡

0

[
𝐼1(𝑠, 𝜉) − 2𝜋

𝑠
〈𝜉〉3 𝐹1 (𝑠, 𝜉, 𝜉, 𝜉)

]
𝜏𝑚(𝑠)𝑑𝑠

���� � 𝜀3
12−𝛿0𝑚, (10.33)

where 𝛿0 > 0 small enough is to be chosen below. Notice that this is consistent with the estimates for
the remainders in equations (10.2)–(10.3). Also notice that

𝐹1 (𝑡, 𝜉, 𝜉, 𝜉) = 𝔪1(𝜉, 𝜉, 𝜉) | 𝑓̃ (𝑡, 𝜉) |2 𝑓̃ (𝑡, 𝜉),

where 𝔪1(𝜉, 𝜉, 𝜉) coincides with the symbol appearing in the trilinear terms of Section 10.2.
Without loss of generality, we may assume that |𝜂 | ≥ |𝜎 |. Moreover, we claim that it suffices to deal

with

〈𝑡〉−2𝛼−2𝛿0 � |𝜉 | � 〈𝑡〉 (1/2) (𝛼+𝑝0)+𝛿0 . (10.34)

To see this, we use the interpolation inequality

‖ 𝑓̃ ‖𝐿∞ �
�� 𝑓̃ ��1/2

𝐿2

��𝜕𝜉 𝑓̃ ��1/2
𝐿2 , (10.35)
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which, for 𝑘 ≥ 5, gives us

‖𝜑𝑘 〈𝜉〉3/2 𝑓̃ ‖𝐿∞ �
��𝜑𝑘 〈𝜉〉3 𝑓̃

��1/2
𝐿2

(��𝜑′
𝑘 𝑓̃

��
𝐿2 +

��𝜑𝑘𝜕𝜉 𝑓̃ ��𝐿2

)1/2

� 2−𝑘��𝜑𝑘 〈𝜉〉4 𝑓̃
��1/2
𝐿2 · (𝜀1〈𝑡〉𝛼)1/2 � 2−𝑘 · 𝜀2

1〈𝑡〉
(𝑝0+𝛼)/2,

(10.36)

having used the a priori bounds in equation (7.10). Then if 2𝑘 ≥ 〈𝑡〉 (𝛼+𝑝0)/2+𝛿0 , we already control
uniformly in t and 𝜉 the quantity 〈𝜉〉3/2 𝑓̃ . For 𝑘 ≤ −5 instead, we have (see equation (7.22))

‖𝜑𝑘 𝑓̃ ‖𝐿∞ � 2𝑘/2〈𝑡〉𝛼 (10.37)

and therefore obtain the desired control whenever 2𝑘 � 〈𝑡〉−2𝛼−2𝛿0 , as claimed.
We let |𝜉 | ≈ 2𝑘 , with the constraints in equation (10.34), let 𝑡 ≈ 2𝑚, 𝑚 = 1, . . . , and split

𝐼1(𝑡, 𝜉) =
∑

𝑘1 ≥𝑘2 , 𝑘1 ,𝑘2 ∈[𝑘0∞)∩Z
𝐼 (1)𝑘1 ,𝑘2

(𝑡, 𝜉), 𝑘0 := −𝑚/2 + 𝛿𝑚,

𝐼 (1)𝑘1 ,𝑘2
(𝑡, 𝜉) :=

∬
𝑒𝑖𝑡Φ1 𝐹1 (𝑡) 𝜑 (𝑘0)

𝑘1
(𝜂〈𝜉〉−3/2)𝜑 (𝑘0)

𝑘2
(𝜎〈𝜉〉−3/2) 𝑑𝜂 𝑑𝜎,

(10.38)

where 𝛿 will be chosen small enough, and we are omitting the arguments (𝜉, 𝜉 + 𝜂, 𝜉 + 𝜂 +𝜎) in Φ1 and
𝐹1 for brevity. For simplicity we also restrict our attention to the main case when the size of all input
frequencies are comparable to 2𝑘 by looking at the case |𝜂 |, |𝜎 | � |𝜉 |: that is, 𝑘1, 𝑘2 ≤ 𝑘− (3/2)𝑘+−10;
to simplify our notation, we omit the cutoffs induced by this restriction: that is, 𝜑∼𝑘 (𝜉+𝜂), 𝜑∼𝑘 (𝜉+𝜎+𝜂)
and 𝜑∼𝑘 (𝜉 + 𝜎). All other cases are simpler to handle.
Case 𝑘1 = 𝑘2 = 𝑘0. Note that from equation (10.31) under the restriction equation (10.34), we can infer
(for 𝛼 small enough)

‖𝜑𝑘𝜕𝜉 𝑓̃ ‖𝐿2 � 𝜀12−10𝑘+ 〈𝑡〉𝜌 . (10.39)

Then since |𝜂 |, |𝜎 | � |𝜉 |, from the a priori bounds in equations (7.10) and (10.30), we have

|𝐹1 (𝑡, 𝜉, 𝜉 + 𝜂, 𝜉 + 𝜂 + 𝜎) | � 𝜀3
12−9𝑘+/2,

‖𝜕𝜂𝐹1 (𝑡, 𝜉, 𝜉 + 𝜂, 𝜉 + 𝜂 + 𝜎)‖𝐿2
𝜂
� 𝜀3

1 · 2−10𝑘+ · 〈𝑡〉𝜌,

‖𝜕𝜎𝐹1 (𝑡, 𝜉, 𝜉 + 𝜂, 𝜉 + 𝜂 + 𝜎)‖𝐿2
𝜎
� 𝜀3

1 · 2−10𝑘+ · 〈𝑡〉𝜌, 𝜌 := 𝛼 + 𝛽𝛾.

(10.40)

As a consequence,

|𝐹1 (𝑡, 𝜉, 𝜉 + 𝜂, 𝜉 + 𝜂 + 𝜎) − 𝐹1 (𝑡, 𝜉, 𝜉, 𝜎 + 𝜉) |
+ |𝐹1 (𝑡, 𝜉, 𝜉, 𝜎 + 𝜉) − 𝐹1 (𝑡, 𝜉, 𝜉, 𝜉) | � 𝜀3

12−10𝑘+ 〈𝑡〉𝜌 · ( |𝜂 | + |𝜎 |)1/2.
(10.41)

Using equation (10.41), we can see that the contribution close to the stationary points gives us the
leading order term by arguing as follows. First, observe that

23𝑘+/2
���𝐼 (1)𝑘0 ,𝑘0

(𝑡, 𝜉) − 𝐹1 (𝑡, 𝜉, 𝜉, 𝜉)
∬

𝑒𝑖𝑡Φ( 𝜉 , 𝜉+𝜂, 𝜉+𝜂+𝜎) 𝜑≤𝑘0 (𝜂〈𝜉〉−3/2)𝜑≤𝑘0 (𝜎〈𝜉〉−3/2) 𝑑𝜂 𝑑𝜎
���

� 23𝑘+/2 · 𝜀3
12𝑘0/22−10𝑘+2𝜌𝑚 · 22𝑘0+3𝑘+ = 𝜀3

1 · 2(−5/4+𝜌+5𝛿/2)𝑚;
(10.42)

second, Taylor expanding, we have

Φ1(𝜉, 𝜉 + 𝜂, 𝜉 + 𝜂 + 𝜎) = 2𝜂𝜎
〈𝜉〉3 +𝑂

(
(|𝜂 | + |𝜎 |

)3〈𝜉〉−4) (10.43)
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and therefore

23𝑘+/2
���𝐹1 (𝑡, 𝜉, 𝜉, 𝜉)

∬ [
𝑒𝑖𝑡Φ( 𝜉 , 𝜉+𝜂, 𝜉+𝜂+𝜎) − 𝑒2𝑖𝑡 𝜂𝜎 〈𝜉 〉−3

]
𝜑≤𝑘0 (𝜂〈𝜉〉−3/2)𝜑≤𝑘0 (𝜎〈𝜉〉−3/2) 𝑑𝜂 𝑑𝜎

���
� 𝜀3

12−3𝑘+ · 2𝑚23𝑘0 2−4𝑘+ · 22𝑘0 23𝑘+

� 𝜀3
12−3𝑚/2+5𝛿𝑚;

(10.44)

third, a calculation shows that∬
𝑒2𝑖𝑡 𝜂𝜎 〈𝜉 〉−3

𝜑≤𝑘0 (𝜂〈𝜉〉−3/2)𝜑≤𝑘0 (𝜎〈𝜉〉−3/2) 𝑑𝜂 𝑑𝜎 = 〈𝜉〉3 𝜋

𝑡
+𝑂 (|𝑡 |−5/4). (10.45)

Finally, we need to ensure that we can choose 𝛿 > 0 so that equations (10.42)–(10.45) are consistent
with the right-hand side of the desired bound in equation (10.33). According to equations (10.42) and
(10.34), by making 𝛿0 small enough, it suffices to pick 𝛿 such that

(5/2)𝛿 < 1/4 − 𝜌; (10.46)

this is possible since (see equation (2.31))

1/4 − 𝜌 = −𝛼 + (1/2) (𝛽′ + 𝛾′) − 𝛽′𝛾′ > 𝛾′𝛽. (10.47)

Case 𝑘1 > 𝑘0. Since we are assuming |𝜂 | ≥ |𝜎 |, we may restrict, without loss of generality, to 𝑘1 ≥ 𝑘2;
for brevity, we will often omit writing this restriction. In the case 𝑘1 > 𝑘0, we want to exploit integration
by parts in 𝜎 through the identity 𝑒𝑖𝑡Φ( 𝜉 , 𝜉+𝜂, 𝜉+𝜂+𝜎) = (𝑖𝑡𝜕𝜎Φ)−1𝜕𝜎𝑒

𝑖𝑡Φ( 𝜉 , 𝜉+𝜂, 𝜉+𝜂+𝜎) using that, on
the support of the integral 𝐼 (1)𝑘1 ,𝑘2

,

|𝜕𝜎Φ(𝜉, 𝜉 + 𝜂, 𝜉 + 𝜂 + 𝜎) | =
��� 𝜉 + 𝜎

〈𝜉 + 𝜎〉 − 𝜉 + 𝜎 + 𝜂
〈𝜉 + 𝜎 + 𝜂〉

��� � |𝜂 |〈𝜉〉−3 ≈ 2𝑘1 2−(3/2)𝑘+ . (10.48)

Note that, under our current frequencies restrictions, we have a bound on the norm of trilinear
operators with symbol (𝜕𝜎Φ)−1 consistent with the (pointwise) bound from equation (10.48): that is,
2−𝑘1 2(3/2)𝑘+ . We treated similar terms multiple times in Section 9; see, for example, equations (9.6) and
(9.9). We first use this fact to integrate by parts and estimate the 𝐿2 norm of 𝐼 (1)𝑘1 ,𝑘2

. Up to faster-decaying
lower-orders (which include contributions from hitting the symbol 𝔪1 or the cutoffs where one can
repeat integration by parts), we have��𝐼 (1)𝑘1 ,𝑘2

(𝑡, 𝜉)
�� � 1

𝑡

���∬ 𝑒𝑖𝑡Φ( 𝜉 , 𝜉+𝜂, 𝜉+𝜂+𝜎) 𝑓̃ (𝜂 + 𝜉)𝜕𝜎
(
𝑓̃ (𝑡, 𝜉 + 𝜂 + 𝜎) 𝑓̃ (𝑡, 𝜉 + 𝜎)

)
× 1
𝜕𝜎Φ

𝔪1(𝜉, 𝜉 + 𝜂, 𝜉 + 𝜂 + 𝜎) 𝜑 (𝑘0)
𝑘1

(𝜂〈𝜉〉−3/2)𝜑 (𝑘0)
𝑘2

(𝜎〈𝜉〉−3/2) 𝑑𝜂 𝑑𝜎
���, (10.49)

so that���〈𝜉〉2𝜑𝑘 (𝜉)
∑
𝑘1>𝑘0

𝐼 (1)𝑘1 ,𝑘2
(𝑡)

���
𝐿2
� 22𝑘+ · 2−𝑚2−𝑘1 2(3/2)𝑘+ ‖𝑃𝑘𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓 (𝑡)‖2

𝐿∞ ‖𝜑𝑘𝜕𝜉 𝑓̃ ‖𝐿2

� 27𝑘+/2 · 2−𝑚 · 2−𝑘0 · (𝜀12−𝑚/2)2 · 𝜀12−10𝑘+2𝜌𝑚

� 𝜀3
12−3𝑚/2 · 2(𝜌+𝛿)𝑚,

(10.50)

having used equation (10.39) the linear decay estimate, and 𝑘0 = −𝑚/2 + 𝛿𝑚.
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Next, we estimate the 𝐿2 norm of 〈𝜉〉𝜕𝜉 𝐼 (1)𝑘1 ,𝑘2
and then will interpolate with the bound in equation

(10.50). It is convenient to look back at the original integration variables as they appear in equation
(10.29), so as to have simpler formulas. Let us write, for 𝑘1 > 𝑘0,

𝐼 (1)𝑘1 ,𝑘2
(𝑡, 𝜉) :=

∬
𝑒𝑖𝑡Φ1 ( 𝜉 ,𝜂,𝜎)𝐹1 (𝑡, 𝜉, 𝜂, 𝜎)𝜑𝑘1 ((𝜂 − 𝜉)〈𝜉〉3/2)𝜑 (𝑘0)

𝑘2
((𝜎 − 𝜂)〈𝜉〉3/2) 𝑑𝜂 𝑑𝜎.

(10.51)

When applying 〈𝜉〉𝜕𝜉 to 𝐼 (1)𝑘1 ,𝑘2
, we obtain one main term: that is,∬

𝑡 〈𝜉〉𝜕𝜉Φ1(𝜉, 𝜂, 𝜎) 𝑒𝑖𝑡Φ1 ( 𝜉 ,𝜂,𝜎) 𝑓̃ (𝑡, 𝜂) 𝑓̃ (𝑡, 𝜉 − 𝜂 + 𝜎) 𝑓̃ (𝑡, 𝜎)

× 𝔪1(𝜉, 𝜂, 𝜎) 𝜑𝑘1 ((𝜂 − 𝜉)〈𝜉〉−3/2)𝜑 (𝑘0)
𝑘2

((𝜎 − 𝜂)〈𝜉〉−3/2) 𝑑𝜂 𝑑𝜎,

plus other lower-order terms that are easier to estimate. We then note that the following identity holds:(
〈𝜉〉𝜕𝜉 + 〈𝜂〉𝜕𝜂 + 〈𝜎〉𝜕𝜎

)
Φ1 = − 𝜉 − 𝜂 + 𝜎

〈𝜉 − 𝜂 + 𝜎〉Φ1. (10.52)

Using equation (10.52), we can integrate by parts in 𝜂, 𝜎 and s and obtain��� ∑
𝑘1>𝑘0

∫ 𝑡

0
〈𝜉〉𝜕𝜉 𝐼 (1)𝑘1 ,𝑘2

(𝑠, 𝜉)𝜏𝑚(𝑠) 𝑑𝑠
��� � ��� ∫ 𝑡

0
𝐴(𝑠, 𝜉)𝜏𝑚(𝑠) 𝑑𝑠

��� + ��� ∫ 𝑡

0
𝐵(𝑠, 𝜉)𝜏𝑚(𝑠) 𝑑𝑠

��� + · · ·

𝐴(𝑡, 𝜉) :=
∑
𝑘1>𝑘0

∬
𝑒𝑖𝑡Φ1 ( 𝜉 ,𝜂,𝜎) 〈𝜂〉𝜕𝜂 𝑓̃ (𝑡, 𝜂) 𝑓̃ (𝑡, 𝜎) 𝑓̃ (𝑡, 𝜉 − 𝜂 + 𝜎)

× 𝔪1(𝜉, 𝜂, 𝜎) 𝜑𝑘1 ((𝜂 − 𝜉)〈𝜉〉−3/2)𝜑 (𝑘0)
𝑘2

((𝜎 − 𝜂)〈𝜉〉−3/2) 𝑑𝜂 𝑑𝜎,

𝐵(𝑡, 𝜉) :=
∑
𝑘1>𝑘0

𝑡

∬
𝑒𝑖𝑡Φ1 ( 𝜉 ,𝜂,𝜎) 𝜉 − 𝜂 + 𝜎

〈𝜉 − 𝜂 + 𝜎〉 𝜕𝑡 𝑓̃ (𝑡, 𝜂) 𝑓̃ (𝑡, 𝜎) 𝑓̃ (𝑡, 𝜉 − 𝜂 + 𝜎)

× 𝔪1(𝜉, 𝜂, 𝜎) 𝜑𝑘1 ((𝜂 − 𝜉)〈𝜉〉−3/2)𝜑 (𝑘0)
𝑘2

((𝜎 − 𝜂)〈𝜉〉−3/2) 𝑑𝜂 𝑑𝜎,

(10.53)

where, as usual, ‘ · · · ’ denotes similar terms or faster-decaying remainders. Using an 𝐿2 × 𝐿∞ × 𝐿∞

Hölder estimate for both terms in equation (10.53) gives���〈𝜉〉𝜕𝜉 ∑
𝑘1>𝑘0

∫ 𝑡

0
𝐼 (1)𝑘1 ,𝑘2

(𝑠, 𝜉)𝜏𝑚(𝑠) 𝑑𝑠
���
𝐿2
� 2𝑚 sup

𝑠≈2𝑚
‖〈𝜉〉𝜕𝜉 𝑓̃ (𝑠)

��
𝐿2 ‖𝑃𝑘𝑒𝑖𝑠 〈𝜕𝑥 〉W∗ 𝑓 (𝑠)‖2

𝐿∞

+ 22𝑚 sup
𝑠≈2𝑚

‖𝜕𝑠 𝑓̃ (𝑠)
��
𝐿2 ‖𝑃𝑘𝑒𝑖𝑠 〈𝜕𝑥 〉W∗ 𝑓 (𝑠)‖2

𝐿∞

� 𝜀3
12𝑚𝜌,

(10.54)

having used equation (7.19), the a priori 𝐿∞ decay and equation (7.56).
Interpolating equations (10.50) and (10.54) through equation (10.35), and in view of our choice of

parameters in equations (10.46)–(10.47) and (10.34), we obtain

2(3/2)𝑘+
��� ∑
𝑘1>𝑘0

∫ 𝑡

0
𝐼 (1)𝑘1 ,𝑘2

(𝑠, 𝜉)𝜏𝑚(𝑠) 𝑑𝑠
��� � 𝜀3

12−𝑚/42(𝜌+𝛿/2)𝑚,

which suffices in view of equation (10.46).
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10.3.2. Asymptotics for equation (10.12) when {𝜿1, 𝜿2, 𝜿3} = {+, +,−}
Once again, without loss of generality, we may choose a single combination of the signs 𝜆, 𝜇, . . . ,
appearing in equation (10.13), and concentrate on the expression

𝐼2(𝑡, 𝜉) =
∭

𝑒𝑖𝑡Φ2 ( 𝜉 ,𝜂,𝜎,𝑝)𝐹2 (𝑡, 𝜉, 𝜂, 𝜂′, 𝜎) 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜂′ 𝑑𝜎,

Φ2(𝜉, 𝜂, 𝜂′, 𝜎) = 〈𝜉〉 − 〈𝜂〉 + 〈𝜂′〉 − 〈𝜎〉, 𝑝 = 𝜉 − 𝜂 + 𝜂′ − 𝜎,

𝐹2 (𝑡, 𝜉, 𝜂, 𝜂′, 𝜎) := 𝔪2(𝜉, 𝜂, 𝜂′, 𝜎) 𝑓̃ (𝑡, 𝜂) 𝑓̃ (𝑡, 𝜂′) 𝑓̃ (𝑡, 𝜎).

(10.55)

From the formula in equations (5.57)–(5.58) with equation (5.46) and the bounds in equation (5.26), we
may assume that the symbol is smooth and satisfies���𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜂′𝜕𝑑𝜎𝔪2(𝜉, 𝜂, 𝜂′, 𝜎′)

��� � 1
〈𝜂〉〈𝜂′〉〈𝜎〉 〈med(|𝜂 |, |𝜂′ |, |𝜎 |)〉𝑎+𝑏+𝑐+𝑑 . (10.56)

To obtain asymptotics for equation (10.55) and a rigorous proof of equation (10.20), we can use ideas
similar to those used to treat equation (10.29) in Section 10.3.1 above; we will then follow similar steps
and concentrate on the main differences, in particular on how to treat the p.v., while skipping some of
the other details.

Recall from equation (10.15) that the stationary points of the integral 𝐼2 in equation (10.55) are
(𝜂, 𝜂′, 𝜎) = (𝜉 − 𝑝, 𝜉 − 𝑝, 𝜉 − 𝑝). As in the treatment of equation (10.29), it is convenient to change
variables by letting 𝜂 ↦→ 𝜉 + 𝜂 − 𝑝, 𝜂′ ↦→ 𝜉 + 𝜂 + 𝜎 − 𝑝 and 𝜎 ↦→ 𝜉 + 𝜎 − 𝑝; this centres the stationary
points (in (𝜂, 𝜎, 𝑝)) at the origin and gives the expression

𝐼2(𝑡, 𝜉) =
∭

𝑒𝑖𝑡Φ( 𝜉 ,𝜂,𝜎,𝑝)𝐹 (𝑡, 𝜉, 𝜂, 𝜎, 𝑝) 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝑝,

Φ(𝜉, 𝜂, 𝜎, 𝑝) := Φ2(𝜉, 𝜉 + 𝜂 − 𝑝, 𝜉 + 𝜂 + 𝜎 − 𝑝, 𝜉 + 𝜎 − 𝑝)
= 〈𝜉〉 − 〈𝜉 + 𝜂 − 𝑝〉 + 〈𝜉 + 𝜂 + 𝜎 − 𝑝〉 − 〈𝜉 + 𝜎 − 𝑝〉,

𝔪(𝜉, 𝜂, 𝜎, 𝑝) := 𝔪2(𝜉, 𝜉 + 𝜂 − 𝑝, 𝜉 + 𝜎 + 𝜂 − 𝑝, 𝜉 + 𝜎 − 𝑝),

𝐹 (𝑡, 𝜉, 𝜂, 𝜎, 𝑝) := 𝔪(𝜉, 𝜂, 𝜎, 𝑝) 𝑓̃ (𝜉 + 𝜂 − 𝑝) 𝑓̃ (𝜉 + 𝜂 + 𝜎 − 𝑝) 𝑓̃ (𝜉 + 𝜎 − 𝑝).

(10.57)

To verify equation (10.20) with a remainder estimate consistent with equation (10.3), we need to
show that

〈𝜉〉3/2

�����∫ 𝑡

0

[
𝐼2(𝑠, 𝜉) − 𝑖𝜋

√
2𝜋
𝑡

〈𝜉〉3 𝐹 (𝑠, 𝜉, 0, 0, 0) sign(𝜉)
]
𝜏𝑚(𝑠)𝑑𝑠

����� � 𝜀3
12−𝛿0𝑚 (10.58)

for 𝛿0 small enough. As per our usual notation, we let |𝜉 | ≈ 2𝑘 and, in view of equation (10.34) (and the
interpolation argument that follows it), we may restrict to −2𝛼 − 2𝛿0 ≤ 𝑘 ≤ (𝛼 + 𝑝0)/2 + 𝛿0. We again
restrict to the most difficult case when all input frequencies have sizes comparable to 2𝑘 by assuming
|𝜂 |, |𝜎 | � |𝜉 |; we omit the corresponding cutoffs for lighter notation.
Step 1. The first step needed to deal with the p.v. singularity in equation (10.57) is to remove a
neighbourhood of 𝑝 = 0 as follows. For very small p, say |𝑝 | � 2−10𝑚, we may substitute 𝐹 (𝑡, 𝜉, 𝜂, 𝜎, 𝑝)
by 𝐹 (𝑡, 𝜉, 𝜂, 𝜎, 0) and Φ(𝜉, 𝜂, 𝜎, 𝑝) by Φ(𝜉, 𝜂, 𝜎, 0) up to very fast-decaying remainders. The resulting
integral vanishes by using the p.v. and the fact that 𝜙 is even.

This leaves us with the expression∭
𝑒𝑖𝑡Φ( 𝜉 ,𝜂,𝜎,𝑝)𝐹 (𝑡, 𝜉, 𝜂, 𝜎, 𝑝)𝜑≥0(|𝑝 |〈𝑡〉10) 𝜙(𝑝)

𝑝
𝑑𝜂 𝑑𝜎 𝑑𝑝. (10.59)
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In what follows, we will omit the cutoff localising to |𝑝 | � 〈𝑡〉−10 for simplicity, since its presence does
not cause any additional difficulty in the arguments.

Similar to equation (10.38), we define a localised version of 𝐼2 by

𝐼 (2)𝑘1 ,𝑘2
(𝑡, 𝜉) :=

∭
𝑒𝑖𝑡Φ( 𝜉 ,𝜂,𝜎,𝑝)𝐹 (𝑡, 𝜉, 𝜂, 𝜎, 𝑝) 𝜑 (𝑘0)

𝑘1
(𝜂〈𝜉〉−3/2)𝜑 (𝑘0)

𝑘2
(𝜎〈𝜉〉−3/2) 𝜙(𝑝)

𝑝
𝑑𝜂 𝑑𝜎 𝑑𝑝,

(10.60)

where 𝑘0 := −𝑚/2 + 𝛿𝑚.
Step 2. We first look at the case 𝑘1 = 𝑘2 = 𝑘0, which gives the leading order term in the asymptotics.

Step 2.1. This contribution can be analysed similarly to how we did for the term 𝐼 (1)𝑘0 ,𝑘0
before; see the

definition in equation (10.38). The same exact argument used above leads to the following analogue of
equation (10.42) (see equations (10.40)–(10.41)):

23𝑘+/2

�����𝐼 (2)𝑘0 ,𝑘0
(𝑡, 𝜉) −

∭
𝑒𝑖𝑡Φ( 𝜉 ,𝜂,𝜎,𝑝)𝐹 (𝑡, 𝜉, 0, 0, 𝑝)𝜑≤𝑘0 (𝜂〈𝜉〉−3/2)𝜑≤𝑘0 (𝜎〈𝜉〉−3/2) 𝜙(𝑝)

𝑝
𝑑𝜂 𝑑𝜎 𝑑𝑝

�����
� 𝜀3

1 · 2(−5/4+𝜌+5𝛿/2)𝑚𝑚.

(10.61)

Note that we have included an additional log 𝑡 factor on the right-hand side above to take into account
the integration of 𝜙(𝑝)/𝑝 over the region |𝑝 | � 2−10𝑚. This still gives an acceptable bound under the
conditions in equation (10.46).
Step 2.2. To calculate the asymptotics for the integral in equation (10.61), we first notice that, if
|𝑝 | � 2−3𝑚/5, we can use integration by parts in p since |𝜕𝑝Φ| ≈ 2𝑘− . More precisely, when one of the
profiles is differentiated, we estimate it in 𝐿2, put 1/𝑝 in 𝐿2 as well and estimate the other two profiles
in 𝐿∞; when instead 𝜕𝑝 hits 1/𝑝 (or the cutoff in p), we estimate this in 𝐿1 and place all the profiles in
𝐿∞
𝜉 ; we then obtain a contribution bounded by

𝐶23𝑘+/2 · 2−𝑚2−𝑘− · 𝜀1
(
23𝑚/102𝜌𝑚 + 23𝑚/5) · (𝜀12−3𝑘+/2)2 · 22𝑘0 , (10.62)

where 𝜌 = 𝛼 + 𝛽𝛾. This is a remainder term of the desired 𝑂 (2−𝑚−𝛿0𝑚) size for 𝛿0 small enough. From
now on, we assume |𝑝 | � 2−3𝑚/5 and will sometimes omit the cutoff for notational simplicity.

By Taylor expanding the phase,

Φ(𝜉, 𝜂, 𝜎, 𝑝) = 〈𝜉〉 − 〈𝜉 − 𝑝〉 + 2𝜂𝜎
〈𝜉〉3 +𝑂

(
(|𝜂 | + |𝜎 | + |𝑝 |

)3〈𝜉〉−3), (10.63)

and using |𝜂 | + |𝜎 | + |𝑝 | � 2𝑘0 , we obtain (see equation (10.43) and the estimate below) that

2(3/2)𝑘+
���∭ [

𝑒𝑖𝑡Φ( 𝜉 ,𝜂,𝜎,𝑝) − 𝑒𝑖𝑡 ( 〈𝜉 〉−〈𝜉−𝑝〉+2𝜂𝜎 〈𝜉 〉−3)
]

× 𝐹 (𝑡, 𝜉, 0, 0, 𝑝)𝜑𝑘0 (𝜂〈𝜉〉−3/2)𝜑𝑘0 (𝜎〈𝜉〉−3/2) 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝑝
��� � 𝜀3

1 · 2(−3/2+5𝛿)𝑚𝑚.

Performing the integral in (𝜂, 𝜎) using equation (10.45), we see that, for |𝑡 | ≈ 2𝑚,

2(3/2)𝑘+
���𝐼 (2)𝑘0 ,𝑘0

(𝑡, 𝜉) − 〈𝜉〉3 𝜋

𝑡
𝐿(𝑡, 𝜉)

��� � 𝜀3
12(−1−𝛿0)𝑚,

𝐿(𝑡, 𝜉) :=
∫

𝑒𝑖𝑡 ( 〈𝜉 〉−〈𝜉−𝑝〉)𝐹 (𝑡, 𝜉, 0, 0, 𝑝)𝜑≤−3𝑚/5(𝑝)
𝜙(𝑝)
𝑝

𝑑𝑝.
(10.64)
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Step 2.3. Recall that 𝐹 (𝑡, 𝜉, 0, 0, 𝑝) = 𝔪2(𝜉, 𝜉 − 𝑝, 𝜉 − 𝑝, 𝜉 − 𝑝) | 𝑓̃ (𝜉 − 𝑝) |2 𝑓̃ (𝜉 − 𝑝). In order to obtain
equation (10.20), we want to show that, for |𝑡 | ≈ 2𝑚, |𝜉 | ≈ 2𝑘+ ,

𝐿(𝑡, 𝜉) =
∫

𝑒𝑖𝑡 ( 〈𝜉 〉−〈𝜉−𝑝〉)𝐹 (𝑡, 𝜉, 0, 0, 𝑝)𝜑≤−3𝑚/5(𝑝)
𝜙(𝑝)
𝑝

𝑑𝑝

= 𝑖

√
𝜋

2
𝐹 (𝑡, 𝜉, 0, 0, 0) sign(𝑡𝜉) +𝑂 (2−9𝑘+/22−𝛿0𝑚).

(10.65)

From the bounds on 𝔪2 and the a priori assumptions on 𝑓̃ , we have

|𝐹 (𝑡, 𝜉, 0, 0, 𝑝) − 𝐹 (𝑡, 𝜉, 0, 0, 0) |
�

��𝔪2(𝜉, 𝜉 − 𝑝, 𝜉 − 𝑝, 𝜉 − 𝑝) − 𝔪2(𝜉, 𝜉, 𝜉, 𝜉)
��| 𝑓̃ (𝜉 − 𝑝) |3

+
��𝔪2(𝜉, 𝜉, 𝜉, 𝜉)

(
| 𝑓̃ (𝜉 − 𝑝) |2 𝑓̃ (𝜉 − 𝑝) − | 𝑓̃ (𝜉) |2 𝑓̃ (𝜉)

) ��
� 𝜀3

1

[
2−(13/2)𝑘+ |𝑝 | + 2−7𝑘+ |𝑝 |1/22𝜌𝑚

]
.

This allows us to replace 𝐹 (𝑡, 𝜉, 0, 0, 𝑝) by 𝐹 (𝑡, 𝜉, 0, 0, 0), and after Taylor expanding 〈𝜉〉 − 〈𝜉 − 𝑝〉 =
𝑝𝜉〈𝜉〉−1 +𝑂 (|𝑝 |2) and using that |𝑝 | � 2−3𝑚/5, we obtain

𝐿(𝑡, 𝜉) = 𝐹 (𝑡, 𝜉, 0, 0, 0)
∫

𝑒𝑖𝑡 𝑝 𝜉 〈𝜉 〉−1
𝜑≤−3𝑚/5(𝑝)

𝜙(𝑝)
𝑝

𝑑𝑝 +𝑂 (2−9𝑘+/22−𝛿0𝑚). (10.66)

In equation (10.66), we can further replace 𝜙(𝑝) by 𝜙(0) and eventually dispense with the cutoff in p
(again via integration by parts), arriving at

𝐿(𝑡, 𝜉) = 𝐹 (𝑡, 𝜉, 0, 0, 0) 𝜙(0)
∫

𝑒𝑖𝑡 𝑝 𝜉 〈𝜉 〉−1
p.v.

1
𝑝
𝑑𝑝 +𝑂 (2−9𝑘+/22−𝛿0𝑚)

= 𝐹 (𝑡, 𝜉, 0, 0, 0) 3(p.v.1/𝑥) (−𝑡𝜉〈𝜉〉−1) +𝑂 (2−9𝑘+/22−𝛿0𝑚).
(10.67)

Using the last identity in equation (4.8) gives us equation (10.65).
Step 3: Case 𝑘1 > 𝑘0. To conclude the rigorous derivation of the asymptotics equation (10.20), we
need to show that the remaining contributions from 𝐼 (2)𝑘1 ,𝑘2

(𝑠, 𝜉) (see equation (10.60)) satisfy 𝑂 (2−𝛿0𝑚)
bounds when integrated over |𝑠 | ≈ 2𝑚 and measured in 〈𝜉〉−3/2𝐿∞. This can be done similarly to the
analogous estimate for the integral 𝐼 (1)𝑘1 ,𝑘2

; see the argument starting from equation (10.48).
First, we observe that we may restrict to |𝑝 | � 2𝑘 . Indeed, if |𝑝 | � 2𝑘 , the p.v. in equation (10.60) is

not singular and contributes a very small loss in view of equation (10.34); moreover, we can integrate
by parts both in p and, depending on which profile is hit by 𝜕𝑝 , integrate in one of the variables 𝜂 or 𝜎
or 𝜂 − 𝜎.

Under our assumption that all input frequencies have size about 2𝑘 , we have the following analogue
of equation (10.48):

|𝜕𝜎Φ(𝜉, 𝜂, 𝜎, 𝑝) | =
��� 𝜉 + 𝜎 − 𝑝

〈𝜉 + 𝜎 − 𝑝〉 − 𝜉 + 𝜎 + 𝜂 − 𝑝

〈𝜉 + 𝜎 + 𝜂 − 𝑝〉

��� � 2𝑘1 2−(3/2)𝑘+ ; (10.68)

see the definition of Φ in equation (10.57). Integrating by parts in 𝜎 to obtain an inequality analogous
to equation (10.49), and then using Lemma 6.7 to estimate similarly to equation (10.50), we obtain for
|𝑡 | ≈ 2𝑚 ���〈𝜉〉2

∑
𝑘1>𝑘0

𝐼 (2)𝑘1 ,𝑘2
(𝑡)

���
𝐿2
� 𝜀3

12−3𝑚/2 · 2(𝜌+𝛿)𝑚. (10.69)

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.9


142 Pierre Germain and Fabio Pusateri

To obtain the desired pointwise bound in 〈𝜉〉−3/2𝐿∞, it is enough to interpolate equation (10.69) with
the weighted 𝐿2-bound ���〈𝜉〉𝜕𝜉 ∫ 𝑡

0

∑
𝑘1>𝑘0

𝐼 (2)𝑘1 ,𝑘2
(𝑠, 𝜉) 𝜏𝑚(𝑠)𝑑𝑠

���
𝐿2
� 𝜀3

12𝑚𝜌, (10.70)

which we now prove.
We first need an analogue of equation (10.52) for the phase Φ2 = Φ2(𝜉, 𝜂, 𝜂′, 𝜎) (see equation

(10.57)). By defining 𝑋𝑎 := 〈𝑎〉𝜕𝑎, we have

(𝑋𝜉 + 𝑋𝜂 + 𝑋𝜂′ + 𝑋𝜎)Φ2 = 𝜉 − 𝜂 + 𝜂′ − 𝜎 = 𝑝. (10.71)

Note that this is essentially the same identity appearing in equation (11.71) and that we use to establish a
weighted 𝐿2 bound for the singular cubic terms when the inputs are away from the degenerate frequencies
±
√

3.
The identity in equation (10.71) can be applied to the time integral of 〈𝜉〉𝜕𝜉 𝐼 (2)𝑘1 ,𝑘2

– expressed in the
original variables (𝜂, 𝜂′, 𝜎) (see equation (10.55))) – to integrate by parts in (𝜂, 𝜂′, 𝜎). This procedure
gives��� ∫ 𝑡

0
〈𝜉〉𝜕𝜉 𝐼 (2)𝑘1 ,𝑘2

(𝑠, 𝜉) 𝑑𝑠
��� � ��� ∫ 𝑡

0
𝐶 (𝑠, 𝜉)𝜏𝑚(𝑠) 𝑑𝑠

��� + ��� ∫ 𝑡

0
𝐷 (𝑠, 𝜉)𝜏𝑚(𝑠) 𝑑𝑠

��� +𝑂 (𝜀3
12𝑚𝜌), (10.72)

𝐶 (𝑠, 𝜉) :=
∭

𝑠 𝑒𝑖𝑠Φ2𝐹2 (𝑡, 𝜉, 𝜂, 𝜂′, 𝜎)𝜑𝑘1 (𝜂 − 𝜉 + 𝑝)𝜑 (𝑘0)
𝑘2

(𝜎 − 𝜉 + 𝑝)𝜙(𝑝) 𝑑𝜂 𝑑𝜂′ 𝑑𝜎, (10.73)

𝐷 (𝑠, 𝜉) :=
∭

𝑒𝑖𝑠Φ2𝐹2 (𝑡, 𝜉, 𝜂, 𝜂′, 𝜎)𝜑𝑘1 (𝜂 − 𝜉 + 𝑝)𝜑 (𝑘0)
𝑘2

(𝜎 − 𝜉 + 𝑝) 𝑋 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜂′ 𝑑𝜎, (10.74)

where 𝑝 := 𝜉 − 𝜂 + 𝜂′ − 𝜎 and 𝑋 := (𝑋𝜉 + 𝑋𝜂 + 𝑋𝜂′ + 𝑋𝜎); the 𝑂 (𝜀3
12𝑚𝜌) in equation (10.72) includes

similar and lower-order terms, such as the three terms where the derivatives 𝑋𝑎 hit the profiles (these
are similar to the first term in equation (10.53)) or the symbol and the various cutoffs.

The term in equation (10.73) comes from canceling the p.v.1/𝑝 with the p factor in the right-hand
side of equation (10.71); note the factor of s coming from differentiating the phase. Integrating by parts
in all three variables 𝜂, 𝜂′ and 𝜎, this can be estimated in 𝐿2 by 2𝑚𝑋3

𝑘,𝑚 � 2𝑚(𝜀12−(3/4−)𝑚)3, where,
recall, 𝑋𝑘,𝑚 is the quantity defined in equations (8.16)–(8.17) for 𝑘 ≤ 0 and, more generally, in equations
(11.11)–(11.12). Upon integration over time, this is an acceptable contribution for equation (10.70).

To estimate the time integral of equation (10.74), we note that

𝑋
𝜙(𝑝)
𝑝

= Φ2(𝜉, 𝜂, 𝜂′, 𝜎) 𝜕𝑝
𝜙(𝑝)
𝑝

. (10.75)

Using theΦ2 factor, we can then integrate by parts in s through the usual identity 𝑒𝑖𝑠Φ2 = (𝑖Φ2)−1𝜕𝑠𝑒
𝑖𝑠Φ2

and obtain boundary terms plus additional time-integrated terms; since these can all be treated similarly,
we just look at the main time-integrated term: that is (recall the definition of F in equation (10.55)),∫ 𝑡

0

∭
𝑒𝑖𝑠Φ2

[
𝜕𝑠 𝑓̃ (𝜂)

]
𝑓̃ (𝜂′) 𝑓̃ (𝜎) 𝜑𝑘1𝜑

(𝑘0)
𝑘2

𝔪2(𝜉, 𝜂, 𝜂′, 𝜎) 𝜕𝑝
𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜂′ 𝑑𝜎 𝑑𝑠. (10.76)

The main observation here is that we can write 𝜕𝑝 (1/𝑝) = −𝜕𝜎 (1/𝑝) and integrate by parts in 𝜎. The
worst term is the one where 𝜕𝜎 hits the exponential factor that will cause an additional loss of 𝑠 ≈ 2𝑚.
Applying Lemma 6.7 and equation (7.56), we get

‖𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (10.76)‖𝐿2 � 22𝑚‖𝑃∼𝑘𝜕𝑠 𝑓 ‖𝐿2 ‖𝑃∼𝑘𝑒
−𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓 (𝑡)‖4

𝐿∞ � 𝜀5
1. (10.77)
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A similar argument is also used and further detailed after equation (11.71). This concludes the proof
of equation (10.70) and of the asymptotic formula in equation (10.20) in the main case {𝜅1, 𝜅2, 𝜅3} =
{+, +.−}.

10.3.3. Estimates of equations (10.11)–(10.12) for {𝜿1, 𝜿2, 𝜿3} ≠ {+, +,−}
In the nonresonant cases {𝜅1, 𝜅2, 𝜅3} ≠ {+, +,−}, we show how the integrals in equations (10.11) and
(10.12) can be absorbed into the remainder term appearing in equations (10.2)–(10.3). For ease of
reference, we recall the formulas for these integrals:

𝐼𝛿 (𝑡) :=
∭

𝑒𝑖𝑡Φ𝜅1𝜅2𝜅3 ( 𝜉 ,𝜂,𝜂′,𝜎)𝐹 (𝑡, 𝜉, 𝜂, 𝜂′, 𝜎)𝛿(𝑝) 𝑑𝜂 𝑑𝜂′ 𝑑𝑝, (10.78)

𝐼p.v. (𝑡) :=
∭

𝑒𝑖𝑡Φ𝜅1𝜅2𝜅3 ( 𝜉 ,𝜂,𝜂′,𝜎)𝐹 (𝑡, 𝜉, 𝜂, 𝜂′, 𝜎) 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜂′ 𝑑𝑝, (10.79)

where

𝐹 (𝑡, 𝜉, 𝜂, 𝜂′, 𝜎) = 𝔪(𝜉, 𝜂, 𝜂′, 𝜎) 𝑓̃ (𝑡, 𝜂) 𝑓̃ (𝑡, 𝜂′) 𝑓̃ (𝑡, 𝜎) (10.80)

and (see equations (10.13)–(10.14))

Φ𝜅1𝜅2𝜅3 (𝜉, 𝜂, 𝜂′, 𝜎) := 〈𝜉〉 − 𝜅1〈𝜂〉 − 𝜅2〈𝜂′〉 − 𝜅3〈𝜎〉, 𝜎 := 𝜉 − 𝜂 − 𝜂′ − 𝑝, (10.81)

having chosen, without loss of generality, a fixed combination of the the signs 𝜆∗, 𝜇∗, . . .
The main idea to estimate in 〈𝜉〉−3/2𝐿∞ (the time integrals of) equations (10.78) and (10.79) is

similar to the one used in the two previous paragraphs, based on interpolating the 〈𝜉〉−2𝐿2 and 〈𝜉〉−1 �𝐻1

norms via equation (10.35).
Since the phase equation (10.81) does not have stationary points in (𝜂, 𝜂′) at which it simultaneously

vanishes, we will show below that one can obtain fast decay for the 𝐿2 norm:���〈𝜉〉2
∫ 𝑡

0
𝐼 (𝑠) 𝜏𝑚(𝑠)𝑑𝑠

���
𝐿2
� 𝜀3

12−𝑚/22(𝜌+2𝛿)𝑚, 𝐼 ∈ {𝐼𝛿 , 𝐼p.v.}. (10.82)

Moreover, thanks to equation (11.67) in Proposition 11.8, we have that���〈𝜉〉𝜕𝜉 ∫ 𝑡

0
𝐼 (𝑠) 𝜏𝑚(𝑠)𝑑𝑠

���
𝐿2
� 𝜀3

12𝛼𝑚, 𝐼 ∈ {𝐼𝛿 , 𝐼p.v.}. (10.83)

Interpolating equations (10.82) and (10.83), we arrive at a bound consistent with equation (10.3) for 𝛿
and 𝛿0 small enough. We are just left with proving equation (10.82).
Proof of equation (10.82). The case (𝜅1, 𝜅2, 𝜅3) = (−,−,−) is the easiest since |Φ−−−| � 1. The cases
{𝜅1, 𝜅2, 𝜅3} = {−,−, +} and {+, +, +} are similar, so let us just concentrate on the latter sign combination.
Moreover, it suffices to only look at the more complicated case of 𝐼p.v..

We start by recalling that

∇𝜂,𝜂′Φ+++ = 0 ⇐⇒ 𝜂 = 𝜂′ = 𝜎 = (1/3) (𝜉 − 𝑝) =: 𝜉0,

Φ+++(𝜉, 𝜉0, 𝜉0, 𝜉0) = 〈𝜉〉 − 3〈𝜉0〉
(10.84)

(see equation (10.15)). We let |𝑡 | ≈ 2𝑚 and dyadically localise the frequencies into

|𝜉 | ≈ 2𝑘 , |𝜂 | ≈ 2𝑘1 , |𝜂′ | ≈ 2𝑘2 , , |𝜎 | ≈ 2𝑘3 , |𝑝 | ≈ 2𝑞 , (10.85)
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denote by 𝜑𝑘 the standard smooth cutoff that localises to the region where equation (10.85) holds and
define the localised version of the integral in equation (10.79) by

𝐼𝑘 (𝑡) :=
∭

𝑒𝑖𝑡Φ+++ ( 𝜉 ,𝜂,𝜂′,𝜎)𝐹 (𝑡, 𝜉, 𝜂, 𝜂′, 𝜎) 𝜙(𝑝)
𝑝

𝜑𝑘 (𝜉, 𝜂, 𝜂′, 𝜎) 𝑑𝜂 𝑑𝜂′ 𝑑𝑝. (10.86)

By the usual arguments (including dealing with very small values of |𝑝 | by using the p.v.), we may
reduce to prove a slightly stronger bound than equation (10.82) (with a factor of 𝛿 instead of 2𝛿, say)
for 𝐼𝑘 . We split the proof into several cases:
Case 𝑞 ≥ min(𝑘,−𝑘) − 10. Let us first look at the case 𝑘 ≤ 0 for which we have |𝑝 | � |𝜉 |. In this case,
the p.v. is not singular, and equation (10.86) is a ‘regular’ cubic term, up to an additional factor of 2−𝑘

coming from 1/𝑝; however, since 𝑘 ≥ (−2𝛼 − 2𝛿0)𝑚 (see equation (10.34)), this represent a very small
loss. When 𝑘3 ≥ −𝑚/3, an integration by parts in p suffices to obtain the desired bound. When instead
𝑘3 ≤ −𝑚/3, we can directly use an 𝐿∞ ×𝐿∞ ×𝐿2 trilinear Hölder estimate (in physical space): the linear
decay estimate applied to the 𝐿∞ norms gives two factors of 𝜀12−𝑚/2, and equation (7.19) applied to the
𝐿2 norm of the profile with frequency ≈ 2𝑘3 gives an additional factor of 2𝑘3 2𝛼𝑚, yielding a stronger
bound than the right-hand side of equation (10.82).

When 𝑘 ≥ 0, we have |𝑝 | � |𝜉 |−1, and we can use a similar argument. Notice that we do not need to
worry about the loss of a possibly large factor of |𝜉 | from 1/|𝑝 | thanks to the upper bound in equation
(10.34). From now on, we may assume that |𝑝 | � min(|𝜉 |, |𝜉 |−1).
Case max(|𝑘1 − 𝑘2 |, |𝑘1 − 𝑘3 |, |𝑘2 − 𝑘3 |) ≥ 5. Without loss of generality, we may assume 𝑘1 ≥ 𝑘2 + 5.
We may also assume 𝑘1 ≥ −𝑚/3, for otherwise an 𝐿2 × 𝐿∞ × 𝐿∞ estimate will give a bound of
𝐶 · 𝜀12𝑘1 2𝛼𝑚 · (𝜀12−𝑚/2)2 for the 𝐿2 norm of equation (10.86), which is better than equation (10.82).
Let us also assume that 𝑘1 ≤ 10 since the complementary case is easier to treat.

Since |𝜂 − 𝜂′ | � 2𝑘1 , we have

|𝜕𝜂Φ+++| � 2𝑘
−
1 . (10.87)

Integrating by parts in 𝜂 in equation (10.86), we obtain one main term when the derivative hits the
profiles: that is,∭

𝑒𝑖𝑡Φ𝜅1𝜅2𝜅3 ( 𝜉 ,𝜂,𝜂′,𝜎) 𝔪𝜑𝑘

𝑡 𝜕𝜂Φ+++
(𝜉, 𝜂, 𝜂′, 𝜎) 𝜕𝜂

[
𝑓̃ (𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜂′ − 𝑝)

]
𝑓̃ (𝜂′) 𝜙(𝑝)

𝑝
𝑑𝜂 𝑑𝜂′ 𝑑𝑝,

(10.88)

plus other faster-decaying terms when the derivative hits the symbol or the various cutoffs.
One can check that a bound of 𝐶2−𝑘−1 holds for the norm of the trilinear operator associated to the

(localisation of the) symbol (𝜕𝜂Φ+++)−1, consistently with equation (10.87). Then an 𝐿2 × 𝐿∞ × 𝐿∞

estimate, using equations (10.34) and (10.31), gives us

‖〈𝜉〉2𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (10.88)‖𝐿2 � 2−𝑚22𝑘 · 2−𝑘−1 max
(
‖𝜕𝜂𝜑𝑘1 𝑓̃ ‖𝐿2 , ‖𝜕𝜂𝜑𝑘3 𝑓̃ ‖𝐿2

)
·
(
𝜀12−𝑚/2)2

� 𝜀3
12−2𝑚22(𝛼+𝛿0)𝑚2𝑚/3 · 2𝜌𝑚,

(10.89)

which suffices after time integration.
Case max(|𝑘1−𝑘2 |, |𝑘1−𝑘3 |, |𝑘2−𝑘3 |) ≤ 5. In particular, we must also have that 𝑘 ≤ max(𝑘1, 𝑘2, 𝑘3)+20.
Motivated by equation (10.84), we further decompose dyadically

|𝜉 − 2𝜂 − 𝜂′ − 𝑝 | ≈ 2𝑛1 , |𝜉 − 𝜂 − 2𝜂′ − 𝑝 | ≈ 2𝑛2 ,

by inserting smooth cutoffs, that we implicitly include into 𝜑𝑘 .
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Subcase max(𝑛1, 𝑛2) ≥ −𝑚/2 + 𝛿𝑚. Let us assume, without loss of generality, that 𝑛1 ≥ 𝑛2, so that
|𝜉 − 2𝜂 − 𝜂′ − 𝑝 | � 2−𝑚/2+𝛿𝑚. Note that, in view of our restriction, we have 𝑛1 ≤ 𝑘1 + 10. In this case,
we can integrate by parts in 𝜂 in the expression in equation (10.86) using that

|𝜕𝜂Φ+++| � 2−3𝑘+1 2𝑛1

and that an estimate of 2−𝑛1+3𝑘1 holds for the norm of the trilinear operator associated to (𝜕𝜂Φ+++)−1.
Up to easier and faster-decaying terms, this integration by parts gives us the same main term in equation
(10.88) above. Estimating as in equation (10.89) gives

‖〈𝜉〉2𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (10.88)‖𝐿2 � 2−𝑚 · 2−𝑛1 23𝑘+1 · max
(
‖𝜕𝜂𝜑𝑘1 𝑓̃ ‖𝐿2 , ‖𝜕𝜂𝜑𝑘3 𝑓̃ ‖𝐿2

)
·
(
𝜀12−𝑚/2)2

� 𝜀3
12−2𝑚 · 2(1/2−𝛿+𝜌)𝑚.

(10.90)

Subcase min(𝑛1, 𝑛2) ≤ −𝑚/2 + 𝛿𝑚. Let us denote by 𝐼𝑘,0 the localisation of equation (10.86) to this
region, and note that in this case, both 𝜂 and 𝜂′ are very close to 𝜉0 := (1/3) (𝜉 − 𝑝), and so is
𝜎 = 𝜉 − 𝜂 − 𝜂′ − 𝑝. More precisely, we can see that

|Φ+++(𝜉, 𝜂, 𝜂′, 𝜎) | �
��〈𝜉〉 − 3〈𝜉0〉

�� +𝑂 (2−𝑚/2+𝛿𝑚) � 〈𝜉〉−1,

since |𝑝 | � 〈𝜉〉−1, and we have the upper bound in equation (10.34) for |𝜉 |. It is then possible to
integrate by parts in s in the time integral of 𝐼𝑘,0, incurring a minimal loss of 2𝑘+ . Then from the usual
trilinear Hölder estimates, using the bound in equation (7.56) for 𝜕𝑡 𝑓 the 𝐻4-type a priori bound in
equation (7.10) and the 𝐿∞

𝑥 decay, we can see that���〈𝜉〉2
∫ 𝑡

0
𝐼𝑘,0 (𝑠, 𝜉) 𝜏𝑚(𝑠)𝑑𝑠

���
𝐿2
� 𝜀3

12−𝑚+𝑝0𝑚 + 2𝑚 · 𝜀5
12−2𝑚+𝑝0𝑚.

This concludes the proof of equation (10.82) and the main Proposition 10.1.

11. Estimates of lower-order terms

This section contains estimates for all the terms that have not been treated in Sections 7–10:
• In Section 11.1, we prove the weighted bound for all the quadratic interactions that are not covered

in Section 8.
• In Section 11.2, we complete the proof of the a priori bounds on the Sobolev-type component of our

norm by estimating the regular quadratic terms Q𝑅 ( 𝑓 , 𝑓 ), which were left out of the proofs in
Section 7; see Lemma 7.8 and the first line of equation (7.36).

• In Section 11.3, we prove the Fourier-𝐿∞ bound for the regular quadratic terms and all other terms
that are not the main ones covered in Section 10.

• Finally, Section 11.4 contains the estimates for the weighted norms of all the cubic interactions
C𝑆1,2
𝜅1𝜅2𝜅3 (see equation (5.57)), which were left out of the analysis of Section 9; these are of two types:

the interactions with {𝜅1, 𝜅2, 𝜅3} = {+ + −} with not all frequencies close to
√

3 (or −
√

3), and the
interactions corresponding to all the other signs combinations.

11.1. Other quadratic interactions

Here we estimate the weighted norm of the regular quadratic term Q𝑅 (see equation (5.15)) for all the
interactions that are not the main ones considered in Section 8. These are:
• The interactions with (𝜄1𝜄2) = (++) that do not satisfy equation (8.2) or, more precisely, equations

(8.26) and (8.29); with the notation from equations (8.32) and (8.35)–(8.36), these are interactions
where we have either ℓ > −7𝛽′𝑚 or 𝑘1 > −10.

• The interactions with (𝜄1𝜄2) ≠ (++).
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By estimating these terms, we will complete the proof of the main Proposition 8.1. Several of the
arguments that we will use below are along the same lines as in Section 8 and simpler in many cases,
so we will omit some details.

11.1.1. Notation and preliminary reductions
Let us begin by recalling some definitions. Recall the notation in equations (8.7)–(8.8),

Q𝑅𝜄1 𝜄2 [𝑎, 𝑏] (𝑡, 𝜉) = −𝜄1𝜄2
∬

𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝔮𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) 𝑎̃ 𝜄1 (𝜂) 𝑏̃ 𝜄2 (𝜎) 𝑑𝜂 𝑑𝜎,

Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) := 〈𝜉〉 − 𝜄1〈𝜂〉 − 𝜄2〈𝜎〉,
(11.1)

where we omit the irrelevant signs 𝜅1, 𝜅2 and the indicator functions according to Remark 5.1; see also
Remark 5.11 and Lemma 5.9. Recall the definition of the main localised operator from equation (8.28):

𝐼 𝑝,𝑘1 ,𝑘2
𝜄1 𝜄2 [𝑎, 𝑏] (𝑡, 𝜉) :=

∬
𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝜑 (𝑝0)

𝑝

(
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)

)
𝔮𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)

× 𝜑𝑘1 (𝜂)𝑎̃ 𝜄1 (𝜂) 𝜑𝑘2 (𝜎) 𝑏̃ 𝜄2 (𝜎) 𝑑𝜂 𝑑𝜎, 𝑝0 = −𝑚 + 𝛿𝑚,

Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) := 〈𝜉〉 − 𝜄1〈𝜂〉 − 𝜄2〈𝜎〉,

(11.2)

where 𝑡 ≈ 2𝑚, 𝑚 = 0, 1, . . . ; also recall from the definition of 𝔮𝜄1 𝜄2 in equation (5.16), with 𝜇𝑅 as in
equations (4.6)–(4.7), and Remark 5.1, which we may assume for all 𝑎, 𝑏, 𝑐 ≥ 0 and arbitrarily large N,

|𝜕𝑎𝜉 𝜕
𝑏
𝜂𝜕
𝑐
𝜎𝔮𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) | � 1

〈𝜂〉〈𝜎〉 ·
[
1 + inf

𝜇,𝜈
|𝜉 − 𝜇𝜂 − 𝜈𝜎 |

]−𝑁 · 𝑅(𝜂, 𝜎)𝑎+𝑏+𝑐+1, (11.3)

where 𝑅(𝜂, 𝜎) ≈ min(〈𝜂〉, 〈𝜎〉); see equation (5.13). Notice in particular that the symbol decays very
fast when one of the frequencies (𝜉, 𝜂, 𝜎) is much larger than the other two; this will allow us to
concentrate on ‘diagonal’ interactions where max(|𝜉 |, |𝜂 |, |𝜎 |) ≈ med(|𝜉 |, |𝜂 |, |𝜎 |).

In view of the preliminary reductions made in Section 8 – see in particular the estimates leading to
Lemma 8.4 – it suffices to obtain the two following estimates:

2𝑚2𝑘
����𝜑𝑘 (𝜉)𝜒ℓ,√3 (𝜉)

∫ 𝑡

0
𝐼 𝑝,𝑘1 ,𝑘2
++ ( 𝑓 , 𝑓 ) (𝜉, 𝑠) 𝜏𝑚(𝑠) 𝑑𝑠

����
𝐿2
𝜉

� 𝜀2
1 2−𝛽ℓ2−2𝛽′𝑚,

ℓ > −7𝛽′𝑚 or 𝑘1 > −10,
(11.4)

and

2𝑚2𝑘
����𝜑𝑘 (𝜉)𝜒ℓ,√3 (𝜉)

∫ 𝑡

0
𝐼 𝑝,𝑘1 ,𝑘2
𝜄1 𝜄2 ( 𝑓 , 𝑓 ) (𝑠, 𝜉) 𝜏𝑚(𝑠) 𝑑𝑠

����
𝐿2
𝜉

� 𝜀2
1 2−𝛽ℓ2−2𝛽′𝑚,

with (𝜄1𝜄2) ∈ {(+−), (−+), (−−)}.
(11.5)

We assume without loss of generality that

𝑘1 ≥ 𝑘2.

Notice that in addition to the localisations already present in Lemma 8.4, we have included here
a localisation in |𝜉 | ≈ 2𝑘 and a factor of 2𝑘 on the left-hand sides of equations (11.4)–(11.5), which
is consistent with the fact that 〈𝜉〉∇𝜉Φ 𝜄1 𝜄2 = 𝜉; see the formula in equation (8.10) and recall that
this factor was disregarded in the estimates of Section 8 since there we were only looking at the case
|𝜉 | ≈

√
3. For small 𝜉, this factor turns out to be helpful in the analysis of the signs combinations other

than (++).
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Notice also that in both equations (11.4) and (11.5), we have discarded the summations over (𝑘, 𝑘1, 𝑘2)
(and p) and reduced ourselves to a bound for fixed triples (𝑘, 𝑘1, 𝑘2). To justify this reduction, it suffices
to show how to bound the sums over max(𝑘, 𝑘1, 𝑘2) ≥ 10𝑚 or min(𝑘, 𝑘1, 𝑘2) ≤ −10𝑚, because then
the sum over the remaining 𝑂 (𝑚3) terms (𝑂 (𝑚4) when we include p) can be accounted for by the factor
of 2−2𝛽′𝑚 (and the lack of the 2𝛼𝑚 factor) as we did for the parameters 𝑘1, 𝑘2 and p before (see the
paragraph after Lemma 8.4).

Let us briefly explain how to deal with the cases max(𝑘, 𝑘1) ≥ 10𝑚 and min(𝑘, 𝑘2) ≤ −10𝑚. Observe
that the pointwise bound on the symbol from equation (11.3) gives us, on the support of the integral,

|𝔮𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) | � 2−𝑘+1 2−20 |𝑘+−𝑘+1 | [1 + inf
𝜇,𝜈

|𝜉 − 𝜇𝜂 − 𝜈𝜎 |
]−5; (11.6)

then Young’s inequality yields

2𝑚2𝑘
����𝜑𝑘 (𝜉)𝜒ℓ,√3(𝜉)

∫ 𝑡

0
𝐼 𝑝,𝑘1 ,𝑘2
++ ( 𝑓 , 𝑓 ) (𝜉, 𝑠) 𝜏𝑚(𝑠) 𝑑𝑠

����
𝐿2
𝜉

� 22𝑚2𝑘 · 2−𝑘+1 2−20 |𝑘+−𝑘+1 | · ‖𝜑𝑘1 𝑓̃ ‖𝐿2 ‖𝜑𝑘2 𝑓̃ ‖𝐿1

� 22𝑚2𝑘 · 2−𝑘+1 2−20 |𝑘+−𝑘+1 | · min
(
2−4𝑘1 , 2𝑘1/2)2𝛼𝑚𝜀1 · min

(
2𝑘2 , 2−7𝑘2/2)2𝛼𝑚𝜀1,

(11.7)

having using the a priori bound on the 𝐻4 Sobolev norm in the last inequality. If max(𝑘, 𝑘1) ≥ 10𝑚 and
|𝑘1 − 𝑘 | < 10, we can use the factor of 2−5𝑘1 in equation (11.7) to sum over k and 𝑘1 (the sum over 𝑘2
can be done independently) and obtain a stronger upper bound than the right-hand sides of equations
(11.4)–(11.5); when instead |𝑘 − 𝑘1 | ≥ 10, we can use the decay of the symbol away from the diagonal,
which results in the extra power of 2−20max(𝑘,𝑘1) in equation (11.7).

In the case 𝑘 ≤ −10𝑚, the factor of 2𝑘 in front of the estimate in equation (11.7) already allows one
to sum over k and again obtain stronger bounds than equations (11.4)–(11.5). Similarly, equation (11.7)
suffices if 𝑘2 ≤ −10𝑚.

Before proving equations (11.4) and (11.5), we show how to deal with relatively large input frequen-
cies and, in particular, how to handle the nonstandard estimate for the symbol 𝔮 appearing in equation
(11.3).

11.1.2. High frequencies
From the estimates for the symbol 𝔮 in equation (11.3), we see that 𝔮 is essentially smooth and fast
decaying in the quantity inf𝜇,𝜈 |𝜉−𝜇𝜂−𝜈𝜎 | but has the nonstandard feature that its derivatives in 𝜉, 𝜂, 𝜎
might grow for frequencies larger than 1. Therefore, in each of our integration by parts arguments, there
is a potential loss of a factor of 𝑅(𝜂, 𝜎) when derivatives hit the symbol. However, thanks to the 𝐻4

control on our solution, we can comfortably handle this, using the following lemma:

Lemma 11.1 (High frequencies). Assume 𝑘2 ≤ 𝑘1. For all 𝑠 ≈ 2𝑚, we have

‖𝜑𝑘 (𝜉)𝐼 𝑝,𝑘1 ,𝑘2
𝜄1 𝜄2 ( 𝑓 , 𝑓 ) (𝑠, 𝜉)‖𝐿2 � 2−𝑘+1 2−20 |𝑘+−𝑘+1 | · ‖𝜑𝑘1 𝑓̃ ‖𝐿2

· min
(
‖𝜑𝑘2 𝑓̃ ‖𝐿1 , 2−𝑚−𝑘−2

(
(2𝑘+2 + 2−𝑘−2 )‖𝜑𝑘2 𝑓̃ ‖𝐿1 + ‖𝜕𝜉 (𝜑𝑘2 𝑓̃ )‖𝐿1

) )
.

(11.8)

Proof. Bringing the absolute values inside the integral gives us the basic bound

|𝐼 𝑝,𝑘1 ,𝑘2
𝜄1 𝜄2 ( 𝑓 , 𝑓 ) (𝑡, 𝜉) | �

∬
|𝔮𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) | · 𝜑𝑘1 (𝜂) | 𝑓̃ 𝜄1 (𝜂) | · 𝜑𝑘2 (𝜎) | 𝑓̃ 𝜄2 (𝜎) | 𝑑𝜂 𝑑𝜎,

which, using equation (11.3) (with 𝑎 = 𝑏 = 𝑐 = 0), 𝑅(𝜂, 𝜎) ≈ 2𝑘+2 and Young’s inequality, implies

‖𝜑𝑘 (𝜉)𝐼 𝑝,𝑘1 ,𝑘2
𝜄1 𝜄2 ( 𝑓 , 𝑓 ) (𝑠, 𝜉)‖𝐿2 � 2−𝑘+1 2−20 |𝑘+−𝑘+1 | · ‖𝜑𝑘1 𝑓̃ ‖𝐿2 · ‖𝜑𝑘2 𝑓̃ ‖𝐿1 . (11.9)
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To prove equation (11.8), we need to show, for 𝑘2 ≥ −𝑚/2, that

‖𝜑𝑘 (·)𝐼 𝑝,𝑘1 ,𝑘2
𝜄1 𝜄2 [ 𝑓 , 𝑓 ] (·, 𝑠)‖𝐿2 � 2−𝑘+1 2−20 |𝑘+−𝑘+1 | · ‖𝜑𝑘1 𝑓̃ ‖𝐿2 · 2−𝑚−𝑘−2

·
(
‖𝜕𝜎 (𝜑𝑘2 𝑓̃ )‖𝐿1 + (2𝑘+2 + 2−𝑘−2 )‖𝜑𝑘2 𝑓̃ ‖𝐿1

)
.

(11.10)

This is done by integrating by parts in 𝜎 first and then estimating as in equation (11.9) above. More
precisely, we look at the formula in equation (11.2) and note that |𝜕𝜎Φ 𝜄1 𝜄2 | ≈ 2𝑘−2 . Using this and the
usual identity (𝑖𝑠𝜕𝜎Φ 𝜄1 𝜄2)−1𝜕𝜎𝑒

𝑖𝑠Φ𝜄1 𝜄2 = 𝑒𝑖𝑠Φ𝜄1 𝜄2 , we can integrate by parts in 𝜎, gaining the factor
2−𝑚−𝑘−2 . When 𝜕𝜎 hits 𝜑 (𝑝0)

𝑝 , we use the argument that led to Remark 8.6 and repeat the integration by
parts as needed. If 𝜕𝜎 hits the symbol 𝔮, we use equation (11.3) to deduce a bound of

𝐶 sup
|𝜂 |≈2𝑘1 , |𝜎 |≈2𝑘2

𝑅(𝜂, 𝜎)2 · 2−𝑘+1 2−20 |𝑘+−𝑘+1 | · ‖𝜑𝑘1 𝑓̃ ‖𝐿2 · 2−𝑘+2 2−𝑚−𝑘−2 ‖𝜑𝑘2 𝑓̃ ‖𝐿1

� 2−𝑘+1 2−20 |𝑘+−𝑘+1 | · ‖𝜑𝑘1 𝑓̃ ‖𝐿2 · 2𝑘
+
2 2−𝑚−𝑘−2 ‖𝜑𝑘2 𝑓̃ ‖𝐿1 .

If instead 𝜕𝜎 falls on 𝜑𝑘2 𝑓̃ , we estimate using Young’s and finally obtain equation (11.10). �

Let us define, just for the purpose of the estimate in this section, the following variant of 𝑋𝑘,𝑚 (see
equation (8.16)), which we still denote in the same way, to also take into account frequencies 𝑘 ≥ 0:

𝑋𝑘,𝑚(𝑐) := min
(
‖𝜑𝑘 𝑐̃‖𝐿1 , 2−𝑚−𝑘− (

‖𝜕𝜉 (𝜑𝑘 𝑐̃)‖𝐿1 + (2𝑘+ + 2−𝑘−)‖𝜑 [𝑘−5,𝑘+5] 𝑐̃‖𝐿1
) )
. (11.11)

Note that this coincides with equation (8.16) when 𝑘 ≤ 0. Also note that this extended definition still
satisfies the upper bound 𝑋𝑘,𝑚( 𝑓 (𝑡)𝜏𝑚(𝑡)) � 𝜀12−3𝑚/42𝛼𝑚 (see equation (8.17)), which we used many
times before; more precisely, using the a priori bounds in equation (7.10) (see also equations (7.21)–
(7.24)), we can estimate

𝑋𝑘,𝑚( 𝑓 (𝑡)𝜏𝑚(𝑡)) � 𝜀1min
(
2−7𝑘+/2, 23𝑘−/2, 2−𝑚−𝑘−/2, 2−𝑚−𝑘+/2)2𝛼𝑚. (11.12)

As a consequence of Lemma 11.1, we see that

‖𝜑𝑘 (𝜉)𝐼 𝑝,𝑘1 ,𝑘2
𝜄1 𝜄2 [ 𝑓 , 𝑓 ] (𝑠, 𝜉)‖𝐿2 � 2−𝑘+1 2−20 |𝑘+−𝑘+1 | · ‖𝜑𝑘1 𝑓̃ ‖𝐿2 · 𝑋𝑘2 ,𝑚( 𝑓 )

� 2−𝑘+1 2−20 |𝑘+−𝑘+1 | · 2−4𝑘+1 ‖ 𝑓 ‖𝐻 4 · 𝑋𝑘2 ,𝑚( 𝑓 ).
(11.13)

Then we see that if max(𝑘1, 𝑘2) = 𝑘1 ≥ 𝑚/3, by our a priori bounds, we get

2𝑘 ‖𝜑𝑘 (𝜉)𝐼 𝑝,𝑘1 ,𝑘2
𝜄1 𝜄2 [ 𝑓 , 𝑓 ] (𝑠, 𝜉)‖𝐿2 � 2𝑘2−𝑘+1 2−20 |𝑘+−𝑘+1 | · 𝜀12𝛼𝑚2−4𝑚/3 · 𝜀12−3𝑚/42𝛼𝑚

� 𝜀2
12−2𝑚−5𝛽′𝑚.

(11.14)

This implies equations (11.4)–(11.5) in the large-frequencies regime max(𝑘1, 𝑘2) ≥ 𝑚/3.

Remark 11.2 (Handling the derivatives of 𝔮 for large frequencies). Thanks to the above argument,
we are only left with proving the main bounds in equations (11.4)–(11.5) for max(𝑘, 𝑘1) ≤ 𝑚/3 (and
min(𝑘, 𝑘2) ≥ −10𝑚, say). In particular, this allows us to disregard all the terms in our integration by parts
arguments in frequency space where derivatives fall on the symbol 𝔮, despite the nonstandard growth
of its derivatives for frequencies larger than 1; see the factor of 𝑅(𝜂, 𝜎) in equation (11.3). Indeed, on
the support of equation (11.2), we have 𝑅(𝜂, 𝜎) ≈ 2𝑘+2 (recall that we also assume 𝑘2 ≤ 𝑘1) so that each
derivative of 𝔮 can cost at most a factor of 2𝑚/3, while the gain from any integration by parts argument
is always at least 2−𝑚/2. Therefore, a term where a derivative hits 𝔮 is always better behaved than terms
where derivatives hit the profiles (or other cutoffs). We will then analyse only these latter types of terms.
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11.1.3. Proof of equation (11.4)
Recall the relation between the parameters in equation (2.31) and that by symmetry we assume 𝑘1 ≥ 𝑘2.
Also, recall that we are assuming that at least one of the two conditions ℓ > −7𝛽′𝑚 or 𝑘1 > −10 holds
true. As usual, we divide the proof into a few cases.

Step 1: 𝑘 ≤ −5 or 𝑘1 ≤ −4𝛽′𝑚 − 10. Let us first discuss the case 𝑘 ≤ −5, where we have |𝜉 | � 1 and
therefore |Φ++| ≥ 2 − 〈𝜉〉 � 1. In this case, we can integrate by parts in s without introducing any loss
and then analyse the resulting quartic terms (boundary terms are easy to handle) as done in Section 8
starting on page 100. Here we should take some care since the input frequencies 𝜂 and 𝜎 could be close
to ±

√
3; then integration by parts in one of these frequencies could potentially introduce a loss, since, for

example, the 𝐿2-norm of 𝜕𝜂 𝑓̃ (𝜂) degenerates for 𝜂 close to
√

3. However, it suffices to observe that in
this case the quantity 𝑋𝑘1 ,𝑚 (see equation (11.11)) satisfies for any 𝑗1 ∈ [−𝛾𝑚, 0] ∩ Z (hence |𝑘1 | ≤ 5)

𝑋𝑘1 ,𝑚
(
F̃−1(𝜒 𝑗1 ,

√
3 𝑓̃ (𝑡))𝜏𝑚(𝑡)

)
≈ min

(
‖𝜑 [𝑘1−5,𝑘1+5] 𝜒 𝑗1 ,

√
3 𝑓̃ ‖𝐿1 , 2

−𝑚‖𝜕𝜉 (𝜑𝑘1 𝜒 𝑗1 ,
√

3 𝑓̃ )‖𝐿1

)
� 2−𝑚‖𝜕𝜉 (𝜑𝑘1 𝜒 𝑗1 ,

√
3 𝑓̃ )‖𝐿1 � 𝜀12−𝑚2𝛽

′ 𝑗1+𝛼𝑚,
(11.15)

having used the consequence of the a priori bounds in equation (7.20). The estimate in equation (11.15)
is substantially better than the general bound of 2−3𝑚/4+𝛼𝑚 used throughout Section 8, where we
considered 𝑘1 < 0.

Next, let us discuss the case 𝑘 > −5 and 𝑘1 ≤ −4𝛽′𝑚 − 10. In particular, since 𝑘1 ≤ −10, we are
under the assumption that ℓ > −7𝛽′𝑚. Then we see that

|Φ++| ≥ |2 − 〈𝜉〉| − 2(〈𝜂〉 − 1) ≈ 2ℓ

since | |𝜉 | −
√

3| ≈ 2ℓ � 22𝑘1 ≈ 〈𝜂〉−1. Therefore, we have the strong lower bound |Φ++| � 2ℓ ≥ 2−7𝛽′𝑚,
and integration by parts in time can be used to handle this case as well.

We can then assume

𝑘 > −5, 𝑘1 > −4𝛽′𝑚 − 10, 𝑘2 ≤ 𝑘1, 𝑝 < 2𝑘1 − 10, (11.16)

where this last condition is just a consequence of restricting to the case 𝑝 < −8𝛽′𝑚 − 30 (the comple-
mentary case being again easier to deal with by integration by parts in time).

Step 2: Decomposition in | |𝜂 | −
√

3| ≈ 2 𝑗1 . To proceed further, we need to decompose the integral in
equation (11.4) by inserting cutoffs in the size of | |𝜂 | −

√
3| ≈ 2 𝑗1 . We first notice that if 𝑗1 ≥ −10 – that

is, 𝜂 is away from ±
√

3 – then we are in a situation similar to the one in Section 8, with the additional
advantage that |𝜂 | cannot be small (and is in fact almost lower bounded by 1; see equation (11.16)). An
application of equation (8.40) in Lemma 8.5, together with the bound in equation (11.6) for the symbol,
would then give us

2𝑘
��𝐼 𝑝,𝑘1 ,𝑘2

++
[
F̃−1 (𝜒 𝑗1 ,

√
3 𝑓̃ ), 𝑓

]
(·, 𝑠)

��
𝐿2

� 2𝑘2−𝑘+1 2−20 |𝑘+−𝑘+1 | · 2𝑝−𝑘1/2 · 2−𝑚−𝑘1 ‖𝜕𝜉 (𝜒 𝑗1 ,
√

3 𝑓̃ )‖𝐿2 · 𝑋𝑘2 ,𝑚

� 𝜀2
12𝑝−3𝑘1/2 · 2−𝑚+𝛼𝑚 · 2−3𝑚/4+𝛼𝑚.

(11.17)

This is enough, provided, for example, that 𝑝 ≤ −𝑚/4 − 10𝛽′𝑚. In the complementary case 𝑝 >
−𝑚/4 − 10𝛽′𝑚, we can efficiently integrate by parts in time and argue as in Sections 8.6 and 8.7. We
may then reduce matters to the harder case 𝑗1 ≤ −10.
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We define

𝐼 𝑝,𝑘, 𝑗1 ,𝑘2 [𝑎, 𝑏] (𝑡, 𝜉) := 𝜑𝑘 (𝜉)
∬

𝑒𝑖𝑡Φ++ ( 𝜉 ,𝜂,𝜎) 𝜑 (𝑝0)
𝑝

(
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)

)
𝔮′(𝜉, 𝜂, 𝜎)

× 𝜒
[−𝛾𝑚,0]
𝑗1 ,

√
3

(𝜂) 𝑎̃ 𝜄1 (𝜂) 𝜑𝑘2 (𝜎) 𝑏̃ 𝜄2 (𝜎) 𝑑𝜂 𝑑𝜎
(11.18)

(note that in the notation, we have dispensed with the irrelevant parameter 𝑘1 associated to the localisation
in |𝜂 | ≈ 2𝑘1 ≈ 1), where

𝔮′(𝜉, 𝜂, 𝜎) := 𝔮′
𝜄1 𝜄2;𝑘,𝑘1 ,𝑘2

(𝜉, 𝜂, 𝜎) := 𝜑∼𝑘 (𝜉)𝜑∼𝑘1 (𝜂)𝜑∼𝑘2 (𝜎)𝔮𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) · 2𝑘 . (11.19)

From equation (11.3), and since we are considering |𝑘1 | ≤ 5 and 𝑘 > −5, we have

|𝜕𝑏𝜂𝜕𝑐𝜎𝔮′
𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) | � 2(𝑏+𝑐)𝑘+2 2−20𝑘+ . (11.20)

To obtain equation (11.4), it then suffices to prove the following:

Lemma 11.3. With the definitions in equations (11.18)–(11.20), under our a priori assumptions, we
have, for all 𝑗1 ≤ −10,

2𝑚
����∫ 𝑡

0
𝐼 𝑝,𝑘, 𝑗1 ,𝑘2 [ 𝑓 , 𝑓 ] (·, 𝑠) 𝜏𝑚(𝑠) 𝑑𝑠

����
𝐿2
𝜉

� 𝜀2
1 2−3𝛽′𝑚. (11.21)

Note that in equation (11.21), we have discarded the factor of 2−𝛽ℓ on the right-hand side, which is
of little help when ℓ is close to 0.

Before proceeding with the proof of Lemma 11.3, let us observe that the same argument used to
prove equation (8.39) in Lemma 8.5 gives us (we can use the 𝐿2

𝜉 norm instead of the 𝐿∞
𝜉 by Hölder and

equation (11.20))

‖𝐼 𝑝,𝑘, 𝑗1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠)‖𝐿2 � 𝑋𝑘1 ,𝑚
(
F̃−1(𝜒 𝑗1 ,

√
3 𝑓̃ (𝑠))𝜏𝑚(𝑠)

)
· 𝑋𝑘2 ,𝑚 ( 𝑓 )

� 𝜀2
1 · 2−𝑚+𝛼𝑚2𝛽

′ 𝑗1 · 𝜀123𝑘2/22𝛼𝑚.
(11.22)

In particular, we have equation (11.21) when 3𝑘2/2 ≤ −𝑚 − 2𝛼− 3𝛽′𝑚. We may therefore assume from
now on that

𝑘2 ≥ −2𝑚/3 − 10𝛽′𝑚. (11.23)

For later use, we also record here the following analogue of the estimate in equation (8.40) applied
to equation (11.18):��𝐼 𝑝,𝑘, 𝑗1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠)

��
𝐿2 � 2𝑝 · 2−𝑚��𝜕𝜉 (𝜒 [−𝛾𝑚,0]

𝑗1 ,
√

3
𝑓̃ )

��
𝐿2

· 𝑋𝑘2 ,𝑚( 𝑓 )

� 2𝑝 · 2−𝑚𝜀12𝛾𝛽𝑚+𝛼𝑚 · 𝜀1min(23𝑘2/2, 2−𝑚+𝑘2/2)2𝛼𝑚.
(11.24)

Step 3: 𝑝 ≤ −𝑚/2 − 5𝛽′𝑚. In this case, integration by parts in time is not efficient. However, since
𝛾𝛽 + 2𝛼 ≤ 1/4 (see equation (2.31)), we see that equation (11.24) already suffices to give equation
(11.21).
Step 4: 𝑝 ≥ −𝑚/2 − 5𝛽′𝑚. This is the hardest case in the proof of equation (11.4). The basic idea is to
integrate by parts as in Section 8.6 and analyse the resulting terms, which are similar to those in equations
(8.57)–(8.60), with the notation in equation (8.56) and the identities in equations (8.66)–(8.69). In the
present case, we have similar formulas, with a different localisation in 𝜂 at the scale | |𝜂 | −

√
3| ≈ 2 𝑗1 � 1

instead of |𝜂 | ≈ 2𝑘1 � 1.
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We define, similarly to equation (8.56),

𝐼 𝑝,𝑘, 𝑗1 ,𝑘2 [𝑔, ℎ] (𝑠, 𝜉) :=
∬

𝑒𝑖𝑠Φ++
𝜑𝑝

(
Φ

)
Φ

𝔮′(𝜉, 𝜂, 𝜎) 𝜒 [−𝛾𝑚,0]
𝑗1 ,

√
3

(𝜂)𝑔̃(𝜂) 𝜑𝑘2 (𝜎) ℎ̃(𝜎) 𝑑𝜂 𝑑𝜎, (11.25)

where 𝔮′ satisfies equation (11.20). In particular, since 𝑘2 ≤ 5, we may think of this just as a smooth
symbol that decays very fast in 〈𝜉〉 and with 𝑂 (1) bounds on its derivatives.

Disregarding the boundary terms that come from the integration by parts in time that can be treated
as before, we reduce matters to estimating

𝐾𝑆1,2
𝜄1 𝜄2 𝜄3 (𝑡, 𝜉) := 𝐼 𝑝,𝑘, 𝑗1 ,𝑘2

[
F̃−1C𝑆1,2

𝜄1 𝜄2 𝜄3 [ 𝑓 , 𝑓 , 𝑓 ], 𝑓
]
(𝑠, 𝜉), (11.26)

𝐿𝑆1,2
𝜄1 𝜄2 𝜄3 (𝑡, 𝜉) := 𝐼 𝑝,𝑘, 𝑗1 ,𝑘2

[
𝑓 , F̃−1C𝑆1,2

𝜄1 𝜄2 𝜄3 [ 𝑓 , 𝑓 , 𝑓 ]
]
(𝑠, 𝜉), (11.27)

and

𝐷𝑅 (𝑡, 𝜉) := 𝐼 𝑝, 𝑗1 ,𝑘2
[
F̃−1R, 𝑓

]
(𝑠, 𝜉) + 𝐼 𝑝, 𝑗1 ,𝑘2

[
𝑓 , F̃−1R

]
(𝑠, 𝜉). (11.28)

For equation (11.21), it suffices to prove an upper bound of 𝜀2
12−2𝑚−3𝛽′𝑚 for the 𝐿2

𝜉 -norms of equations
(11.26)–(11.28).
Estimate of equations (11.26)–(11.27). As in Section 8, since we are assuming 𝑘2 ≤ 𝑘1, the two terms
in equations (11.26) and (11.27) are not symmetric; similar to before, it turns out that the second one is
slightly harder to treat, so it will be the focus of our analysis. We concentrate on the C𝑆1 contribution
since the one with C𝑆2 will differ only slightly; see, for example, the arguments on page 106.

Expanding out as in equation (8.106) and introducing frequency cutoffs for the new correlated
variables, we reduce to estimating quartic terms of the form

𝐿𝑘 :=
⨌

𝑒𝑖𝑡Ψ𝜄1 𝜄2 𝜄2
𝜑𝑝

(
Φ

)
Φ

𝔮 𝜑𝑘 (𝜂, 𝜎, 𝜌, 𝜁) 𝑓̃ (𝜂) 𝑓̃ (𝜌) 𝑓̃ (𝜁) 𝑓̃ (𝜎 − 𝜌 − 𝜁) 𝑑𝜂 𝑑𝜎 𝑑𝜁 𝑑𝜌,

Ψ𝜄1 𝜄2 𝜄3 := 〈𝜉〉 − 〈𝜂〉 − 𝜄1〈𝜌〉 − 𝜄2〈𝜁〉 − 𝜄2〈𝜎 − 𝜌 − 𝜁〉, 𝜄1, 𝜄2, 𝜄3 ∈ {+,−},
𝜑𝑘 (𝜂, 𝜎, 𝜌, 𝜁) := 𝜒 𝑗1 ,

√
3 (𝜂)𝜑𝑘2 (𝜎)𝜑𝑘3 (𝜌)𝜑𝑘4 (𝜁)𝜑𝑘5 (𝜎 − 𝜌 − 𝜁),

(11.29)

for a smooth symbol 𝔮. It suffices to show that for |𝑡 | ≈ 2𝑚 and |max(𝑘2, 𝑘3) − med(𝑘2, 𝑘3, 𝑘4) | ≤
5, 𝑘5 ≤ 𝑘4 ≤ 𝑘3 ≤ 0, we have ��𝐿𝑘 (𝑡, 𝜉)�� � 𝜀3

12−2𝑚2−4𝛽′𝑚. (11.30)

Integration by parts in the uncorrelated variable 𝜂, using that |𝜂 | ≈ 1 and equation (11.15), gives the
following analogue of equation (8.110):��𝐿𝑘 (𝑡, 𝜉)�� � 𝜀4

1 · 2−𝑝 · 2−𝑚+4𝛼𝑚 · 2𝑘5+𝑘4+min(𝑘2 ,𝑘3) · 2(1/2) (𝑘3+𝑘4+𝑘5) . (11.31)

We want to combine equation (11.31) with exploiting the oscillations in the integral in equation
(11.29) in the directions of 𝜕𝜎 , 𝜕𝜎 + 𝜕𝜌 and 𝜕𝜎 + 𝜕𝜁 whenever this is convenient, and proceed similarly
to Case 2 on page 104. Before doing this, we need to show how to deal with the cases when integration
by parts is not possible (see the analogous Case 1 of Step 3 on page 108. We fix 𝛿 ∈ (0, 𝛼).
Case 1: min(𝑘2, 𝑘4) + 𝑘4 ≤ −𝑚 + 𝛿𝑚. This is the case when integration by parts in 𝜕𝜎 + 𝜕𝜁 is not
possible, because | (𝜕𝜎 + 𝜕𝜁 )Ψ| ≈ |𝜁 | ≈ 2𝑘4 and hitting cutoffs will cost 2−𝑘2 + 2−𝑘4 . From equation
(11.31), we have ��𝐿𝑘 (𝑡, 𝜉)�� � 𝜀4

12−𝑝 · 2−𝑚+4𝛼𝑚 · 2𝑘2+3𝑘4 .
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Since we are assuming 𝑘2 + 𝑘4 ≤ −𝑚 + 𝛿𝑚, the above bound would suffice to obtain equation (11.30)
if it were the case that −𝑝 + 2𝑘4 ≤ −6𝛽′𝑚. On the other hand, if −𝑝 + 2𝑘4 ≥ −6𝛽′𝑚, we would have
𝑘4 ≥ −𝑚/4 − 9𝛽′𝑚 and therefore 𝑘2 ≤ −3𝑚/4 + 10𝛽′𝑚, which is a contradiction to equation (11.23).
Case 2: min(𝑘2, 𝑘4) + 𝑘4 ≥ −𝑚+𝛿𝑚. In this case, we also have 𝑘2 + 𝑘3 ≥ −𝑚+𝛿𝑚, and we can integrate
by parts both in 𝜕𝜎 + 𝜕𝜌 and 𝜕𝜎 + 𝜕𝜁 . We further distinguish between the case min(𝑘2, 𝑘5) ≥ −𝑚/2 and
min(𝑘2, 𝑘5) ≤ −𝑚/2. In the first case, we can integrate by parts in 𝜎 to obtain, up to faster-decaying
terms, ��𝐿𝑘 (𝑡, 𝜉)�� � 2−𝑝 · 𝜀12−𝑚+𝛼𝑚 · 𝑋𝑘3 ,𝑚 · 𝑋𝑘4 ,𝑚 · 𝑋𝑘5 ,𝑚,

which is more than sufficient since 𝑋𝑘,𝑚 � 𝜀12−3𝑚/4+𝛼𝑚. In the case min(𝑘2, 𝑘5) ≤ −𝑚/2, we estimate
the profile 𝜑𝑘5 𝑓̃ (𝜎 − 𝜌 − 𝜁) in 𝐿∞ (this gives 𝜀12𝑘5/22𝛼𝑚) and integrate 𝜑𝑘2 in 𝑑𝜎 (this gives a 2𝑘2

factor), thus obtaining, again up to faster-decaying terms,��𝐿𝑘 (𝑡, 𝜉)�� � 2−𝑝 · 𝜀12−𝑚+𝛼𝑚 · 𝑋𝑘3 ,𝑚 · 𝑋𝑘4 ,𝑚 · 2𝑘2 · 𝜀12𝑘5/22𝛼𝑚;

this suffices in view of the lower bound on p.
Estimate of equation (11.28). Finally we estimate the terms in equation (11.28). A bound analogous to
equation (8.128) (here |𝑘1 | ≤ 5) directly gives us what we want:��𝐼 𝑝,𝑘, 𝑗1 ,𝑘2

[
F̃−1R, 𝑓

]
(𝑠, 𝜉)

��
𝐿2 � 2−𝑘1/2‖R(𝑠)‖𝐿2 · 𝑋𝑘2 ,𝑚 � 𝜀3

12−3𝑚/2+2𝛼𝑚 · 𝜀12−3𝑚/4+𝛼𝑚,

having used equation (7.54). With a similar estimate, also using equation (11.15), we can bound��𝐼 𝑝, 𝑗1 ,𝑘2
[
𝑓 , F̃−1R

]
(𝑠, 𝜉)

��
𝐿2 � 𝑋𝑘1 ,𝑚

(
F̃−1(𝜒 𝑗1 ,

√
3 𝑓̃ (𝑠))𝜏𝑚(𝑠)

)
· 2−𝑘2/2‖R(𝑠)‖𝐿2

� 𝜀12−𝑚+𝛼𝑚 · 2−𝑘2/2𝜀3
12−3𝑚/2+2𝛼𝑚,

which, in view of equation (11.23), suffices.

11.1.4. Proof of equation (11.5)
To conclude the proof of Proposition 8.1, we show how to treat the other sign combinations. The main
point here is that the phases satisfy

Φ 𝜄1 𝜄2 (𝜉, 0, 0) := 〈𝜉〉 − 𝜄1 − 𝜄2

and, therefore, are not completely resonant since (𝜄1𝜄2) ≠ (++). On the other hand, we still need to pay
some attention to the case when one of the inputs is close to the degenerate frequencies ±

√
3.

Step 1: Preliminary reductions. First, notice that if (𝜄1𝜄2) = (−−), we have |Φ| � 1. This case is then
easily handled by integrating by parts in s. By symmetry, we can reduce matters to the case 𝜄1 = + = −𝜄2
(but we do not assume a relation between 𝑘1 and 𝑘2) and look at the integral in equation (11.2) with
phase

Φ+−(𝜉, 𝜂, 𝜎) = 〈𝜉〉 − 〈𝜂〉 + 〈𝜎〉. (11.32)

Notice that if |𝜂 |, |𝜎 | ≤ 1, then |Φ+−| � 1, and the bound in equation (11.5) would again be easy to
prove. We may then assume max(𝑘1, 𝑘2) ≥ −5 and, for a similar reason, 𝑘1 ≥ 𝑘2.

We decompose into the size of | |𝜂 | −
√

3| ≈ 2 𝑗1 by letting

𝐼 𝑝,𝑘,𝑘1 ,𝑘2 , 𝑗1 (𝑡, 𝜉) :=
∬

𝑒𝑖𝑡Φ+− ( 𝜉 ,𝜂,𝜎) 𝜑 (𝑝0)
𝑝

(
Φ 𝜄1 𝜄2 (𝜉, 𝜂, 𝜎)

)
𝔮𝜄1 𝜄2 (𝜉, 𝜂, 𝜎) 𝜒 [−𝛾𝑚,0]

𝑗1 ,
√

3
(𝜂)

× 𝜑𝑘 (𝜉)𝜑𝑘1 (𝜂)𝑎̃ 𝜄1 (𝜂) 𝜑𝑘2 (𝜎) 𝑏̃ 𝜄2 (𝜎) 𝑑𝜂 𝑑𝜎
(11.33)
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(recall the definition in equation (2.28)) and aim to prove

2𝑚2𝑘
����𝜒ℓ,√3(·)

∫ 𝑡

0
𝐼 𝑝,𝑘,𝑘1 ,𝑘2 , 𝑗1 (·, 𝑠) 𝜏𝑚(𝑠) 𝑑𝑠

����
𝐿2
𝜉

� 𝜀2
1 2−𝛽ℓ2−3𝛽′𝑚. (11.34)

First, we may only concentrate on the case 𝑗1 ≤ −10, for otherwise there is no degeneracy of 𝜕𝜂 𝑓̃ ,
Lemma 8.5 applies verbatim, and the proof can proceed as in Section 8; see also the argument following
equation (11.17). We can then forget the localisation in |𝜂 | ≈ 1, eliminating the cutoff 𝜑𝑘1 from equation
(11.33), and rename it as 𝐼 𝑝,𝑘, 𝑗1 ,𝑘2 .

Moreover, when 𝑗1 ≤ −10, we may also assume that ℓ ≥ −5, for otherwise we would have | |𝜉 |−
√

3| ≤
2ℓ+2 and therefore

|Φ+−(𝜉, 𝜂, 𝜎) | = |〈𝜉〉 − 2 − (〈𝜂〉 − 2) + 〈𝜎〉| ≥ 〈𝜎〉 − 2ℓ+2 − 2 𝑗1+2 � 1.

Similarly, we may assume 𝑘 ≤ 5, for otherwise |Φ−+| � 2𝑘 .
We have then reduced equation (11.34) to showing

2𝑚2𝑘
����∫ 𝑡

0
𝐼 𝑝,𝑘, 𝑗1 ,𝑘2 (·, 𝑠) 𝜏𝑚(𝑠) 𝑑𝑠

����
𝐿2
𝜉

� 𝜀2
1 2−3𝛽′𝑚.

with 𝑗1, 𝑝 ≤ −10, 𝑘 ≤ 5.
(11.35)

For later reference, we write

Φ+−(𝜉, 𝜂, 𝜎) = 𝜉2

1 + 〈𝜉〉 + 𝜎2

1 + 〈𝜎〉 − 𝜂2 − 3
〈𝜂〉 + 2

. (11.36)

Step 2: Preliminary bounds. Following a similar approach to that of Section 8, we want to treat a
few cases by some basic bilinear estimates like those in Lemma 8.5. In particular, under the parameter
restrictions in equation (11.35), we have the following two analogues of equations (8.39) and (8.40): first,
by estimating 𝐿2

𝜉 ↦→ 𝐿∞
𝜉 gaining a factor of 2𝑘/2 and then integrating by parts in the two uncorrelated

variables 𝜂 and 𝜎 (as in the proof of equation (8.20)), we have��𝐼 𝑝,𝑘, 𝑗1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠)
��
𝐿2 � 2𝑘/2 · 𝜀12−𝑚2𝛽

′ 𝑗1 2𝛼𝑚 · 𝜀1min(2−𝑚−𝑘2/2, 23𝑘2/2)2𝛼𝑚, (11.37)

having used equation (11.15); second,��𝐼 𝑝,𝑘, 𝑗1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠)
��
𝐿2 � 2𝑝 · 𝜀12−𝑚2−𝛽 𝑗1 2𝛼𝑚 · 𝜀1min(2−𝑚−𝑘2/2, 23𝑘2/2)2𝛼𝑚, (11.38)

arguing as in the proof of Lemma 8.5 and using the a priori bound on ‖𝜒 𝑗1 ,
√

3𝜕𝜂 𝑓̃ ‖𝐿2 .

Step 3: Case 𝑘 ≤ −𝑚/6 − 5𝛽′𝑚. Applying equation (11.37), we see that

2𝑘
��𝐼 𝑝,𝑘, 𝑗1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠)

��
𝐿2 � 𝜀2

123𝑘/2 · 2−𝑚+𝛼𝑚 · 2−3𝑚/4+𝛼𝑚.

This implies equation (11.35) for k in the range under consideration.
Step 4: Case 2𝑘 ≤ 𝑗1 + 10. Using equation (11.38) and canceling the factor of 2−𝛽 𝑗1 by the factor of 2𝑘
in front of the expression, we can bound

2𝑘
��𝐼 𝑝,𝑘, 𝑗1 ,𝑘2 [ 𝑓 , 𝑓 ] (𝑠)

��
𝐿2 � 𝜀2

12𝑝 · 2−𝑚+𝛼𝑚 · 2−3𝑚/4+𝛼𝑚.
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When 𝑝 ≤ −𝑚/4 − 4𝛽′𝑚, this already suffices. For 𝑝 ≥ −𝑚/4 − 4𝛽′𝑚, we instead integrate by parts;
the loss is only about 2𝑚/4 and is a much smaller loss than what we had in Section 8.7, for example, so
the analysis of the resulting quartic terms performed there suffices here too.
Step 5: Case 2𝑘 > 𝑗1 + 10. In this case, 𝜉2 � |𝜂2 − 3|, and from equation (11.36), we see that

|Φ+−(𝜉, 𝜂, 𝜎) | � 22𝑘 . (11.39)

In particular, integration by parts in time is very efficient, especially by noticing that we have an extra
factor of 2𝑘 in front of the expression in equation (11.35). The loss incurred by dividing by Φ+− is then
bounded by 2−𝑘 � 2𝑚/6+5𝛽′𝑚, and the same arguments used in Section 8.7 apply here.

11.2. Sobolev estimates

Here we show how to bootstrap the Sobolev bound in Proposition 7.2 and obtain the bound on the first
norm in equation (7.11).

Proposition 11.4. Under the bootstrap assumptions in equations (7.7) and (7.10), for all 𝑡 ∈ [0, 𝑇], we
have

‖〈𝜉〉4 𝑓̃ (𝑡)‖𝐿2 ≤ 𝐶𝜀0 + 𝐶𝜀2
1〈𝑡〉

𝑝0 . (11.40)

Proof. From equations (5.55) and (5.53), and equation (7.36), we have

𝜕𝑡 𝑓̃ = Q𝑅 (𝑔, 𝑔) + C𝑆,1 (𝑔, 𝑔, 𝑔) + C𝑆,2 (𝑔, 𝑔, 𝑔)
= Q𝑅 ( 𝑓 , 𝑓 ) + R𝐻 ( 𝑓 , 𝑔) + C𝑆,1 (𝑔, 𝑔, 𝑔) + C𝑆,2 (𝑔, 𝑔, 𝑔). (11.41)

It then suffices to show that that each term on the right-hand side of equation (11.41) is bounded in
𝐿2 (〈𝜉〉8𝑑𝜉) by 𝐶𝜀2

1〈𝑡〉
𝑝0−1 so that equation (11.40) follows from integration in time, also using the

bound equation (7.4) at time 0.
The cubic terms can be treated directly using the trilinear estimates of Lemma 6.13 and the a priori

Sobolev and decay assumptions in equation (7.7); the term R𝐻 ( 𝑓 , 𝑔) is already estimated as desired in
equation (7.37).

For the quadratic term in equation (11.41), we need an additional nontrivial argument that uses
integration by parts in frequencies, the structure of the symbol, and Lemma 6.11. For convenience, let
us rewrite here the expression for Q𝑅 (see equation (5.56))

Q𝑅𝜄1 𝜄2 (𝑎, 𝑏) (𝑡, 𝜉) =
∬

𝑒𝑖𝑡Φ𝜄1 𝜄2 ( 𝜉 ,𝜂,𝜎) 𝔮(𝜉, 𝜂, 𝜎) 𝑎 𝜄1 (𝑡, 𝜂) 𝑏̃ 𝜄2 (𝑡, 𝜎) 𝑑𝜂 𝑑𝜎 (11.42)

and recall that the symbol 𝔮 is given as in equations (5.15)–(5.16) and (4.6)–(4.7) and the bilinear
estimates of Lemma 6.11 hold. Without loss of generality, let us assume that the support of equation
(11.42) is restricted to |𝜂 | ≥ |𝜎 |. Also, we may assume that |𝜉 | ≥ 10. We look at three different cases
depending on the size of 𝜉 and 𝜂.
Case 1: |𝜉 | ≥ 5|𝜂 |. First we treat the case of |𝜉 | ≤ 〈𝑡〉𝑝0/10. In this case, we use the estimate in equation
(6.20) to obtain

‖〈𝜉〉4Q𝑅𝜄1 𝜄2 ( 𝑓 , 𝑓 ) (𝑡)‖𝐿2 � 〈𝑡〉𝑝0/2‖Q𝑅𝜄1 𝜄2 ( 𝑓 , 𝑓 ) (𝑡)‖𝐿2

� 〈𝑡〉𝑝0/2‖𝑒𝑖 𝜄1𝑡 〈𝜕𝑥 〉W∗ 𝑓 ‖𝐿∞− ‖𝑒𝑖 𝜄2𝑡 〈𝜕𝑥 〉W∗ 𝑓 ‖𝐿∞− � 𝜀2
1〈𝑡〉

−1+𝑝0 .
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If instead |𝜉 | ≥ 〈𝑡〉𝑝0/10, we use the decay property of 𝜇𝑅 in equation (4.7) and see that��〈𝜉〉4Q𝑅𝜄1 𝜄2 ( 𝑓 , 𝑓 ) (𝑡)
��
𝐿2 � sup

|𝜉 | ≥2( |𝜂 |+ |𝜎 |)
|𝜉 |>𝑡 𝑝0/10

��〈𝜉〉6𝜇𝑅 (𝜉, 𝜂, 𝜎)
��‖ 𝑓̃ ‖𝐿2

𝜂
‖ 𝑓̃ ‖𝐿2

𝜎

� 〈𝑡〉−(𝑁 /2−6) 𝑝0/10𝜀2
1,

which suffices since we can take N arbitrarily large.
Case 2: |𝜉 | < 5|𝜂 |and |𝜂 | ≥ 〈𝑡〉1/3. In this case, the first input of Q𝑅 is projected to (distorted)
frequencies greater than 〈𝑡〉1/3, and we denote it by 𝑓1, where 𝑓̃1 := 𝜑≥0(𝜂〈𝑡〉−1/3) 𝑓̃ .

We begin by integrating by parts in the uncorrelated variable 𝜎 and notice that the term where the
symbol 𝔮 is differentiated is lower-order. Then using that

|𝔮(𝜉, 𝜂, 𝜎) | � 1
〈𝜂〉 (inf

𝜆,𝜇
〈𝜉 ± 𝜂 ± 𝜎〉)−𝑁

together with Young’s inequality gives

‖〈𝜉〉4Q𝑅𝜄1 𝜄2
(
𝑓 , 𝑓 ) (𝑡)‖

𝐿2 � ‖〈𝜂〉3 𝑓̃1‖𝐿2 · 𝜀1〈𝑡〉−3/4+𝛼

� 〈𝑡〉−1/3‖〈𝜂〉4 𝑓̃1‖𝐿2 · 𝜀1〈𝑡〉−3/4+𝛼 � 𝜀2
1〈𝑡〉

−1.

Case 3: |𝜉 | < 5|𝜂 |and |𝜂 | ≤ 〈𝑡〉1/3. In this last case we integrate by parts in 𝜂 as well. We denote the first
input of Q𝑅 by 𝑓2 := 𝜑≤0(𝜂〈𝑡〉−1/3) 𝑓̃ . Integrating by parts in 𝜂 gains a factor of |𝑡 |−1 and differentiates
the profile 𝑓̃2 (𝜂). By the same argument as above,

‖〈𝜉〉4Q𝑅𝜄1 𝜄2
[
𝑓 , 𝑓

]
(𝑡)‖

𝐿2 � 〈𝑡〉−1‖〈𝜂〉3𝜕𝜂 𝑓̃2‖𝐿2 · 𝜀1〈𝑡〉−3/4+𝛼

� 〈𝑡〉−1〈𝑡〉2/3‖〈𝜂〉𝜕𝜂 𝑓̃2‖𝐿2 · 𝜀1〈𝑡〉−3/4+𝛼

� 〈𝑡〉−1/3 · 𝜀1〈𝑡〉𝛼 · 𝜀1〈𝑡〉−3/4+𝛼,

which suffices and concludes the proof of equation (11.40). �

11.3. Pointwise estimates for the regular part and other higher-order terms

In this subsection, we first show that the regular part Q𝑅 in equations (5.15)–(5.16) does not contribute
to the pointwise asymptotic behaviour of the solution, or, in other words, that it is a remainder when
measured in the 〈𝜉〉−3/2𝐿∞

𝜉 norm. Then we control the 〈𝜉〉−3/2𝐿∞
𝜉 norm of all the other terms that are

not the singular cubic terms treated in Section 10; these include cubic terms that arise when passing
from the original profile, g, to the renormalised profile, f, and quartic and higher-order terms. Along the
way, we also establish bounds on the weighted norm of some cubic terms that are not already accounted
for in Section 7. In particular, these estimates will conclude the proof of the bound on the last norm in
equation (7.11) in the main bootstrap Proposition 7.2 and give the bounds on the remainders in equations
(10.2)–(10.3) in Proposition 10.1.

11.3.1. Remainders from the quadratic regular part
We begin by recalling that from Lemma 7.8, we have

Q𝑅 (𝑔, 𝑔) = Q𝑅 ( 𝑓 , 𝑓 ) + Q𝑅 ( 𝑓 , 𝑇 ( 𝑓 , 𝑓 )) + Q𝑅 (𝑇 ( 𝑓 , 𝑓 ), 𝑓 ) + R2( 𝑓 , 𝑔), (11.43)

where R2( 𝑓 , 𝑔) is the quartic term defined in equation (7.39) and satisfies

‖〈𝜉〉𝜕𝜉R2( 𝑓 , 𝑔) (𝑡)‖𝐿2 � 𝜀2
2〈𝑡〉

−1+𝛼 . (11.44)
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We need to control in 〈𝜉〉−3/2𝐿∞
𝜉 all the terms on the right-hand side of equation (11.43) (Proposition

11.5 below) and the weighted norms of the cubic terms Q𝑅 ( 𝑓 , 𝑇 ( 𝑓 , 𝑓 )) +Q𝑅 (𝑇 ( 𝑓 , 𝑓 ), 𝑓 ) (Proposition
11.6 below), since the weighted norm of Q𝑅 ( 𝑓 , 𝑓 ) was taken care of in Section 8 and Section 11.1.

Proposition 11.5 (𝐿∞
𝜉 control for Q𝑅 and remainders). Under the assumptions of Theorem 1.1, consider

the u solution of equation (KG) satisfying equations (2.32)–(2.33), and let f be the renormalised profile
defined in equation (5.53). We have

‖〈𝜉〉3/2Q𝑅 ( 𝑓 , 𝑓 ) (𝑡)‖𝐿∞
𝜉
� 𝜀2

1〈𝑡〉
−3/2+2𝛼 . (11.45)

Moreover, for any 𝑚 = 0, 1, . . . we have���〈𝜉〉3/2
∫ 𝑡

0
Q𝑅 [ 𝑓 , 𝑇 ( 𝑓 , 𝑓 )] (𝑠, 𝜉) 𝜏𝑚(𝑠) 𝑑𝑠

���
𝐿∞
𝜉

� 𝜀3
12−𝑚/20. (11.46)

Finally, ��〈𝜉〉3/2R2 ( 𝑓 , 𝑔) (𝑡)‖𝐿∞
𝜉
� 𝜀2

2〈𝑡〉
−1−1/20. (11.47)

Proof. Proof of equation (11.45). This bound is essentially already contained in the proof of Lemma
8.3 where, however, we only dealt with bounded frequencies. Using the same argument (integration by
parts in the uncorrelated variables 𝜂 and 𝜎), decomposing dyadically the input frequencies as usual and
using the bound in equation (11.3) for the symbol 𝔮, we get for all 𝑡 ≈ 2𝑚

‖〈𝜉〉3/2𝜑𝑘 (𝜉)Q𝑅 ( 𝑓 , 𝑓 ) (𝑡)‖𝐿∞
𝜉
� 23𝑘+/2

∑
𝑘1 ,𝑘2

2−𝑘+1 2−20 |𝑘+−𝑘+1 | · 𝑋𝑘1 ,𝑚 · 𝑋𝑘2 ,𝑚.

Using the estimate 𝑋𝑘,𝑚 � 𝜀1min(23𝑘−/2, 2−𝑚−𝑘−/2, 2−𝑚−𝑘+/2)2𝛼𝑚 (see equation (11.12)), we can
perform the two sums over 𝑘1, 𝑘2 and obtain

‖〈𝜉〉3/2𝜑𝑘 (𝜉)Q𝑅 ( 𝑓 , 𝑓 ) (𝑡)‖𝐿∞
𝜉
� (𝜀12−3𝑚/4+𝛼𝑚)2.

Proof of equations (11.46) and (11.47) We first claim that a strong bound in 𝐿2 holds for the cubic
terms: that is, for all 𝑡 ≈ 2𝑚,��〈𝜉〉2Q𝑅 ( 𝑓 , 𝑇 ( 𝑓 , 𝑓 )) (𝑡)‖

𝐿2 +
��〈𝜉〉2Q𝑅 (𝑇 ( 𝑓 , 𝑓 ), 𝑓 ) (𝑡)‖

𝐿2 � 𝜀3
12−6𝑚/5. (11.48)

To see this, it suffices to use that, for p large enough,��𝑒−𝑖𝑡 〈𝜕𝑥 〉 〈𝜕𝑥〉1+W∗ 𝑓
��
𝐿𝑝 � 𝜀1〈𝑡〉−1/4,

which follows from interpolating the a priori decay assumptions and the 𝐻4 bound, and then apply
equation (6.21) with 𝑝1, 𝑝2 large enough and equation (6.15).

Then using the inequality ‖〈𝜉〉3/2 𝑓 ‖𝐿∞ �
(
‖〈𝜉〉𝜕𝜉 𝑓 ‖𝐿2+‖ 𝑓 ‖𝐿2

)1/2‖〈𝜉〉2 𝑓 ‖1/2
𝐿∞ to interpolate between

equation (11.48) and the weighted bound in equation (11.49) from Proposition 11.6 below, we obtain
equation (11.46).

Using again equations (6.20) and (6.15) with the Sobolev norm bound and the decay for the linear
evolution of g, it is easy to see that the quartic term R2 ( 𝑓 , 𝑔) in equation (7.39) satisfies

‖〈𝜉〉2R2 ( 𝑓 , 𝑔) (𝑡)‖𝐿2 � 𝜀3
2〈𝑡〉

−3/2.

Interpolating this and the weighted bound in equation (11.44), we obtain equation (11.47). �
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Proposition 11.6 (Weighted estimates for other remainders). For any 𝑚 = 0, 1 . . . , we have���〈𝜉〉𝜕𝜉 ∫ 𝑡

0
Q𝑅 [𝑇 ( 𝑓 , 𝑓 ), 𝑓 ] (𝑠, 𝜉) 𝜏𝑚(𝑠)𝑑𝑠

���
𝐿2
𝜉

� 𝜀3
12𝛼𝑚. (11.49)

Proof. These cubic terms are much easier to treat than the quadratic terms analysed in Section 8. For
completeness, we briefly discuss how to estimate them.

For simplicity, we assume |𝜉 | ≤ 1; this can be done in view of the estimate in equation (11.3) (see
also equation (11.20)) for the symbol 𝔮. We look at the formulas for Q𝑅 (see equation (11.1)) and T
(see equation (5.54)) and write out the term explicitly as a trilinear operator; after localising dyadically
in the frequencies, and making the usual reductions, this leads us to consider a term of the form

𝐿𝑅𝑘 (𝑠, 𝜉) :=
∭

𝑒𝑖𝑠Ψ𝜄1 𝜄2 𝜄3 𝔮′(𝜉, 𝜂, 𝜎, 𝜌) 𝜑′
𝑘 (𝜉, 𝜂, 𝜎, 𝜌) 𝑓̃ (𝜌) 𝑓̃ (𝜌 − 𝜂) 𝑓̃ (𝜎) 𝑑𝜂 𝑑𝜎 𝑑𝜌,

Ψ𝜄1 𝜄2 𝜄3 (𝜉, 𝜂, 𝜎, 𝜌) = 〈𝜉〉 − 𝜄1〈𝜌〉 − 𝜄2〈𝜂 − 𝜌〉 − 𝜄3〈𝜎〉,
𝜑′
𝑘 (𝜉, 𝜂, 𝜎, 𝜌) := 𝜑𝑘 (𝜉)𝜑𝑘2 (𝜎)𝜑𝑘3 (𝜌)𝜑𝑘4 (𝜂 − 𝜌), 𝑘4 ≤ 𝑘3 ≤ 0.

(11.50)

Here, we may assume that 𝔮′ is smooth, with uniform bounds on its derivatives, except at the points
𝜌 = 0, 𝜌 − 𝜂 = 0, 𝜎 = 0 and 𝜂 = 0, where it can have sign-type singularities. Note that the boundedness
property holds in view of equation (11.3) and the estimates on the symbol of T from Lemma 6.9, when
we assume that all the frequencies involved are � 1; when frequencies are large, the estimate in equation
(11.3) degenerates, but as discussed before, this case is not harder to treat than the case of frequencies
less than 1 and can be analysed using the bounds in equations (11.11)–(11.12) for the quantity 𝑋𝑘,𝑚
when 𝑘 ≥ 0. Also recall that the lack of smoothness when one of the three input variables is zero is not
an issue; the singularity at 𝜂 is instead a potential issue that we will address below.

As usual, we localise time 𝑠 ≈ 2𝑚. Since applying 〈𝜉〉𝜕𝜉 will cost at most a factor of 𝑠𝜉 ≈ 2𝑚2𝑘 , we
can reduce matters to obtaining the estimate

2𝑘
��� ∫ 𝑡

0
𝐿𝑅𝑘 (𝑠, 𝜉) 𝜏𝑚(𝑠)𝑑𝑠

���
𝐿2
� 𝜀3

12−𝑚. (11.51)

This is implied by the stronger bound

23𝑘/2��𝐿𝑅𝑘 (𝑠, 𝜉)�� � 𝜀3
12−2𝑚, 𝑠 ≈ 2𝑚. (11.52)

The arguments needed to show equation (11.52) are similar to those used in Section 8.6 to estimate
the term 𝐾𝑘 in equation (8.72) (see also equations (8.70)–(8.71)). Note that 𝐾𝑘 is actually a quartic term
while 𝐿𝑅𝑘 is only cubic, but, on the other hand, 𝐿𝑅𝑘 has a (smooth) bounded symbol, while the symbol
of 𝐾𝑘 has a large 1/Φ factor, where Φ is only assumed to be approximately lower bounded by 2−𝑚/2.

Examining equation (11.50), we see that in fact all three input frequencies are uncorrelated, and
we have the possibility of integrating by parts in each of them. However, we need to account for the
singularity of the symbol in 𝜂. For this, we introduce a decomposition in |𝜂 | by inserting cutoffs 𝜑𝑘1 (𝜂),
𝑘1 ∈ Z. The sum over |𝑘1 | ≥ 10𝑚 is easily dealt with using the a priori bounds in equation (7.10) on the
𝐿∞
𝜉 and 𝐻4-type norm. It then suffices to estimate the contribution at each fixed 𝑘1, with |𝑘1 | ≤ 10𝑚 of

the terms (we are changing variables 𝜂 ↦→ 𝜌 − 𝜂′)

𝐿𝑅𝑘,𝑘1
(𝑠, 𝜉) :=

∭
𝑒𝑖𝑠Ψ𝜄1 𝜄2 𝜄3 ( 𝜉 ,𝜌−𝜂′,𝜌,𝜎) 𝔮′(𝜉, 𝜌 − 𝜂′, 𝜎, 𝜌) 𝜑′

𝑘 (𝜉, 𝜌 − 𝜂′, 𝜎, 𝜌)𝜑𝑘1 (𝜌 − 𝜂′)

× 𝑓̃ (𝜌) 𝑓̃ (𝜂′) 𝑓̃ (𝜎) 𝑑𝜂′ 𝑑𝜎 𝑑𝜌.

(11.53)

The sum over 𝑘1 can be done at the expense of an 𝑂 (𝑚) loss.
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In equation (11.53), we integrate by parts in 𝜌 and/or 𝜂′ and/or 𝜎 whenever any of these variables
have size � 2−𝑚/2 and use the a priori bounds in equation (7.22) when instead they are � 2−𝑚/2; this
gives us the usual factor of 𝜀12−3𝑚/4+𝛼𝑚 for each of the three inputs. This suffices provided we do not
differentiate the symbol or, better, the cutoff 𝜑𝑘1 when integrating by parts in 𝜌 or 𝜂′.

Let us then consider the case when |𝜌 | � 2−𝑚/2 and we hit the symbol with 𝜕𝜌. This gives the
contribution∭

𝑒𝑖𝑠Ψ𝜄1 𝜄2 𝜄3 ( 𝜉 ,𝜌−𝜂′,𝜌,𝜎) 〈𝜌〉
𝑠𝜌

𝔮′(𝜉, 𝜌 − 𝜂′, 𝜎, 𝜌) 𝜑′
𝑘 (𝜉, 𝜌 − 𝜂′, 𝜎, 𝜌)𝜑∼𝑘1 (𝜌 − 𝜂′)2−𝑘1

× 𝑓̃ (𝜌) 𝑓̃ (𝜂′) 𝑓̃ (𝜎) 𝑑𝜂′ 𝑑𝜎 𝑑𝜌.

Integrating by parts in 𝜎 and 𝜂′ (again, we assume their sizes are � 2𝑚/2, the complementary arguments
being similar) leads to a main term of the form∭

𝑒𝑖𝑠Ψ𝜄1 𝜄2 𝜄3 ( 𝜉 ,𝜌−𝜂′,𝜌,𝜎) 〈𝜌〉〈𝜂′〉〈𝜎〉
𝑠3𝜌 𝜂′𝜎

𝔮′(𝜉, 𝜌 − 𝜂′, 𝜎, 𝜌) 𝜑′
𝑘 (𝜉, 𝜌 − 𝜂′, 𝜎, 𝜌)𝜑∼𝑘1 (𝜌 − 𝜂′)2−𝑘1

× 𝑓̃ (𝜌) 𝜕𝜂′ 𝑓̃ (𝜂′) 𝜕𝜎 𝑓̃ (𝜎) 𝑑𝜂′ 𝑑𝜎 𝑑𝜌.

This is bounded by

𝐶2−3𝑚 · 2−𝑘2−𝑘3−𝑘4 · ‖𝜑𝑘3 𝑓̃ ‖𝐿∞ · 2𝑘4/2‖𝜑𝑘4𝜕𝜂′ 𝑓̃ ‖𝐿2 · 2𝑘2/2‖𝜑𝑘2𝜕𝜎 𝑓̃ ‖𝐿2

� 2−3𝑚 · 2−(𝑘2+𝑘3+𝑘4)/2 · 23𝛼𝑚.

Since min(𝑘2, 𝑘3, 𝑘4) ≥ −𝑚/2 in our current scenario, this gives us the desired equation (11.52). Similar
estimates hold true if 𝜕𝜂′ hits the symbol instead of the profile or if min(𝑘2, 𝑘4) ≤ −𝑚/2. �

11.3.2. Remainders from the cubic singular terms
From Lemma 7.9, we know that

C𝑆 (𝑔, 𝑔, 𝑔) − C𝑆 ( 𝑓 , 𝑓 , 𝑓 )
= C𝑆 (𝑇 ( 𝑓 , 𝑓 ), 𝑓 , 𝑓 ) + C𝑆 ( 𝑓 , 𝑇 ( 𝑓 , 𝑓 ), 𝑓 ) + C𝑆 ( 𝑓 , 𝑓 , 𝑇 ( 𝑓 , 𝑓 )) + R3 ( 𝑓 , 𝑔),

(11.54)

where R3( 𝑓 , 𝑔) is the quintic term that is defined in equation (7.48) and satisfies equation (7.46):

‖〈𝜉〉𝜕𝜉R3 ( 𝑓 , 𝑔) (𝑡)‖𝐿2 � 𝜀3
2〈𝑡〉

−1+𝛼 . (11.55)

We prove control of all the terms on the right-hand side of equation (11.54).

Proposition 11.7 (Weighted estimates for remainder terms). Denote C = C𝑆 (𝑇 ( 𝑓 , 𝑓 ), 𝑓 , 𝑓 ), or
C𝑆 ( 𝑓 , 𝑇 ( 𝑓 , 𝑓 ), 𝑓 ) or C𝑆 ( 𝑓 , 𝑓 , 𝑇 ( 𝑓 , 𝑓 )). Then we have���〈𝜉〉𝜕𝜉 ∫ 𝑡

0
C(𝜉, 𝑠) 𝑑𝑠

���
𝐿2
𝜉

� 𝜀4
1. (11.56)

Moreover, for 𝑚 = 0, 1, . . . , ���〈𝜉〉3/2
∫ 𝑡

0
C(·, 𝑠) 𝜏𝑚 (𝑠)𝑑𝑠

���
𝐿∞
𝜉

� 𝜀4
12−𝑚/10. (11.57)

Finally,

‖〈𝜉〉3/2R3( 𝑓 , 𝑔) (𝑡)‖𝐿∞
𝜉
� 𝜀3

2〈𝑡〉
−1−𝛼 . (11.58)
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Note that, as in Propositions 11.5 and equation (11.6), we need to use the time integral in equations
(11.56) and (11.57) too.

Proof. Proof of equation (11.56). Let us consider the term C = C𝑆1 [𝑇 ( 𝑓 , 𝑓 ), 𝑓 , 𝑓 ] and restrict our
attention to the portion of T corresponding to the 𝛿 contribution of its symbol Z; see the formulas in
equations (5.57), (5.46), (5.29) and (5.11). The slight modifications that are needed to deal with the other
terms pf p.v.-type will be clear to the reader; compare also with the arguments in Section 11.4.1 (where
we deal with a p.v. contribution) and the algebra following equation (11.71). Writing out explicitly the
quartic term under consideration, and disregarding the irrelevant signs 𝜖, 𝜖 ′, 𝜆, 𝜇, 𝜈 . . . in the symbols
in equations (5.46) and (5.11), we obtain an expression of the form

C(𝑡, 𝜉) =
∭

𝑒𝑖𝑡Φ𝜄1 𝜄2 𝜄3 𝜄4 𝔠 𝑓̃ 𝜄1 (𝜂) 𝑓̃ 𝜄2 (𝜎) 𝑓̃ 𝜄3 (𝜌) 𝑓̃ 𝜄4 (𝜉 − 𝜂 − 𝜎 − 𝜌) 𝑑𝜂 𝑑𝜎 𝑑𝜌,

Φ 𝜄1 𝜄2 𝜄3 𝜄4 (𝜉, 𝜂, 𝜎, 𝜃) = −〈𝜉〉 + 𝜄1〈𝜂〉 + 𝜄2〈𝜎〉 + 𝜄3〈𝜌〉 + 𝜄4〈𝜉 − 𝜂 − 𝜎 − 𝜌〉.
(11.59)

Here, as usual, we can think of 𝔠 as a smooth symbol so that its associated 4-linear operator satisfies
standard Hölder estimates.

To handle this term, the main idea is to use the following ‘commutation identity’ for 〈𝜉〉𝜕𝜉 and
Φ := Φ 𝜄1 𝜄2 𝜄3 𝜄4 : let 𝑋𝑎 := 〈𝑎〉𝜕𝑎; then

(𝑋𝜉 + 𝜄1𝑋𝜂 + 𝜄2𝑋𝜎 + 𝜄3𝑋𝜌)Φ = −𝜄4
𝜉 − 𝜂 − 𝜎 − 𝜌

〈𝜉 − 𝜂 − 𝜎 − 𝜌〉Φ. (11.60)

Thanks to this, we can write 〈𝜉〉𝜕𝜉C as a linear combination of terms of the following two types, up to
similar or easier ones:

C𝑎 =
∭

𝑒𝑖𝑡Φ𝔠
(
〈𝜂〉𝜕𝜂 𝑓̃ 𝜄1 (𝜂)

)
𝑓̃ 𝜄2 (𝜎) 𝑓̃ 𝜄3 (𝜌) 𝑓̃ 𝜄4 (𝜉 − 𝜂 − 𝜎 − 𝜌) 𝑑𝜂 𝑑𝜎 𝑑𝜌, (11.61)

C𝑏 =
∭

𝑒𝑖𝑡Φ
(
𝑖𝑡Φ

)
𝔠 𝑓̃ 𝜄1 (𝜂) 𝑓̃ 𝜄2 (𝜎) 𝑓̃ 𝜄3 (𝜌) 𝑓̃ 𝜄4 (𝜉 − 𝜂 − 𝜎 − 𝜌) 𝑑𝜂 𝑑𝜎 𝑑𝜌. (11.62)

Note that the terms where the derivatives 𝑋𝑎 hit the symbol can be treated easily by an 𝐿2×𝐿∞×𝐿∞×𝐿∞-
type estimate using the a priori 𝐻4 bound and the linear decay estimate.

C𝑎 is directly estimated using a 4-linear Hölder estimate, the a priori bound in equation (7.19) and
the usual linear decay estimate:

‖C𝑎‖𝐿2 � ‖〈𝜉〉𝜕𝜉 𝑓̃ 𝜄1 ‖𝐿2
(
〈𝑡〉−1/2‖𝑢‖𝑋𝑇

)3 � 𝜀4
1〈𝑡〉

−5/4.

The contribution from equation (11.62) is estimated integrating by parts in time:∫ 𝑡

0
C𝑏 𝑑𝑠 = C𝑏1 (𝑡) +

∫ 𝑡

0
C𝑏2 (𝑠) 𝑑𝑠,

where 𝐶𝑏1 is like C𝑏 without the factor of Φ, and 𝐶𝑏2 is like C𝑏1 with one profile 𝑓̃ replaced by 𝜕𝑡 𝑓̃ . In
particular, we can see that

‖C𝑏1 (𝑡)‖𝐿2 � 𝑡‖ 𝑓̃ ‖𝐿2
(
〈𝑡〉−1/2‖𝑢‖𝑋𝑇

)3 � 𝜀4
1〈𝑡〉

−1/2

and

‖C𝑏2 (𝑠)‖𝐿2 �
��𝜕𝑠 (𝑠 𝑓̃ )��

𝐿2

(
〈𝑠〉−1/2‖𝑢‖𝑋𝑇

)3 � 𝜀4
1〈𝑠〉

−5/4,

having used equation (7.56). These give us equation (11.56).
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Proof of equation (11.57). This follows by interpolating the 〈𝜉〉−3/2𝐿∞
𝜉 norm between the 〈𝜉〉−2𝐿2 and

〈𝜉〉−1 �𝐻1 and using that the 〈𝜉〉−2𝐿2 norm of the quantity we are estimating is bounded at least by
𝜀4

12−𝑚/4.

Proof of equation (11.58). From its definition, we see that R3( 𝑓 , 𝑔) is a quintic term in ( 𝑓 , 𝑔); see
equations (7.48) and (7.49). Then using the multilinear estimates from Lemmas 6.13 and 6.10 and the
decay for the linear evolution of f and g, we can see that

‖〈𝜉〉2R3 ( 𝑓 , 𝑔) (𝑡)‖𝐿2 � 𝜀3
2〈𝑡〉

−2+𝛼 . (11.63)

Interpolating this and equation (11.55), we obtain the pointwise bound in equation (11.58). �

11.4. Other singular cubic interactions

In this subsection, we complete the analysis of the singular cubic terms C𝑆1
𝜄1 𝜄2 𝜄3 and C𝑆2

𝜄1 𝜄2 𝜄3 defined
in equations (5.57)–(5.58). Section 9 was dedicated to the analysis of these terms when (𝜄1, 𝜄2, 𝜄3) =
(+,−, +), in the fully resonant situation when all input frequencies are

√
3; this also covers the case when

they are all −
√

3. We now treat all the other interactions, which are, as was to be expected, relatively
easier to deal with.

We will focus only on the C𝑆2
𝜄1 𝜄2 𝜄3 terms for the sake of brevity, but the terms C𝑆1

𝜄1 𝜄2 𝜄3 are amenable to
a similar treatment. We make a convenient choice of the parameters 𝜆, 𝜇, . . . (which do not matter as
far as estimates are concerned) and drop all irrelevant indexes as well as complex conjugation signs to
obtain the following formula for C𝑆2

𝜄1 𝜄2 𝜄3 :

C𝑆2
𝜄1 𝜄2 𝜄3 [𝑎, 𝑏, 𝑐] (𝑡, 𝜉) =

∭
𝑒𝑖𝑡Φ𝜄1 𝜄2 𝜄3 ( 𝜉 ,𝜂,𝜎,𝜃)𝔠𝑆,2 (𝜉, 𝜂, 𝜎, 𝜃) 𝑎̃(𝑡, 𝜂) 𝑏̃(𝑡, 𝜎)𝑐̃(𝑡, 𝜃) 𝜙(𝑝)

𝑝
𝑑𝜂 𝑑𝜎 𝑑𝜃,

Φ 𝜄1 𝜄2 𝜄3 (𝜉, 𝜂, 𝜎, 𝜃) := 〈𝜉〉 − 𝜄1〈𝜂〉 − 𝜄2〈𝜎〉 − 𝜄3〈𝜃〉, 𝑝 = 𝜉 − 𝜂 − 𝜎 − 𝜃.

(11.64)

Recall that 𝔠𝑆,2 (𝜉, 𝜂, 𝜎, 𝜃) satisfies the bound��𝔠𝑆,2 (𝜉, 𝜂, 𝜎, 𝜃)�� � 1
〈𝜂〉〈𝜂′〉〈𝜎′〉 ,

and the trilinear operator with this symbol enjoys the boundedness properties stated in Lemma 6.13.
We will distinguish different cases depending on whether 𝜂, 𝜎 and 𝜃 are close to or removed from

±
√

3. We define cutoff functions

𝜒𝑐 (𝜉) = 𝜒

(
𝜉 −

√
3

𝑟

)
+ 𝜒

(
𝜉 +

√
3

𝑟

)
, 𝜒𝑟 (𝜉) = 1 − 𝜒

(
𝜉 −

√
3

4𝑟

)
− 𝜒

(
𝜉 +

√
3

4𝑟

)
, (11.65)

where r is a sufficiently small positive number and 𝜒 = 𝜑≤0; see the notation in Section 2.5.1. Notice
that 𝜒𝑐 and 𝜒𝑟 do not add up to one, since it will be convenient in the estimates to have a separation
between their supports. Since they can be treated with straightforward adaptations, we skip the estimates
corresponding to 1 − 𝜒𝑐 − 𝜒𝑟 for the sake of brevity. According to equation (11.65), we define the
frequency projections

𝑃∗ 𝑓 := F̃−1 (
𝜒∗ 𝑓̃

)
, ∗ ∈ {𝑐, 𝑟}. (11.66)
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We will prove the following main proposition:
Proposition 11.8 (Weighted estimates for the singular cubic interactions). Let C𝑆 ∈ {C𝑆1, C𝑆2} as
defined in equation (5.57). With the a priori assumptions in equation (7.10), we have, for 𝑡 ∈ [0, 𝑇],���〈𝜉〉𝜕𝜉 ∫ 𝑡

0
C𝑆𝜄1 𝜄2 𝜄3 [𝑎, 𝑏, 𝑐] (𝑠, 𝜉) 𝑑𝑠

���
𝐿2
� 𝜀3

1〈𝑡〉
𝛼, (11.67)

when

{𝜄1, 𝜄2, 𝜄3} = {+, +,−} and {𝑎, 𝑏, 𝑐} ∈ {𝑃𝑝1 𝑓 , 𝑃𝑝2 𝑓 , 𝑃𝑟 𝑓 }, 𝑝1, 𝑝2 ∈ {𝑐, 𝑟}
or when {𝜄1, 𝜄2, 𝜄3} ≠ {+, +,−}.

Moreover, if {𝜄1, 𝜄2, 𝜄3} = {+, +,−} and 𝑎, 𝑏, 𝑐 = 𝑃𝑐 𝑓 , but their frequencies are not all equal to either√
3 or -

√
3, then ��� ∫ 𝑡

0
C𝑆𝜄1 𝜄2 𝜄3 [𝑎, 𝑏, 𝑐] (𝑠, 𝜉) 𝑑𝑠

���
𝑊𝑇

� 𝜀3
1. (11.68)

The proof of Proposition 11.8 will complete the proof of the weighted bound in equation (7.11).
For a better organization of our exposition, we will prove equations (11.67)–(11.68) by distinguishing

cases relative to whether the frequencies are close or not to ±
√

3, and subcases depending on the 𝜄’s
signs combinations.

11.4.1. Three frequencies removed from ±
√

3
This case is similar to the cubic nonlinear Schrödinger equation, where the dispersion relation is Λ = 𝜉2;
see [24, 7]. In [24], weighted estimates are proved under the assumption that the potential V is generic;
here we provide a more general (and simpler) argument similar to the one in [7] that also applies to the
case of exceptional potentials and any solution u such that 𝑢̃(0) = 0.

As before, we simplify our notation by dropping some of the irrelevant indexes in our formulas. We
look at the restriction of equation (11.64) to inputs with frequencies away from ±

√
3 by defining

C𝑟𝑟𝑟 (𝑎, 𝑏, 𝑐) (𝑡, 𝜉) :=
∭

𝑒𝑖𝑡Φ𝜄1 𝜄2 𝜄3 ( 𝜉 ,𝜂,𝜎,𝜃)𝔠𝑟𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃)𝑎̃(𝑡, 𝜂) 𝑏̃(𝑡, 𝜎)𝑐̃(𝑡, 𝜃) 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝜃,

𝔠𝑟𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃) := 𝔠𝑆,2 (𝜉, 𝜂, 𝜎, 𝜃)𝜒𝑟 (𝜂)𝜒𝑟 (𝜎)𝜒𝑟 (𝜃),
(11.69)

and aim to show ���〈𝜉〉𝜕𝜉 ∫ 𝑡

0
C𝑟𝑟𝑟 ( 𝑓 , 𝑓 , 𝑓 ) (𝑠) 𝑑𝑠

���
𝐿2
� 𝜀3

1〈𝑡〉
𝛼 . (11.70)

Observe that

(〈𝜉〉𝜕𝜉 + 𝑋𝜂,𝜎,𝜃 )Φ 𝜄1 , 𝜄2 , 𝜄3 = 𝑝, 𝑋𝜂,𝜎,𝜃 := 𝜄1〈𝜂〉𝜕𝜂 + 𝜄2〈𝜎〉𝜕𝜎 + 𝜄3〈𝜃〉𝜕𝜃 . (11.71)

Then when applying 〈𝜉〉𝜕𝜉 to equation (11.69), we can use the above identity to integrate by parts in
𝜂, 𝜎 and 𝜃. Since the adjoint satisfies 𝑋∗

𝜂,𝜎,𝜃 = −𝑋𝜂,𝜎,𝜃 , we see that

〈𝜉〉𝜕𝜉C𝑟𝑟𝑟 [ 𝑓 , 𝑓 , 𝑓 ] (𝑡, 𝜉) = 𝑖𝑡

∭
𝑒𝑖𝑡Φ𝜄1 𝜄2 𝜄3 𝔠𝑟𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃) 𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃)𝜙(𝑝) 𝑑𝜂 𝑑𝜎 𝑑𝜃 (11.72a)

+
∭

𝑒𝑖𝑡Φ𝜄1 𝜄2 𝜄3 𝔠𝑟𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃)𝑋𝜂,𝜎,𝜃
(
𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃)

) 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝜃 (11.72b)
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+
∭

𝑒𝑖𝑡Φ𝜄1 𝜄2 𝜄3 𝔠𝑟𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃) 𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃)
(
〈𝜉〉𝜕𝜉 + 𝑋𝜂,𝜎,𝜃

) [ 𝜙(𝑝)
𝑝

]
𝑑𝜂 𝑑𝜎 𝑑𝜃 (11.72c)

+
∭

𝑒𝑖𝑡Φ𝜄1 𝜄2 𝜄3 𝑋𝜂,𝜎,𝜃 𝔠𝑟𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃) 𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃) 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝜃. (11.72d)

Estimate of equation (11.72a). The first term in equation (11.72) does not have a singularity and can
be estimated by integrating by parts in the ‘uncorrelated’ variables 𝜂, 𝜎 and 𝜃. Each of the three inputs
would then give a gain of 〈𝑡〉−3/4+𝛼, which is sufficient to absorb the power of t in front and integrate
over time. Similar (in fact, harder) terms have been treated in Section 8, so we can skip the details.
Estimate of equation (11.72b). For this term, it suffices to use the Hölder-type estimate from Lemma
6.13, estimating in 𝐿2 the profile that is hit by the derivative and the other two in 𝐿∞

𝑥 .
Estimate of equation (11.72c). For this term, we observe (see equation (11.71)) that

(
〈𝜉〉𝜕𝜉 + 𝑋𝜂,𝜎,𝜃

) [𝜙(𝑝)
𝑝

]
= Φ 𝜄1 , 𝜄2 , 𝜄3 (𝜉, 𝜂, 𝜎, 𝜃)𝜕𝑝

[𝜙(𝑝)
𝑝

]
. (11.73)

Note that this identity is formal as it is written, since 𝜕𝑝 (1/𝑝) does not converge (even in the p.v. sense);
however, it can be made rigorous by localising a little away from 𝑝 = 0 and using the p.v. to deal with
very small values of p.

From equation (11.73), we obtain, upon integration by parts in s, that∫ 𝑡

0
𝑖𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (11.72𝑐) 𝑑𝑠 =

∭
𝑒𝑖𝑠Φ𝜄1 𝜄2 𝜄3 𝔠𝑟𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃) 𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃) 𝜕𝑝

𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝜃
���𝑠=𝑡
𝑠=0

(11.74)

−
∫ 𝑡

0

∭
𝑒𝑖𝑡Φ𝜄1 𝜄2 𝜄3 𝔠𝑟𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃) 𝜕𝑠

[
𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃)

]
𝜕𝑝

𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝜃 𝑑𝑠. (11.75)

To estimate equation (11.74), we convert the 𝜕𝑝 into 𝜕𝜂 and integrate by parts in 𝜂. The worst term is
when 𝜕𝜂 hits the exponential; this causes a loss of t, but an 𝐿2 × 𝐿∞ × 𝐿∞ Hölder estimate using Lemma
6.13 suffices to recover it.

The term in equation (11.75) is similar. We may assume that 𝜕𝑠 hits 𝑓̃ (𝜎). Again we convert 𝜕𝑝 into
𝜕𝜂 and integrate by parts in 𝜂. This causes a loss of s when hitting the exponential phase, which is offset
by an 𝐿∞ × 𝐿2 × 𝐿∞ estimate with 𝜕𝑠 𝑓̃ placed in 𝐿2 and giving 〈𝑡〉−1 decay using equation (7.56).
Estimate of equation (11.72d). This term can be estimated directly using the trilinear estimates from
Lemma 6.13. The only difficulty is the loss of one derivative resulting from the differentiation of the
symbol, but this is easily recovered using the 𝐻4 a priori bound from equation (7.10), and 𝑝0 < 𝛼; see
equation (2.32).

11.4.2. One frequency close, two removed from ±
√

3
Let us now consider

C𝑐𝑟𝑟 [𝑎, 𝑏, 𝑐] (𝑡, 𝜉) :=
∭

𝑒𝑖𝑡Φ𝜄1 𝜄2 𝜄3 ( 𝜉 ,𝜂,𝜎,𝜃)𝔠𝑐𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃)𝑎̃(𝑡, 𝜂) 𝑏̃(𝑡, 𝜎)𝑐̃(𝑡, 𝜃) 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝜃,

𝔠𝑐𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃) := 𝔠𝑆,2(𝜉, 𝜂, 𝜎, 𝜃)𝜒𝑐 (𝜂)𝜒𝑟 (𝜎)𝜒𝑟 (𝜃).

One can proceed exactly as in the previous subsection, with the exception of the treatment of equation
(11.72b), which must be modified due to the degeneracy of the weighted norm close to

√
3. The only
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problematic term is the one where the first function (whose frequency is close to ±
√

3) is differentiated.
Thus, we are looking at∭

𝑒𝑖𝑡Φ𝜄1 𝜄2 𝜄3 𝔠𝑐𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃)〈𝜂〉𝜕𝜂 𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃) 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝜃.

We need to distinguish cases depending on the 𝜄 signs.
The + + + case. Since only the first argument 𝑓̃ (𝜂) is differentiated, it is natural to try to integrate by
parts in 𝜕𝜎 − 𝜕𝜃 . We thus need to look at frequencies for which

(𝜕𝜎 − 𝜕𝜃 )Φ+++(𝜉, 𝜂, 𝜎, 𝜃) = Φ+++(𝜉, 𝜂, 𝜎, 𝜃) = 0.

We will refer to these as ‘restricted (space-time) resonances’. The vanishing of (𝜕𝜎 − 𝜕𝜃 )Φ+++ imposes
that 𝜎 = 𝜃. Therefore, resonances are given by the zeros of

Φ+++(𝜉, 𝜂, 𝜎, 𝜎) = 〈𝜂 + 2𝜎 + 𝑝〉 − 〈𝜂〉 − 2〈𝜎〉.

Squaring both sides of 〈𝜂 + 2𝜎 + 𝑝〉 = 〈𝜂〉 + 2〈𝜎〉 results in 𝑝2 + 2𝑝(𝜂 + 2𝜎) + 4𝜂𝜎 = 4 + 4〈𝜂〉〈𝜎〉,
which has no solutions if |𝑝 | � 1 and (𝜉, 𝜂, 𝜎, 𝜃) ∈ Supp(𝔠2,𝑐𝑟𝑟 ). Note that we may easily restrict to
|𝑝 | � 1, since interactions for which |𝑝 | � 1 can be treated like regular cubic terms by integrating by
parts in the uncorrelated variables 𝜎 and 𝜃.

Without loss of generality, we assume that |𝜎 | ≥ |𝜃 |; we then distinguish between the case where
|𝜎 | � 1, and |𝜎 | � 1.

• If |𝜎 | � 1, we resort either to integration by parts in 𝜕𝜎 − 𝜕𝜃 or to integration by parts in s, using
that either (𝜕𝜎 − 𝜕𝜃 )Φ+++ or Φ+++ can be bounded away from zero.In the former case, one finds
(after adding a cutoff that we omit) the expression∭

𝑒𝑖𝑡Φ+++ 𝔠𝑐𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃)
𝑖𝑠(𝜕𝜃 − 𝜕𝜂)Φ+++

〈𝜂〉𝜕𝜂 𝑓̃ (𝜂)𝜕𝜎 𝑓̃ (𝜎) 𝑓̃ (𝜃) 𝜙(𝑝)
𝑝

𝑑𝜂 𝑑𝜎 𝑑𝜃 + {easier terms},

whose 𝐿2-norm can be bounded by

𝐶𝑡−1‖〈𝜂〉𝜕𝜂 𝑓̃ ‖𝐿2 ‖𝜕𝜎 𝑓̃ ‖𝐿1 ‖𝑒−𝑖𝑡 〈𝐷〉W∗ 𝑓 ‖𝐿∞ � 𝜀3
1𝑡

−1.

In the latter case, one finds∫ 𝑡

0

∭
𝑒𝑖𝑡Φ+++ 𝔠𝑐𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃)

𝑖Φ+++
〈𝜂〉𝜕𝑠 [𝜕𝜂 𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃)] 𝜙(𝑝)

𝑝
𝑑𝜂 𝑑𝜎 𝑑𝜃 𝑑𝑠.

The control of this expression is easy if the time derivative hits 𝑓̃ (𝜎) or 𝑓̃ (𝜃), by using a trilinear
estimate and equation (7.56). If 𝜕𝑡 hits 𝑓̃ (𝜂), the 𝜕𝜂 derivative might result in an additional t factor.
We use equation (7.59) and look at the two main contributions on its right-hand side: when we
substitute C𝑆 to 𝜕𝑡 𝑓 , we obtain a 5-linear expression in f, and estimating four inputs in 𝐿∞, and one
in 𝐿2 suffices; when we substitute Q𝑅 to 𝜕𝑡 𝑓̃ , we can use the bound ‖Q𝑅 ( 𝑓 , 𝑓 )‖𝐿2 � 𝑡−1+, which
follows from Lemma 6.11, and estimate the two other inputs in 𝐿∞.

• If |𝜎 | � 1, we have

|Φ+++(𝜉, 𝜂, 𝜎, 𝜃) | �
{

1 if 𝜎, 𝜃 have the same sign,
〈𝜃〉 if 𝜎, 𝜃 have opposite signs,
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as long as |𝑝 | � 1. Indeed, this is obvious if 𝜎 and 𝜃 have opposite signs; and if they do have the
same sign,

−Φ+++(𝜉, 𝜂, 𝜎, 𝜃) = −〈𝜂 + 𝜎 + 𝜃 + 𝑝〉 + 〈𝜂〉 + 〈𝜎〉 + 〈𝜃〉

= −|𝜂 + 𝜎 + 𝜃 + 𝑝 | + 〈𝜂〉 + |𝜎 | + 〈𝜃〉 +𝑂
(
|𝜎 |−1

)
� 1.

Turning to estimates on derivatives, for any 𝑝, 𝜂, 𝜎, 𝜃 such that |𝑝 |, |𝜂 | � 1, |𝜎 | � 1, and 𝜎 and 𝜃
have the same sign, ����𝜕𝑎𝑝𝜕𝑏𝜂𝜕𝑐𝜎𝜕𝑑𝜃 1

Φ+++(𝜂, 𝜎, 𝜃, 𝑝)

���� � |𝜎 |−𝑐 〈𝜃〉−𝑑 ,

so that Lemma 6.7 applies. In the case where 𝜎 and 𝜃 have opposite signs, the above does not hold
(think of the case where 𝜎 + 𝜃 = 0). Assuming for instance 𝜎 > 0, 𝜃 < 0 (|𝜎 | ≥ |𝜃 |), let 𝜎′ = 𝜎 + 𝜃.
Then the above derivative estimate holds for the variables (𝑝, 𝜂, 𝜎′, 𝜃). In both cases, Lemma 6.7
applies, and an integration by parts in time suffices.

The + − − case. This can be dealt with similarly to the + + + case. First, we observe that there are again
no restricted resonances

𝜎 = 𝜃, and 〈𝜂 + 2𝜎 + 𝑝〉 − 〈𝜂〉 + 2〈𝜎〉 = 0,

with |𝑝 | � 1. This is clear if |𝜎 | � 1; if instead |𝜎 | � 1, it suffices to treat the case 𝑝 = 0 and argue
by continuity. In other words, it suffices to show that there are no solutions of 〈𝜂 + 2𝜎〉 = 〈𝜂〉 − 2〈𝜎〉.
Squaring both sides leads to 〈𝜂〉〈𝜎〉 = 1 − 𝜂𝜎, whose only solution is 𝜂 = −𝜎, but this is not allowed
on the support of 𝔠𝑐𝑟𝑟 .

Therefore, as long as |𝜎 | + |𝜃 | � 1, the argument used for the + + + case applies. On the other hand,
when |𝜎 |+ |𝜃 | � 1, we have |Φ+−−(𝜉, 𝜂, 𝜎, 𝜃) | � 〈𝜎〉+〈𝜃〉, so that the argument used above also applies.
The − + + case. Once again we look at possible solutions of

〈𝜂 + 2𝜎 + 𝑝〉 + 〈𝜂〉 − 2〈𝜎〉 = 0

for |𝑝 | � 1, on the support of the integral. It is easy to verify that this equation does not have solutions
for |𝜎 | � 1; in the complementary case, it suffices to consider the case 𝑝 = 0 and notice that the only
solution to 〈𝜂 + 2𝜎〉 = −〈𝜂〉 + 2〈𝜎〉 is 𝜂 = −𝜎, but this does not belong to supp (𝔠𝑐𝑟𝑟 ).

We then distinguish different frequencies configurations:

• If |𝜎 | + |𝜃 | � 1, the argument given in the previous cases apply.
• If |𝜎 | ∼ |𝜃 | � 1 and 𝜎 and 𝜃 have opposite signs, then |Φ−++| � 〈𝜂〉 ≈ 1. If they have equal signs,

Φ−++(𝜉, 𝜂, 𝜎, 𝜃) = 〈𝑝 + 𝜂 + 𝜎 + 𝜃〉 + 〈𝜂〉 − 〈𝜎〉 − 〈𝜃〉

= |𝑝 + 𝜂 + 𝜎 + 𝜃 | + 〈𝜂〉 − |𝜎 | − |𝜃 | +𝑂
(
|𝜎 |−1

)
� 1

as long as |𝑝 | � 1. The estimates on the derivatives are the natural ones, and an integration by parts
in s suffices.

• If |𝜎 | � |𝜃 | + 1, we need a different argument. Observe that | (𝜕𝜎 − 𝜕𝜃 )Φ+−−(𝜉, 𝜂, 𝜎, 𝜃) | � 〈𝜃〉−2,
and more precisely ����𝜕𝑎𝜎𝜕𝑏𝜃 1

(𝜕𝜎 − 𝜕𝜃 )Φ−++(𝜉, 𝜂, 𝜎, 𝜃)

���� � 〈𝜃〉2−𝑏 |𝜎 |−𝑎 .
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Therefore, an integration by parts in 𝜕𝜎 − 𝜕𝜃 , followed by an application of (a small adaptation of)
Lemma 6.13 gives (using |𝜃 | � |𝜎 |)

‖C𝑐𝑟𝑟 ( 𝑓 , 𝑓 , 𝑓 )‖𝐿2 � 𝑡−1 · ‖𝜒𝑐 (𝜂)𝜕𝜂 𝑓̃ ‖𝐿2+ ‖〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉F̂−1
𝜕𝜎 𝑓̃ ‖𝐿∞− · ‖〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓 ‖𝐿∞−

� 𝑡−1‖𝜒𝑐 (𝜂)𝜕𝜂 𝑓̃ ‖𝐿2 ‖𝜒𝑟 (𝜎)〈𝜎〉𝜕𝜎 𝑓̃ ‖𝐿2 ‖〈𝜕𝑥〉0+𝑒−𝑖𝑡 〈𝜕𝑥 〉W∗ 𝑓 ‖𝐿∞−

� 𝑡−1 · 𝜀1〈𝑡〉𝛼+𝛽𝛾 · 𝜀1〈𝑡〉𝛼 · 𝜀1〈𝑡〉−1/2+

� 〈𝑡〉−1𝜀3
1,

having used Sobolev’s embedding theorem for the second inequality (recall |𝜂 | ≈
√

3, |𝜎 | �
√

3),
interpolation between the linear decay and the 𝐻4-norm, the a priori bounds (see in particular
equation (7.19)) and 𝛼 + 𝛽𝛾 < 1/4.

The −+− case. For this case, it is obvious here that there are no restricted space-time resonances since,
when 𝜎 = −𝜃, the phase is Φ−+−(𝜉, 𝜂, 𝜎, 𝜃) = 〈𝜂 + 𝑝〉 + 〈𝜂〉. Once again,

• If |𝜎 | + |𝜃 | � 1, one can resort to integration by parts in 𝜕𝑠 or 𝜕𝜎 − 𝜕𝜃 .
• If |𝜎 | + |𝜃 | � 1,

Φ−+−(𝜉, 𝜂, 𝜎, 𝜃) = 〈𝑝 + 𝜂 + 𝜎 + 𝜃〉 + 〈𝜂〉 − 〈𝜎〉 + 〈𝜃〉 � 1

as long as |𝑝 | � 1.

The − − −case. This is the easiest case since Φ−−−(𝜉, 𝜂, 𝜎, 𝜃) � 1 for all 𝜉, 𝜂, 𝜎, 𝜃.
The + − + case. This is the hardest case, since restricted space-time resonances are present; the phase
vanishes when 𝜎 = −𝜃 and 𝑝 = 0. The case |𝜃 | + |𝜎 | � 1 is essentially treated in Section 9; therefore we
can assume that |𝜎 | � 1 and |𝜎 | ≥ |𝜃 |. If |𝜎 | � |𝜃 | or 𝜎 ≈ 𝜃, then an integration by parts in 𝜕𝜎 − 𝜕𝜃
suffices; therefore, we will only focus on the case where 𝜎 ≈ −𝜃.

It is convenient to adopt the same parametrisation of the frequency variables as in Section 9, which,
after replacing the second 𝑓̃ by 𝑓̃ (−·), leads to the question of bounding∑
𝑛≥10

∭
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 , 𝜃)𝔪𝑛 (𝜉, 𝜂, 𝜎, 𝜃)𝜕𝜉 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 𝜁) 𝜙(𝜃)

𝜃
𝑑𝜂 𝑑𝜁 𝑑𝜃,

Ψ(𝜉, 𝜂, 𝜁 , 𝜃) = 〈𝜉〉 − 〈𝜉 − 𝜂〉 + 〈𝜉 − 𝜂 − 𝜁 − 𝜃〉 − 〈𝜉 − 𝜁〉,
(11.76)

where, slightly abusing notations by letting 𝔠𝑐𝑟𝑟 be the symbol expressed both in the (𝜂, 𝜎, 𝜃) and
(𝜉 − 𝜂, 𝜉 − 𝜂 − 𝜁 − 𝜃, 𝜉 − 𝜁) variables, we define

𝔪𝑛 (𝜉, 𝜂, 𝜎, 𝜃) = 𝔠𝑐𝑟𝑟 (𝜉, 𝜂, 𝜎, 𝜃)〈𝜉 − 𝜂〉𝜑𝑛 (𝜉 − 𝜂 − 𝜁 − 𝜃)𝜑∼𝑛 (𝜉 − 𝜁).

Using the a priori 𝐻4 bound, Cauchy-Schwarz’s inequality and Lemma 6.13, we can estimate the 𝐿2

norm of each element in the sum in equation (11.76) by

𝐶2−(2−)𝑛‖𝜕𝜉 𝑓̃ ‖𝐿2 ‖𝜑𝑛 𝑓̃ ‖𝐿1 ‖𝜑∼𝑛 𝑓̃ ‖𝐿1 � 𝜀1〈𝑠〉𝛼+𝛽𝛾2−(9−)𝑛‖ 𝑓 ‖2
𝐻 4 .

This bound suffices as long as 2𝑛 � 〈𝑠〉1/6.
If, on the other hand, 2𝑛 � 〈𝑠〉1/6, we can now follow the skeleton of the estimate of H2 in Section

9.3.2. Cases 1, 2 and 3 are identical, simply relying on the easy generalisation of Lemma 6.13 to the
symbol 𝔪𝑛 above.
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Let us then consider the analogue of Case 4.1, which corresponds to the localisations |𝜉 −
√

3| ≈ 2ℓ ,
|𝜉 − 𝜂 −

√
3| ≤ 2ℓ−100, |𝜃 + 𝜉 −

√
3| ≈ 2ℎ ≥ 2ℓ−10. To these we add |𝜁 | ≈ 2𝑛, in correspondence with the

nth summand in equation (11.76) Under these conditions, the absolute value of the 𝜁 derivative of Ψ is

|𝜕𝜁Ψ(𝜉, 𝜂, 𝜁 , 𝜃) | = | − 𝜏′(𝜉 − 𝜂 − 𝜁 − 𝜃) + 𝜏′(𝜉 − 𝜁) | ≈ |𝜏′′(𝜉 − 𝜁) (𝜂 + 𝜃) | � 2−3𝑛2ℎ .

More precisely, we have����𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜁 𝜕𝑑𝜃 1
𝜕𝜁Ψ(𝜉, 𝜂, 𝜁 , 𝜃)

���� � 23𝑛−ℎ2−(𝑎+𝑐)𝑛2−ℎ (𝑏+𝑑) ,

so that, recalling the bounds on 𝔠𝑆,2, we get���F̂ 𝔪(𝜉, 𝜂, 𝜁 , 𝜃)
𝜕𝜁Ψ(𝜉, 𝜂, 𝜁 , 𝜃)

���
𝐿1
� 2𝑛−ℎ .

Integrating by parts in 𝜁 gives several terms; the leading one is given by∭
𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 , 𝜃) 𝔪𝑛 (𝜉, 𝜂, 𝜎, 𝜃)

𝑠𝜕𝜁Ψ(𝜉, 𝜂, 𝜁 , 𝜃) 𝜕𝜉 𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 𝜁) 𝜙(𝜃)
𝜃

𝑑𝜂 𝑑𝜁 𝑑𝜃.

This can be bounded in 𝐿2 by

𝐶𝑠−1 · 2𝑛−ℎ ‖𝜑<ℓ−100𝜕𝜉 𝑓̃ ‖𝐿1 ‖𝜑𝑛𝜕𝜉 𝑓̃ ‖𝐿2 ‖𝑒−𝑖𝑡 〈𝐷〉W∗ 𝑓 ‖𝐿∞ � 𝜀3
12𝑛−ℎ2𝛽

′ℓ 〈𝑠〉−3/2+2𝛼 .

Summing over 2𝑛 � 〈𝑠〉1/6 and ℎ ≥ ℓ−10, using that 2ℓ � 〈𝑠〉−𝛾 , with equation (2.31), gives the desired
bound.

Finally, there remains Case 4.2 in Section 9.3.2, which corresponds to |𝜃 | ≈ 2ℓ . Here we can integrate
by parts in 𝜃 using that, for all 𝑎, 𝑏, 𝑐, 𝑑 (not all equal to zero),����𝜕𝑎𝜉 𝜕𝑏𝜂𝜕𝑐𝜁 𝜕𝑑𝜃 1

𝜕𝜃Ψ(𝜉, 𝜂, 𝜁 , 𝜃)

���� � 2−𝑛(1+𝑎+𝑏+𝑐+𝑑) .

11.4.3. Two frequencies close, one removed from ±
√

3
Defining C𝑐𝑐𝑟 through the symbol

𝔠𝑐𝑐𝑟 (𝜉, 𝜂, 𝜎, 𝜃) = 𝔠2,𝑆 (𝜉, 𝜂, 𝜎, 𝜃)𝜒𝑐 (𝜂)𝜒𝑐 (𝜎)𝜒𝑟 (𝜃),

we follow once again the approach of Section 11.4.1 and see that the only problematic term is∭
𝑒𝑖𝑠Φ𝜄1 𝜄2 𝜄3 𝔠𝑐𝑐𝑟 (𝜉, 𝜂, 𝜎, 𝜃)〈𝜂〉𝜕𝜂 𝑓̃ (𝜂) 𝑓̃ (𝜎) 𝑓̃ (𝜃) 𝜙(𝑝)

𝑝
𝑑𝜂 𝑑𝜎 𝑑𝜃

(and, symmetrically, the term where the derivative hits the second function). On the support of 𝔠2,𝑐𝑐𝑟��(𝜕𝜎 − 𝜕𝜃 )Φ 𝜄1 𝜄2 𝜄3
�� � 1,

so that we can integrate by parts in 𝜕𝜎 − 𝜕𝜃 . The worst term resulting from this is∭
1

𝑡 (𝜕𝜎 − 𝜕𝜃 )Φ 𝜄1 𝜄2 𝜄3
𝑒𝑖𝑡Φ𝜄1 𝜄2 𝜄3 𝔠2,𝑐𝑐𝑟 (𝜉, 𝜂, 𝜎, 𝜃)〈𝜂〉𝜕𝜂 𝑓̃ (𝜂)𝜕𝜎 𝑓̃ (𝜎) 𝑓̃ (𝜃) 𝜑<0 (𝑝)

𝑝
𝑑𝜂 𝑑𝜎 𝑑𝜃.
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Using a slight adaptation of Lemma 6.13, this expression can be bounded in 𝐿2 by

𝐶𝑠−1‖𝜕𝜉 𝑓̃ ‖𝐿2 ‖𝜕𝜉 𝑓̃ ‖𝐿1 ‖𝑒−𝑖𝑡 〈𝐷〉W∗ 𝑓 ‖𝐿∞ � 〈𝑠〉−3/2+2𝛼+𝛽𝛾𝜀3
1,

and since 𝛼 + 𝛽𝛾 < 1/4, we can integrate in time and close the estimate.

11.4.4. Three frequencies close to ±
√

3
Examining the phase in equation (11.64), we see that if 𝜉, 𝜂, 𝜎, 𝜃 are all close to ±

√
3, then |Φ 𝜄1 𝜄2 𝜄3 | � 1

unless (𝜄1, 𝜄2, 𝜄3) = (+,−, +) up to a permutation. We can thus restrict the discussion to the case
(𝜄1, 𝜄2, 𝜄3) = (+,−, +). This case was already the focus of Section 9, where it was furthermore assumed
that (𝜂, 𝜃, 𝜎) was close to (

√
3,−

√
3,

√
3); notice the different sign due to the particular choice of p in

equation (11.64). While the interaction analysed in Section 9 is the worst one, we also need to consider
another partially resonant scenario where the phase can vanish but not its gradient, namely, (𝜂, 𝜃, 𝜎)
close to (

√
3,−

√
3,−

√
3), and prove the corresponding estimate in equation (11.68).

Since the approach followed is very close to that introduced in Section 9, we adopt a similar
parametrization of the integration variables and consider the trilinear expression∭

𝑒𝑖𝑠Ψ( 𝜉 ,𝜂,𝜁 , 𝜃)𝔭(𝜉, 𝜂, 𝜁) 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 2
√

3 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 2
√

3 − 𝜁) 𝜙(𝜃)
𝜃

𝑑𝜂 𝑑𝜁 𝑑𝜃,

where Ψ(𝜉, 𝜂, 𝜁 , 𝜃) = Φ+−+(𝜉, 𝜉 − 𝜂, 𝜉 − 2
√

3 − 𝜂 − 𝜁 − 𝜃, 𝜉 − 2
√

3 − 𝜁)

= 〈𝜉〉 − 〈𝜉 − 𝜂〉 + 〈𝜉 − 2
√

3 − 𝜂 − 𝜁 − 𝜃〉 − 〈𝜉 − 2
√

3 − 𝜁〉,

(11.77)

where it is understood that 𝔭 is smooth and such that, on its support, 𝜉 is close to
√

3 and 𝜂, 𝜁 (and 𝜃) to
zero. Denoting 𝜏(𝜉) = 〈𝜉〉, we start by recording a few estimates on the phase function:

Ψ(𝜉, 𝜂, 𝜁) = 𝜏′(𝜉)𝜂 − 𝜏′(𝜉 − 2
√

3 − 𝜁) (𝜂 + 𝜃) +𝑂 (𝜂2 + 𝜃2),

𝜕𝜉Ψ(𝜉, 𝜂, 𝜁) = 𝜏′′(𝜉)𝜂 − 𝜏′′(𝜉 − 2
√

3 − 𝜁) (𝜂 + 𝜃) +𝑂 (𝜂2 + 𝜃2),

𝜕𝜂Ψ(𝜉, 𝜂, 𝜁) = 𝜏′(𝜉 − 𝜂) − 𝜏′(𝜉 − 2
√

3 − 𝜂 − 𝜁 − 𝜃),

(𝜕𝜂 − 𝜕𝜁 )Ψ(𝜉, 𝜂, 𝜁) = 𝜏′(𝜉 − 𝜂) − 𝜏′(𝜉 − 2
√

3 − 𝜁),

𝜕𝜁Ψ(𝜉, 𝜂, 𝜁) = 𝜏′′(𝜉 − 2
√

3 − 𝜁) (𝜂 + 𝜃) +𝑂 (𝜂2 + 𝜃2),

𝜕2
𝜁Ψ(𝜉, 𝜂, 𝜁) = −𝜏′′′(𝜉 − 2

√
3 − 𝜁) (𝜂 + 𝜃) +𝑂 (𝜂2 + 𝜃2).

As a consequence,

|Ψ|, |𝜕𝜉Ψ|, |𝜕𝜁Ψ|, |𝜕2
𝜁Ψ| ≈ |𝜂 | and |𝜕𝜂Ψ|, | (𝜕𝜂 − 𝜕𝜁 )Ψ| � 1.

Applying 𝜕𝜉 to equation (11.77), one obtains several terms, which can be reduced to the following main
ones:∭

𝑒𝑖𝑠Ψ𝔭(𝜉, 𝜂, 𝜁)𝜕𝜉 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 2
√

3 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 2
√

3 − 𝜁) 𝜙(𝜃)
𝜃

𝑑𝜂 𝑑𝜁 𝑑𝜃, (11.78a)∭
𝑒𝑖𝑠Ψ𝔭(𝜉, 𝜂, 𝜁) 𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 2

√
3 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 2

√
3 − 𝜁) 𝜙(𝜃)

𝜃
𝑑𝜂 𝑑𝜁 𝑑𝜃, (11.78b)∭

𝑒𝑖𝑠Ψ𝔭(𝜉, 𝜂, 𝜁) 𝑓̃ (𝜉 − 𝜂) 𝑓̃ (𝜉 − 2
√

3 − 𝜂 − 𝜁 − 𝜃)𝜕𝜉 𝑓̃ (𝜉 − 2
√

3 − 𝜁) 𝜙(𝜃)
𝜃

𝑑𝜂 𝑑𝜁 𝑑𝜃. (11.78c)

The term in equation (11.78b) can be estimated in a straightforward way by integrating by parts using
the vector field 𝜕𝜂 − 𝜕𝜁 , since | (𝜕𝜂 − 𝜕𝜁 )Ψ| � 1; the same applies to equation (11.78c) with the vector
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field 𝜕𝜂 . We illustrate this estimate for equation (11.78b). After integrating by parts, the worst term is
of the form∭

𝑒𝑖𝑠Ψ
𝔭(𝜉, 𝜂, 𝜁)

(𝜕𝜂 − 𝜕𝜁 )Ψ
𝜕𝜉 𝑓̃ (𝜉 − 𝜂)𝜕𝜉 𝑓̃ (𝜉 − 2

√
3 − 𝜂 − 𝜁 − 𝜃) 𝑓̃ (𝜉 − 2

√
3 − 𝜁) 𝜙(𝜃)

𝜃
𝑑𝜂 𝑑𝜁 𝑑𝜃.

In 𝐿2, this can be estimated by

𝐶𝑠−1‖𝜕𝜉 𝑓̃ ‖𝐿2 ‖𝜕𝜉 𝑓̃ ‖𝐿1 ‖𝑒−𝑖𝑡 〈𝐷〉W∗ 𝑓 ‖𝐿∞ � 𝜀3
1〈𝑠〉

−3/2+2𝛼+𝛽𝛾 ,

which suffices.
This leaves us with equation (11.78a), which can be treated as H2 in Section 9.3.2. Following the

notation and the approach taken there, we localise dyadically 𝜉 −
√

3, 𝜉 − 𝜂 −
√

3 and 𝜃 + 𝜉 −
√

3 to the
scales 2ℓ , 2 𝑗1 , and 2ℎ , respectively. Since |𝜕𝜁Ψ| ≈ |𝜕2

𝜁Ψ| ≈ |𝜂 + 𝜃 |, the approach in Section 9.3.2 can be
followed almost verbatim, and we can skip the details.

With this, the proof of Proposition 9.1 is completed. In particular, we have obtained the improvement
on the weighted a priori bound in equation (7.11). This in turn completes the proof of Proposition 7.2
and therefore of Theorem 1.1.

A. The linearised operator for the double sine-Gordon

This short appendix is devoted to a proof that the linearised operator corresponding to the double-sine
Gordon model in equation (1.22) does not have internal modes or resonances when linearised at the
kinks 𝐾1 and 𝐾2 described in Section 1.4.3. This proof is essentially contained in [48], but we chose to
present it here for readers’ convenience.
Change of variables. Recall the notation from Section 1.4.3, denote for simplicity 𝑈 = 𝑈𝐷𝑆𝐺 and
𝐾 = 𝐾1 or 𝐾2 and let

𝐿 := −𝜕2
𝑥 +𝑈 ′′(𝐾), 𝐿0 := −𝜕2

𝑥 + 𝑃, Λ := 𝑌𝜕𝑥𝑌−1,

where

𝑃 =
𝑈 ′(𝐾)2

𝑈 (𝐾) −𝑈 ′′(𝐾), 𝑌 = 𝐾 ′.

Then

𝐿 = Λ∗Λ and 𝐿0 = ΛΛ∗.

Furthermore, if 𝐿𝜙 = 𝜆𝜙, then 𝐿0Λ𝜙 = 𝜆Λ𝜙. Therefore, using the decay theory for (generalised)
eigenfunctions of L, the asymptotics of K and its derivatives, and the formula Λ𝜙 = 𝜙′ − 𝑌 ′

𝑌 𝜙, we see
that

- If 𝜙 is an eigenfunction of L, then Λ𝜙 is an eigenfunction of 𝐿0, unless it is zero.
- If 𝜙 is a resonance of L, then Λ𝜙 is a resonance of 𝐿0.

The sign condition. We now claim that

𝑥𝑃′(𝑥) ≤ 0 for all 𝑥.

By definition of P, this is equivalent to

𝑥𝐾 ′(𝑥)𝑉 ′(𝐾 (𝑥)) ≤ 0 for all 𝑥, where 𝑉 (𝑥) = −𝑈 ′′(𝑥) + (𝑈 ′(𝑥))2

𝑈 (𝑥) .
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Since 𝐾 ′(𝑥) ≥ 0, we can dispense with this term. Setting 𝑦 = 𝐾 (𝑥), and using that y and x have the same
sign, since K is odd, the above becomes 𝑦𝑉 ′(𝑦) ≤ 0, which can be checked by an explicit computation
as in [48].
Excluding eigenvalues. Assuming that 𝜙 is an eigenfunction of 𝐿0, we start from the identity 𝐿0𝜙 = 𝜆𝜙.
Testing it against 𝜙 and 𝑥𝜙′, respectively, gives∫

((𝜙′)2 + 𝑃𝜙2 − 𝜆𝜙2) 𝑑𝑥 = 0,∫
((𝜙′)2 − 𝑃𝜙2 − 𝑥𝑃′𝜙2 + 𝜆𝜙2) 𝑑𝑥 = 0,

and adding these two identities leads to

2
∫

(𝜙′)2 𝑑𝑥 =
∫

(𝑥𝑃′)𝜙2 𝑑𝑥. (A.1)

Since 𝑥𝑃′(𝑥) ≤ 0 for all x, this gives a contradiction if 𝜙 is a (nonzero) eigenfunction.
Excluding resonances. The argument is parallel to the one for eigenfunctions, but slight complications
arise since a regularization becomes necessary. Assuming first that 𝜙 is a resonance of 𝐿0, it has to be
even or odd since P is even, and without loss of generality, we can assume that 𝜙(∞) = 1. Also, it must
have energy 𝑚2 = 𝑃(∞) = 𝑈 ′′(∞). Choose a smooth, nonnegative, compactly supported function 𝜒,
and test the equation −𝜕2

𝑥𝜙 + 𝑃𝜙 = 𝑚2𝜙 against 𝜒(𝑥/𝑅)𝜙 and 𝜒(𝑥/𝑅)𝑥𝜕𝑥𝜙. This gives∫ [
(𝜙′)2 + 𝑃𝜒

( 𝑥
𝑅

)
𝜙2 − 𝑚2𝜒

( 𝑥
𝑅

)
𝜙2

]
𝑑𝑥 = 𝑜(1),∫ [

(𝜙′)2 − 𝑥𝑃′𝜙2 − 𝑃𝜒
( 𝑥
𝑅

)
𝜙2 −

∫
𝑥𝑃

1
𝑅
𝜒′

( 𝑥
𝑅

)
𝜙2 + 𝑚2𝜒

( 𝑥
𝑅

)
𝜙2 + 𝑚2 1

𝑅
𝜒′

( 𝑥
𝑅

)
𝑥𝜙2

]
𝑑𝑥 = 𝑜(1),

where 𝑜(1) → 0 as 𝑅 → ∞; we used that 𝜙′ and 𝑃′ decay quickly. Adding these two identities leads to

2
∫ [

(𝜙′)2 − 𝑥𝑃′𝜙2] 𝑑𝑥 +
∫

𝑥

𝑅
𝜒′

( 𝑥
𝑅

) [
−𝑃 + 𝑚2] 𝜙2 𝑑𝑥 = 𝑜(1).

Letting 𝑅 → ∞ gives

2
∫ [

(𝜙′)2 − 𝑥𝑃′𝜙2] 𝑑𝑥 ≤ 0,

which is the desired contradiction.
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