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Abstract

This paper proposes a fairly general new point of view on the question of asymptotic stability of (topological)
solitons. Our approach is based on the use of the distorted Fourier transform at the nonlinear level; it does not rely
only on Strichartz or virial estimates and is therefore able to treat low-power nonlinearities (hence also nonlocalised
solitons) and capture the global (in space and time) behaviour of solutions.

More specifically, we consider quadratic nonlinear Klein-Gordon equations with a regular and decaying potential
in one space dimension. Additional assumptions are made so that the distorted Fourier transform of the solution
vanishes at zero frequency. Assuming also that the associated Schrodinger operator has no negative eigenvalues,
we obtain global-in-time bounds, including sharp pointwise decay and modified asymptotics, for small solutions.

These results have some direct applications to the asymptotic stability of (topological) solitons, as well as several
other potential applications to a variety of related problems. For instance, we obtain full asymptotic stability of kinks
with respect to odd perturbations for the double sine-Gordon problem (in an appropriate range of the deformation
parameter). For the ¢4 problem, we obtain asymptotic stability for small odd solutions, provided the nonlinearity
is projected on the continuous spectrum. Our results also go beyond these examples since our framework allows
for the presence of a fully coherent phenomenon (a space-time resonance) at the level of quadratic interactions,
which creates a degeneracy in distorted Fourier space. We devise a suitable framework that incorporates this and
use multilinear harmonic analysis in the distorted setting to control all nonlinear interactions.
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1. Introduction

This work concerns the global-in-time behaviour of small solutions of one-dimensional quadratic Klein-
Gordon equations with an external potential. The class of equations that we treat in this paper appears
when studying the asymprotic stability of special solutions of nonlinear dispersive and hyperbolic
equations, such as solitons, travelling waves and kinks.

1.1. The model and motivation

1.1.1. The equation
We consider the equation

6t2u + (—0)% + V() +mu = a(x)u® (KG)

where the unknown u = u(z,x) € R, the space and time variables (z,x) € R X R, m > 0 is the mass
parameter, V is a real-valued, decaying and smooth external potential, and a is a sufficiently smooth
function with a(x) — £, decaying quickly as x — +o0, £, € R. The addition of cubic and higher-order
terms (with constant or nonconstant coefficients) does not bring any further complication, so we omit it
for the sake of explanation.!

Equation (KG) derives from the Hamiltonian

K (u) = %/ [(Bu)? + (0xu)* + m*u® + Vi?| dx+§/a(x)u3 dx. (L.1)
R R
By rescaling, we can set m = 1 without loss of generality; we will do so in the rest of the paper. We
will be interested in the Cauchy problem with small initial data (u(0, x), u,;(0,x)) = (ug(x),u;(x)) in
suitable weighted Sobolev spaces. In short, under some spectral assumptions on V, our main result,
Theorem 1.1, gives the existence of global small solutions with sharp pointwise time-decay and long-
range asymptotics.

We will consider a broad class of external potentials in equation (KG), both generic and exceptional,
with some additional assumptions in the latter case. In all cases, we assume that there is no discrete
spectrum. The class of nongeneric potentials that we consider arises in applications such as, for example,
pure power nonlinear Klein-Gordon and the ¢* model; see Section 1.4.

1.1.2. Motivation

Nonlinear equations with external potentials arise from the perturbation of full nonlinear problems
around special solutions, such as solitons. The quadratic problem in equation (KG) is inspired by the
long-standing open question of the full asymptotic stability of the kink solution K = tanh(x/V?2) for the
¢4 model ¢ — Pyx = ¢ — ¢3 (see Section 1.4.1 and [45]). It is also closely related to similar questions
about solitons of nonlinear Klein-Gordon, kinks of other relativistic Ginzburg-Landau theories and
generalised sine-Gordon theories in 1 + 1 dimensions.

One-dimensional kinks are the simplest example of topological solitons: that is, non-spatially lo-
calised special solutions, as opposed to the more standard solitons that are localised in space. While the
mathematical theory on the stability (or instability) of solitons is very well-developed in many models,
this is not the case for topological solitons. There are in fact major difficulties in dealing with these
objects even in the most basic one-dimensional case. As we will explain below, our paper aims to ad-
dress some of these difficulties by treating the deceptively simple-looking quadratic model in equation
(KG) under fairly general assumptions. Note that models with quadratic nonlinearities, such as equation

1In fact, cubic terms such as 3, and more complicated ones, naturally appear in the analysis of equation (KG) performed in
this paper.

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2022.9

Forum of Mathematics, Pi 5

(KG), also arise in the linearisation of quadratic equations (e.g., water waves, Euler-Poisson, Zakharov,

etc.) around (localised) soliton solutions.

Furthermore, the study of asymptotic stability (or instability) of solitons - as opposed to orbital or
local asymptotic stability - is motivated by problems in the theory of quasilinear equations, where this
is often the only relevant type of stability that one can hope to achieve, since the equations are usually
not even locally well-posed in the energy space.

Before describing our result in more detail, let us briefly mention some important aspects of our
paper:

e We can treat a large class of equations provided that the property u(0, f) = 0 holds; here u denotes
the distorted Fourier transform of u. Under this sole assumption, we need to allow for a loss of
regularity in Fourier space of our solutions. This loss of regularity was previously observed in some
2d (unperturbed: that is, with no potential) models [14, 15]; in the 1d case under consideration, it is
caused by a coherent phenomenon - that is, a full (space-time) nonlinear resonance - that appears
because of the potential. See Section 2.3 for more on this.

e Loss of regularity in Fourier space is expected to be a crucial phenomenon in dimension one. First,
it should occur generically due to resonant nonlinear interactions within the continuous spectrum.
Also, singularities can arise through the coupling of internal modes of oscillations (discrete
spectrum) and the continuous spectrum through the ‘Fermi golden rule’ [67, 69]; furthermore, they
can appear due to zero energy resonances of the linear(ised) operator.>

e Our global stability and decay result for equation (KG) has direct applications to the stability of
stationary states of nonlinear evolution problems, under additional symmetry assumptions, when
restricting the nonlinear interactions to the continuous spectrum; see Section 1.4. We also obtain full
asymptotic stability for certain families of kinks of the double sine-Gordon equation (a generalised
sine-Gordon theory); see Section 1.4.3.

e We believe that our treatment of equation (KG) helps clarify the interconnected roles of the
zero-energy resonances, symmetries of the equation and low-frequency behaviour (or improved local
decay) in the study of global space-time asymptotics; see, for example, the discussion in Section 1.4.2.

e More generally, we believe that the approach laid out in this paper enables a precise analysis of the
nonlinear interactions of perturbed waves that are localised, yielding optimal results as far as decay
is concerned, for instance. In this respect, it goes beyond classical methods that rely on dispersive or
Strichartz estimates or virial-type identities.

1.2. Previous results

1.2.1. Methods for solitons and topological solitons

The literature on soliton stability is extensive, and a complete overview is beyond the scope of this paper,
and our abilities. We refer readers to the excellent surveys [71, 68, 64] and the book [9] and references
therein.

One immediately noticeable difference between solitons, which are spatially localised, and topologi-
cal solitons, which are not, is in the linearised equations. In fact, since topological solitons do not decay
to zero, lower-order nonlinear terms are typically powers of the small perturbation times a nondecaying
coefficient; see equation (1.18) as an example. This lack of localisation prevents the efficient use of
improved local decay type estimates, which are often a key tool when dealing with (standard) solitons.

In general, the treatment of low-power nonlinearities (in low dimensions) for equations with potentials
is a well-known problem. Linear dispersive tools (e.g., L” — L4 estimates for the linear group, Strichartz
estimates, improved local decay, etc.) and energy estimates are typically not enough to treat these
equations. Similar issues arise when V = 0, but in this case, one can resort to well-established methods,
such as normal forms, vectorfields, the space-time resonance method and multilinear harmonic analysis
tools.

2See Section 1.4.1 for more on internal modes and the discussion after equation (2.19) for more on zero energy resonance.
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In the perturbed case V # 0, all these methods are not directly applicable: the (large) potential decor-
relates linear frequencies, ruling out standard normal form analysis and multilinear Fourier analysis, and
at the same time destroys the invariance properties of the equation, ruling out vectorfields. To address
these fundamental issues, we initiated a systematic approach based on the distorted Fourier transform
in our work with F. Rousset [24] on the basic® 1d cubic NLS model with a generic potential. In this
paper, we advance our theory by treating the much more complex case of equation (KG).

Let us now review some of the existing literature, starting with results on flat/unperturbed 1d Klein-
Gordon equations and then turning to recent advances in the treatment of perturbed equations.

1.2.2. Klein-Gordon in the flat (V = 0) case in dimension one

In this case, Delort [ 1 1] obtained small data (modified) scattering for quasilinear quadratic nonlinearities.
Similar results were obtained in the semilinear cubic and quadratic case, respectively, in [52] and [30].
In the last few years, some works have been dedicated to inhomogeneous models of the form

Up — Uy +u = a(x)u® + b(x)u’. (1.2)

Lindblad-Soffer [53] and Sterbenz [70] treated the case of constant a; see also [54] for a recent proof
when a = 0. Lindblad-Soffer-Luhrman [55] also recently treated equation (1.2) under the assumption
that a decays to zero at infinity and either @(+V3) = 0, or a(+V3) # 0 but b = 0. In Section 2.3, we
will discuss the key role of the frequencies ¢ = +V/3 for the evolution of solutions of equation (KG).
As one of the byproducts of our main result, we also obtain globally decaying solutions with modified
asymptotics for equation (1.2) in the case of odd initial data and a general odd a and even b; see Remark
(9) after Theorem 1.1.

1.2.3. Equations with potentials in dimension one

In the analysis of nonlinear equations with potentials, the first step is to understand the dispersive
properties of the perturbed linear operator. There is a vast literature on dispersive properties, such as
decay estimates and Strichartz estimates; for brevity we just refer to the classical works [38, 25] and
[64] and references therein. The literature on linear scattering theory for Schrodinger operators is also
substantial; limiting ourselves to the 1d case, we refer to Deift-Trubowitz [ 10], Weder [75] and the books
[73, 77, 49].

As discussed above, linear tools are generally not sufficient to deal with low-power nonlinearities,
which are the ones of interest for the stability of topological solitons. Recently, a few works have been
dedicated to this situation in the one-dimensional case; see the works on cubic NLS [12, 60, 24, 7, 59],
and [16, 17] on wave equations.

Concerning kink solutions, Kowalczyk, Martel and Mufloz [45] proved asymptotic stability locally
in the energy space for odd perturbations of the kink of the ¢* equation (1.17); the more classical orbital
stability was proven in [31, 26]. See also the related result on KG/wave models [46, 47], the proof of
local asymptotic stability for a large class of 1d scalar field equations by Kowalczyk, Martel, Mufioz
and Van Den Bosch [48] and the paper of Jendrej-Kowalczyk-Lawrie [37] on kink-antikink interactions.
Full asymptotic stability for kinks of relativistic GL equations (1.24) was proven by Komech-Kopylova
[41, 42] when p > 13. In a very recent paper, Delort and Masmoudi [13] proved long time stability
for the kink of the ¢* model, reaching times of order e * for data of size e; their analysis is based on
a semi-classical approach using conjugation by the wave operators. Concerning this last problem, as a
consequence of our general results on equation (KG), we can obtain a global stability result (in the odd
class) provided the nonlinearity is projected onto the continuous spectrum. This latter is, of course, an
important restriction, and we do not claim any new results in the case of a full coupling to the internal

3In a perturbative and dispersive setting, a cubic model is substantially easier to handle than a quadratic one. The proof of
[24] can be adapted to a cubic KG equation with some additional observations, but a quadratic KG model presents substantial
additional difficulties.
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mode. However, we are hopeful that our techniques will be relevant in this case, too; see Section 1.4.1
for more on the ¢* problem.

Finally, for results on the related problem of asymptotic stability of solitary waves for NLS, we refer
to the classical works [1, 2] and Krieger-Schlag [44] and references therein. For supercritical NLKG,
see Krieger-Nakanishi-Schlag [43].

1.2.4. Higher dimensions

Equations with potentials and questions about the stability of (nontopological) solitons in higher dimen-
sions have also been extensively studied. Without going too much into details, we refer the reader to the
classical results [67, 74, 69, 72, 27] and the surveys [68, 64, 65] and references therein. Finally, let us
mention some 3d works that are close in spirit to ours: [20] laid out some basic multilinear harmonic
analysis tools and treated the nonlinear Schrodinger equation in the case of a nonresonant #” nonlinear-
ity, while [50, 51], respectively [62], considered the case of a small, respectively large, potentials and a

u? nonlinearity.

1.3. Main result

Let us now state our main result. In short, for sufficiently small and localised data (as in equation (1.3)),
and assuming that the distorted Fourier transform of the solution vanishes at the zero frequency, we can
construct global solutions for quadratic Klein-Gordon equations that decay at the optimal (i.e., linear)
rate (see equation (1.4)); moreover, we obtain full asymptotics with modified scattering via a logarithmic
phase corrections (see equation (1.13) below).

The statement of our main theorem requires some technical definitions, for which we give precise
references to later parts of the paper.

Theorem 1.1. Let
H:=-02+V

denote the Schrodinger operator, and assume it has no bound states. Let V = V(x) and a = a(x) be
smooth and such that V (x) and a(x) — €+, and their derivatives decay super-polynomially* as x — oo,
Consider either one of the following two equations:

o FEither
6tzu +(H+ Du =a(x)u® (KG)

under one of the following three assumptions (see Sections 3 and 3.1.3 for definitions):
(A) Vs generic, or
(B) Vis exceptional and even, the zero energy resonance is even, and a(x) is odd, or
(C) Vis exceptional and even, the zero energy resonance is odd, and a(x) is even.

o Or

?u+ (H+ 1)u = VH(a(x)u?) (KG2)

under one of the following two assumptions:

(D) Vis generic, or

(E) Vs exceptional, and the distorted Fourier transform associated to H (defined in Section 3.2) of
the data (u, d;u)(0, x) is vanishing at frequency zero.”’

4The smoothness and decay assumptions can be relaxed. A more careful inspection of the proof shows that only a finite (possibly
large) amount of smoothness and polynomial decay would be sufficient.
It is implied here that the distorted transform should be continuous at zero.
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Consider data at the initial time
(u, ) (1 = 0) = (uo, uy)
with
”(\/me), ul)”H4 + ”(x)(ﬁuo, u])”H1 = &. (1.3)

Then the following holds:
e (Global existence) There exists € > 0 such that for all gy < €, equation (KG) with initial data
(u, Bu)(t = 0) = (uo, u1) admits a unique global solution u € C(R, H>(R)).
o (Pointwise decay) For allt € R
|(VH + 1u, 8,u) (1), < €0(1 + 2712, (1.4)

e (Global bounds in L* spaces) The solution satisfies the global-in-time bounds

el 15 + B (@] 4 < €0ty (1.5)

for some small py > 0. Moreover, if we define the profile

g =e™VH (5, —iVH + Du (1.6)
we have
||<§>3§§(l)||ch < eo(t)1/?*9, (1.7)

for some small § > 0, where g denotes the distorted Fourier transform of g (as defined in equation
(3.21); see also Proposition 3.0).

o (Asymptotic behaviour) There exists a quadratic transformation B (satisfying bilinear Holder type
bounds) such that, as |t| — oo, the ‘renormalised’ profile f := g — B(g, g) scatters to a
time-independent profile up to a logarithmic phase correction. See Remark 6 for more details.

Here are a few remarks about the statement and our main assumptions.

Remark 1.2 (Vanishing at the zero frequency). Hypotheses (A), (B), (C) for equation (KG) and hy-
pothesis (D) and (E) for equation (KG2) are ways of ensuring that f(0) = 0, where f is the distorted
Fourier transform of f associated to the operator H; see Section 3 for the definitions and equation (2)
below for the vanishing property. The zero frequency for the distorted Fourier transform is linked to a
resonant phenomenon, hence the necessity for the cancellation f(O) = 0 for our proof to apply; see the
discussion in Section 2.3.

Remark 1.3. In the course of our proof, we will work (most of the time) just with the assumption that
f(0) =0, so as to be able to treat all cases in a unified way. In particular, we will carry out all our main
estimates for equation (KG), but everything can be easily adapted to equation (KG2). In some instances,
we will need to distinguish between the different cases, such as (A) vs. (B), and will specify when this
is so (see, for example, the proof of Lemma 5.8).

Remark 1.4. Theorem 1.1 remains true if the operator H is allowed to have bound states, but the data
and the nonlinearities in equations (KG) and (KG2) are projected on the continuous spectrum of the
operator.

Remark 1.5. Note that the parity assumptions in (B), respectively (C), imply that the solutions are odd,
respectively even. However, in the case of equation (KG2), no parity assumptions are needed.
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Moreover, Theorem 1.1 remains valid if one includes cubic and higher-order terms in equation (KG),
provided this is done by keeping the proper parity. For example, in both cases (B) and (C), one can add
a term b(x)u? to equation (KG) with an even and sufficiently regular (but not necessarily decaying) b.
Similarly, one can add any cubic or higher-order terms to equation (KG2) inside the parentheses on the
right-hand side.

Let us now make some remarks about our results and some of their implications. More specific
applications are discussed in Section 1.4.1.

1. Assumptions on the potential: generic and exceptional.
The assumption that V is generic is the following:

/V(x) m(x)dx # 0, (1.8)
R

where m is the unique solution of (=02 +V)m = 0 with lim,_,, m(x) = 1. One can see that equation
(1.8) is equivalent to the condition that the transmission coefficient 7' (see equation (3.13) for the
definition) satisfies 7(0) = 0. This is also equivalent to the fact that the O energy level is not a
resonance: that is, there does not exist a bounded solution in the kernel of H; See Lemma 3.3.
A nongeneric potential is called ‘exceptional’.
2. The zero frequency and symmetries. _

For generic V, one has that f is continuous everywhere for f € L', and f(0) = 0. See the remarks
after Proposition 3.6. In the case of exceptional potentials, one does not have continuity of f at O in
general. Continuity holds if 7(0) = 1 or, equivalently, a := m(—o0) = 1, since

2a 1
1+a>\2rn

where m is the zero energy resonance; see equation (3.23). In the context of our nonlinear problem in
equation (KG), we are interested in the low-frequency behaviour of the solution and, in particular, the
vanishing of u(z, £) at & = 0. While for generic potentials, we are guaranteed that indeed u(z,0) =0
for all times ¢, in the case of exceptional V, we need to impose some additional (symmetry) conditions
for this to hold, as in (B), (C) or (E) of Theorem 1.1.

Since in case (B), respectively (C), we have odd, respectively even, solutions (see Remark 1.5),
equation (1.9) shows that when the zero energy resonance m(x) is even, respectively odd, we indeed
have u(z,0) = 0.

The structure of the equation might also guarantee the desired vanishing condition, which is
what we exploit for equation (KG2). Indeed, in case (E), the initial data is assumed to be such that
(u,uz)(t = 0,6 = 0) = 0, and this condition is preserved by the flow of equation (KG2), since
applying the distorted Fourier transform and evaluating at & = 0 gives u; (¢,0) + u(¢,0) = 0.

3. Improved local decay.
An important aspect in the study of nonlinear problems with potentials is local decay. Roughly
speaking, the potential, which is localised around the origin, typically reflects low-energy particles
away from it, leading to an improved local decay estimate of the form

f(0+) =

/ m(x)f(x)dx  and f(O—):% £(0+), (1.9

)= Pee™VEH £l < 1) > fl (1.10)

for some o, 0 > 0, and a rate of decay a larger than 1/2, which is the optimal one for general linear
waves. P, in equation (1.10) denotes the projection to the continuous spectrum of H. While we do
not directly make use of estimates like equation (1.10), we do rely on the dual improved behaviour
for small frequencies.
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For generic potentials, it can be shown that equation (1.10) holds with a = 3/2 and o» = 1 [44,
64] (the value of o7 is unimportant for this discussion); such an estimate is essentially equivalent to
(and scales like)

[y~ Pee™HH £|| o < 117 10 £l - (1.11)

To see the difference with the exceptional case, it suffices to consider the flat case V = 0. From a
stationary phase expansion, one sees that linear solutions satisfy, as t — oo,

1000) f €0 g \32pit G i T b x
€ f~@<§o> e f (&), Tataln (1.12)

where fis the regular Fourier transform. Thus, there is no improvement to the local decay rate unless
£(0) = 0. However, in general, the next term in the expansion is only of the order of |¢]=3/4||(x) ]| ».
The difference between this and the faster |¢|~! decay in equation (1.11) turns out to be a major issue
when dealing with equation (KG) under our very general assumptions. _

Local decay is also stronger for exceptional potentials if, in addition to f(0) = 0, further can-
cellations occur due to symmetries. This suggests the possibility of simplifications to parts of our
arguments if one of the assumptions (A), (B) or (C) in Theorem 1.1 holds. In particular, one may be
able to adopt a less refined functional framework than the one we use here (see Section 2.5).

4. The functional framework and degenerate norms. _
To deal with an example such as equation (KG2) where only f(0) = 0 can be assumed, we need
to pay particular attention to a phenomenon of loss of regularity in frequency space. As we explain
in Section 2.3, when the distorted frequency & approaches +V3, the L? weighted norm of the
(renormalised) profile f becomes singular. We then need to use a norm that captures this degenerate
behaviour; see equation (2.30).

It is important to point out that while some of the complications may be avoided by making less
general assumptions, we expect that degenerate norms like the one we use in this paper will play a
key role when internal modes (positive eigenvalues of H + 1) are present, as well as when considering
general (nonsymmetric) solutions.

5. Violating the zero frequency condition
The above discussion emphasised the technical reasons leading to the requirement that the solution
of equation (KG) vanishes at zero frequency. The works [55, 56] address a setup where the coefficient
a(x) is localised but the solution does not have to vanish at zero in (distorted) Fourier space. In these
papers, it is shown that the decay in time slows by a logarithmic factor compared to the linear case;
see also the discussion at the end of Section 2.3. Since the linear decay rate was already critical at
the level of the cubic interaction, this additional logarithm is expected to make the nonlinear analysis
of the full problem (including cubic terms or a nondecaying a) extremely delicate.

6. Modified asymptotics.
In the last point of Theorem 1.1, we state that a renormalised profile f = g — B(g, g) undergoes
modified scattering. Let us postpone for the moment the exact definition of f and just think of
B(g, g) ~ g. For the profile f, we prove the following asymptotic formula: there exists an asymptotic

profile W= = (W, W) € ((¢)7/2L%) such that, for & > 0,

(f(tvf)vf(t? _5))
i (1.13)

5
=571 (&) exp ( - Ediag(é’foo|Wf°(§)|2, 2w @) log z)W‘”(g) +0(g5(1)™)

as t — oo, for some dp > 0; here S(¢) is the scattering matrix associated to the potential V defined
in equation (3.12). As t — —oo, using the time-reversal symmetry, one obtains a similar (in fact,
simpler) formula that resembles the flat case. While this correction to scattering is most naturally
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viewed in distorted Fourier space, it translates to physical space by standard arguments. Note that
because of the potential V, this logarithmic phase correction depends on the scattering matrix S (at
least in one time direction) and ‘mixes’ positive and negative frequencies. We refer the reader to
Proposition 10.1 and the comments after it for more details.

The phenomenon of modified scattering by a logarithmic phase correction is one of the fun-
damental types of nonlinear phenomena that one may observe for scattering critical (long-range)
equations. We refer the reader to the papers on NLS [29, 53, 39, 32] and on KG [11, 30, 55] where
this type of modified scattering is proved using various approaches for equations without potentials.
For equation with potentials, see the already cited [12, 60, 24, 7].

7. Assumptions on the data.
The assumptions in equation (1.3) are quite standard for these types of problems. Finiteness of
the weighted norm guarantees |f|~'/? pointwise decay for linear solutions. Propagating a suitable
weighted bound for all times will be one of the main goals of our proof. For the profile g, we can only
propagate the weak bound in equation (1.7), while we will be able to control a stronger weighted
norm of f.

A certain amount of Sobolev regularity is helpful in many parts of the proof when we deal with
high frequencies. However, although equation (KG) is a semilinear problem, it seems to us that it
is not straightforward to propagate any desired amount of Sobolev regularity, unlike in many other
similar problems. This is essentially because the nonlinearity contains quadratic terms that cannot
be eliminated by normal forms, and (localised) decay is at best |£|~3/* in the absence of symmetries.

8. Global bounds and bootstrap spaces.
Most of our analysis is performed in the distorted Fourier space. The main task is to prove a priori
estimates in suitably constructed spaces for a renormalised profile obtained after a partial normal
form transformation. This is the profile® f := g — B(g, g) alluded to in the main Theorem. We refer
the reader to Section 5, and in particular to Section 5.7, for the definition of f.
The profile f is measured in three norms: a Sobolev norm (like g), a weighted-type norm that
incorporates the degeneration close to the bad frequencies +V3, and the sup-norm of its distorted
Fourier transform. We refer to Section 2.5 for details about the functional framework and to the
beginning of Section 7 for the main bootstrap propositions on f and g.

9. The flat case.
For the sake of explanation, it is interesting to consider equation (KG) in the simplified case V =0

3,214 + (—6)% + Du = a(x)u?, (1.14)

where a(x) is odd and fast approaching +£ as x — +oco. Cubic terms of the form u* and b(x)u?
(with b even) can be included in the model. For equation (1.14), our result gives globally decaying
solutions for odd initial data. However, as discussed in Remark (3) above, this specific case of odd
symmetry is simpler due to faster local decay. A related, and more difficult, toy model that we can
include in our treatment is (see equation (KG2))

Pu+ (=02 + Du = 0, (a(x)u?) (1.15)

with zero average initial data. Note that symmetries are not needed here, and other variants are
possible provided the zero average condition is preserved.

As mentioned after equation (1.2), the flat case in equation (1.14) with nonsymmetric localised
data, and decaying coefficient a(x), was treated in [54], where a logarithmic slowdown of the decay
rate was also shown to occur. Cubic terms are also included in the results of [54], provided @ (xV3) =
0. The general case of equation (1.14) without symmetries and with nondecaying a(x) is still open.

¢In the course of the proof, we will denote the bilinear transformation B by the letter T (see the definition of f in equations
(5.53)—(5.54) with g defined in equations (5.2)—(5.5). We use the different notation B in the main theorem and this intro to avoid
any confusion with the transmission coefficient T (see equation (3.13)) here. In later parts of the paper, the distinction should be
clear from the context.
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1.4. Applications

In this subsection, we discuss the relevance of our results to questions on the asymptotic stability of
stationary solutions for several important physical problems. We will be considering one-dimensional
scalar field theories

3¢ -02p+U'(¢) =0

deriving from the Hamiltonian

yz:%/((p;mi) dx+/U(¢)dx. (1.16)

Choosing the potential U with a double-well (Ginzburg-Landau) structure, special solutions connecting
stable states at +co, known as kinks, emerge. The question of their stability, or asymptotic behaviour,
depends very delicately on the potential U and leads to a wealth of interesting mathematical problems.
Our analysis sheds light on this question for various models, some of which we review below.

1.4.1. The ¢* model
This fundamental model corresponds to the choice

1
U(¢) = U(9) = 7(1 - ¢,
leading to the equation
ol —0ip=¢—¢, (1.17)

which admits the kink solution Ko(x) = tanh(x/V?2). Setting ¢ = Ko + v, where v is a small (localised)
perturbation, we see that

(8 + Hy+2)v = 3Kov> —v3,  Hy=-02+Vy,  Vo(x) := =3sech’(x/V2). (1.18)

It is known (see [8, 9, 54]) that the spectrum of the Schrédinger operator Hy has the following structure:
the —2 eigenvalue corresponding to the translation symmetry, an even zero energy resonance (a bounded
solution of Hy = 0) and the eigenvalue 4; = —1/2 corresponding to an odd exponentially decaying
eigenfunction _;/». The latter is the so-called internal mode. For the sake of explanation, let us restrict
our attention to the subspace of odd functions.” By projecting onto the discrete and continuous modes,
one can decompose v = co(t)_12+P. u(t, x), where P, is the projection onto the continuous spectrum
of Hy, and obtain the equation (82 + Ho +2)u = P.(—-3Kov?> — v?) for the radiation component. One is
then naturally led to analysing the ‘continuous subsystem’

(92 + Ho + 2)u = P, (—3Kou2 - u3) . (1.19)

Since Vj and its zero energy resonance are even, our results apply to show global bounds and decay for
equation (1.19) with odd data.

Thus, we are able to settle at least part of the kink stability problem; the remaining difficulty, in
the odd case, is to prove that the coupling of the internal mode to the continuous spectrum causes the
energy of the internal mode to be dispersed through the phenomenon of ‘radiation damping’ [69, 13].
This is a serious obstacle since the presence of the internal mode leads to the formation of a singularity
in distorted Fourier space, at the frequency given by the Fermi golden rule. However, notice that a very

70On the one hand, this has the practical advantage of avoiding modulating the kink to track the motion of its centre. On the
other hand, at a deeper level, oddness suppresses the even resonance that otherwise would have to be dealt with.
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similar phenomenon is dealt with in the present paper, with the formation of a singularity at the distorted
frequencies +V/3.

For general data, one has to deal with the resonance at zero frequency, which should at least lead to
a logarithmic slowdown of the decay, as observed in [55, 56]. Since the decay rate is already critical for
the cubic nonlinearity, this makes this question extremely delicate.

1.4.2. The sine-Gordon equation
Choosing U(¢) = Usg(¢) = 1 — cos ¢ in equation (1.16) gives the sine-Gordon equation

02¢p — 2P +sing =0, (1.20)

which is integrable and admits the kink solution Ksg(x) = 4arctan(e*) [9, Chapter 2]. Setting ¢ =
KsG + v, the perturbation v solves

0%v + (Hsg + 1)v = (sin Ksg)v* + 0(v*), Hsg = —02 — 2 sech?(x). (1.21)

Hgg has no internal mode (only the eigenvalue A = —1 associated with the translation invariance), and
it is exceptional, but with an odd zero energy resonance; thus, the distorted Fourier transform of an odd
function does not vanish at zero energy. Therefore, despite its similarities with the ¢* model, equation
(1.20) does not a priori fall into the class of equations that we can treat with our approach.

The asymptotic stability of the kink could, however, be proved by means of inverse scattering by
Chen, Liu and Lu [6], since the sine-Gordon equation is completely integrable. After the first version of
the present paper appeared online, another proof of the asymptotic stability of the kink was published
by Lithrmann and Schlag [57]; their beautiful and (relatively) short paper avoids the use of inverse
scattering or the distorted Fourier transform. They rely on two key observations: on the one hand, the
linearised operator around the kink can be factorised in a very convenient way; and on the other hand,
the nonlinear coupling of the resonance to the continuous spectrum is cancelled by the specific form of
the equation. In hindsight, we believe that the latter observation would allow us to treat the sine-Gordon
problem within the framework developed in the present paper.

1.4.3. The double sine-Gordon equation
More interestingly, our results apply to the perturbation of equation (1.20) given by the double sine-
Gordon model

, 1
32— 029+ Upgs () =0, Upsc (¢) = T [7(1 = cos ¢) + 1 +cos (2)], (1.22)
where 7 € R. This model is not integrable for  # 0; see also [9] and Campbell-Peyrard-Sodano [4]
and references therein for a description of the various physical contexts where equation (1.22) has been
classically used. For n < 0, we obtain asymptotic stability results for kinks of equation (1.22). More
precisely, there are two ranges of the parameter n with corresponding families of kinks that we can
consider:

1. For —1/4 < n < 0, equation (1.22) has (up to symmetries) a single odd kink connecting the minima
of the potential +27; let us call this kink K;.

2. For n < —1/4, equation (1.22) has an odd kink connecting the minima of the potential +¢¢ with
cos(¢o/2) = 1/4n; let us denote this kink by K5. There is also another kink in this range of 7 that we
do not consider since we cannot apply our results to it.

We have the following asymptotic stability of the K; and K, kink solutions for odd perturbations:
Corollary 1.6. Consider equation (1.22) with n € (-1/4,0), respectively n < —1/4, with
an initial condition of the form (¢,¢,)(0,x) = (K1(x),0) + (uy0(x),u;,1(x)), respectively
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(¢, $:)(0,x) = (K2(x),0) + (u2,0(x), u2,1(x)). Assume that (u; o,u; 1), i = 1,2 are odd and satisfy the
same smallness condition in equation (1.3). Then the associated global solution ¢ can be written as

¢(2,x) = Ki(x) +u; (2, %),

where u; decays globally on R as in equation (1.4), satisfies the bounds in equation (1.5) and has the
asymptotic behaviour described in equation (1.15). 8

Proof. Welet ¢ = K; +v, withi = 1,2 and denote U; := Upsg when —1/4 < n <0, and U; := Upsg
when 7 < —1/4. Then from equation (1.22), we get

(02 + H; + m?)v = ~U/(K; +v) + U/ (K;) + U/ (K;)v

1.23
H; =-3>+V;, Vi(x) = U/ (K;) — m?, m? = lim U/(K;) > 0. (1.23)
X—£00

4

More precisely, m% =(1-4n)~'(n+1/4) and m% =1/(16n) —n.

It can be shown that H; is generic and has no eigenvalues, except the translation mode; see Appendix A
for a short proof relying on the arguments of [48, Section 5.6]. In particular, the assumptions of
Theorem 1.1 hold for odd solutions of equation (1.23). The conclusions of Theorem 1.1 applied to v
then imply the statement of this corollary. O

For the double sine-Gordon model in equation (1.22) in the same range of 1 above (and also for
several other scalar field models with the same spectral properties), Kowalczyk-Martel-Mufioz-Van
Den Bosch [48] proved local asymptotic stability in the energy space. Compared to this latter result,
Corollary 1.6 gives asymptotic stability on the full real line, and modified scattering, provided the data
is (mildly) localised and odd.

1.4.4. General relativistic Ginzburg-Landau theories

Our approach and results apply similarly to general relativistic Ginzburg-Landau theories, where the
potential in equation (1.16) is taken to be of double-well type, with the following expansion at the
minima +a:

U(¢) = UaL(¢) = %(|¢| —a?+0((gl-a)™),  p=2. (1.24)

The corresponding equations ¢, —$xx+U(;; (¢) = 0 admitkink solutions K¢ exponentially converging
to +a at +oo; see [41, 42, 37]. The dynamics for the perturbation v (up to a standard modulation if
necessary) become

1244 1
(8% + How + 1)v = UL, (KeL)v? + EUg‘z(KGL)v3 +0(vY),

Hg = 0% + VoL, VeL(x) = UG (K) - 1.

(1.25)

In analogy with the discussion on the ¢* model, our analysis can be applied directly to the ‘continuous
subsystem’ (the analogue of equation (1.19)) that takes the form

1244 1
(02 + Hgr + u =P (- UL, (KGL)u® + ng‘z(KGL)f +0(u")). (1.26)

If one assumes that the minima of the well are sufficiently flat — or, in other words, that p is sufficiently

big — the coefficients U((;kL) (KgL),3 < k < p+1, become exponentially decaying, and this simplifies the
nonlinear analysis considerably. Komech-Kopylova fully analysed the radiation-damping phenomenon

8In this case, £+ can be explicitly calculated from the values of 62U (K;(x00)) for £ =3, 4.
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associated to the internal mode and obtained asymptotic stability in [41] for p > 14. While Komech-
Kopylova required a large p, the methods introduced in the present paper certainly allow the treatment
of smaller values of p (e.g., one should be able to comfortably reach p = 5: that is, a nonlocalised quintic
nonlinearity).

1.4.5. The nonlinear Klein-Gordon equation
This final example involves localised solitons. The potential

1, 1
U(p) =Uy(p) = =¢* — —— P!
(0)=Up(9) = 56" = 0
gives the 1 + 1 focusing nonlinear Klein-Gordon equations
Gp-030+¢=0¢" (1.27)
for p =2,3,4,.... These admit the soliton solution
0(x) = 0, (x) := (@ + D 2asech(ax),  a:=L(p-1). (1.28)

By assuming even symmetry, we may neglect the soliton manifold obtained under Lorentz transforma-
tions. The equation for the perturbation v (¢ = Q +v) is

1
O +H,+1)w==p(p-10P 22 +... 4P,
(07 +Hp + v =5p(p - 1Oy v (129)

H, = —6)% +Vp, Vp(x) = —pQ”_l.

It is known that H,, has a negative eigenvalue at —a(a + 2) — 1, which makes the soliton unstable.
However, besides this and the —1 eigenvalue associated to the translation invariance, H,, has no other
negative eigenvalues when p > 3 [5, 47]. Note that when p = 3, H3 coincides (up to a rescaling) with
Hj (see equation (1.18)); since the resonance is even, our results do not apply to the corresponding
continuous subsystem.

When p = 2 instead, the linearised operator H; has an odd resonance. Therefore, asymptotic stability
holds for small even solutions of the continuous subsystem

(0} + Hy + Du = P u?. (1.30)

A natural question for equation (1.27) is the construction of stable manifolds for solutions suitably
close to the soliton, and the asymptotic stability of the subclass of global solutions. For p > 5 this was
done by Krieger-Nakanishi-Schlag [43]. More recently, [47] proved a conditional asymptotic stability
result locally in the energy space for global solutions. For p < 5, the problem of full asymptotic stability
appears to be still open. A serious obstacle to the construction of a stable manifold is to prove a robust
small data scattering theory for low-power nonlinearities. While this cannot be done using Strichartz-
type estimates, which only exploit the decay of the solution, it becomes amenable to our techniques,
which take advantage of the full resonant structure. In particular, the cases p = 2,4 and 5 can be directly
approached with our methods. Note that even for p = 4 (or 5), despite the quadratic and cubic terms in
the nonlinearity being localised, one would still need to exploit oscillations in frequency space to deal
with the weak decaying quartic (or quintic) nonlinearity.

2. Ideas of the proof

The starting ingredient in our approach is the Fourier transform adapted to the Schrodinger operator
—0xx +V, the so-called distorted Fourier transform (or Weyl-Kodaira-Titchmarsh theory). The basic
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idea is to try to extend Fourier analytical techniques used to study small solutions of nonlinear equations
without potentials and develop new tools in the perturbed setting.

In the setting of the distorted Fourier transform, we begin by filtering the solution by the linear
(perturbed) group and view the (nonlinear) Duhamel’s formula as an oscillatory integral in frequency
and time. In the unperturbed case V = 0, this point of view was proposed in the works [21, 19, 22]
with the so-called ‘space-time resonance’ method; see also [28]. In the past 10 years, this proved to be
a very useful approach to studying the long-time behaviour of weakly nonlinear dispersive equations
in the Euclidean/unperturbed setting. As already mentioned in Section 1.2, the presence of a potential
introduces some fundamental differences, which lead to a number of new phenomena and difficulties.

2.1. Setup: dFT and the quadratic spectral distribution

We refer to Section 3 for a more detailed presentation of the distorted Fourier transform (dFT) and admit
for the moment the existence of generalised eigenfunctions ¢ = ¥ (x, &) such that

V £eR, (=9I + V) (x,&) =E(x, &), (2.1)

and the familiar formulas relating the Fourier transform and its inverse in dimension d = 1 hold if one
replaces (up to a constant) e!¢* by (x, £):

MGE /R Ydf@dx  and  f(x) = /R U(x, &) f(€) dé. (2.2)
Let us consider a solution of the equation
Ou+ (=0 +V(x) + Du = a(x)u?, (u,us)(t = 0) = (ug, uy).
Defining the profile g by
g(t.x) = ™VHI (9, - iVH+ )u,  3(t.€) = "€ (3, - i(&))i, 2.3)

and denoting g, = g, g- = g;, one sees that g satisfies an equation of the form

_ . o eEne)
036 == Y, ue [[@eErOg, g M St D a2
L 4o

where the oscillatory phase is given by

q)thz (f& n, O-) = <§> - (U) - L2<O->7 (25)

and
Horo (€ 0) = / (VT Wy (5. W, (. 0 e 2.6)

is what we refer to as the (quadratic) ‘nonlinear spectral distribution’ (NSD).

For the sake of exposition we will drop the signs (¢, t) from g and u since they do not play any major
role. We will instead keep the relevant signs in equation (2.5) and the analogous expressions for cubic
interactions. We also drop the factor (){o) in equation (2.4). With this simplifications, integrating
equation (2.4) over time gives

o =me-i Y, [ [ gsngeouenaddod. @

t,0ne{+,~}
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The first task is to analyse u in equation (2.6), and we immediately see an essential difference from
the flat case V = 0: in the absence of a potential, the generalised eigenfunctions ¢ (x, &) should be
replaced by e’¢~, in which case u(&,n, o) = 6(¢£ — 1 — o) —in particular, the sum of the frequencies of
the two inputs: that is, 7 and o, gives the output frequency &. This can be thought of as a ‘conservation
of momentum’ or ‘correlation’ between the frequencies. But if V # 0, the structure of y becomes more
involved, and there is no a priori relation between the frequencies. This can be seen as a ‘decorrelation’
or ‘uncertainty’ due to the presence of the potential.

For the sake of this presentation, we can essentially think that

pEma) = Y [ AuEn oIS +un+vo)
povetnl 2.8)

+ Byyv(&,n,0) me] +C(&,n,0),
where A, ., By, and C are smooth functions and ‘p.v.” stands for principal value.

The 6 component of u gives a contribution to equation (2.7) that is essentially the same as in the flat
case, only algebraically more complicated due to the different signs combinations and the coefficients
(which are related to the transmission and reflection coeflicients of the potential). One could expect to
treat these terms as in the classical flat case, that is, using a normal form transformation to eliminate the
quadratic term in favour of cubic ones [66, 11, 30].

The p.v. term in equation (2.8) seriously impacts the nature of the problem at hand. When the
variable & + un+vo that determines the singularity is very small, one could think that the corresponding
interactions are not so different from those allowed by the ¢ distribution, possibly only logarithmically
worse. When instead & + un + vo is not too small, we have in essence a smooth kernel. While this
might seem like a favourable situation, it is in fact a major complication. The decorrelation between the
input and output frequencies prevents the application of a normal form transformation (quadratic terms
cannot be eliminated); even more, it creates a genuinely nonlinear phenomenon of loss of regularity (in
Fourier space) at specific bad frequencies. We explain this in more detail in the following paragraphs.

2.2. Oscillations and resonances: Singular vs. regular terms

Let us consider the quadratic interactions in equation (2.7) and, according to equation (2.8), write them
as

t
/o // e/ Pua &N g (5, m)E(s, o) m(£,n, ) dn do ds, 29)

where m(&, i, 07) can be a distribution (i.e., a ¢ or ap.v.) or a smooth function. The properties of equation
(2.9) are dictated by the oscillations of the exponential factor and the structure of the singularities of m.
More precisely,

o fm=06(—-ugp—-vo)orm= p.v.m, resonant oscillations can be characterised as the

stationary points of the phase s®,,,,, restricted to the singular hypersurface {¢& — un — vo = 0}. Up
to changing coordinates, we can reduce to the phase

D}, (€)= (€) —u(n) — (€ —n) (2.10)

(where we added the superscript S to emphasise that we consider a singular m), for which stationary
points satisfy

@5 (&) =0,®F  (£.m) =0. 2.11)

These are the classical resonances.
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o If m is smooth, we need to look at the unrestricted stationary points of the phase
sd)f1 u = 5(&) —un) — w(o)) (where we added the superscript R to emphasise that we consider a
regular m): that is,

ok (&1m,0)=0,08 (&n,0)=0,08 (& n,0)=0. (2.12)

L n=un

This simple and natural distinction has important implications on the behaviour of equation (2.9),
hence on the solution of the nonlinear equation, which we now discuss.

2.3. Regular quadratic terms and bad frequencies

Let us first look at the case when m is smooth. The regular quadratic phase (I)f1 L& m o) =(&)—uln) -
tp{(co) leads to rather harmless interactions if (¢1¢5) # (++) since in this case, there are no solutions to

equation (2.12). For the (¢¢;) = (++) interaction, we have that
Ok = 9,08 = 9,08 =0 = (£n,0)=(xV3,0,0). (2.13)

This is a full resonance or coherent interaction and it is the source of many of the difficulties. Notice
that this sort of interaction is generic in dimension 1 in the presence of a potential, since in equation
(2.12) there are 3 variables and as many equations to solve. Obviously, a similar phenomenon would
occur already in the case V = 0 and a nonlinear term of the form a(x)u?.

Recall that the classical theory of quadratic/cubic one-dimensional dispersive problems revolves
around trying to control weighted-type norms of the form ||xg||; 2. The natural candidate in our context
is then ||0¢g|| L2 In some cases, such as equation (KG), or the more standard examples of flat cubic NLS

and cubic KG equations, one knows that a uniform-in-time bound cannot be achieved due to long-range
effects already present in the corresponding flat problem. As the next best thing, one can try to establish

0¢85z s (O (2.14)
for some small @ > 0.

Let us now explain how equation (2.14) is incompatible with the nonlinear resonance equation (2.13).
Since our assumptions will always guarantee g(0) = 0, equation (2.14) implies

3(6)] < (1)1€]'>. (2.15)
Consider then the main (++) contribution to the right-hand side of equation (2.9), namely
t
(e = [ [ b Er g mgs, a(en o) dndords, .16)

where ¢ is a smooth symbol. Up to lower-order terms,

t
908 (1,€) ~ /0 // sé—>e’*@++<f’"’“>q(g,n,a>§<s,n>§(s, o) dn dor. 2.17)

Observe that |s®.,,| < 1if |& —V3|+|n/>+|o|> < (s)~! and that in this region there are no oscillations
that can help. Thus, when q(i\@, 0,0) # 0, we are led to the following heuristic lower bound: for

161 = V3| ~ 7,

min(;t.1) 1 \i+2a
i@gQﬁ(i, §)| 2 / s - (s)m'/ In'?1o|'? dn do ds ~ min(;,t) . (2.18)
1 |

n2+|o|?<s!
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This implies that, if O l<r< (t)_l/z,

102 Q%2 vsiom 2 772> (0, (2.19)

which is inconsistent with the bootstrap hypothesis in equation (2.14). We then need to modify the
bootstrap norm to a version of |[0¢ f|;2 that is localised dyadically around +V3 and degenerates as
|£] — V3. The analysis needed to propagate such a degenerate norm turns out to be quite delicate.
A phenomenon similar to the one described above was previously observed in [14, 15] in the two-
dimensional (unperturbed) setting.

Note that in the heuristics in equation (2.19), one would get better bounds, consistent with equation
(2.15), when q(i\/g, 0,0) = 0. For the model in equation (KG2), one has q(i\/g, 0,0) # 0 when V
is nongeneric (case (E)) and a(+V3) # 0. A true degeneracy in frequency space will then occur for
these models. For equation (KG), under the assumptions (A) or (B) or (C), it is instead possible to show
that q(¢,0,0) = 0; this is connected to the discussion at the end of Remark (3) and the possibility of
simplifying the functional framework in this case.

Remark 2.1. The argument above also shows that, if g(0) # 0, then

ds
s+ 1

Qﬁmaz/?“@Hh@am@mmf
0

so that QR (1, +V/3) is logarithmically diverging if (+V3, 0, 0) # 0. This suggests that g is not uniformly
bounded, which in turn implies that the solution cannot decay pointwise at the linear rate; see equation
(1.12). In the case of equation (1.14) with localised a(x) such that a! (+V3) # 0 (and no cubic terms),
this has been rigorously proved in [55], where the authors construct global solutions that decay in LS at
the optimal rate of log #/¢. This result was then extended in [56] to the case of any nongeneric potential
with the corresponding condition a@(+V3) = 0.

Also note that g(0) # 0 will give an asymptotic of the form 0 QR (1,£) ~ |(¢) - 2|'. When
localised at the scale ||£] — V3| ~ 2¢, this gives an L2 norm of size 27¢/2. The functional framework
that we will adopt does not quite allow for such a singularity, as this would correspond to choosing
the parameter 8 = 1/2 in the definition of the norm in equation (2.30) (this is the norm in which we
will measure the derivative of our [renormalised] profile in frequency space). However, we can allow
essentially any slightly less singular behaviour; this seems to suggest that a zero-energy resonance may
be treated by our methods at least for long times.

2.4. Singular quadratic and cubic terms

Let us now consider the quadratic interactions in equation (2.7) that correspond to the first two terms in
equation (2.8). Disregarding the irrelevant signs u, v and the coefficients A, B, let us denote them by

t
Q%Z(l, &) = /0 '//ei‘@‘sl‘z(f’"’g)g(s, ng(s,o)M(E-n—o)dndods, M e {5,pv.}. (2.20)

The 6 case

The case of the ¢ distribution corresponds to the Euclidean (V = 0) quadratic Klein-Gordon, which is
not resonant (in any dimension), in the sense that for any &, € R and ¢, ¢, € {+, -}, equation (2.10)
never vanishes, and more precisely

[K€) — i (m) — (€ —n)| 2 min(&), (), (€ —n)~". (2:21)
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This implies that the quadratic interactions Q?I ,, (t,&) can be eliminated by a normal form transforma-

tion. This was first shown in the seminal work of Shatah [66] in 3d and crucially used in the 1d case in
[11] and [30].

Applying a normal form transformation to equation (2.20) gives quadratic boundary terms that we
disregard for simplicity and cubic terms when 9; hits the profile g. From equations (2.7)—(2.8), we see
that these cubic terms can be of several types depending on the various combinations of convolutions
between d, p.v. and smooth functions. Without going into the details of these (we refer the reader to
Section 5), we concentrate on the simplest interaction: that is, the ‘flat” one

C5 L, (1.6) = // ¢"Phan(ENOS (0 DB (t,E-MTn(tE—1— (1€~ ) dndl

(2.22)
with a smooth symbol cfl 1, and phase functions
(6.0 = () —nE —m) — -1 -0) — 6= 0.
We observe that if {t1, 1,13} # {+,+,—}, the equations 8, ®? ,,, = 9, @3 . = @ =0 have no

solutions, and therefore the case {t1, 12,13} = {+,+, —} is the main one. If we look at the (+ — +) phase
for simplicity, we see that, for every fixed &,

O], =0, =0;D}_,=0 = n=¢=0.

This resonance is responsible for the logarithmic phase correction appearing in equation (1.13). We refer
the reader to [39, 32, 24] where a similar phenomenon has been dealt with. We should point out, however,
that in our case, the asymptotic behaviour in equation (1.13) is slightly harder to capture because of
the degenerate weighted norm and the algebraic complications due to the treatment of potentials with
general transmission and reflection coefficients.

The p.v. case

The main observation that allows us to treat the terms Q‘f; 1, is the following: when |¢ — 5 — o| is much
smaller than the right-hand side of equation (2.21), these terms are similar to Q‘Z - When instead
|¢ —n — 0| is away from zero, the symbol in equation (2.20) is actually smooth, which gives a term like

the regular Qlfl » discussed before.

2.5. The functional framework

To measure the evolution of our solutions, we need to take into account various aspects including
pointwise decay, spatial localisation (which we measure through regularity on the distorted Fourier
side), the coherent space-time resonance phenomenon in equation (2.13) (which dictates the choice
of our L2-based norm) and long-range asymptotics. We describe our functional setting below after
introducing the necessary notation.

2.5.1. Notation
To introduce our functional framework, we first define the Littlewood-Paley frequency decomposition.

Frequency decomposition. We fix a smooth even cutoff function ¢ : R — [0, 1] supportedin [-8/5, 8/5]
and equal to 1 on [-5/4,5/4]. Note that the choice of the number 8/5 for the support of ¢ is fairly
arbitrary, and other choices are possible; however, this number is chosen to be less than V3 so that when
we define the cutoffs y, centred around +V/3 in equation (2.27), we can start the indexing at 0.
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For k € Z, we define ¢y (x) := ¢(27%x) — ¢(27%*1x), so that the family (¢ )iz forms a partition of
unity,

Do =1, £#0.

keZ

We let

er(x) = Z gr, forany TCR, ¢ca(x)=¢rwa(X), @>a(x) =@ac(x), (2.23)
kelnZ

with similar definitions for ¢4, ¢>,. We will also denote ¢, a generic smooth cutoff function that is
supported around |£| ~ 2K, for example Pk-2,k+2] OF @}
We denote by Py, k € Z, the Littlewood-Paley projections adapted to the regular Fourier transform:

Pef(é) = oe(O)F(6),  Parcf(€) = o<k (§)f(£), and soon.

We will avoid using, as a recurrent notation, the distorted analogue of these projections.
We also define the cutoff functions

(ko) /v _ | @k (E) it k> |kol.
¢k (5)_{S05Lkoj(§) it k= Lkol. @24

and

- ou(&) if ke (Lkol ki) nZ,
ekl () = 3 o1k (&) I k = Lkol, (2.25)
Ok (&) if k= k]

We are adopting the standard notation | x| to denote the largest integer smaller than x. Note that the
indexes k¢ and k; in equations (2.24)—(2.25) do not need to be integers. We also adopt the convention
that if ko = ki, then "1 = 1.

We will denote by T a positive time, and always work on an interval [0,7] for our bootstrap
estimates; see, for example, Proposition 7.1. To decompose the time integrals such as equation (2.7) for
any ¢ € [0, T] (this is first done in equation (8.12) and then systematically throughout Sections 8—11), we
will use a suitable decomposition of the indicator function 1| ;] by fixing functions 7o, 7y, -+ , Tz41 :
R — [0, 1], for an integer L with |L —log, (¢ + 2)| < 2, with the properties that

L+1

D tu(s) =1j04y(s),  supp () € [0,2],  supp (rr.41) < [.1],
n=0

and supp (7,) € [2"71,2"), |7i(s)| <27, for n=1,...,L.

(2.26)

In all our arguments, we also will often restrict to n > 1, as the contribution for n = 0 is always trivial
to handle.
In light of the coherent phenomenon explained in Section 2.3, we also need cutoff functions
Xey3(2) =@e(lzl = V3), £eZn(-,0], (2.27)
which localise around +V3 at a scale ~ 2¢. In analogy with equations (2.23) and (2.24), we also define

Xoy3(@ =2 =V3), x; 5(2) = ¢p(lzl = V3). (2.28)
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More notation.

For any k € Z, let k* := max(k,0) and k™ := min(k, 0).

We denote as 14 the characteristic function of a set A C R and let 1.. be the characteristic function
of {+xx > 0}.

We use a < b when a < Cb for some absolute constant C > 0 independent on a and b. a = b
means that a < b and b < a. When a and b are expressions depending on variables or parameters, the
inequalities are assumed to hold uniformly over these.

Given ¢ € R, we will use the notation c+ to denote a number d larger than ¢ but that can be chosen
arbitrarily close to it. Similarly, we will use c— for a number smaller than c that can be chosen arbitrarily
close to it; see, for example, equation (6.9). We will sometimes use this convention also with ¢ = oo to
denote an arbitrarily large number (see, for example, equation (6.27)).

We will denote by min(xy, x, ... ), respectively max(xy, xp, . .. ), the minimum, respectively maxi-
mum, over the set {xp, xp, . .. }. We will also denote by min; (xy, X2, . . . ), respectively max, (xy, x2, . .. ),
the second smallest, respectively second largest, element in the set {x,x,,...}. We are also using
med(xy, x7,x3) for max;(xy,x2, x3); see, for example, equation (5.60) or equation (8.76).

We denote by

Az T —tx{-‘
f=Ff) = \/E/ f(x)dx (2.29)

the standard Fourier transform of f.
We use the standard notation for Lebesgue LP spaces and for Sobolev spaces WP and H* = W*-2,

2.5.2. Norms
For T > 0, we let Wr be the space given by the norm
I2llw, =sup  sup ”X ) () b1 ) ose || 25027, (2.30)
n>0¢ezZn[|-yn],0] L:ch

where® 7, here denotes a partition of unity as in equation (2.26) with T in place of ¢, and where the
parameters 0 < @, 8,y < 5 satlsfy

’ ﬂ, ’ ’ 1 ’ l
<a <=, <1, == -4, == —. 2.31
VB <a<=, B B=5-8 vi=5-7 (2.31)
B’ is a fixed constant that needs to be chosen small enough to satisfy various inequalities that we will
impose in the course of the proof. Note that we automatically have y < 1/2 and that one possible way
to impose all of the conditions in equation (2.31) is to choose « sufficiently small and

B =2a+2a% v =2a+a’.

Let us briefly explain the choice of the norm and parameters:

e The norm in equation (2.30) will be used to measure our solution on the Fourier side. More
precisely, we will show that [[(£)0¢ f ||WT &0, where f is a renormalised version of the profile g in
equation (1.6). As already pointed out, measuring d¢ on the Fourier side is akin to measuring a
weighted norm in real space.

e The quantity 2¢ measures the distance from +V3 starting at smallest scale 27", where 2" ~ || and
the norm is penalised by the factor 2#¢. The additional penalization of 2~ is added globally to take
into account long-range effects that are present at every frequency.

9We are using the same notation from equation (2.26) for time cutoffs to avoid introducing an additional notation, but in the
definition in equation (2.30), we do not need regularity assumptions on the 7,,, but just that they are a partition of unity.
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o To make sure that localisation and derivation in the Wr norm commute (under the hypothesis that f
is uniformly bounded), one needs 8’y < a.

~-1

e In order to deduce from a bound on the Wz norm (together with a bound on the 7  (£)™3/2L>) the
necessary linear decay estimate at the optimal rate of (r)~'/2, we need @ + By < 1/4; see Proposition
3.11. Since

a+PBy=a+1/4-By -p'/2,

it suffices to impose B’ > 2a.

2.6. The main bootstrap and proof of Theorem 1.1

For T > 0, consider a local solution u € C([0,T], H>(R)) n C'([0,T], H*(R)) of equation (KG)
constructed by standard methods. Our proof is based on showing an a priori estimate for the following
norm:

llullx, = S[up : [<t>_p°||(VH+ Lty ur) (0)|[ s + ) P10, 00)u@ |, 0<po<a. (2.32)
te[0,T

Under the initial smallness condition in equation (1.3), we will assume the a priori bound
lullx, < e, (2.33)
and show that this implies
lullx, < Ceo+Cef, (2.34)

for some absolute constant C > 0. Picking &¢ sufficiently small and using a standard bootstrap argument
with 1 = 2Cg, equation (2.34) gives global existence of solutions that are small in the space X,. Also,
using time reversibility, we obtain solutions for all times.

The structure of the paper and the proof of Theorem 1.1, with details on how the main bootstrap
equation (2.34) will be proved, are described below.

2.7. Structure of the paper and the proof of Theorem 1.1

In this subsection, we discuss the organization of the paper, describe the overall structure of the proof,
and give more details about the various estimates needed to show equation (2.34), under the a priori
assumption in equation (2.33).

e Section 3 contains an exposition of the elements of the scattering theory for Schrodinger operators
H = —('))% + V on R, which we will need.

After introducing the Jost functions f. (see equation (3.1)) and the transmission and reflection
coefficients 7 and R. (see equations (3.7) and (3.13)), we define the distorted Fourier transform
(dFT) as in equation (2.2) (see equation (3.21)), with the ‘distorted’ (or generalised) exponentials (or
eigenfunctions) ¥ (x, &) given by equation (3.19).

Some basic properties of the dFT are discussed in Section 3.2.1. Then the ¢ (x, &) are analysed in
detail in Section 3.3 and decomposed into a singular and a regular part. The singular part behaves at
spatial infinity like linear combinations of (standard) complex exponentials, while the regular part is
fast decaying. This decomposition is also at the heart of the decomposition of the nonlinear spectral
distribution u defined in equation (2.6).

In Section 3.4, we prove the first nontrivial result involving the dFT: that is, the estimate for
the linear flow e/ VH+1 = ¢i1(D) (see the notation for Fourier multipliers in Section 3.2.2) given in
equation (3.32), which involves the degenerate norm W7 . This estimate shows that sharp LS decay
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(i.e., at the rate of 7~'/?) for the evolution ¢’ VH* 1i(z) of a (time-dependent) profile & on an interval
[0, T], follows from controlling the norms

K2Rl <€ 1€l < C, sup (()PIEY Rll2) < €, (2.35)

sup

t€l0,T] t€[0,T]
where Wr is the norm defined in equation (2.30), with the restriction on the parameters in equation
(2.31), po sufficiently small, and C an absolute constant independent of 7. As it turns out, we cannot
control the norms in equation (2.35) for the profile associated to the solution u and infer the bound for
the LY norm in equation (2.32) from this. Instead, we need to take a longer route and estimate norms
as in equation (2.35) for a renormalised profile, which is defined in Section 5; see equation (5.53).

e Before moving on to the analysis of the nonlinear time evolution, we study more precisely the
nonlinear spectral measure in Section 4.

The main Proposition 4.1 describes the precise structure of the NSD u (see equation (2.6)); for
lighter notation, we omit the indexes ¢, ¢, here. The main goal is to decompose u into a ‘singular’
and a ‘regular’ part.

The singular part, denoted 5, is a linear combination of & and p.v. distributions, as anticipated
in equation (2.8); the precise definition is given by equations (4.2)—(4.3), with formulas for the
coefficients given in equations (4.4)—(4.5). Notice that these coefficients may not be smooth at £ = 0
(e.g., in the generic case). As is apparent, handling formulas involving these coefficients requires
quite a lot of somewhat tedious bookkeeping; however, this is necessary for two main reasons: first,
we need the exact expressions to calculate the final asymptotics for the solution of equation (KG); and
second, we will need to check some smoothness properties for the multipliers of the trilinear terms
that will appear after a normal form transformation and involve these coefficients.

The regular part of the NSD, denoted ,uR, is defined in equation (4.6) with equation (4.7), and it is
essentially a smooth function of the three frequencies (£, 7, o) up to possible jump singularities on
the axes. The mapping properties of the associated bilinear operator are established in Section 4.2,
with equation (4.29) showing that it essentially behaves like multiplication by a localised function.

e In Section 5, we begin the analysis of the time evolution by defining the profile associated to u as

g ="V (5, —iVH + Du; (2.36)

see equations (5.5) and (5.2). From the main equation (KG), we write the nonlinear evolution for g
as in equations (5.7)—(5.8) (which is the same as the formula in equation (2.4)).

Using the decomposition of u = % + u®, we would like to decompose accordingly the quadratic
terms in the formula for d,g into singular terms and regular terms. However, as briefly mentioned
in equation (2.4), because of the presence of the p.v. term coming from x5, we cannot do this
decomposition directly. We instead need a further distinction within the terms containing the p.v.
into ‘truly’ singular terms, where the p.v. is restricted close to its singularity, and more regular ones
that are supported away from the singularity. This is the role of the cutoff ¢* defined in equation
(5.12) and appearing in equation (5.11). The singular terms are then defined according to equations
(5.10)—(5.11). The precise choice of ¢* is made so that, on its support, we can derive lower bounds
for the oscillating phases @ in equation (5.8).

The main motivation for the splitting

a8 =Q%+Q~,
as done in Section 5.2, is that the singular quadratic terms resemble the quadratic terms that one would
get for a flat (V = 0) quadratic KG equation. In particular, the oscillating phases are lower bounded

on the support of Q3 as established in Lemma 5.2; then we can apply a normal form transformation
to recast these terms into cubic ones.
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The algebra for the normal form step is carried out in Section 5.4. Starting from the simple identity
in equation (5.27), we naturally define the bilinear normal form transformation™ T in equation
(5.29), which arises from the boundary terms in the time-integration by parts. More precisely (but
still omitting the various sums over the signs such as ¢; and t;) we have

/0 S ds = FT (5. 8)(1) - FT(5.8)(0) + /0 Bi(s) + Ba(s) ds 237)

where the bulk terms B and B, are the expressions defined in equations (5.34) and (5.35) and are
cubic in g. The only quadratic terms left are then the QF terms that include the contribution from
uR, and the p.v. part restricted outside the support of ¢*.

In Section 5.5, respectively, Section 5.6, we analyse the leading order symbol b', respectively, the
lower-order symbol b2, of the bulk term By, respectively, B, above. These are somewhat complicated
expressions since they involve the symbol equation (5.11) and its variant without the cutoff ¢* and
therefore combinations of the (nonsmooth) coefficients in equation (4.4). The leading order symbol
is made by the convolution of ¢ and p.v.-type distributions; see equations (5.36)—(5.38). For the
later nonlinear analysis, we need to make sure that this symbol is nice enough so that the associated
trilinear operators satisfy Holder type bounds. An important technical point then is the verification of
the smoothness with respect to variable in which the convolution is performed; this is done in Section
5.5.1.In Section 5.5.2, we then calculate precisely the top order (singular ¢ and p.v.-type) contribution
from b': that is, the symbol ¢’ in equation (5.46); the associated trilinear operator will be denoted by
C5. Other contributions from b! and the symbol b? are analysed in Section 5.6; the associated trilinear
operator will be denoted by CR. The mapping properties of these trilinear operators are analysed in
Section 6.

In the last Section 5.7, we finally arrive at the definition in equation (5.53) of the renormalised

profile
f=8-T(.9). (2.38)

We see that f satisfies an equation where the only quadratic terms are regular ones, and the cubic
terms are those analysed in the previous subsections. Equation (5.55) for fis the starting point for the
nonlinear analysis, and we record it here for ease of reference in a slightly simplified form (omitting
the easier regular cubic terms; see equations (5.59)—(5.60))

& f=0R(g.8) +C5(g.8.8); (2.39)

see the definitions in equations (5.56)—(5.57).

The heart of the proof of the bootstrap equation (2.34) is another bootstrap argument for the
renormalised profile f involving the norms in equation (2.35) and is based on (a renormalisation of)
equation (2.39). See the description of the contents of Section 7 below.

e Section 6 contains bilinear and trilinear estimates for the various operators appearing in our problem.
Here we need to analyse different types of pseudo-product operators, from the standard bilinear ones
(equation (6.1)) to trilinear ones involving a p.v. (equation (6.5)). Bounds for general bilinear and
trilinear operators of the types that appear in our proof are established in Lemmas 6.5 and 6.7, and
basic criteria to check the assumptions in these lemmas are also given.

In Section 6.3, we analyse in detail the normal form operator 7 and establish, in Lemma 6.10, that
it satisfies Holder-type bounds with a gain of regularity on the inputs.

The other main results in this Section are Lemma 6.1 1, which gives improved Holder-type inequal-
ities for the smooth bilinear operator QR and Lemma 6.13, which gives sharp Holder-type bounds
with some gain of regularity for the singular cubic terms C5.

10This is the bilinear operator that we denoted by B in Theorem 1.1 to avoid confusion with the reflection coefficient there.
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o In Section 7, we set up the proof of the main bootstrap bound in equation (2.34). As mentioned above,
these estimates will mostly involve the renormalised profile f, but we first need to relate the desired
bounds for g (and u, as stated in equations (1.4)—(1.5)) to the necessary bounds on f. Here is how we
proceed.

With g as in equation (1.3), we let &, > &1 > &¢. Proposition 7.1 gives an a priori bootstrap on
g for the norms

sup. (077K O + 0Pl P OIW D (2.40)

where W is the adjoint of the wave operator defined in equation (3.24); we assume that equation
(2.40) is bounded by 2&, and claim that it can bounded by &;. Proposition 7.2 instead gives the main
bootstrap for the following norms of f

up |01 T2 + 16610 Flly, + 1O F D)l | (241)

assuming that equation (2.41) is bounded by 2¢, we claim that it can be bounded by &;. Note that
we are assuming much stronger information on f than on g.

Section 7.1 is dedicated to showing how the a priori bound on equation (2.41) by 2g; can be used
to close the claimed bootstrap for the norms in equation (2.40). This is not too hard to do using the
relation g = f + T(g, g) (see equation (2.38)), the bilinear bounds on the T operator established in
Section 6.3 and the linear estimate in equation (3.32).

Note that once we have proven a bound for equation (2.40) by &, = Cg(, we can immediately deduce
the Sobolev bound in equation (1.5) from equation (2.36) and the boundedness of wave operators
(Theorem 3.10). The decay bound in equation (1.4) does not follow directly from the L® bound in
equation (2.40) (because wave operators may be unbounded on L*), and it is proved separately in
equation (7.9). The weighted bound in equation (1.7) is proved in Lemma 7.6. Since equations (1.4)—
(1.7) follow from the bound on equation (2.40), the proof of the main theorem has been reduced
to proving the bootstrap Proposition 7.2. As part of the arguments needed to prove these bootstrap
estimates on f, we will also establish its asymptotic behaviour; see equation (1.13) (and Section 10).
The rest of Section 7 prepares for later analysis and the proof of Proposition 7.2. Section 7.2 contains
some preliminary bounds on f that follow from the a priori bound on the norms in equation (2.41)
(Lemma 7.5). Then, in Section 7.3, using equation (2.38), we rewrite the equation for f (see equation

(2.39)) as

~ ~ t t

F-Fo = [ o" s pds+ [ Sspdse+rw), )
where the ‘...  denotes other cubic and quartic terms in f and Rs denote terms that have a higher

degree of homogeneity in f and g and can be treated as remainders. We actually use expansions at
different orders depending on which norm we are trying to estimate.

To close the bootstrap for f, we then need to estimate the terms on the right-hand side of equation
(2.42). Lemmas 7.8 and 7.9 give, among other things, suitable bounds on the remainders R, in all the
norms in equation (2.41).

In Section 7.4, for the convenience of the reader, we summarise the bounds obtained thus far and
list all the bounds that are left to prove.

e Sections 8 and 9 constitute the heart of the paper and the more technical part of the analysis. The goal of
these two sections is to carry out the main parts of the estimates for the weighted L norm in equation
(2.30) of the regular quadratic terms, QR (f, f), and of the singular cubic terms, C3(f, f, f).The
desired weighted bound for QR (f, f) is equation (8.1) in Proposition §.1. Section 8 is then entirely
dedicated to proving this key bound when the interactions are restricted to the main resonant ones:
that is, (n,07) = (0,0) — & = +1/3 (see the notation used in equations (8.8) and (8.2)).
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Sections 8.1-8.3 give some preliminary bounds and reductions. We first take care of frequencies
¢ that are very close to +v/3 and reduce the desired bound to showing equation (8.35) with equation
(8.36) for the localised operator'! (¢, &) defined in equation (8.32); these reductions are summarised
in Lemma 8.4.

Note that the estimate in equation (8.32) involves localisation in the size of the input variables |7]
and ||, in the distance ||¢|— V3], in the size of the oscillating phase |®|, and in the integrated time s, at
dyadic scales with respective parameters k1, ko, £, p and m. These localisations allow us to distinguish
various cases and to exploit the oscillations efficiently in either frequency space or time depending
on the relative size of the quantities involved. The estimates are split into four main regions, as
described in equation (8.48), and treating each of these regions occupies one of the Sections 8.4-8.7.
We remark that a useful quantity is the one defined in equation (8.17), which incorporates some
improved decay properties of the solution (for small frequencies).

e In Section 9, we estimate the weighted L? norm for the singular cubic terms C5 (£, f, f) of the form
in equation (2.22) (see equation (5.57) with equation (5.406) for the precise definition), focusing on
the case of the main resonant interactions J_r(\/§, \/§, \/§) — +V3.1In particular, we achieve the main
step in the proof of Proposition 9.1, which deals with the interactions of the type (+ — +), where the
signs correspond to the signs of the oscillating factors in the cubic phases in equation (5.57).

Section 9.2 treats the terms that involve a ¢ factor, while Section 9.3 treats those with a p.v.
(recall the form of the cubic symbols in equation (5.46)). Once again, we need to distinguish
various cases depending on the distance of the input and output variables from the bad frequency
V3, relative to time and the size of their differences (see, for example, the dyadic localisations
in equation (9.16)).

e With Sections 8 and 9, we have taken care of estimating the weighted norm for the leading-order

terms on the right-hand side of equation (2.42) in the case of the main resonant interactions. All of
the other nonresonant interactions are estimated in Section 11.
Section 10 contains the main part of the proof for the control of the Fourier-L® norm in equation
(2.41): that is, the proof of Proposition 10.1, which gives asymptotics for the singular cubic terms
cs (see equation (10.2), where the Hamiltonian function is given in equation (10.27)). From this,
we can then derive an asymptotic ODE for f and thus the asymptotic behaviour of the solution as
in equation (10.4) (see equation (1.13)).

Section 10.1 provides first a formal computation for the asymptotics, based on the stationary
phase lemma. Section 10.2 utilises these computations to give the exact structure of the long-range
asymptotics and the form of the Hamiltonian H appearing in the statement of Proposition 10.1).
Rigorous bounds are then proved in equation (10.3).

e Section |1 contains the estimates needed to control all the contributions from the nonlinear terms on
the right-hand side of equation (2.42) that have not been dealt with in Sections 7—10, since they are
lower-order compared to the main ones. We refer the reader to the first paragraph of Section 11 for
a list of the estimates that are carried out there and the details on how they complete the proofs of
the main propositions stated in the previous sections.

The estimates of Section 11 complete the bootstrap on the norm in equation (2.4 1).

o Finally, Appendix A contains a verification of the spectral assumptions needed to apply our results

to the double sine-Gordon model in equation (1.22) and obtain Corollary 1.6.

3. Spectral theory and distorted Fourier transform in 1d

We develop in this section the spectral and scattering theory of

H=-3*+V,

1'We continue to adopt our convention of omitting the various indexes in this discussion.
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assuming that V € S and that H only has a continuous spectrum. We state the results that are needed for
the nonlinear problem that interests us here and sketch the important proofs.

This theory is due to Weyl, Kodaira and Titchmarsh (who also considered more general Sturm-
Liouville problems). Complete expositions can be found in [18] and [77]; we mention in particular
Yafaev [73, Chapter 5], where the operator H is considered and direct proofs are given.

3.1. Linear scattering theory

3.1.1. Jost solutions
Define fi(x,¢) and f_(x, &) by the requirements that

(-02+V)fy =£f., forallx,£€R, and {}ﬁi:io J {}E)Exg)g )—_efexj | : 0 . 3.1)
Define further
me(x,€) = e fi(x.£) and m_(x,€) = f(x.8), (3.2)
so that m.. is a solution of
8)%mi +2ié0,my = Vmy, mx(x,&) — 1 asx — oo, (3.3)
The functions m.. satisfy symbol type bounds for +x > 0, as stated in the following lemma.
Lemma 3.1. For all nonnegative integers «, 3, N,
0005 (mo(x,€) = D] < ) ™N(E)F, ex 21, (3.4)
|02 9% (m(x,6) = D] < () F(e) P, ax <1, 3.5)

The estimates in equations (3.4)—(3.5) can be obtained from the integral form of equation (3.3)

ma(rg) =1+ / De(y - V() ma(y, &) dy,

&)= 1+ [ Dele=pVOm (.6 ay, (3.6)
where
eZifz -1
D‘f’:(Z) = T

Since the proof is fairly standard, we skip the details and refer the reader to [12, Appendix A].

3.1.2. Transmission and reflection coefficients

A classical reference for the formulas that we recall here is [10] (see also [76], [73], for example).
Denote as T'(¢) and R. (&), respectively, the transmission and reflection coefficients associated to the
potential V. These coefficients are such that

R_(£)

1
filx, &) = mf—()ﬁ &)+ (&) f-(x,6),
1 R, (&)
f-(x, €)= Yl_(gf)f+(x’ =€)+ T_—(g)ﬂ(?f, ), 3.7
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or, equivalently,

1 iéEx R—(‘f) —i&x
fi(x, &) ~ me + —T+(§) e

I e Re(@) e
O - rmme e

as x — —oo,

as x — 09,

In the equalities above, T, and 7- do a priori differ; however, since the Wronskian

W(E) =W(fe(&), f-(£).,  W(f.8)=fs-f¢ (3-8)

is independent of the point x, where it is computed for solutions of equation (3.1), one sees (taking
x — xoo0) that 7, =7_ =T and

W) = Tz(lg) (3.9)
Since f.(x,&) = fu(x, =€), we obtain furthermore that
T(€)=T(-£) and  R.(§) = Ru(-§). (3.10)
Finally, computing W(£(£), f-(€)), W(f+(€), f+(=£)), W(f-(£), f-(=£)) at x = %00 gives
R:(OP+IT@P =1, and TR () +R(T(E) =0, (3.11)
As a consequence, the scattering matrix associated to the potential V is unitary:
s@= () e ) 5@ ( RT(_(?) %) . (3.12)

Starting from the integral formula in equation (3.6) giving m., letting x — Foo and relating it to the
definition of 7 and R.. gives

_ 2i¢
Ha_2@—fwmmﬂxaﬂ7
[ eV (x)m=(x, &) d G
erets xX)m=z(x, X
Ri(é:) =

2i6 = [V(X)me(x, &) dx
These formulas are only valid for ¢ # 0 a priori. But a moment of reflection shows that 7 and R.. can
be extended to be smooth functions on the whole real line. Combining these formulas with Lemma 3.1

gives the following lemma.

Lemma 3.2. Let T and R.. be defined as in equation (3.13). Then under our assumptions on 'V, for any
B and N, we have

02T (@) -1 < €)', 10RO s @)V, (3.14)
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3.1.3. Generic and exceptional potentials
We call the potential V

e generic if/ V(x)m+(x,0)dx #0
e exceptional if/ V(x)m+(x,0)dx =0
e very exceptional if/ V(x)ms(x,0) dx = /xV(x)mi(x, 0)dx=0

Lemma 3.3. The following four assertions are equivalent:

(i) Vs generic.
(i) T(0) =0,R.(0) = -1.
(>iii)) W(0) # 0.
(iv) The potential V does not have a resonance at ¢ = 0; in other words, there does not exist a bounded
nontrivial solution in the kernel of —0> +V.

Checking the equivalence of these assertions is easy based on the formulas in equation (3.13).
Proposition 3.4 (Low-energy scattering). If V is generic, there exists @ € iR such that
T(¢) = af +0(£). (3.15)
If Vis exceptional, let

a:= fi(=00,0) e R\ {0}.

Then
2a 1-a? a’>-1
T0)=——, R,(0) = ——, d R_(0) = . 3.16
O)=175 +(0) =15 an 0)=71—77 (3.16)
Proof. In the generic case, observe that
2i
T(¢) = +0(&Y),
Sy TR AL
hence the desired result since m. (-, 0) is real-valued.
We now turn to the exceptional case. Denoting
b= / V(x)0gmy(x,0)dx, and ci= / V(x)xms(x,0) dx,
T(0) and R.(0) can, thanks to equation (3.13), be expressed as
2i b ¥ 2ics
T0)=—, R:(0) = ——. 3.17
© 2i-b =(0) 2i—b 317)

It remains to determine the values of b and c.. In order to determine c., recall the integral equation
(3.6) satisfied by m., and let ¢ — 0 and x — —oo in that formula. Taking advantage of the condition
f V(y)m+(y,0) dy = 0, we observe that

a=my(—00,0) =1 +/ooyV(y)m+(y,O) dy=1+c,. (3.18)

—00

Similarly, we find % =1-c_.
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Turning to b, we first claim that it is purely imaginary. Indeed, differentiating equation (3.3), setting
¢ = 0 and taking the real part, we obtain that

Re [(9F — V)dem.(x,0)] =

Since dgm4(x,0) — 0 as x — oo, we deduce that Redgm, = 0. Using this fact and plugging the
formulas in equation (3.17) into the identity |T(0)|*> + |[R_(0)|*> = 1, we find

The formulas giving b and ¢ in terms of a now lead to the desired formulas for 7/(0) and R(0). O

Remark 3.5. From equation (3.18), we see that in the very exceptional case (see the definition before
Lemma 3.3), we have a = 1, and therefore 7(0) = 1 and R.(0) = 0. Also, notice that a = 1 in the
exceptional case when the zero-energy resonance is even. When instead it is odd, we have a = —1, and
therefore 7(0) = —1 and R.(0) =

3.1.4. Resolvent and spectral projection
If ImA # 0, the resolvent of H is defined by Ry (1) = (H —A71)71,

Assuming first that Re(1) > 0 and ImA > 0, we let £ +in = VA, with &, 17 > 0. Then f..(€ +in) can
be defined through natural extensions of the above definition, and the resolvent Ry (1) is given by the
kernel

Ry () (x,y) = - [f+(max(x,y),& +in) f-(min(x, y), & +in)].

1
W(& +in)

Letting ImA — 0 (and still with the convention that & > 0),

Ry (£2+i0) = ——— fi(max(x, y), £) f-(min(x, y), £).

W(f)

Similarly,

2 ey . _
Ry (§7-i0) = - W g)f+(maX(x :y), =€) f~(min(x, y), =£).

By Stone’s formula, the spectral measure associated to H is, for 4 > 0,
1
E(d) = [RV (1+41i0) — Ry (1 —1i0)]dA

The formulas above for Ry (A +i0) lead to

LTV

E(d)(x,y) = i

L VD £ (3 V) + £ V) £ (3, V) 1.

3.2. Distorted Fourier transform

3.2.1. Definition and first properties
We adopt the following normalisation for the (flat) Fourier transform on the line

Fo@) = 5(6) = v% / X (x) d.
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As is well-known,

-1 1 . —~
F ¢=—— [ ¢(&)dé=TF ¢,
¢ m/e ¢(&) d& ¢

and F is an isometry on L*(R).
We now define the wave functions associated to H:

T(&) fi(x,8) foré >0
by = (3.19)
Vax T(=&)f-(x,=¢) for & < 0.

Once again, this definition a priori only makes sense for & # 0, but it can be extended by continuity to
& = 0. It follows from the estimates on T and f, that for any @, 8 and ¢ # 0,

0095w (x, )] < (XY (€)”. (3.20)
The distorted Fourier transform is then defined by

Fo(6) = §(é) = fR VD) dv. (3.21)

Proposition 3.6 (Mapping properties of the distorted Fourier transform). With F defined in equation
(3.21),

@) Fisa unitary operator from L? onto L*. In particular, its inverse is
~—1 ~x
Flot =F o = [wiree e

(ii) F maps L' (R) to functions in L™ (R) that are continuous at every point except 0 and converge to
0 at +oo.

(iii) F maps the Sobolev space H*(R) onto the weighted space L% ((£)* d¢).

(iv) If f is continuous at zero, then for any integer s > 0,

K€Y D Fll> < 11 Ners + 116x) fllers

Proof. As in other parts of this section, we follow Yafaev [73, Chap. 5].
(i) To see that F is an isometry, we use the Stone formula derived in the previous subsection to write,
for any functions g, h € L2 (recall that E is the spectral measure associated to H),

(g.h) = / E(dgTh

1 2 — —
- [ e NV + £ VD N e ay s

Changing the integration variable to & = V2, this is

I ) =
aw fo ] @ (£ OTT 8 5. T s s de = @
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To see that the range of Fis L2, we argue by contradiction. If this was not the case, there would exist
g € L? not zero such that, for any f € Cy and any 0 < Ry < Ry,

(g, FE(IRG, RIS =0.
Using the spectral theorem representation and the intertwining identity FH = kz.i", we deduce that

FERZ R ] (&) = (1_ry,—ro1 (€) + 1[Ro. 11 (€)) F(£).

Therefore, for any f € C;’,

— Ry _
0= (g. FE([R2 R2])S) = /R / [0(x. )8 (&) + v (x. &) g(~&)| F ) dx dé.

This implies that

R,
/ [0/ (5, £)g(&) + ¥ (x. ~E)g(~€)| dé = 0.

Ro

Since Ry, R are arbitrary, we deduce ¢ (x, &)g (&) + ¥ (x,—&)g(=¢) =0, a.e. &. Since x — Y (x, &) and
x — ¥ (x, —¢) are independent functions (nonvanishing Wronskian), this implies g = 0.

(ii) is a consequence of equation (3.20) and the Riemann-Lebesgue lemma.

(ii7) is a consequence of Theorem 3.10 below.

(iv) Focusing on x > 0 (through a smooth cutoff function y,) and & > 0, the distorted Fourier
transform can be written as a pseudodifferential operator

Fliaf] ©) = / a(x, £)e ¥ F(x) dx

with symbol

a(r.€) = \/%T(f)nu(x, 3

Taking a derivative in &,

e F Lis f1 (&) = / dea(x, £)e ™ f(x) dx + / a(x. £)e ¥ (=ix) £ (x) di.

From the bounds in equations (3.4) and (3.14), along with a classical theorem on the boundedness
of pseudo-differential operators, the statement (iv) follows for s = 0. If s € N, it suffices to multiply
the above by (£)® and integrate by parts in x in the integrals. We only discussed the case of positive
frequencies, but the case of negative frequencies is identical. It remains to check that no singularity
arises at £ = 0 when applying & > 0, which is ensured by the assumption that f is continuous. O

Lemma 3.7. If the potential V is even, then the distorted Fourier transform preserves evenness and
oddness.

Proof. Observe that when V is even, we have the relation f, (x, &) = f-(—x, &) between the generalised
eigenfunctions in equation (3.1), by uniqueness of solutions for the ODE. From this and the definition
in equation (3.19), we see that ¥ (x, &) = ¥ (—x, —&). The preservation of parity for the distorted Fourier
transform then follows directly from the definition in equation (3.21). o
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__As appears in Proposition 3.6, one of the main differences between the mapping properties of Fand
F has to do with zero frequency. Since the zero frequency furthermore plays a key role in the nonlinear
analysis developed in the present paper, we investigate this question a bit more.

e If V is generic, then ¢ (x, 0) = 0 and f(0) = 0 if f € L'. Furthermore, assuming better integrability
properties at oo,

i€ >0, ﬂa=—%%j}unuxmw+0@%

_ ag (3.22)
ite <0 ) == [ rrwod 0@,
Var
where a was defined in equation (3.15). Thus, fis typically continuous but not continuously
differentiable at zero.
o If V is exceptional, then
2a 1
V2r g (x,04) = ~fe(x,0),  and  V2my(x,0-) = —U(x,04),
a
where a was defined in Proposition 3.4. Therefore, if f € L,
—~ 1~
fm>—1+2¢_/}uwmxmw ad 0= 1708, (2

As a consequence, fis continuous if @ = 1 but might not be otherwise.

3.2.2. Fourier multipliers
Given m a function on the real line, the flat and distorted Fourier multipliers are defined by

m(D)=F 'm@&)F
m(D) = F m(&)F.

Denoting Hy and H for the flat and perturbed Schrodinger operators
Hy=-02, H=-3*+V,

these operators are diagonalised by Fand F, giving the functional calculus

f(Ho) = F fEDF
f(H) =F DT

In particular,
tVI+Hy _ eit(D)

and tVI+H _ eit<D>.

Lemma 3.8. Assume that fis real-valued and that m is even and real-valued. Then m (D) [ is real-valued.

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2022.9

Forum of Mathematics, Pi 35

Proof. This follows from the simple observation that f is real-valued if and only if

T(&)F(£) = ~T(~E)R.(E)F(€) + F(~€) for & >0
T(=€)f (&) = ~T(E)R_(=€) f(£) + f(=€) for & < 0.

O
3.2.3. The wave operator
The wave operator W is given by
W = s-lim;_,o0 €/ 71 H0
Proposition 3.9. The wave operator is unitary on L* and given by
w=FF

As a consequence,

wl=w=FF (3.24)

and the wave operator intertwines H and Hy:
f(H) =Wf(H)W".

Proof. In order to prove the desired formula for the wave operator, it suffices to check that, for any
fel?,

itH —itHy ¢ _ j_——lj_— H 0.
e'e f f 5 —
By the functional calculus, this is equivalent to

7l -7 e | o

By unitarity, it suffices to check the above for a dense subset of f, and thus we might assume f € Cj’. By
symmetry between positive and negative frequencies, we can furthermore assume that Supp f c (0, c0).
Therefore, matters reduce to proving that

— 0.
L%

/ e EE) (1 _T(&)m(x, ) f(£) dé

0

To see that the above is true, we split the function whose L? norm we want to estimate into
/ SN (x)(1 = T(E)m.(x, ) (€) dé ~ / ¢ CXEHEN_ (R (E)m_(x,€) f (£) dé
0 0

. / S CEHEN Y () (1 = m_(x, &) (&) dé
0
=1+11+III.

The terms I and /1 have nonstationary phases, from which it follows that they converge to zero as ¢t — co.
As for 111, it goes to zero pointwise by the stationary phase lemma and is uniformly (in #) bounded by
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a decaying function of x, as follows from the estimates on m_; therefore, it goes to zero in L? by the
dominated convergence theorem. O

Finally, the following theorem gives the boundedness of the wave operators on Sobolev spaces.

Theorem 3.10 (Weder [75]). W and W* extend to bounded operators on W*P(R) for any k and
1 < p < oo. Furthermore, in the exceptional case, if fi(—0,0) = 1, this remains true if p = 1 or co.

3.2.4. What if discrete spectrum is present?
The above discussion relied on the assumption that

L2, =P, L* =17

where we denoted P, the projector on the absolutely continuous spectrum of H. Since we are assuming
V € S, we can exclude singularly continuous spectrum as well as embedded discrete spectrum, but there
might be a finite number of negative eigenvalues Ay < --- < A < 0 with corresponding eigenfunctions
@1,-..,0n; see [10]. Then all the statements made above require small adaptations. Indeed, F is zero
on ¢, for all j and unitary from L2 to L*. Thus,

‘.7:"..7'::1 =1d;» and .7-:17-"= P,..

3.3. Decomposition of ¥ (x, &)

Let p be an even, smooth, nonnegative function equal to 0 outside of B(0,2) and such that / p=1
Define y. by
X
o) =Hrp= [ pOrdy and e+ = 1. (3:29)

—00

where H is the Heaviside function, H = 1.. Notice that

X+(x) = x-(=x).

With y. as above, and using the definition of ¢ in equation (3.19) and f. and m. in equations
(3.1)—~(3.2), as well as the identity in equation (3.7), we can write

for ¢>0  V2ry(x,€) = o ()T (E)my(x, £)e™¢

. . (3.26)
+ - (1) [m-(x, ~£)e"** + R_(&)m_(x, £)e 7],
and
for £<0  V2my(x,€) = x- ()T (=)m-(x, -§)e'™¢ 327
X () [ (3, £) €7 + Ry (=E)m (x, =§)e €], '
We then decompose
Vary (x,€) = 45 (x, ) +y R (x.6), (3.28)
where, on the one hand, the singular part (nondecaying in x) is
for >0  Y3(x&) = e (NT(E)e'*™ + x-(x) ("X + R_(£)e ™), (3.20)

for £€<0  YS(x,&) = xo(OT(=E)e"*™ + yu(x) (€ + Ry(—€)e™'¢7),
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and the regular part is

for >0 YR(x, &) = xe (DT (E)(ms(x,€) = 1)e's*

+ x-(0) [(m-(x, =€) = e + R-(&) (m—(x,€) = 1)e™™¢],
for ¢<0  yR(x€) = x-()T (=€) (m_(x, =€) ~ 1)e'**

+ X+ () [ (M4 (x,€) = e’ + Ry (=€) (m (x, =€) = 1)e™™¢].

(3.30)

3.4. Linear estimates
Recall that (D) = y—02+ 1 and (D) = V-02+V +1 = 3’:'_] (f)j".

Proposition 3.11 (Dispersive estimates). Recall the definition in equation (2.30) with equation (2.31).
The following statements hold true:

(1) Forany0 < |t| £ T, and for I = [0, o) or (-0, 0],

e (D) fllz 5 >1/2||<s>”2ﬂlm BEiE g 0Ty, + >mzll<f> Pl
(3.31)

(ii) IfV satisfies the a priori assumptions of Theorem 1.1, then for any 0 < |t| < T,

P 1l 5 57 102y + ez 1022y + 0 e, 332

A more precise asymptotic formula with an explicit leading order term can be read off the proof of
Proposition 3.11; in particular, up to a faster-decaying remainder of the same form of those appearing
in equation (3.32), we have

By . €0 3 itlEins T e S0 X
e f = @<§0> e 1 (£o) ast 7RSS (3.33)

Remark 3.12. Note that, in view of equation (2.31), we have @ + By < 1/4. Therefore, uniform-in-time

control of the profile in 7 (€)73/2L*> and W;, and in H* with small time growth gives the sharp |¢|~!/?
decay for linear solutions through equation (3.32).

Furthermore, let a be any of the coefficients defined in equation (4.5). In view of equation (3.31) and
the regularity of 7(¢) and R(¢) in equation (3.14), we have

o F T iz < 7l ey (KOl + 1712

<>'/2 (1
+ Wu«s)“ﬂm.

(3.34)

Remark 3.13. Besides the pointwise decay estimates of Proposition 3.11 above, we will also use the
following variant: for k > 5,

16 (D)l < 522 i 1L (loxde Tl + el o) 7 (335)

which follows from the standard L' — L® decay and the interpolation inequality

1/2

lex D) £, < lox D) £|I37 ] ex (D) £1L5
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Notice that equation (3.35) also implies (see equation (3.24))

1/2

e YW (D) fll - < m23’”2||wkﬂ| (lpeoe e +lleel2) . (336)

To prove Proposition 3.11, we use the following stationary phase lemma:

Lemma 3.14. Consider for X € R, t > 0, x € R the integrals

Lo (1. X.x) = / O E (@) dE, v € (4. -),

-

and assume that

sup  (la(x, &) +(6)|0galx,&)]) < L. (3.37)

x€R, £€Ry

Then we have the estimate

1 1
[ (1. X.0)| < 8Os+ iy 1Ol + 7l @'l 338)

1
We postpone the proof of the lemma and give first the proof of Proposition 3.11.
Proof of Proposition 3.11. In order to prove equation (3.31), we write
! / i1(£(£)-£X) T
—— [ " [ ds, X:=-x/t
v I

2

etit<D>11 (D)f —

anduse Lemma 3.14on/ =R, orR_anda = 1.
To prove equation (3.32), we use the distorted Fourier inversion (see equation (3.0)) to write

eHD) p = [ o E y (x £) F(£) dE + / ey (x,€) f(£) dé.

Ry R-

Let us estimate the first integral, the other one being similar. Using equation (3.26), we can write
Vir [ Oy 0@ de = o) [ DT @m 616 de
ex-0) [ S (e - f(6) de
w00 [ OEIR (em(x,€)1(6) e

Then the desired estimate follows by using Lemma 3.14 with a(x, &) = T(¢&)m+(x, &), m_(x,=¢) and
R_(&)m_(x, &), where the assumption in equation (3.37) holds thanks to Lemmas 3.1 and 3.2. ]

Proof of Lemma 3.14. 1t suffices to consider only the case u = +, v = + and ¢ > 1, X > 0; all other
cases are similar or easier. We let

L= ke It = / MO a(x, £)g(£)gu (€) dE. (3.39)

keZ

First, notice that since

[T (t,x)| s /R 12(E)|@r () de < min(25||gl . 277K 1(E) ¢l 12), (3.40)
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we see that |1, | enjoys the desired bound if 2k > !/ 6, or 2k < Y2, From now on, we assume
cr'? <2k < (1/0)iV/® (3.41)

for a suitably large absolute constant C > 0.
Let us denote

ox (&) = (&) - €X
4 77 (342)
K= 5K O b= XN

and note that the phase ¢x has no stationary points if X > 1, and a unique, nondegenerate, stationary
point at & for any X € [0, 1). Consider n € Z, such that r € [2"!,2"], and let g¢ € Z be the smallest
integer such that 270 > 20/DkT-n/2 o ~ (£)321712 Note that 290 < min(2¥, 1) if C in equation (3.41)
is large enough.

In what follows, we may assume that |&y| ~ 2*, for otherwise there is no stationary point on the
support of equation (3.39), |¢% (£)| 2 2%273K" "and the proof of the statement is easier. In other words,
for fixed &p, we may assume that there is a finite number of indexes k for which I; does not vanish.

Using the notation in equation (2.25), we decompose

L= )l lg(tX):= / (&)X g (x, £) L) (¢ — &) i (€) g(€) dE. (3.43)

q€(qo,)NZ

Bounding the contribution to the sum over k of the term with g = g¢ is immediate. Let us then consider
q > qo and note that on the support of the integral in equation (3.43), we have

6% ()] ~ |£ = Eollgp| ~ 29273 2 27n/27G/DK, (3.44)
X
Integrating by parts using (ir¢}) ' d¢e’?X = e/'?X we obtain

Loy 0,0,
Ieg == o+ 0+ ],

(1) (l X) / it((&)-&X) _"X (¢ )2
+ X

IO X) = - /R et ((£)=6%) ¢—, Bea(x,€) @4 (€ — £0) or (&) (&) dé, (3.45)

X

. 1
IO, X) = - /R et ((£)=6%) a6 0 [0q (& - £0) @i (8)] 2(&) de,
+ X

a(x, &) @q(€ = &o) pi (&) g(€) dé,

. 1
I 0.%) = - / 16060 Loy o6 — ) gule) 0e5(6) de.
R, ¢

X

Using equations (3.42) and (3.44) and changing the index of summation g — p + (3/2)k*, we have

3
DG E (€270 () 15(0)]
dSank e n/zk R, (§=60) (3.46)

< 1214 gl o

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2022.9

40 Pierre Germain and Fabio Pusateri

For the second term, using |0¢a| < 1, we can estimate

3
|2 enls Y[ 2l ar O o) sl e
S e, 1€ = &l (3.47)

1/2
s t"2lgll g

The third term in equation (3.45) is similar to the first one:

DI PR IGRETPS (3.48)

9240,k

The upper bounds in equations (3.46)—(3.48), after being multiplied by 7~!, are bounded by the first
term on the right-hand side of equation (3.38).
For the last integral in equation (3.45), we want to distinguish cases depending on the location of &

relative to the frequency V3. We insert cutoffs (,o([(’) (& - V3), for £y := —yn, and bound

) s [Ken+ D) Ke+ Ko
lo<l <0

1 (3.49)
K.(1.X) = / a6 ¢y (6 — £0) 01 (8) 0. (6 = V3) 192(0)] dé.
R, |¢X|

The first term can be estimated as follows:

-1 Z |Kgo(t,X)| <! Z 2=q . pmin(q.~yn)/2 . ”‘PS—W (€~ \/§)a§g“L2

q4>40 9>90
<! Z 2_q/22(ﬁy+“)"||/\/go,\6 6§g||WT
q9>40
S t—lz—qo/ZtB7+a”X<o ﬁafg”W ,
=Y : T

consistently with equation (3.38), since we must have |k| < 5 and 290 ~ t~1/2, The last term in equation
(3.49) can be estimated similarly:

) Koot X0 s a7t ) 2 2R g (€ - VB) Ol
q>qo q>qo (3.50)

< OIE o 5(Edesl,

Upon summing over 2% < !/¢ the right-hand side of equation (3.50), we obtain a contribution bounded
by the second term on the right-hand side of equation (3.38), since —=3/4+(5/4)(1/6)+a < =3 /4+a+By
with our choice of parameters in equation (2.31) (provided, for example, that 8’,y’ < 1/24).

Finally, we estimate

K (e, X)| < 71279 - 2mIN@O2 g, (&~ V3)deg]|,»
17127 POy o s O¢glly, -

and, using again that |k| < 5 for £ < 0, we see that this contributions can be summed over g > go with
290 > =12 and ¢ > £ with 2% > 77, and be bounded by the second term on the right-hand side of
equation (3.38). O
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4. The quadratic spectral distribution

In this section, we study the distribution in equation (2.6).

4.1. The structure of the quadratic spectral distribution

Recall that we denote, for a function f,

fr(x) = f(x) and f-(x) = f(x).

Proposition 4.1. Under the assumptions on V. = V(x) and a = a(x) in Theorem 1.1, there exists a
tempered distribution p1,,,, € S'(R?) for v, 1 € {+, =} such that, if f, g € S,

Flawfugel @ = [[ T0Fu@ b nEn.c) dndo.
The distribution p,,,, can be decomposed into

271 (£, ) = 15, (Em,0) + R (€1, 0), .1
where the following hold:

o The ‘singular’ part of the distribution can be written as

wS (& o) =S (Em o) + St (£, 0), (4.2)

with € € {+, -},

n (»)
B, 0) = Leo Z ac,,(é.n,0) [\/;6(17) +€p.v.— ]
Luvel+ -y WY p 4.3)
p = —yun—uwvo,
where ¢ is a smooth, even, real-valued, compactly supported function with integral one; the
coefficients are given by
afgmz (¢.m,0) =ag, (©a;, (nay (o)  with  a, =(a;), (4.4)
uv
and
{ a, (&) = L.(&) +1-(HT (=) {ai(f) =T(O1(&) +1-(5) 5)
a”(§) = L(HHR-(&) al(§) = 1 (R (=9).
e The ‘regular’ part of the distribution ,ufl ., can be written as a linear combination of the form
R _
PR Eno = > 16@1aMa(0)tq a0, 0), (4.6)

€,6,6{+~}
where the symbols te ¢ ¢, : R3 — C are smooth and satisfy, for any nonnegative integer N and a, b, c,
020,05 a e (61, 0)| 5 (inf 1€ =y = vor) ™. “.7)

Proof. We proceed in a few steps.

The Fourier transform of (y+)>. By the choice in equation (3.25) of x_, dy(x-)> is a C>° function,
which we can write as d,(y_)> = ¢° — ¢°, where ¢° and ¢¢ are, respectively, odd and even and C°.
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Furthermore, since ¢ is odd, we can write ¢ = dyy, where ¢ € C7 and ¢ is even. We have thus
obtained that

(x_>3=w+/ 0° () dy = +¢° % 1, /Rw(y)dyﬂ,

where we denoted by 1. the characteristic function of {+x > 0}. Taking the Fourier transform and using
the classical formulas

_ ~ —~ J— /2 1
f+g=V2nf-g, 1 = V2ndy, signx = p.v. f 4.8)
i
we see that 1_ = |26 — Lp v 1 and therefore, since ¢¢(0) = L
B 2 Vo i€ ' Var®

(X} = = F(¢° * 1) = VIrL()8°(¢) = \ga(f) ~p.v. ¢1§ ).

Since y;(—x) = y-(x), this implies a corresponding formula for y.. To summarise, setting ¢ = ¢,
TR ( )
(x2)*(6) = \/75(5) £p.V.—= ¢ g + (&) (4.9)

The regularization step. Consider for simplicity the case ¢; =1, = +.If f, g, h € S, denoting w a cutoff
function,

@@ 7 = [[ 7Bt [ Fopwieanan [ 3w dodshie) e
= Jin ] atwe/Rgted [ Fopuieanan [ 2w do e de
= jin ] Fgorm@( [ atow e/ REEw wx.0) ) ando de
- [|] Fonz @R @nien. o) dn o ae. (@.10)

where p..4 is defined as the limit in the sense of (tempered) distributions

Hes (&, 0) =Rlig(}0/a(x)W(X/R)ll/(x,f)@l/(x,U)@l’(x,ff)dx- (4.11)

Note that while the limit in equation (4.11) can be easily seen to exist in the sense of (tempered)
distribution, the limit leading to equation (4.10) needs to be understood in a different topology. In
fact, althoEgh U4+ is a tempered distribution, f is not a Schwartz function, even if f is a Schwartz
function: f might not be smooth, or may even be discontinuous, at zero; see equations (3.22) and (3.23).
Nevertheless, one can still make sense rigorously of the limit and the pairing in equation (4.10) for
f.g, h € S. It actually suffices to consider f,g, h € L' N L, for example.

First, let us see that u,, can be integrated against f(n)g(a)ﬁ(f) provided that f, g and h are in
L' N L? (which is the case if f,g,h €S). Indeed, we will see that, up to more regular terms, g4 is
a linear combination of 6(p) and p.v.ll7 distributions, where p is as in equation (4.3), with piecewise
smooth coefficients in the variables &, 7 and o. The coefficients do not matter, so it suffices to look at
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the cases pyy = 6(€ —n — o) or p.v. = 170 (since the signs 4, y, v in the definition of p also are not

relevant). Then in the case of the § distribution, we have

/// 6(§—n— U)f(ﬂ)g(g)mdn do dé = // f(’?)g(‘?’)mdﬂ dor.

which is well defined by the Cauchy-Schwarz inequality if f,3, /% € L' n L% In the case of the p.V.%
distribution, denoting by H the (standard) Hilbert transform, we have

I pvzm s Fna@iendr ds = || Fgoiam+ oy o

which is well defined by the boundedness of the Hilbert transform on L2, and the Cauchy-Schwarz
inequality.
Second, to justify the limit in equation (4.10), let us split

F=Ff0=x(/)+fx(-/€) = fie + Proes

where y is a smooth cutoff function equal to 1 in a neighbourhood of 0, and similarly for g and 7. We
can then write

(Fla@)w(x/R) f8)(£), h(£)) = (Fla(x)w(x/R) fi,e81,) (€), 71 e (£)) (4.12)

+ <-73(G(X)W(X/R)f2,eg1,g) (&), h1.e(£)) + {similar terms}.
(4.13)

Here, the ‘similar terms’ contain at least one factor with an index 2, namely g2 ¢ or &2 . We claim that
the terms in equation (4.13) are O(€) remainder terms uniformly in R. If this is the case, then

(Fla(x)w(x/R) fg)(£), h(£)) = (Fla(@)w(x/R) fi.eg1.c) (£). h1.e (£)) + O(e).
For the main term on the right-hand side above, the limit as in equation (4.10) is justified, since the
functions involved are Schwartz. Therefore, one can let R — oo first, then let € — 0, and obtain the
desired formula.

To show that the remainder terms in equation (4.13) are O(€), we use the properties of the distorted
Fourier transform:

[(Flaw(/R) f.c81.) (@), hic ()] = [(@(w(/R) fo.c81.0hn.e)

S 2ellsllgrell 2l ellee < Nfzellpillgnell 2l ell 2

S ellflli=lliglzallnllze < e

In the following, we simply denote
o) = [ T (o)
Decomposition of the quadratic spectral distribution. We can write u,,,, as a sum of terms of the form
1 _
i [ WG e d. AB.C e (S.R), (4.14)
(2m)3/2 ! 2
where we are using our main decomposition of ¢ in equation (3.28).
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The singular part us. The main singular component comes from part of the contribution to equation
(4.14) with A, B, C = S. The decomposition equation (3.29) can be written under the form

V€)= xa(x) Y A @M 1y (x) ) ag(€)e
Ae{+,-} Ae{+,-} (4.15)
= X (YT (0, ) + x- ()Y (x,€),
where
1 if A=+ and >0,
i R_(&) if A=— and &> 0,
OV 7o it A=+ and  £<0, (4-16)
0 if A=- and £<0,
and
T if A=+ and &>0,
t/0_ )0 if A=— and >0,
&) =1 if A=+ and £<0, @.17)
R (=¢) if A=— and £ <0,
or, equivalently,
a, (&) =1L() +1-(HT (=)
a_(§) = L. (HR-(&) @.18)

a(é) =T(H1(§) +1-(8)
a’(§) = 1-(§)R.(-).

Consider the terms in equation (4.14) with A, B, C = S and such that in each decomposition of (//S
there are only contributions containing y (that is, 5) or y_ (that is, ¥>>7). We can write this as

\/%_ﬂ_/a(X)Xi(x)mWi,t(x’n)wi,i(x’o_) dx

\/ﬁ 2 /“(X))m(x)a—m(f 0, o) eUEX MY QUVITX gy (4.19)

Au,ve{+} Apy

= > Fla) () (A = upn = ove) a0, 0).

A,u,ve{+} Apy

We then write a(x) (y+)? = €rco(x2)? + (@(x) = €1eo) (x+)>, where this last function is Schwartz. Using
the formula in equation (4.9) for ( x=)3, we see that the first terms in the right-hand side of equation
(4.9), namely gé + p.v.%, make up the singular part of the distribution x5-* in equation (4.3). The

contribution corresponding to the last term, ;Z (&), together with the one from F (a(x) = lico), can be
absorbed into the regular part of the distribution uR; see equation (4.27).

The regular part ug. The regular part ug contains all other contributions. These are of two main types:
terms of the form in equation (4.14) when one of the indexes A, B, C is R, or contributions where both
X+ and y_ appear; see equation (4.15). More precisely, we can write

uR® (& o) =pf (en,0)+uf2 (£, 0), (4.20)
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where, if we let Xg = {(A1,A2,A3) : 3j=1,2,3 st.A; =R},

pibEne)= Y [ aw oA B o) dx @21)
(A,B,C)eXg
and
W2 Eno)i= Y [ a0 Caul e o) bkl Ene). @)
A,B,C=S

In the remainder of the proof, we verify the properties in equations (4.6)—(4.7) for equations (4.21)—
(4.22).

To understand equation (4.21), we start by looking at the case A = R and B, C = S. We restrict our
analysis to & > 0 (see equation (3.30)); & < 0 can be treated in the same way. According to equation
(3.30), this gives the terms

/ a(x) x+ ()T (&) (ma (x,€) = e €y (x, My (x, o) dx
(4.23)

+/a(X)X—(X)[(m—(x, =€) = Detéx + R_(&) (m-(x, &) = e |y (x, my® (x, 0) dx.

Let us look at the first term above and only at the contributions to 5 coming from 5* (see equation
(4.15)): that is,

Ry (&1, 0) ==?T23a;(n>at(oﬁm/la(x)xi(x)0n+(x,§)—-l)e‘ff*e”“”¢¥V“xaw. (4.24)

Notice that the coefficients in front of the integral are products of indicator functions and smooth
functions, consistent with equations (4.6)—(4.7). Dropping the irrelevant signs g, v, it then suffices to
treat

Ren. ) = [ atode)(mGed) - 1) e o) (4.25)

We use the fast decay and smoothness of m, — 1 from Lemma 3.1 to integrate by parts. More precisely,
for any M, we write

I o -
|R(§"7»<T)|=|W/e’”§ e’x(”*")a;”[a(x)Xi(x)(m+(x,§)—1)] dx|
S O [ e - Dldrs g
0<a<m Yx2-1

having used equation (3.4) for the last inequality.

We have therefore bounded the expression in equation (4.24) by the right-hand side of equation (4.7)
fora=b=c=0.

To estimate the derivatives, notice that applying multiple - and o--derivatives is harmless since these
result in additional powers of x, but m, — 1 decays as fast as desired. Similarly, again from equation
(3.4), we see that 0 derivatives can also be handled easily since dZm decays fast as well. Notice that
the second line in equation (4.23) can be treated exactly like the first one, using the properties of m_
from equation (3.4). All the other terms in equation (4.21) can be treated the same way.
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Let us look at the remaining piece in equation (4.22). We can write, according to the notation in
equation (4.15) and the definition in equation (4.19),

AR REDY / a(x) Xe (X)X e (X) Y e (XS0 (0, E)YS2 (o, )y (x, ) dlx, (4.26)

where the sum is over (€1, €2, €3) # (+,+,+), (—, —, —). In particular, this means that a y¢ e, Ye 1S @
smooth compactly supported function, which we denote by y (omitting the dependence on the signs,
which is not relevant here), and equation (4.26) is a linear combination of terms of the form

/ x()a (§)eteag (n)e' ™ ay (o)™ dx = YA - un - vo)ag (Hag (mag (o). (4.27)

The desired conclusion in equations (4.6)—(4.7) follows from the properties of the coefficients a} and
the fact that y is Schwartz. m]

4.2. Mapping properties for the regular part of the quadratic spectral distribution

The product operation (f, g) — fg obviously satisfies Holder’s inequality; but it is natural to ask about
the mapping properties of the bilinear operators associated to the distributions x> and uR

(frg) o F ! f SR (&, o) T (o) dn dor.

The singular part 45 can be thought of as the leading order term; and indeed, it does satisfy Holder’s
inequality, and this is optimal. The regular part is lower-order in that it gains integrability ‘at co’, but it
does not gain regularity. Thus, it can essentially be thought of as an operator of the type (f, g) — F fg,
where F is bounded and rapidly decaying. The following lemma gives a rigorous statement along these
lines.

Lemma 4.2 (Bilinear estimate for uR). Under the same assumptions and with the same notations as in
Proposition 4.1, consider the measure u® = yﬁ ., and the corresponding bilinear operator

~—1 o~
Mela.b] =" [[ i en.orabiordn do. (4.28)
Then for all
1 1 1
pl’p2€[2,°°)a _+_S_
rr p2 2
it holds that
|Mrla,b]|,. < llallpe 1Bl e (4.29)

Moreover, for p1, pa as above and p3, p4 another pair satisfying the same assumptions, we have, for
any integer [ > 0,

[[€0x) Mra, b1||,2 < 160 all Lo 161l es + llall Lo 1€8x) Bl o (4.30)

Proof of Lemma 4.2. The starting point is the splitting of & in equations (4.20)—(4.22). We will omit
the irrelevant signs ¢1¢, in what follows and just denote uR!-? = ,uﬁlt’zz. Also notice that in the definition

of Mg, we can replace all the distorted Fourier transforms by flat Fourier transforms, in view of the

~]~
boundedness of the (adjoint) wave operator W* := F Fon LP, p € [2,); see Proposition 3.9 and
Theorem 3.10.
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Proof of equation (4.29). From equation (4.21), we see that uR! is a linear combination of terms of the
form

/ VA OUP (e u€ (x.07) di, “31)

where at least one of the apexes A, B or C is equal to R; recall the definition of > and R in equations
(3.29) and (3.30). It suffices to look at the two cases A = R or B = R.

Let us first look at the case A = R and further restrict our attention to & > 0 and the contribution from
X+ all the other contributions can be handled the same way. We are then looking at the distribution

M1 (é:’ n, 0-) = / X+()C)T(§) (m+(x’ f‘;:) - 1)ei§x(!/3(x’ U)'ﬁc(x, 0—) dx’ B, C=SorR. (432)

The bilinear operator associated to it is

wila.b = Foby [ mitencrambiordndo

= Fetor [ 0 T@m 0.8 = 0O ( [ amu® goman)( [ 5w ) der) oy
(4.33)

If we define

ut(x) = / u(EY(x,€)dé,  A=S,R, (4.34)

R

and the symbol m(y, &) = (W x+ (V)T (&) (my(y, &) — 1), we see that

1.0l 5 | [ e 00 aP - 00|

In view of Lemmas 3.1 and 3.2, we see that m = m(y, £) satisfies standard pseudo-differential symbol
estimates and deduce that the associated operator is bounded L? — L. It follows that

1My [a, b]ll2 < I1(y) ™" - a® - bCIIL; S Na® Lo 161 2 - (4.35)

The estimate in equation (4.35) gives us the right-hand side of equation (4.29), provided we show
that u > u®, uR as defined in equation (4.34) are bounded on L, p € [2, ). Since u® + uR = u, it
suffices to show |||, » < |lull;». From the definition of S in equations (3.29) and (4.15)—(4.18), we
see that this reduces to proving

| [ersasemerde] <. @36)

In view of the boundedness of the Hilbert transform, it is enough to obtain the same bound where the
coefficients a¥ are replaced just by 7'(+£) or R.(F¢). The desired bound then follows since T'(+£) — 1
and R.(F¢) are H ! functions (see equation (3.14)) so that their Fourier transforms are in L.

Consider next the case B = R. Again, without loss of generality, we may restrict our attention to
n > 0 and the contribution from y: that is, we look at the measure

1 (€, 0) = / X+ (WS (6, ET () (m(x,m) = Del™yC (x, o) dx,  C=SorR.  (437)
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Letting the associated operator be

Mila.b) = Fol, [[ wien orambio) ando

= Fetor [ 0o [Tt =nem an)( [ b o) do)as,
(4.38)

we see that

16710, <[00 [ TGt = D at anl 16U

having used that l//s defines a bounded PDO on L2, as we showed above. The desired conclusion in
equation (4.29) then follows since {(x)T (17)(m4+(x,n) — 1) is the symbol of a bounded PDO on L7, for
p € (2,00) in view of Lemmas 3.1, 3.2 and standard results on PDOs; see, for example, [3].

We now analyse the -2 component from equation (4.22) by looking at the more explicit expression
for it in equation (4.27). From this, we see that it suffices to look at bilinear operators of the form

7! = e A ~ 7
Mala,b] = Fol [[| R - - v @ag al (Vambc) dndo,  @39)
X
where y is Schwartz. By boundedness of the Fourier multipliers a§,

IMala,blle < - F (@2@)F (aSB)|),

~-1

< |7 @2a)|, o 17 @B, 0 < llallor 15l 0

Proof of equation (4.30). We proceed similarly to the proof of equation (4.29) and reduce to estimating
derivatives of the bilinear operators My, M| and M,, respectively, defined in equation (4.33), equation
(4.38) and (4.39);

Applying derivatives to M; gives

o.M, [a,b] = ?;Lx /R X+T (&) (me(y,€) = 1) (i€) eV a (y) b (y) dy. (4.40)

Integrating by parts in y and distributing derivatives on a, b® and m, — 1 gives a linear combination
of terms of the form

My, 1, la,b] = ?;Lx /R T(&) 0% (x4 (y) (ma(y, ) — 1)) €77 - 82 (a™ (y) b5 (y)) dy (4.41)

with [y + [, = [. From Lemmas 3.1, 3.2, we see that my, (x,&) := @c’)ﬁl (x+(x)(ms(x,&) — 1)) gives
rise to a standard PDO bounded on L?. Therefore, to bound in equation (4.41) by the right-hand side of
equation (4.30), it suffices to use product Sobolev inequalities and ||0Lu5||, , < [{0x) ullpp, p € [2,0),
which follows from the inequality in equation (4.36) with 0. instead of u.

A similar argument can be used for M|: from equation (4.38), we see that x-derivatives become
powers of &, which in turn can be transformed to y-derivatives since ¢ (y, £) is a linear combination
of exponentials ¢*¥¢ by harmless £-dependent coefficients; integrating by parts in y and using the
boundedness on L? of the PDO with symbol {x)my, (x, &) gives the desired bound.
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The argument for M, is straightforward, using that 7 — 1 is a bounded multiplier and y is Schwartz:

1@ Mala, bl 5 (00! |- 7 ag@) F (@5B)|| | < 00! |7 @p@F (@sB)]

La

with 1/q = 1/p1+1/p,, and we can use standard Gagliardo-Nirenberg-Sobolev inequalities and equation
(4.36) to obtain equation (4.30). m]

5. The main nonlinear decomposition

In this section, we first write Duhamel’s formula in distorted Fourier space and decompose the nonlinear
terms according to the results in Section 4 and their nonlinear resonance properties. In particular, in
Section 5.2, we give our main splitting of the quadratic terms into ‘singular’ and ‘regular’. In Section 5.3,
we prove lower bounds for the oscillating phases that appear in the singular quadratic terms and use this
in Section 5.4 to apply normal form transformations. We then analyse the various resulting cubic terms
in Sections 5.5 and 5.6. Here, there is a substantial algebraic component because we are treating general
transmission and reflection coefficients, and we need to keep track of exact expressions to calculate
asymptotics later; moreover, the coefficients in equation (4.5) may have jump discontinuities that we
need to take care of after the normal form transformations; finally, we also need to study convolutions
of ¢ distributions and (cutoff) p.v.-type distributions and prove various symbol type estimates on the
expressions obtained after the normal forms. In the final Section 5.7, we introduce the renormalised
profile f on which we will perform all main estimates moving forward; we then recapitulate all the
formulas and properties obtained so far and prove regularity in & for the symbols of the relevant operators.

5.1. Duhamel’s formula

Let u = u(t,x) be a solution of the quadratic Klein-Gordon equation
Fu+ (03 +V+Du=ax)u?,  (uwu)(t=0) = (ug,uy), (KG)
with the assumptions of Theorem 1.1. In the distorted Fourier space, equation (KG) is
ofu+ (& + Vi =Flau?), (@)t =0) = (i, 1). 5.1)
To write Duhamel’s formula in the distorted Fourier space, we define (recall H = —c'))% +V)
v(t,x) = (8, —iVH + 1)u, v(1,€) = (0, — i(é))u. 5.2)
Notice that, by Lemma 3.8, VH + 1u is real-valued since u is; therefore,

V-

= e
and
(3 +iVH+ 1) =a(x)u®, (0, +i{&))V = Fla(x)u?). (5.4)
By defining the profile
g(t.x) 1= (Vo)) (0, (0.8 =T 8), (5.5)
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we have
8,8(1,&) = O Fla(x)u?). (5.6)

Using the definition of the distorted Fourier transform equation (3.21), in view of equations (5.3) and
(5.5), this becomes

0.6 = Y, uae@ [f ( [ artdw o) ax

t,0e{+~}
e_Llit<77>~ e—tzit(o‘)~
X i S (1, T])Wgn(f, o)dndo (5.7
1
D, (&7, U)~
Lty 12 V(Mg (o) ————Hy (& n,0) dndo,
. ; , I ST IC

where the quadratic spectral distribution y,,,, is defined in Proposition 4.1,

D, (£,1,0) = (&) —u ) — o), (5.8)

and we have denoted

5.2. Decomposition of the quadratic nonlinearity

Starting from equations (5.7)—(5.8) and using the decomposition of the distribution x4 in Proposition
4.1, we can decompose the nonlinearity accordingly. More precisely, we write

ag=0"+Qf= > of +0f (5.9)
1,0 e{+~}

and OF  are defined below.

where Q5 Lo

Ly
Notation convention. When summing over different combinations of signs, such as in the formula in
equation (5.9), we will often just indicate the indexes or apexes with the understanding that they can be
either + or —. Also, we will have expressions that depend on several signs, such as the ones appearing in
equation (5.11). In such cases, we will only separate the various indexes or apexes with commas when
there is a risk of confusion; see, for example, equation (5.32) versus equation (5.10).

The singular quadratic interaction QHLZ We define Qfl ., to be the contribution coming from the
singular part of u (see equations (4.1)—(4.2)) with an additional cutoff in frequency that localises the

principal value part to a suitable neighbourhood of the singularity

Qfl [z(t,g) =0 // qzz(f,r],fr)gll(t, Mg, (t,o)Z5, ., (é,n,0) dndo, (5.10)
Au, Ve{+ ) Apy :
ee{+,—}
with
afgtm(fsﬂ’o') ¢(p)
(E1,0) = leop—2 — [5( )+ e*(p,1, o) p.v. (5.11)
%1;2 &n 8o p)+ep (p,n,0)p. ip
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where

¢"(p.1,0) = g<—py (PR(, @), p=—wdé —uun —nvo, (5.12)
for Dy a suitably large absolute constant, and

(m{o)

R(n,0) = ———. (5.13)
)+ (o)
The last expression may be thought of as a regularization of min({%), (o)), and satisfies
100205 R(1, 0)| < min((n), (o)) ()~ (). (5.14)

The regular quadranc interaction QR |1, The term Qf] ., gathers the contributions coming from the
smooth distribution ,u (see equations (4.1) and (4.6)-s(4.7)) and the smooth part from the p.v. that is
not included in equation (5.11). We can write it as

oR (1,6) = _Lllzj/eif@m-fﬂ%f’) 90 (E1,0) 8, (6,8, (t, o) dndor, (5.15)

where @, ,, is the phase in equation (5.8) and the symbol is

(&.m,0),

. 1 a
(S P (‘(;:’ n, O_) = qj—l 2 (‘(;:’ n, 0-) + qtl v (é:’ 1, 0-) + Wﬂll %)

: a(p) (310
W6 0) = s ZV “ho@ o)1= (pe) 5 =

with pfl ., satisfying the properties in equations (4.6)—(4.7) (also recall that p = A€ —yun — 1, vo). Here
is a remark that will help us simplify the notation:

Remark 5.1 (A more convenient rewriting of OR ). For ¢,k = =1, let

L2

g (&) =g (6)1.(8), (5.17)

and notice that for all ¢, x, g¥ enjoys the same bootstrap assumptions as g; see equation (7.7). Then
inspecting the definition of equation (5.15) and its symbol in equation (5.16), and recalling the definitions
of the coefficients in equations (4.4)—(4.5) and the property of ,u‘fl ., in equations (4.6)—(4.7), we see that
we can peel off all indicator functions and write

R E R
QLILZ - Q Lty »
KoK1 K2

Ko,K1,K2

(5.18)
QRLHZ = _L1L21Ko(§)‘//eitd)lllz(f’”’o_) qKé}(ﬁ(z(g’ n, 0—) gt] (t 77)8 (t 0-) dﬂdo'

KoK1 K2

where the symbols q ¢, are smooth. In what follows, we will often omit the signs o, k1, k2 in our
KoK1 K2

notation (for the operators and the symbols), as these play no essential role. We will instead keep the

L1, Ly signs since they do play a role: the case ¢1, 1, = + is the main resonant one, while the other cases

are relatively easier to treat. Also notice that the indicator function in the output variable & will not be

a problem upon differentiation (which will happen when estimating weighted L*-norms; see equation

(2.35)), as shown in Lemma 5.9.
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5.3. Estimates on the phases

As a preparation for the normal form transformation to come, we need very precise estimates on the
phase. The complication here arises since the quadratic modulus of resonance, although positive for all
interactions, degenerates at oo in certain directions.

Lemma 5.2 (Lower bound for the phases). For any n,o € R,

mm((n) (o) ifno <0

m+o) =) —(o) = (5.19)
——— ifno >0.
mm((n% (o))
As a consequence, for any choice of 11,1y € {+, -} and any n,0 € R,
1 < min((y + o). (). () (520)
< min({n + o), (1), {0)). .
D, ,(n+o,n,0)
Furthermore, if p := & — un — 1o is such that
2*D()+2
lp| < :
R(n, o)
with D sufficiently large, then
’ L < min((n). (o) (521)
——| % m,{0)). )
@, n,0)

Proof. In order to prove equation (5.19), we focus on the case where 77 and o have equal signs since the
other case is trivial. The expression under study can be written

14250 - 2n){o)

(m+o) =@ —(0) = m+o)y+m+(o)

If 7 and o are O(1), the result is obvious, so we focus on the case where 1 + o > 1. On the one hand,
the denominator above is ~ max({n), (c")). On the other hand, if n ~ o, the numerator above can be

expanded as
=

1 1 1
—1+2n0 =2{(n){o) = -1+2no (—2—772 ~ 52 +0 (F

If n > o, the numerator can be written

~1+2n0 - 2(77)(0')——1+217(0' ()—@+0(@))z—i,
21 nt (o)

where the above line follows from o — (o) ~ and <0'> < — Equatlon (5.19) follows from the
above relations.

In order to prove equation (5.20), we observe that the case ¢1, 1 = + was just treated, while the case
—— is trivial. There remains the case +—, which easily reduces to ++.
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Finally, in order to prove equation (5.21), only the cases ++ and +— require attention. We focus on
the former, the argument for the latter being an immediate adaptation. It follows from the estimate in

equation (5.19) that only the case , o > 0 requires attention. Then
| @i (€1, )] = (E) = () = (€ =) + (4€ =) = ()]

€ —nl* — o
(&) = () = (& —m) e (o) (5.22)

>
c I —n+ol
> Pl -
R(n,0) (- + (o)

By choosing the absolute constant Dy large enough, it follows that
1 1
(5.23)

iq)++(f’ n, O-)| 2 R(T],O-) ~ min((ﬂ% <O->)

]

Lemma 5.3 (Derivatives of the phases). Assume that |p| < 27P*2R(n, o)™ (note that here p is
regarded as an independent variable), and let a, b, ¢ be arbitrary nonnegative integers. Then:

(i) Foranyn,o >0,

1 R(T], O_)l+c
8995 0¢ ‘ < . 5.24
1070 oy = — (@) | S o) 29
(i) Foranyn,o >0,
! (5.25)

1
aab qc
I s ) + ) — (@)

S .
(M (o)?

(iii) Forany 11,1y € {+,-},
< min({p +n+ ), (), (o) ¥ (5.26)

1
%9l o¢
e p¢L1L2(p+r]+0-’n’O-)

Proof. Let us denote ¢ = p + 1 + 0. The proof of the first assertion relies on the lower bound

|®41(&,m,0)| = R(y,0)~" and on the bounds on derivatives

|0a® (£, 0)] < ()~
|06 @1 (¢, 0)] 5 (o)™

|0p @i (€1, 0)] 5 1

|6§6$6(C,d>++(§, n, o-)| < (n+ o) abmel if at most one of a, b, ¢ vanishes, or a > 2.
Similarly, the proof of the second assertion relies on the lower bound |®_,(&,7,0)| = (1) and on the
bounds on derivatives

lopd_(£.m.0)| s 1 ifa=1, and ()" ifa>2

lodd_,(&,n,0)] < (o)™

|6p¢)—+(§a 77, 0-)| S 1
if at most one of a, b, ¢ vanishes, or a > 2.

|050005®_ (&, m.0)| < (p+ o) @ P!
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In order to prove the third assertion, we must distinguish several cases. First, the case (¢1,t2) = (-, —)
is trivial. Second, if (¢, 1) = (+, +) and 1, o~ have the same sign, then it suffices to use equation (5.24),
while if they have opposite signs, the inequality is trivial. Finally, if (¢1,¢) = (—, +), the only difficult
case is that for which no < 0 and |o| > |5|. In that case, ®_, enjoys the lower bound

|©_ (&, 7, )| ~ min((€), (1)~ ~ min((€), (), ()7,

while its derivatives can be bounded as follows:

|020_(£,7, )| < min((), (g + o)~

054 (&m,0)| s (+ )™

iapq)—+(§, 1, 0')| <1

\6365;63<I)_+(§, n, o-)| < (n+ o)y abed if at most one of a, b, ¢ vanishes, or a > 2.

Combining these estimates gives the desired bound equation (5.26). O

5.4. Performing the normal form transformation

We will now perform a normal form transformation on Q3. It is not possible to do so globally on QF,
which is ultimately one of the main difficulties in the nonlinear analysis. The lower bounds in Lemma
5.2 allow us to integrate by parts using the identity

1

A, = 5P, (5.27)

i®

L
By symmetry, it will suffice to consider the case when the time derivative hits the second function. This
gives

/ Qt] ., (8,€) ds = {boundary terms} + {integrated terms}. (5.28)
1,02

The boundary terms are given by the following expression:

{boundary terms} = Z JT,,,(8,8)(t) - L1[2(g 2)(0)

L1582

_mz(f 1, 0) (5.29)

F(To0(3.9))(16) = —us Y // P g (1) 1,0) g dn dor

/l/J v L] (%3 é‘: ]7’ )
The integrated terms read
{integrated terms} =

(‘f —L112(§ T], O—) (530)

S 20 / [ e er g, s.magu s o) s dn o s

i, tz 0 PTRY l1t2(§ n,o )

RY,SH

We now plug in d58 = 3,, ,, L1 nt Q“ 1,» Where Q, """ are defined exactly as QRS (see equations

L

(5.10) and (5.15)), with the exception that ¢* is replaced by 1; similarly for VAN versus Z§ and
P @ P y y

L,L1,L2
Auv Auv

q¥ versus q below. In particular (see equation (5.16)), q*(&, 7, o) = (871(77)(0'))‘1;15‘2 (é,m,0).

Lo,L1,82°
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An important observation is that, since (2; is even and real-valued,

€’

ZLZ/,L;,L'z (0—9 T],,O',) = Z 4 ’ ’2(0-’ T],, O—,)'

YA NY AN

u 0 )y

This gives
t
{integrated terms} = / (Bi(s) + Ba(s)) ds, (5.31)
0

where

Z&,,(Em,0)

Qg (E:1007) LB e Auv
m =2 3 aniy [flf st OL ot G

/l /l . /l’,u v
PN
1, 0,1,
X80 (5:M8uu (5,1)80y (s, 0”) dndn’ do do”’,
(5.32)
and
Dy ox; (£, 07) 1= () — k1) — k2(n") — K3(0"). (5.33)

Upon setting k1 := (1, k2 := (1], K3 := 21}, this becomes

Bl(s) Z /” Klkzkz(f n, T] O’)bI](IKZK; (f, n,nf’o_l)g’q(s,n)ng(s,n/)gks(s,o_/) dﬂ dn/ dO”,

K1 K2K3
(5.34)
with the natural definition of the symbol lE)K1 o, Obtained by carrying out the do- integration in equation
(5.32).
Similarly,

E,L],Lz (57 77’ O-)

Py (S o) 4 A,V
m)=-2 3 aad [[[] s TG oo
/lyv

t, 0,4,

X G, (5.8t (5:7)8uney (5, 07) dyp dn dor dor’
Z ﬂ K1K2K3(f " ]] o—)bzlkzkg (é:’ na r],’o—’)gk](s’ n)ng(s’ n,)EK_;(S’ O—,) dT] d77, do—,a

K1K2K3
(5.35)
with the natural definition of the symbol bklkz,(3
It remains to obtain a good description of the symbols b,lqkm and b,%l,(m obtained when carrying out

the integration over o in the expressions above. We do this in the following two subsections. Section 5.5
deals with the top-order symbol b' whose description requires us to study, and obtain precise formulas
for, the convolutions of ¢ and p.v.1/¢ distributions that are cut off as in equation (5.11). Section 5.6
deals with the symbol b2, which is lower-order since q¥ is smooth.
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5.5. Top-order symbols

5.5.1. Regularity in o

The first question we need to address is that of the possible lack of regularity of the coefficients in the
top-order symbols, which could arise from the lack of regularity of the coefficient a§ defined in equation
(4.5) (for instance, in the case of a generic potential, these are discontinuous at the origin).

First, we observe that the coefficients of the type a§(x) with x = &,5,1" or o/, which appear in
equations (5.32)—(5.35), are not harmful. For the input variables n, " and ¢, this follows from the fact
that the corresponding input functions, g, vanish at zero; in particular, the nonsmooth coefficients can
be handled as in Remark 5.1 by pairing the indicator functions with the input profiles; see also Lemma
5.8, which guarantees that the renormalised profile f (see equation (5.53)), which will be put in place of
g, vanishes at 0. For the output variable &, we can also disregard the jump singularities of a§ (&) thanks
to the following: first, Lemma 5.10 and Remark 5.11(iii) allow us to differentiate once in & as needed to
estimate the weighted L%-norms; second, we will always estimate the LP-norms of the operators with
1 < p < o0, where 1. (¢) is a bounded symbol.

Therefore, we do not need to worry about the coefficients a§ (x), with x = £, 7,7’ or o/, and can just
assume they are smooth disregarding the 1. (x) factors that they contain. However, coefficients a§ (o),
which enter the definition of b! through integration over o (see equations (5.32)—(5.34)), might be
harmful. We now check that a cancellation occurs upon a proper symmetrisation of the symbol.

The symbol bkl,q,(3 can be written
By G ) =2k Yo Y [ Mo do (536)
2 Au,u v
€, €’
ME o 0) 1 25 00 2o o Em0), (53T)
,1,0,1,0 ) = ——F7—— - 0-77 o = n,o .
iQy,,(§,1,0) v /{’z;lefg IE v

where we have omitted the dependence on the signs for easier notation. We can write this out as

, 1 1
M(f,n,o',ﬂ,o')i Z —Kl Lz(‘f n’a—)a—QKZK?(O—W 0-)
TNY

& 64m> () (o) (') (o) i@ (€51, 0)
X Lecolers lﬁé(p) +eo"(p.n, o M [6( ") +€'p.v. #(p)
2 p ip’

s

(5.38)
where p := A€ — k1 un — ©pvo as in equation (5.12), and we denoted
pi=nl'o—ku'n —kv'o’,

and dropped the p.v. symbols for brevity.

The main observation is that exchanging o +— —o and (v, ") — (-v,—-1") simultaneously leaves
®,,,,, p and p’ invariant, and therefore in particular does not change the distributions in square brackets
in equation (5.38); therefore, the coefficients appearing in the first line of equation (5.38) can be
symmetrised and we may instead write

1 ’ ,
—afp 6 (0,0, 0") - al 4 6 (E1,0) +aS sy k5 (00 ') - a4 0 (€1, —00) | (5.39)
2 v NTRY TR A~V
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Recalling equation (4.4), the terms in the sum above can be written more explicitly as

1 €’ €’ Na€ ’ € € €
= 5 I:a/l',—lZ(O—)aﬂ,sKZ (77 )ay/’,@(o- ) : a/[’_(g)aﬂ’/(] (Tl)av,Lz(O—)

+a%, _, (-o)ag  (n)ag (o) -as_(©ag, (nas, (o))

1y o ' , . (5.40)
= 5 |af. (@l () +a%, (ol (<o) | - af (©ag, (ma, (1a5 (o).
~(ac5 @) =
v, o —»K1,K2,K3

Using the formulas for the coefficients a§ in equation (4.5) and the relations in equations (3.10)—
(3.11) for the transmission and reflection coefficients, we have

2471 (o) = al(0)al(o) +at(—o)at (-o)

= (IT(0)*1u(0) +1-(0)) + Lo (0)|R.(0) > = 1,
and

2441 (0) = at (0)al(o) +af(-0)at (-0)

= Ry (-0)1-(0) + Ry (0)1(0) = Ry (o).

We can similarly calculate the other expression and arrive at the following formulas:

1
AP(o) = At (-0) = ATH(0) = AT (=0) = SR (o),

1
AL =AZZ(o) =5, ALZ(0) = ATL(-0) = SR(-0),
(5.41)

AL (o) =AY (-0)==T(0),  ALI(0) =AY (-0) =0,

A (o) = AZE(—0) = ST (-0), AN (o) = A" (-0) = 0.

N = N = N = N =

In particular, we see that this coefficient is smooth. The exact values above will be relevant when
computing the nonlinear scattering correction in Section 10.2.

5.5.2. Integrating over o
There remains to integrate equation (5.38) over o. Observe that the integrand is singular when the

variable p or p’ hits zero. They can be written

p=uv(Z)-o) ) 2o = (A€ — 11 un)
{pr — Lz/l/(o_ _ El) with {Zl — /I/LZ(KZM/TI, + K3VIO'I). (542)

Furthermore, let
ps = pvp+ud'p =%)- 2. (5.43)
Depending on whether Z and Z* contribute & or %, M can be split into

M= (MO0 + MO + M % + M¥¥)
v,
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with
5,6 ’r o N ’
M*®- (5’77’0"77 , O ) = M(f’fl’(",ﬂ % )_6(17)6(17 ),
, 6 )
MO Em o, o) = M(En o, a)[a( et
¢(p) (5.44)
o o’) = ME .o o et (p.n, o) —— 6( ",
11 ;o N ¢(p) o(p)
M"”‘(f,ﬂ»a'»ﬂ , 0 ) = M(f»ﬂ,o',ﬂ , T )66 ("2 (P,U,U') 77’
where
r 560056’00 1 €,€
M n,o.n',0') = , Al /(o) (& mn o).
6472 ) (' ){(T") iQy, 1 (€71, 0)( & ) fé‘l e
(5.45)
When integrating over o, we rely on the identities
1 1 1 1 )
0%0 =20, 0% —=— — % — = —7°0,
X X X X

(see equation (4.8)), which imply that, for a smooth function F,

/ 5(p)3(p")F () do = F(S0)5(p.)

Jow *

/ " (p,n, o )¢(p)6(p YF(o)do = L2VF(ZQ) ( ) + {error}
/ . ¢(p) ¢(p )
¢ (p. 1,

The error terms will be dealt with in the following subsection in Lemmas 5.5 and 5.7. For the moment
we record the top-order contribution to b!, namely

¢(p ) LM,F(ZO)dﬁ(p*)

= —%VA'F(Zo)cS(p*) + {error}.

S
cK],Kz,K] (f’ 1, nl’ 0-/)

1 (A ,f (20)),,
= —2K1K2K3 : 2 (&, o)
Eg;u 6412 () (Zo) (' )oY iy iy (€, Zo)  Apo Y
Au, v, ) v

X Leosleres ng(l +ee'v)S(p.) + \/7(6 A+ en) 8P ¢(p.) (5.46)

*

= K1 K2 K3(§ 77 77 o ) +CK1 K2, K}(f’n’n”o—,)’

where ¢5+! gathers all terms containing § functions, while ¢5-?

C gathers all terms containing terms of the
type ¢(p.)/p.

The multlhnear operator with symbol cK1 x.x; Will be denoted Cil x.x;- Lhe decomposition of cKl KooK
into CK. ko T c,q «.k; gives a further decomposition of CK1 KoKy
S _ Sl S,2
CK] K2,K3 CK] K2,K3 + CK] K2,K3 " (547)
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5.6. Lower-order symbols

5.6.1. The symbol b?
Dropping unnecessary subscripts and superscripts, the symbol b? in equation (5.35) can be written as a
sum of terms of the type

a(&)a(m)C(é.n.n',0")
with

C(.n.n',o")

S S (N S VORI \/E . s 1
- e ] o (‘””’(’)a(")[ 2P =PI Gy

In what follows, we adopt the convention that the measure ur appearing above is smooth in the
variables n’ and ¢’; in other words, we are disregarding indicator functions in these two variables,
which, as explained at the beginning of Section 5.5, can be done without loss of generality.

Lemma 5.4. The symbol C can be split into

C(f? n, Tl/, 0-/) = a(ZO)Cl (fs n, 77/’ O-I) +C (f, 1, 77/’ 0-’)’

where X is defined as in equation (5.42), and with

|6a(9,l;c')f7 L& m ' o) < W(lnf|20+un +vo'|)7N, (5.48)
aab qc ad ot N |10g|20|| ifa+b:0
|0¢05, 05,05, C2(&,m, 1", 0")| < —< o ><nf|20+m] +vo'|)” { S04 fa+h> 1.

(5.49)

Note that in equation (5.48), we regard g as a dependent variable (since the main singular dependence
on X can be factorised), while in equation (5.49), we regard it as an independent one.

Proof. The term C is given by the contribution of the § term to the symbol C:

Ci(é& o) = uR(Zo, 1", 07)

1 1
(m <o) ") (Zo) (£, %0)
It satisfies the desired estimates by equations (5.26) and (4.6)—(4.7). As for the contribution of the
principal value term, it can be written as the sum of C] and C;’ defined as follows:

Cy(én.y',0’) = m (&1, 0)/a(v)uR(0 n',0)e"(p.n, U)¢(p)

o [ N )
o(p)

- A n,0)]¢"(p.n, o) ——

Gl nn',o’) =
dp;

here we changed the integration variable to p, so that o~ is now considered a function of p: o = Xy — 12 vp,
and denoted

1
q)(§» 1, o+ ‘D(ZO + ‘]) ’

A&, n,q) = (5.50)
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which, by equation (5.26), and provided |g| <« m, satisfies

¢005A(E.1.9)| S R(1. Zo)°. (5.51)

n-q

This bound, together with the estimates on u* in equations (4.6)—(4.7), and the possible singularity of
a at the origin, lead to the estimate in equation (5.49) on Cj. In order to bound C’, observe that

FEnP) = ¢ (p1.0) A€ avp) - Mg 0] 22 65:52)

satisfies, by equation (5.26),

Supp f C {lpl s R(1,20)”"}  and

9¢d, 05 f (€., p)| < R(n.Zo) ™.

In other words, we can think of f(p,n, ) as a normalised cutoff function (in p) at scale R(1, Zo) ',
such as R(1, Zo) x (R(17, Z9) p). Coming back to C7', it can be written

” ’ ’ 1 ’ ’
ctenn'. o) = e [ a@ut e o) sten ) dp,
(m{o"Yn’)
from which the desired estimate in equation (5.49) follows. ]

5.6.2. The remainder from integrating M 2
1
Dropping irrelevant indexes and constants, the integral in o of M x*% can be written as

©*(p.1, 0)@5(1/) do.

a(aman)a(o’) / A(o)
(m ")y n’) (&, n,0)(0)

The following lemma extracts the leading order contribution and bounds the remainder term.

Lemma 5.5. Recalling the definitions of p, p’, £o, X1 in equation (5.42) as well as p. in equation (5.43),
we have the following decomposition

L * @ ’ _ A(Zo) (’p\(p*) ,
/ B, o) P TP dr = ey e S N Ey pe TGP,

where, for any a, b, c,d € N,

1

[028b0¢,02 C(&,m, 1", p)| < T :
(1Pl + R(U,Zo))Hd

EVnn Y p.

Remark 5.6. In the above lemma, we chose to parametrise C as a function of p., &, and . Of course,
other choices are also possible; the main point is that derivatives across level sets of p.. are more singular
(larger) than along them.

Proof of Lemma 5.5. First, note that, due to the fast decay of q?, we can assume |p.| = |[Zg — 2| < 1,
hence R(n, Xg) = R(n,%;). By definition of ¥ and X; in equation (5.42), and recalling the formula for
A in equation (5.50),

[ 58— . B0 dor = v (pron. EDAGDAE 0,31 - 2 B2,
(¢, n, o)) P P+
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We can now decompose

—~

Ve (e, 1, ZDAZN)AE, 7, 21 - zo)¢(p*)
- LzVA(Zo)A(f,U,O)(p;p ) b oV A)AE 1O (P, 1) 1] “5;”*)
+0ve (P, Z1)[AZ)AE, 7,2 — Zo) — A(Z0)A(4,1,0)] P(p+)

P+
=I+I1I+1I1

The term [ is the desired leading order term. As for /1 and 111, they make up the error term C (&, 1,7, 0'),
and it follows from equation (5.51) that they satisfy the desired estimates. O

5.6.3. The remainder from integrating M ¥
Dropping irrelevant indexes, / M=% do can be written as

“(p,m,0 ¢p) ¢(p/') do.
p p

a(Ha(ma(n’a(o’) / A(0) p
(o’ )(n’) (&, n,0)(0)

The following lemma extracts the leading order contribution and bounds the remainder term.

Lemma 5.7. Recalling the definitions of p, p’, £o, X1 in equation (5.42) as well as p. in equation (5.43),
we have the following decomposition

A(Zo)
D(&,1,20)(Z0)

/ AW o oy B0 8

T
— 9 (p,n,0 - do=—-vl'=
D(&,n,0){(0) P P 2

6(p.) +C(é,m,m", p.),

where, for any a, b, c,d € N,

1

102029¢,02 C(€,m,m, p)| S :
(Ip:| + mrpsy)

EUnNTn Y ps

Proof. Tt will be convenient to adopt lighter notations by setting
a=-uv, a’ =,
so that
p=aloc -2y and p'=ad (oc-X)).
The integral can be decomposed as follows:
[ a@nene-ze . 0)@@ do

) 80
p

—aconeno) [ AU 4w azaieno) [1o oo - A2

¢ [ ¢ a@nEnp) - azaeno 2200 s
=I1+11+111.
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Using that @ ‘]—'[d; * sign], \/ﬂfg and 1 = V2768, we get that
[ EnieD dlalc =S +3) dlao) V(fr) IRCE] P
! a(c -9+ oo o o
= aa’@j}[ﬁp « sign)?](Zo — %) = ?aa’j—'[l +F Gol(Zo - %)

V2
= gaa’é(Zo -2+ Tﬂa’a"Go(Zo -21),

where G is a Schwartz function. Therefore, modifying the definition of G to take the constant factor
into account,

1= Saa’ A()A(£.0.0)6(Z = Z1) + A(0)A(£.7.0)Go (o ~ Z).

Turning to /1, it can be written

@5(11’)61

p P

¢(p) ¢(p)
P’

11 = A(S0)A(E.7.0) / " (pom o) — 1]
= —A(Z9)A(¢, n,O)/% Dy (R(17, Z0) p) ——

A 7,0) / [y (R, )p) = 9oy (R(7, Z0)p)] 2L

=I1I'+11".

o(p) ¢(p )
p p

The term /1" is an error term that enjoys better bounds than 71’, so we only focus on the latter, which
can be written as

, 2ri e ——— .
II' = —A(Zo)A(&,n, O)Tmaa F[(FR(,I’ZO) # sign) (¢ = 51gn)](p*),

where Fr = ¢>_p, (R") . Essentially, Fr can be written as , ,-p,

R(17.50)
bound

. ¢j, and therefore we need to
<2/<1

Do L@ +sign)(¢ = sign)(p.)]|.

»-Dg .
Rz <2/<1

Since the average of ¢ is zero, the convolution ¢ *sign can be written x(27.) for a Schwartz function y.
Then (i *sign) (¢ *sign) enjoys the same bounds as y(2/), and therefore, the above can be bounded by

Z 277y (27p,) < ;

+
<2i<l1 R(T] %) |p*|

Do
R(17,Z0)
with natural bounds on the derivatives.
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We are left with 771, which can be written (up to the factor A, which does not affect the estimates) as

[ o™t e,

where f(p,n, o) was introduced in equation (5.52) (notice that we changed the integration variable to
P, so that p” and o are now thought of as functions of p). As we saw earlier, the function f (&, 7, p) can
be thought of as normalised smooth function in p on a scale R(1, Z9)~!, such as R(17, Zo) x (R(17, Z0) p),
with y € C. The desired result follows. O

5.7. Final decomposition and renormalised profile

Let us summarise here our findings from the previous subsections regarding the decomposition of the
nonlinearity.
We define the renormalised profile f by

[=g-T(8), T8 := Z T .,(8.8)+T,,(8.8) (5.53)

L1,82

where, according to equation (5.29), we have

FrE, (8.8)(1) = // 1P ENN G gt o)mE (£, 0) dydo
Zfl] [%) (éj’ n’ O-) (554)
Auv

.
me _(&,n,0) = -1t s
no(&no) 12}Mv,q>m2(§,n,(f)

where the symbol Z is defined in equation (5.11). We then see that f satisfies

& f=0R(g.8)+C5(g,8.8) +CR(g.8.9) (5.55)

where:

o The regular quadratic term is given by

QR (a,b)= ) QR (a,b)

L1502

OR la,b](t,6) = // e1Puo (&) (£, 0) @, (t,0)b,, (t,0) dny do
(Dtl %) ('f» 1, 0—) = <§> - L1<77> - L2<0->7

with equations (5.15)—(5.18).

(5.56)

Notation convention for the parentheses. Note that in equation (5.56) above, we have used both
square and round parentheses for the arguments of QX. When only a pair of arguments appear, we
will mostly use round brackets when the arguments are either time and frequency (¢, £) or a pair of
functions (such as (a, b) above, or (g, g) in equation (5.55)). In cases where we write both the input
functions and the independent variables, we will often highlight the distinction between them by
using square parentheses for the input functions, as done in the second line of equation (5.56) above,
equation (6.20), equation (8.8), and so on. We will adopt a similar notation for other similar
multilinear expressions (see, for example, equations (8.28) and (8.32)).

Also, when the arguments of the bilinear form QR are given by other multilinear expressions, we
will use square parentheses (throughout the given formula) to provide a clearer distinction; see, for

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2022.9

64 Pierre Germain and Fabio Pusateri

example, equation (7.36). We will adopt a similar notation for the trilinear terms in equations (5.57)
and (5.59).
e The singular cubic term is given by

CS(a,b,c) = Z CS (@b, c)

K1 K2K3

:qum la,b,c](1,§) = [// 1@y iyx3 (£,17,07,6) fleKs(é‘ n,0,0) dy (1, n)b,q(z‘ 0)Ci, (2,0) dndo do,
D@y s (6,11, 07) 1= (€) — k1) — k2 {07) — K3(B),

(5.57)
with the exact formula for the symbol ¢® appearing in equation (5.46). The operator CKl KKy Can be
further decomposed into

Cras = Cottors + s (5.58)
(see equation (5.47)).
e The regular cubic term is given by
CR(a,b,c) = Z CR (@b, o)
K1K2K3
i [ 0, €1(1,6) = /// Puns (£ T O R (£m,0,0)a,, (,1)b,, (1, 0)C, (1, 6) dn do db,
(5.59)

where, in view of the estimates for the symbols appearing in Lemmas 5.4, 5.5 and 5.7, we have that
R enjoys bounds of the form

L med(|yl, |o], |6])*erbrerd

Mo)0)  (E-n-o-)N

up to possible logarithmic losses like those appearing in equation (5.49); recall also the notation for
med from the end of Section 2.5.1. We are again adopting the convention explained at the beginning
of Section 5.5 of disregarding singularities at O in the variables of the inputs of equation (5.59).

We then note that the terms in equation (5.59) are essentially a cubic version of the regular quadratic
terms QX in equation (5.56). A good way to think of them is that they are essentially of the form

aaabacad R (5,77,0',9)| <

KIKZK%

, (5.60)

T[F]V-:1 QR# (g, 8), g]. Therefore, estimating equation (5.59) is much easier than estimating equation
(5.56) or other cubic terms that appear in our arguments, such as those in Section 9; see also
Propositions 11.5 and 11.6, where terms similar to equation (5.59) are treated. Therefore, in all that
follows, we will skip the estimate for the CX terms from equation (5.55).

The next Lemma shows that the renormalised profile satisfies the key assumption about vanishing at
the zero frequency like the original profile g.

Lemma 5.8. The renormalised profile equation (5.53) satisfies f(O) = 0. Moreover, when V is excep-
tional and even, f has the same parity of g (even/odd in the case of odd/even resonance).

Proof. In the generic case, f(O) = 0 is automatically satisfied; see Proposition 3.6.'2 Moreover, in the
case where u(0) = 0 because of the structure of the equations as for (KG2), the claimed property for f
is easy to verify because the quadratic symbols under consideration will vanish at & = 0.

2Technically, one should check f € L' (for fixed ), but this is not hard to do and, in fact, we will prove this type of control
later; see, for example, Proposition 7.2.
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We now verify the statement in the exceptional case by distinguishing between the case of odd versus
even solutions. Note that an odd, respectively even, solution u corresponds to an odd, respectively even,
profile g in distorted Fourier space; see equations (5.2)—(5.5) and Lemma 3.7.

In the case of odd solutions, our assumptions dictate that the zero energy resonance is even — that is,
T(0) = 1 — and the the coefficient a(x) is odd; hence {,., = —{_. In the case of even solutions instead,
we have that the zero energy resonance is odd — that is, 7(0) = —1 — and the the coefficient a(x) is even;
hence €100 = €_co.

In both exceptional cases, since V is even, we have m,(—x,&) = m_(x,¢) and R (¢) = R_(&); see
equation (3.13). In particular, the coefficients defined in equation (4.5) satisfy the symmetry

aj(é) =a;“ (=€), Aee{+ -}, (5.61)

and R.(0) =0

Next, we inspect the formulas in equation (5.54) with equation (5.11). Since g(0) = 0, it suffices to
prove that, for fixed ¢, 12, we have that F(T} (8.8 +T,, (8, g)) vanishes at & = 0. The contribution
toTF5, (g,g) atfixed A, u, v when & — 0 is

L

lim (1c(&) + - (£)),

where

aZ)L] %) (f’ 77’ 0')

) _ _ Auy
15 ) ==L //el[d}l”2(o’n’o_) L 1, L t,o ;
(& 1 8u (1,8, (1, 0) 8ri(n)(o)®,,,(0,7m,0) (5.62)

¢(Po)

X leco [\/75(p0)+6(,0 (po,m, ) p.v.—/—| dndo, Do = LU — VO .

Note that the coefficient a{ (£) may be discontinuous at 0, and this is why we kept the dependence on &
for the coefficient ‘a’ in equatlon (5.62) and the limit in &.

Next, we change variables (1,0) +— (-n,—0) in the expression in equation (5.62); note that
po — —po, and recall that ¢ is even. In the case of odd g, using equation (5.61) and limg_, a5 (¢) =1,
limg_,0 aS (¢) = 0 (here the coefficients are continuous; see (equation (4.5))), we see that

af()Ll 1% (0’ —T], _0-) = aL_OElI [%) (07 T]’ 0—)
Auv Auv

Since ;00 = —C_w, it follows that I (0) = —1_,(0), hence the desired conclusion.
In the case of even g, we have instead lim ¢ _,o(a§ (¢)+a; € (£)) = Oand lims_,0 2% (¢) = 0, which give

lim (aLEOLI 12 (é:’ -1, _0_) + azoell %) (é:’ 1, 0-)) =
£-0 Auv Apy

Then, changing (7, o) +— (—n, —0) and taking the £ — 0 in equation (5.62), using that £, = {_. here,
we see that limg_,0(1c(§) +1_(£)) =0

To show that f has the same parity of g, we can use similar arguments. Let us just look at the case
when g is even (which corresponds to an odd resonance), as the odd case is analogous. It suffices to
show that for even g, we have that 7~"( g, g) is even. Looking again at the definition of 7 in equation (5.54)
and of Z in equations (5.11) and (4.4), we see that

al._el, L (f’ TI’ O—)
; P A0 -
Zigin(=€,-1,-0) = beoo—o——— (5(17)"‘690 (p.m,0) p.v. “ip =Ziyuun(én,0)

Auv 8 (n)(o) Auv
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having used equation (5.61) and ¢, = {_c. It then follows that FT? (g.8)(-¢) = L_ltz (g,8)(&) and

L

therefore (see equation (5.53)) T(g, g)(&) is even. O

The next lemmas give regularity properties for the symbols of the bilinear operators QF (Lemma
5.9)and T and C° (Lemma 5.10). These are based on the results from Sections 3 and 4, but we chose to
place them here (although they were refereed to, and used, before) since parts of the proofs are similar
to the proof of Lemma 5.8 above.

Lemma 5.9. Ler QF = Qﬁ b be the bilinear operator defined in equation (5.15), with symbol q = q, .,
as in equation (5.16), where uR = ,um2 is given by equations (4.6)—(4.7). Then under the assumptions
of Theorem 1.1, we have that

af QL] 5] lté_> L1 L1L2 ﬂ eitd)l] 2 (‘f’n’(r)q:l 153 (f’ 77» 0-) gf-l (tﬁ n)gtz (t’ 0-) dr] dO—, (563)

where

0y, =01+ 02+ qs,

0(&.1.0) = o (m = Z{}l (O1eMa(@)derq 0e & o), (5.64)
< ¢(p)
@ n,0) = 8ﬂ<n><(r> MZ,,VEb 2 (&ag , (may, LZ(U)[ 1—¢"(p,n,0)) == ] (5.65)
¢(p)
WE0.0) = s Y eafun (€)1 = ¢ (o) S (5.:66)

Au,v, € Ay
where b (£) is the function defined for £ # 0 by b§ (&) = dga{(€) (see equation (4.5)).

Proof. For notational convenience, let us define the operator (we will often drop the time variable,
which is a fixed parameter here, and omit the ¢;¢, signs since they do not play any role)

TulF1(6) = / ey (€.7.0) F(E.. @) diy dor, (5.67)
so that

€
3 =it
é:QLILz (t’ f) lt <§>

For the second term on the right-hand side of equation (5.68), we have, recalling the definition of q from
equation (5.16),

O ,(1,)[8, 8] + To,q,, ,, [G1(£). (5.68)

Tosq [G] = T, [G] + T, [G] + T4, [G].

where
1
my(é,n,0) = WagﬂR(f, n,0), (5.69)
1 -
my (., ) = WE;ﬂVeagaj(f)a;’n(n)aﬁ’tz(a)[ ¢ () ¢(p)], (5.70)
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with p = A6 — yyun — ©yvo, and g3 the symbol in equation (5.66). To prove the lemma, it then suffices
to show that

Tm] [G] = qu [G]’ (571)

T, [G] = Ty, [G]. (5.72)

Proof of equation (5.71). We look back at the definition of uR in equations (4.6)—(4.7) and see that
equation (5.71) amounts to showing that the § contribution that arises from d, uR vanishes. Recall the
description of u® = uR! + uR? in equations (4.20)—(4.22). Note that all the integrals under consideration
are absolutely convergent because of the fast decay of /®. We first look at u®! and distinguish between
the generic and exceptional cases.

In the generic case, since 7(0) = 0 and R.(0) = —1 (see Lemma 3.3), we have 6§(//A(x, £=0)=0,
with A = S or R, which suffices.

In the exceptional cases, let us write ¥(x,&) = 1.(EW7(x, &) + 1_(E)Y<(x, &), where ¢~ is
given in equation (3.26) and ¢ < in equation (3.27), and similarly let ¢4 (x, &) = 1,(&)Y?> (x, &) +
1_(&)Y™=<(x, &), with A = S, R, according to the formulas in equations (3.29) and (3.30). Differentiat-
ing equation (4.21), we get the singular contribution

le,(S(g’ 1, 0') = 6(6) Z / a(x) ['ﬁA’> (xvf) - WA’<(X7 f)]ll’ﬁ(x’ Tl)‘/’g(x’ 0') dx. (573)

(A,B,C)eXr

In the case a := fi(—0,0) = 1, we have T(0) = 1 and R.(0) = 0 (see Lemma 3.16), which shows,
looking at the formulas in equations (3.26)—(3.30), that equation (5.73) vanishes.

When instead a = —1, we have T(0) = —1 and R.(0) = 0, and we need to look at the bilinear
operator associated to equation (5.73): that is, T, ;[G] with G as in equation (5.68). Changing
variables (1, 0) — (—n, —0) leaves G unchanged in view of Lemma 3.7. At the same time, using that
a(x) is even and Yy (x, &) = y<(—x,—¢) (since R, = R_, and m,(x,&) = m_(—x,)), changing
x — —x in equation (5.73) shows that

le,&(f’ -, —O') = 6(5) Z / a(x) [lﬁA’>(—x, 0) - d’A’<(_x’ O)]l//ﬁ ()C, U)Wg(x, O-) dx

(A,B,C)eXg
= -mg1,5(&,1m,0).
This gives Ty, ;[G] = 0, as desired.

For u®?, we start from the formula in equation (4.26); upon applying 0¢, we need to look at the
symbol containing a §(&) contribution: that is,

mgo,s(&,1,0) = Z Xe e (A€ = —vo)[dead (6) - b (E)]ag(may (o), (5.74)

€,6,6,4,u,v

where, recall, the sum is over triples of signs (€1, €2, €3) # (+,+,+), (—, —, —), and we have y¢ ¢, ¢ (X) =
a(x) X e, X e, X &; (x). To show that this symbol gives a vanishing contribution, we first recall the definition
of the a§ coefficients from equation (4.5) and see that in the generic case, we have dza(£) = b (§) -
€46 (£). Then the right-hand side of equation (5.74) is

~5(&) Y. Xama(-un-vo)adag(may (o),

€,6,6,4, 1,V

which vanishes upon summing over A = + and —.
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In the exceptional cases, using Lemma 3.4, we have

1—12 211“/1 +,
dzag(§) =bg (&) —ed(&) 1 2 ¢ (5.75)
ifd=-.
1+a?

Note that we can then use the formula in equation (5.75) in all cases, with the convention that a = 0 in the
generic case. When a = 1, the vanishing of equation (5.74) is obvious since the coefficients of the ¢ in
equation (5.75) vanish. In the case a = —1, instead, only the A = + term remains in equation (5.75), and
we look at the bilinear operator associated to equation (5.74): that is, Ty, ,[G] with G as in equation
(5.68). More precisely, we can see that changing signs to (7, o) in Ty, ;[G] leaves G invariant, while

MRos(€,-1=0) =6(8) D, Xaaa(un+ve)(=2a)ag(-nag (o)

€1,€2,€3, 1,V

=5(&) ). Xaaa(-pm—vo)Q2e)ag(may (o) = —mps s(£,7,0),

€1,6,€63, U,V

having used equation (5.61) and changed the signs of the €’s to get the second identity, also using that
XE[ 66 (—)C) = X—(ﬂ 6263)(x)v since X+(—X) = )(_()C) and a(-x) is even.
Proof of equation (5.72). We can use arguments similar to those used above for equation (5.71). As

before, it suffices to show that the contribution to equation (5.70) that contains the § factor from equation
(5.75) vanishes. In the generic case (using equation (5.75) with a = 0) this contribution is

#(po)

> el -es@lag, oma, @) (1= ¢ (pom @) 5

[V NTRY

Moo (€,0) = ] 576

87 <77><0>

with pg := —t;un — 1uvo, and vanishes upon summing over A = +, —. For a = 1 the vanishing is obvious
since the coefficient of the § in equation (5.75) vanish. To see the cancellation in the case a = —1,
similarly to what was done in the previous paragraph, we look at the bilinear operator with symbol

¢(P0)

m2 5(§ 1, O—) 87l'<7]>< > Z 26(5)] ,u 0 (n)av 12(0—)[(1 - (PO7 n, O—)

€,1,V

Notice that the € factor from equation (5.75) and the one present initially in equation (5.70) canceled
out. Using equation (5.61) and the fact that ¢ is even, recalling the definition of ¢* (see equation (5.12))
and then changing the sign of € in the sum, we have

. ¢(po)
my, 5(é,-n,—0) = 8ﬂ<n>< ; EZ#:V -256(8)]a,5, (mays, (o) [(1 - ¢"(po,m, 7)) - ]
= _m2,6(§? n, O-)’
which completes the proof. O

Lemma 5.10. Let T = T,,,, be the bilinear operator defined in equation (5.29) with the definitions in

equations (5.11) and (5.8). Then under the assumptions of Theorem 1.1, we have that

0eFT, 0, = ité—>TM2 —thz//e “Punt]  (£,1,0) 8, (1,8, (o) dydo (5.77)
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with
t:”z =1 +1p,
_ o by(©ag , (maf (o) \/’ é(p)
ti(.n,0) = oy 8m<n><a> A §(p) + €™ (p,n, o) p.v. i | (5.78)
a—Lle('fvn’ O—)
— 1 ¢(p)
t(&,n,0) = e/lpvfew 8m<n><a> Do) (\/75(p)+€<p (p.m,o)pv.—— i ) ,

(5.79)

where b§ () is the function defined for & # 0 by b{ (&) = dza{(§) (see equation (4.5)).

Proof. The proof follows along the same lines of the proof of Lemma 5.9 above; compare equations
(5.65)—(5.66) with equations (5.78)—(5.79). Starting from the definition of the coefficient equation
(5.11), we see that the only thing to prove is that the §(£) contribution that arises when differentiating
the a§ (&) factor in the numerator vanishes. This can be shown exactly as in the proof of equation (5.72);
see the formulas for the symbols in equations (5.70) and (5.65). In particular, if we let t; s denote the
6(¢) contribution, that is, a symbol as in equation (5.78) with b{ replaced by dza§ — b{, and look
at the exceptional case with odd resonance, we can use {4 = —{_o and equation (5.61) to see that
t1.s(&, -1, —0) = —t1.s (&€, 1, 0). We can then conclude as before. O

Remark 5.11. Here are some remarks that we will often use in what follows:

(i) Lemmas 5.9 and 5.10 show that the derivatives of the symbols of the bilinear operators QR and T
are smooth up to up to (possible) singularities along the axis &, or o = 0. These latter can then
be handled as in Remark 5.1.

(i) Note that the statements of Lemmas 5.9 and 5.10 remain valid when the operators are applied to
any other two inputs in the generic case. In the exceptional cases, they remain valid for inputs with
the same parity of g (even/odd in the case of odd/even resonance), such as (g, f) or (g,7(g,2));
see Lemma 5.8. In the rest of our analysis, it will always be the case that the parity of the inputs is
the proper one.

(iii) Also notice that formulas similar to equations (5.77)—(5.79) hold for the cubic bulk equations (5.34)
and (5.35), as can be seen from equation (5.30) and the fact that d;g has the same parity of g.

6. Multilinear estimates

In this section, we first examine general multilinear estimates that will be useful in particular in Section 9
and then establish multilinear estimates for all the operators appearing in Section 5.7.

6.1. Bilinear operators

General bilinear operators can be written as

Ba(fr9) () = P // 0 OFEQ) dnde.

As far as the present paper is concerned, we are mostly interested in two classes of bilinear operators:
those whose symbol a contains a singular factor §(¢ — n — {), and those whose symbol contains a
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w; for simplicity, we will drop the p.v. sign in what follows. We parametrise

singular factor p.v. &

these operators as

Ca(f,8)(x) := JA”;LX / a(n. &€ —n) f(NE(E& —n) dy

—~ . 6.1)
= \,%—ﬂ//a(n,é)f(n)§(§)elx(”+f) dnd¢
and
Du(f.0)w) = Fely [ v g -n- of(n)g(on it
G 6.2)

- = [|[ronc 9>f<n>§(§)e”<”+4+9>%) dndz do.

Notice that C, operators fall into the category of pseudo-products. As for Dy operators, they are
translation invariant to leading order since their symbol is smooth outside of the set {6 = 0}.
A short computation shows that one can express these in physical space as

1 -
Culf. )0 = = // Gy —x.z -0 f(0)g(2) dy dz.
Do(f.g)(x) = \%2_” // K(x.y.2)f(0)g(2) dy dz. 63)
with  K(x,y,2) :=/B(y—x,z—x,w—x)Z(w)dw, Z = flM

For Dy, this can be seen as follows (we omit the computation for C,, which is more elementary):

Do(f.9)(x) = \%_ /// (1. £,0)Tg@)e* <0 XD 4y az ag

/ / 801, £ 0) £ (1) (2) Z(w)e ) €379 100 49 i d dy dz dw

(2 (27)2
=— [[] b(y—x.z—x,w—x)Z(w)[f(y)g(2) dw dy dz.
=l
Lemma 6.1 (Boundedness for the C, operators). If 1 < p,q,r < oo satisfy 1% + é = %

ICallLoxzair < |||,
This is a standard result; see, for example, [33, Lemma 5.2].

Remark 6.2 (Bounds on symbols). Given a symbol a, we will often bound its Fourier transform in L'
using the following criterion: if a is supported on (1, ) € [t} — r1,t1 +r1] X [tz — ra, 1y + r2] with

—ky —k;

|6,];‘652a sy,

then

r rn
(1 +rx)N (14 rpy)N’

[aCx,y)| s
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so that in particular |[a||,1 < 1. Indeed, the assumption on a implies that

k- -1 — 1
|aklak2a(n,§)|$r bk n—1 v {—n ,
n Y% 1 "2 = s
where y is a cutoff function. Taking the Fourier transform and using that it maps L! to L™ gives
[k yRa(x, y)| < r]_k‘rz_kzrlrz,
which is the desired result.
The criterion mentioned above can be combined with a change of coordinates since, if L is a

nondegenerate linear transformation, then

llao Ll =allL.

Lemma 6.3 (Boundedness for the Dy, operators). Assume that there exists F € L' such that

'/ B(x, v,2)dz

L
q r’

< F(x,y).

Thenif1 < p,q,r Soosatisfy%+

IDyllepxrasrr S IFlpr-

Proof. Using the physical space representation in equation (6.3), the proof reduces to that of Lemma
6.1 after noticing that Z € L*. O

Remark 6.4. In order for the condition of Lemma 6.3 to be satisfied, it suffices that b be supported on
(U,g,e) e[ty —ri,t1 +r1] X [ta — 1, 1y + 2] X [t3 — 13,13 + r3] with

—k3

—ky .~k
STy T

ki qk2 qk
ok af sy

Indeed, this implies that

ri ) T
(L+rX)N (1+ry)N (1+r32)N°

|3(x, y,z)| S

This observation can be combined with a change of coordinates: it actually suffices that, for a nonde-
generate linear transformation L,

kay qk -k —ky —k
o020 6(L(1,0),0)| < 13T,

6.2. Trilinear operators

General trilinear operators can be written as
~-1 - o~
(8. 0) = 7oy [[ w200 F@(0ho) anc ao. (6.4)
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Two classes of trilinear operators of particular relevance in the present paper are given by

Un(f 8. W) (@) = Foo. / m(En OF (& - mEE —n - Oh(é - ) dnde.

$(0)

(6.5)
V(s =T, [[f e confie -nate -n - - oite - 047 dnag o,

Of course, other parametrisations of Uy, and V, would be possible; but the parametrisation above will
be particularly relevant since it is the one adopted in Section 9.
In physical space, these are given by

1 -
Un(f-8.(0) = = / (w4 x4y 4+ 205 — yomy — ) f (D) g(A() dx dy dz.
Va(fr g 1)(w) = /// K(w.x.y.2)f(0)g ()h(2) d dy dz. 6.6)
1 -
with K(w,x,y,z) = E / n(-w+x+y+z,-x-y,-y—-2zy =Z(Q')dy,

with Z as in equation (6.3).
We have the following standard trilinear analogue of Lemma 6.1.

Lemma 6.5 (boundedness for the U, operators). If 1 < p,q,r,s < oo satisfy % + é + % =1

s’
NUmllLoxraxrr—rs < Mz

Remark 6.6. Given a symbol m, to check in practice that its Fourier transform is in L', we will use the
following principles:

o If mis supported on (£,n,0) € [t; —ri,t1 + 7] X [t2 — ro, 12 + 2] X [t3 — 13,13 + r3] with

ko ks
2 T3

08 ook m| < i
then

T r r3
(1+r )N (1 +rx)N (1 +r3x)N’°

|m(x,y,2)| <

so that in particular |||, < 1.
e By the algebra property of the space FL! (Wiener algebra), there holds

IFmw)llLe < Izl

e The previous point can be generalised to the case where t is L' in a single direction and constant in
the others. For instance, for any a, b, ¢ such that |a| + |b| + |c| ~ 1,

[Fimee.n.00g5ae 4 bn+ ol < il

This remains true if ¢; is replaced by ¢ or ¢ ;. Indeed, for any linear transformation L of R3 of
determinant one, ||fit|[;1 = ||m o L||.1. Therefore, it suffices to examine the case a = 1 and
b = ¢ = 0, which immediately reduces to the fact that L' is an algebra for convolution.
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Lemma 6.7 (Boundedness for the V;, operators). Assume that there exists F € LY such that

‘/ n(x,y,z.1)dt

Thenif 1 < p,q,r,s < oosatisfy%+}1+}:§,

< F(x,y,2).

||Vn||LP><L‘I><L’—>LS < ||F||L1

Proof. Since Z € L, the proof reduces to that of Lemma 6.5. O

Remark 6.8. Given a symbol n, to check in practice that it satisfies the condition of Lemma 6.7, we
will mostly rely on the following principles:

o It suffices that
M(x,y,z,0)| S F(x,y,2)G(t = L(x,y,2)), 6.7)

where L is a linear function, and F, G are rapidly decaying functions with L' norm equal to 1.

e If the condition in equation (6.7) holds for n(¢,n, £, 0), it also does for
n(&,n, ¢, 0)¢;(aé + bn + c{ + df) (for a nondegenerate choice of a, b, ¢, d). The same holds if ¢; is
replaced by ¢ or ¢ ;.

e Finally, if n is supported on (£,1,,0) € [—r1,r1] X [—r2, 2] X [r3 X r3] X [—r4, r4] with

ki aky 9k3 qks ~ky —ka —k3 —k4
658,](9(6911 Srytry

then the condition equation (6.7) is satisfied.

6.3. The normal form operator T

Recall the definition of T}, in equation (5.54). Before bounding the full operator, we focus on an

operator (Bfml Y below), which shares the same symbol as T, , but where the phase e"®ux s replaced
by 1, and the distorted Fourier transform by the flat Fourier transform.

Lemma 6.9. Let m7, , (£,7,{) be the symbol defined in equation (5.54). Then for any vt € {+,-},
the bilinear operator

Bug, s (Fo - [ Fongoms, €n.0 anc )

is bounded from LP x L9 to L", where % + é = } and 1 < p,q,r < oo, and almost gains a derivative:

1Buws,,, (f+ )1l < min(IK8:) ™ Fllolig]l o 1 1o 16000 ™ gl a)- (6.9)

Here we are using the notation ‘—1+’ from the end of Section 2.5.1 to denote any number that is strictly
larger than —1.

Proof. Firstobserve that the Fourier multipliers a$ (D), €, 4 € {+, -} areboundedon L, 1 < p < oo, by
equation (3.14) and Mikhlin’s multiplier theorem. Three different phase functions have to be considered.
The case (t1,t3) = (—, —) is clearly the simplest and will not be examined any further. This leaves us
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with the cases (+,+) and (+, —): in other words, it suffices to treat the operators Cy,, Cp,, D, and Dy,
(these notations being defined in equations (6.1) and (6.2)) with

P (0.0) = — 1 :
O Wt O~ O 6.10)
2 _ 1 1 '
L Y7L FW e oS
and
1 — 1 1
G080 = D e L0 — () — (@ P RO 09, 6.11)
2 — 1 1 '
OO = @ e Loy e - KO0

We observe that bounds for the symbols and

1 1
D= =0 e (m—zy> on the one hand, and

on the other hand, can be deduced one from the other by duality.

1 1
=@ A Grmee -

They are not quite equivalent due to the factors m and ¢_p,(R(7, {)8), but the required changes
in the proofs are superficial, and we shall only focus on p; and q;.

With the definition of y. in equation (3.25) and the definition in equation (2.24), we localise the
symbols by setting

P 0.0 =901 Oxa e Mxe (e (2),

€1,€2

with a similar definition for qu ‘-
€],€

Case 1: €1 = €. It follows from equation (5.24) that

09028", 4 (0, 0| § 27U maip bk (6.12)
€1,

|67‘;6?6(3qu,]< (77, é/’ 9)' < 2—max(j,k)2c min(j,k)z—ajz—bk. (613)
€1,6

By remarks 6.2 and 6.4 and Lemmas 6.1 and 6.3,

HC 1 + HD . < 2 max(ik)
Pk lLpxra—rr 9k lLpxpa—Lr
€],€2 €1,€2
and therefore, for § > 0,
—omax(j,k)
C, \1-sp1 +||D, yi-6.1 s 2 .
” v Neexraspr my'=eal;
€],€6 eL,ellppxLa—Lr

Summing over k, j > 0 gives the desired result.

Case 2: €1 # ;. Adding a localisation in n + £, let

P e .0 =0 0.0xa e MxaOe (Oxem+Oe” 1+,

0 e 0.0.0 =" 0.0 0xa MY Mxa (e (Oxeam+ ey (n+).
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Without loss of generality, we can assume that 7 > 0, { < 0, and || > |{|. Changing variables to
a =n+{ and B = -, the above symbols become

Bl iie @B =p'(@+B.-Bxi(a+pe” @+ Pri(Bey (Bx:(@)e) (a),

€],€2,€3

Q' (@.8.0) =" (@+B, .0y (a+ B¢ (a+Bx-(Be” (Bx+ (@) (@),

€]1,€2,€3

where j > max(k, €) + C. By equations (5.24) and (5.25),

DU o (. )| 5 27202 R,

€]1,€2,€3

040505 QY 1 (0 B,0)| 5 2720 a PRk,

The desired estimate follows through Remarks 6.2 and 6.4 (in particular the paragraphs on change of
coordinates) and Lemmas 6.1 and 6.3. m]

In the previous lemma we derived bounds for the bilinear operator Bmfl b In order to deduce bounds

for T:f b itself, we need to substitute the distorted Fourier transform to the flat Fourier transform (this is

achieved through the wave operator W; see equation (3.24)) and take into account the phase ¢'®u.
Lemma 6.10 (Estimates for T). Consider the operators Tfl ., defined in equations (5.53)—~(5.54). For all
1

g1 1 _ 1
P, p1, P2 € (1,00) WlthE+P—2 = we have

e~ COWTE, (f1, ) (1)

Lo < min([[@07 e COW Al [l COW |

. (6.14)
le= i@ 1|

<ax>_l+e_L2it<6X>Vv*f2”Lp2 ) .

LP1
Furthermore, for any k > 0

le™ @IW T, (fre Y Ol < 16005 1T @IW il

L

e—tzit<0x)Wf2||Lpz
~u1it (D) k-4 ~0it (3y) (6.15)
+ [l T @OWT ||,y 1402 @QOWF o]l o,

with (p3, p4) satisfying the same constraints as (p1, p2) above.
Finally, if p € (1, 00) and fis a function that satisfies the (second and third) assumptions in equation
(7.10), then, for all t € [0,T]

e @OWTE (f. L) O, S % oy et @ows |, 6.16)
Proof. We can write
CHOIWTE (fi ) (1) = F e MOTFTE (fi, )0
-7 // e £ (1) 1A B (1, 0)ymE (€, 0) dndo (6.17)
= Bug, (7 COW £1(1), e OOW (1),
see the notation of Lemma 6.9. Applying the conclusion of Lemma 6.9 immediately gives equation

(6.14).
To prove equation (6.15), we first write

”e_it(a)()WTti]—tz (fl’ fz)(t)”Wk,P < ”B<§>kmtlzz (e_iftl <6x><D>kV\}*fl (t), e—itlz (ax>]/v“f2(t))HLp
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(we are dropping the irrelevant + apex). Without loss of generality, we may assume that || > |o-| and
|£] = 1 on the support of equation (6.17). We then want to estimate the L” norm of

F /f el (K £ (2,m) 7T B (1, ) [y R my, 4, (€0, 00) | dnpdo
= By, (e PIW 1 (1), e 1HOOW (1))

(6.18)

with the obvious definition of m/ , . Note that from the definition in equation (5.54) with equation

A%
(5.11), m; , can be written, up to irrelevant constants, as m; , = a,,,, +b,,,,, with

_ (o . 1
A = <7]>k A;ya tl£2(§ n,o ) []Lz(é_.’ 7, ) o) é(p),
. (6.19)
_ (o S aolEno ) epno) W) e e e
b = )k v @y (E o)) (o) T ip ' ’

Au,v

On the support of a,,,, we automatically must have (¢) < max({n), (o)) = (1), so that a,,,, is a

regular bounded symbol with the same properties as m7; ,; from the result of Lemma 6.9, we deduce

I1Ba,,., (¢7 @@ W fi(1), e 2 PIW ),
< 0 e PIW AL ()| o e COW o (8)] o

consistently with the right-hand side of equation (6.15).

On the support of the p.v. component b, ,,, we might not have that (¢£) < (). However, if (¢) > (1),
then |p| 2 |£| (in particular the p.v. is not singular), and one can absorb the factor of (£). More
precisely, we can write (dispensing of the ¢1¢; indexes)

b=Dby+by, by :=g<0(l€l/In)b
and observe that b; has the same properties as (the p.v. part of) m so that Lemma 6.9 applies and

HBb1 (e—ittl <6x><8x>kyv*f1 (l), e—ittz(ax)yvxfz(t)) “LP
< 8K e T PIW £ e POW

Lr2*

The contribution from the remaining piece b, can be written as
By, (e7 11O QNN f1(1), e OOW £ (1)) = By (e OOW £ (1), e 2 OW (1))

where

Vi ) dnEno)g fg(i’l)lzfﬁ = ¢,-(5) Y paro(IE1/ I es0(p1/IED).
FNTRY uv L >

Since |p| > |€| and ¢ is a Schwartz function, the symbol b’ has the same properties as m; using an
LP' x LP? estimate from Lemma 6.9 gives

|Bo (e P Wr £1.(2), e 20N ()|, S lle™ T COW il o

e—iltz <6X>Wf2|

LpP Lr2>

which is better than the desired conclusion.
Finally, to prove equation (6.16), we use the linear dispersive estimate in equation (3.34) to take care
of the a§ multipliers, instead of the Mikhlin multiplier theorem. O

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2022.9

Forum of Mathematics, Pi 77

6.4. The smooth bilinear operator QR

Lemma 6.11 (Estimates for Q). Ler QR be the bilinear term defined in equations (5.56) and (5.15)-
(5.16). Then for any

P1, P2 € [2,00), —+—<

one has the improved Holder-type inequality

QR , [ fi. £1(t.6)||,> < min(|[(0x) ™" e 1 PIW* fi || Loy [l 2" CIW* || 1

' | | (6.20)
e QI £l o1 1105 Fe T2 POW fol 1 ).

Moreover, for k > 0,

[ QR 1A, £1(1,8)]| 2 < 10 e T COW fi| Loy le™ 2" COWF fo| L,

* e 6.21)
+ [l T PIWE | s (0 ) KT e PIW By

for (p3, pa) satisfying the same constraints as (p1, p2) above.

Proof. Recall the structure of the symbol of OR from equations (5.15)—(5.16) and (4.6)—(4.7). For the
piece coming from ,uf”z, estimates stronger than the desired equations (6.20)—(6.21) follow directly
from Lemma 4.2. We then only need to look at operators of the form

Qla.b](¢) = f/ a(.n.0) @mb(0) dn dor

atiotl I (&m,0) A( (6.22)
A& o) = -2 (1-¢"(p,n, 0'))¢—p), p = —uun - upvo,
(m)<{o) P
and prove that
||J?L'71(Q[a,b](§))||m < 160 all o 161l e (6.23)

since by symmetry between the arguments a and b it follows that the right-hand side above can be
replaced by min([[(0x)~"*all Lo b1l o2 llall Lo [1{8x)~"*bll o2 ) and that

K&)' Qla, b1(&)|| > < 1160 all o 1Bl Lo + llallLes 1160x) !~ bl Lo (6.24)

Proof of equation (6.23). As usual, the first step is to observe that the multipliers a3;,,,, (¢,1, o) can be

Auv
discarded. Also, we may assume without loss of generality that p = £ —n—o. Next, we insert Littlewood-
Paley cutoffs in each of the variables 7, o and p and consider the localised operator Oy [a, b](£), with
the same form as Q in equation (6.22) but a localised symbol

m&(f» 1, O_) @
mioy p (6.25)
M (€,1,0) = 01, (M@, () iy (p) (1 = @ (p, 1, 0)).

ak(&,n,0) =

We then make the following restrictions on the indexes
ki > ky >0, and 0> k3 >—k;—D.

These can be explained as follows: k| > k» is the harder case, since it implies that the derivative gain
in equation (6.23) will be on the larger input frequency; k> > 0 amounts to restricting to the case of
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frequencies > 1, which is also the hardest case; k3 < 0 is a consequence of ¢ being Schwartz: values of
|p| > 1 are exponentially damped, and we will not worry about them here; and finally, k3 > —kJ — D
follows from the definition of ¢*.

The idea then is to regard Qy (a, b) as a trilinear operator acting on a, b and ¢ = F ' (¢/p), and note
that the symbol n (17, o, p) := my (€, 7, o) satisfies

|8,‘;636§m§(n, o, p)| < p-aki=blka=cks

Up to a change of coordinates, Lemma 6.5 and Remark 6.6 apply, leading to the estimate, for any
1

I <q,p1,p2 < oosuchthat$+%+z = %
1Qk(a.b)||,, < 1Pkl L lIPk (Bx) " all Loy [1Pay (D) Bl s
s 2_%—k22—(()+)k1 ||(8x)_l+Pk1a”Lm 1Pyl -
It remains to observe that, provided 1 < g < oo,
" Bkan-(00k < o

0>hk3>—k3
ki >ky >0

Proof of equation (6.24). One can proceed as above, modifying the definition of my to

. ©"
= 1- =l
g (£,7,0) = @r, (M i, () @i, () (1 = @7 (£, 7, 0)) W+ (o)
and observing that if || > 3max(|n|,|c]), then |p| 2 |£], and any power of (£) can absorbed by
¢(p). O

From the proof of Lemma 6.11 above, we can also deduce the following property, which will be
useful in Section 7.3.

Claim 6.12. We have the following schematic identity for the operator QF in equation (5.56):

()0 OR[fi, o] ~ 1 (€)QR 1, o] + (E)OR[F (9 1o, 1. (6.26)

In particular, equations (6.26) and (6.20) imply the following Holder-type estimate for (£)0 oR up
to lower-order terms that can be discarded:

1660 QR (fi. )12 < D]|le™ @D W il - |le O () W | o
+ [ 0 Al all00) e @IV o
Here, we are using co— to denote any arbitrarily large number (see the notation at the end of Section

2.5.1). Note that this last bound is technically a little worse than what one could get: that is, a bound
with only one term at a time carrying a (¢)** factor in the last product.

(6.27)

An analogous claim holds for the operator T'; see Remark 7.7. For the case of T, the proof is contained
in the proof of Lemma 7.6; we refer the reader to that for more details on the type of argument that leads
to equation (6.26) and provide a more succinct argument below.

Proof of Claim 6.12. To see the validity of equation (6.26), we look at the expression in equations
(5.15)—(5.16). Applying (£)0¢ gives two contributions: one where (£)d,¢ hits the exponential phase and
one where it hits the symbol q. The first contribution is 7& - QR [ f1, f3], which appears on the right-hand
side of equation (6.26).
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When ¢ hits the symbol, we get a few more contributions. First, we observe that 9 #(I; behaves
exactly like uOR, so this is a lower-order term that we can disregard; see Proposition 4.1 and Lemma 4.2.
When 0 hits q, we get similar lower-order terms, with the exception of the contributions coming from
O¢ hitting p.v.1/p or ¢*. Under the assumption that || > |o7|, in view of the definition of p, we convert
J¢ to 0, and integrate by parts in 7. When d,; hits the profile j"l (7), we get the second term on the
right-hand side of equation (6.26). When 9,; hits the oscillating phase, we get a term like the first one
in equation (6.26). The other terms where 8,, hits the remaining part of the symbol only contribute
lower-order terms that satisfy stronger estimates than the terms in equation (6.26). O

6.5. The singular cubic terms C5
The next Lemma is a Holder-type estimate for the singular cubic terms.

Lemma 6.13 (Estimates for ‘cubic singular’ symbols). With the definition in equations (5.57)—(5.58),

. S S R . .

consider C° = C}/,, ., forr = 1 or 2, and any combination of signs v. Then for all p, p1, p2, p3 € (1, )
ith L+ L4 L -1

with p1 + P2 + JZ I e

i -1
e 9 F " CS(a, b, c)|lp

i ) , (6.28)
< 00 e CIW all Lo (0T OIW b Lo (82 e O Wi e Lo

Furthermore, if k > 0, and with (pa4, ps, ps) and (p7, ps, py) satisfying the same conditions as
(p1,p2,p3),

e @O F'CS (a, b, ) llyysr
< @R e T PIW al| o [1(0) e POW b 1 10) e PO |
140 OOW ]| o IO e T QIW b s 1(0) e POWP |
140 e OOW ]| s [(0)™ 1 PIW bl 1€ e @OWP | .

(6.29)

Finally, if p1 = oo, and f is a function that satisfies the (second and third) assumptions in equation
(7.10), then for all t € [0,T] and L+ + L = L we have
P2 p3 T p
£

Vi

with a similar statement if p; = pp = .

. —~—1 . .
e O FCS(f,b,0)lp $ —=I10x) e T OIW || Ly () e OIWr el s, (6.30)

Proof. Starting from the formulas in equation (5.46) giving ¢S and ¢52, we first discard the factors

€,€’

NTNTNY
—,K1,K2,K3

(& n.1m'.0"),

which is possible thanks to the Mikhlin multiplier theorem. Omitting these factors and irrelevant
constants and indexes, it suffices to deal with 7,1 and 7, (recall the definition in equation (6.4)), where

A(£ +n) 1
W £.0) = earsran
e (£,1.4,0) O, L) (E Do) (Exnxl+0)
(6. £.0) = —AEET) I FExntl+0)

D, EnExn) (MEEMO) Exn+l+6
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For the sake of concreteness, we make a choice of signs (which one it is exactly does not matter):

A& +n)

o0& - -0),
oGt v ME i@ e 1TET?
A +1) ! b —n+L-6)

Dy (&mE+m) (ME+MENO) E-n+i-0

With the convention for U and V operators (see equation (6.5)), this corresponds, respectively, to the

el (&,m,2,0) =

Z(é,m.4,0) =

symbols
1 () !
PO = g e e —n2e—n) C-me—nie-1-0G -0
P = g—ae " :

D, ,(6,6—026—n) E—mQRE-—E-N-L-0)E-E)

We will now only focus on f', since f> can be treated nearly identically. Different signs ¢, 1, can-
not be treated identically; for the sake of brevity, we will only treat the most delicate case, namely
(t1,2) = (+,+). Changing coordinates to @ = —¢+n, 8 = 26 —n,y = £€—{, and localising dyadically, this

becomes
I _ A(B) 1 © (10 (8)0® 1 O () _ g —
g (@B, ¥ Dl + B B) @Bk ()¢, By, () & —2a - p) %k (y-2a-p).
=b, ' (@.8,7) =h,7(y —2a - B)

Finally, we need to distinguish cases depending on the signs of @ and g; once again, we only consider
the worst case, namely a, § > 0. By equation (6.12), there holds, for all a, b, c,

a(alaga;‘bl,l (Q,ﬁ, ,y) < 2—(1+a)k|—bk2—(1+c)k3’

therefore [[b,"'[|,1 < 27%17%. Since Ilb,lfllu < 27K, we obtain that ||1;1< 1 < 27ki=k=k Applying
Lemma 6.5 and summing over dyadic blocks gives the desired result in equation (6.28). Equation (6.29)

follows in the same way. Finally, using the linear dispersive estimate in equation (3.34) instead of
Mikhlin’s multiplier theorem, we obtain the endpoint estimate in equation (6.30). O

Remark 6.14 (Derivatives of the cubic symbols). In the estimates of Sections 10 and 1 1, we will perform
various integration by parts arguments in frequency space and will therefore end up differentiating
the cubic symbols appearing in Lemma 6.13 above. The estimates satisfied by the trilinear operators
associated with these differentiated symbols might vary from case to case, depending on the variables
that are differentiated; the localisations imposed in each specific case will determine how these estimates
need to be modified by additional factors. In any case, in all our arguments, the terms obtained when
differentiating the symbols ¢3! and ¢5? will always give lower-order contributions.

7. Bootstrap and basic a priori bounds

In this section, we first give the details of our bootstrap strategy as presented in Sections 2.6 and 2.7; see
equations (2.40)—(2.41). In particular, we close the bootstrap for the profile g, assuming the bootstrap
for the renormalised profile f. In Section 7.2, we give some preliminary bounds on f that will be useful
in later sections. In Section 7.3, we expand the nonlinear expressions in terms of f and establish several
bounds that do not require the analysis of oscillations. Section 7.4 recalls the main equation for f and
lists all the estimates that are left to be proven in the remainder of the paper.
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7.1. Bootstrap strategy

Recall from equation (1.3) that we are considering initial data such that
1(€Ox)uo, u) [+ + 1<) ((Ox)uo, un) | 1 < &o. (7.1)

From the definition of v and g in equations (5.2) and (5.5), we see that go = u; —iVH + lug. Therefore,
Proposition 3.6 and Theorem 3.10 imply that

K€Y g0l 2 + 1€€) e 8ol 2 < 0. (7.2)

From this and the interpolation inequality |¢g (g)‘ﬁ(g) 1> < ||¢kE||L2 l0g wkﬁlle, we see that

16€)**&oll 1 < £0. (13)
According to the definition in equations (5.53)—(5.54) for the renormalised profile, we have
f(t=0) = fo =g0—T(go,80)(t =0),

so that using equation (6.15) and estimating as in the proof of Lemma 7.6 below (see in particular
equation (7.29)), we have

16 foll 2 + IKE)0¢ foll .2 s eo- (7.4)
Again, by interpolation, we obtain
166> foll 1 < 0. (7.5)
In what follows, we consider &1, &, satisfying
gy K €1 K &, ) (7.6)
with £¢ sufficiently small. The main bootstrap estimate for g is given by the following:
Proposition 7.1. Assume that, for all t € [0,T],
OO D] 2 + (O L (DIYW ()l < 2. (7.7)
Then forall t € [0,T],
@OPE* ED 2 + () Plle™ PIL(DIYW g (D)l 1o < 2. (7.8)
Moreover, we also have

lle " Pg ()|l < ea(ty™/. (7.9)

Proposition 7.1 above implies global-in-time bounds on g and v = ¢'*¢?)¢(t), hence on the solution u
of equation (KG) (see equation (5.3)); in particular, together with equation (7.28), it gives the the bounds
in equations (1.4) and (1.5) and (1.7) stated in Theorem 1.1. However, since we cannot bootstrap directly
bounds on norms of g, we reduce the proof of Proposition 7.1 to bootstrap estimates on the renormalised
profile f := g — T(g, g); see equations (5.53)—(5.54). This is our main bootstrap proposition for f:

Proposition 7.2. Assume that for all t € [0,T], we have

O PIE T D] 2 + 140 [y, + 1€V POl s < 21 (7.10)
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and that the bounds in equation (7.7) on g hold with &, = 8?/3. Then forall t € [0,T],

O F O 2+ 11D Fllyy, + IE 2 F Dl < 1. (7.11)

The proof of Proposition 7.2 will occupy the rest of the paper, Sections 8—11. For now, we show how
Proposition 7.2 implies Proposition 7.1 by using the estimates on the operator 7' from Lemma 6.10.
First let us make the following remarks:

Remark 7.3. Note that the a priori assumptions in equation (7.10) and the linear dispersive estimates

in equations (3.32) and (3.31) imply

e P f@0)] o + [l O1LDIW £ ()] 5 £1()72. (7.12)
Also note that, in view of the conservation of the energy equation (1.1), we have that, for all times,

g2+ ILf (D2 < &1 (7.13)

The bound for g follows from its definition, and the bound for f can be deduced from f = g - T(g, g),
the bilinear bound for 7 in equation (6.14) and the a priori assumptions in equation (7.7).

Remark 7.4. For ¢, k € {+, -},
FE@) = [@)1e®), (7.14)

enjoys the same bootstrap assumptions as f, since f(O) = 0; see Lemma 5.8.

Proof of Proposition 7.1 assuming Proposition 7.2. Recall from equation (5.53) that g = f +T(g, g).
From this, using the bounds on the Sobolev-type norms

OO Ol s e O PIEOED],0 < 260,

the bilinear bound in equation (6.15), and the decay estimate from equation (7.7), we get

KT, < [ F O, + €Y FT (8. ) (0)]],> < er{O)P° +|W'T(5.8)(1)|| 4
<e()P + C|Wg(0)||yalle™™ @1 (D)W g (D)l L
< (P + Car ()P - £x(t) ™'
< g ()P + Cs%.
This gives the first bound in equation (7.8).
To estimate the L3 -norm in equation (7.8) we use successively the estimate in equation (7.12),
Sobolev’s embedding and equation (6.15) to get
lle™ @I (DYW'gll e < Car(t)™ >+ Clle™™ P (DYW'T (g, 8) | 1=
< Cer(t)™ 2+ Clle ™ PIWT (g, 8) llyoses
< Cor()™' P+ Cle O IWrg|
< C{) (g1 +€3)
<) g,

as desired. We have used here the notation co— to denote an arbitrarily large (but finite) number (which
may be different from line to line) consistently with the notation introduced in Section 2.5.1.
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Finally, we show equation (7.9). Note that this does not follow at once from equation (7.8) since W" is
not necessarily bounded on L. Observe that, by interpolation of equations (7.12) and (7.13), we have

-it(D) it (Ox) -1/2(1-2/q)
q + X _ . .
lle fllpa +lle L:(0)W fllpa < Cert) (7.15)
Therefore, for finite ¢, we have

le @ Wrgll g < Cer(e) 202D 4 || HONWT (g, 8)ll 1.4
: 2
< Ce (1) 120210 4 C|le™ " OWr g| 724
< C() PR (g 4 62)

< <t>—1/2(1—2/q)82'

Using Gagliardo-Nirenberg interpolation, with the Sobolev-type norm bound in equation (7.7), we
obtain, provided ¢ is large enough,

e @I gllyia < (1) e (7.16)
Then we can estimate, using equation (7.12) and Sobolev’s embedding,

WPl Pgl o < Cor4 ()2 Clle™ P (g, 9)]l

12 = (7.17)
< Cer+ ()7 Clle™ T (g, 8)llw .-
Using equation (6.15), we have
e T (g, &)l < e POWT (g, @)l + (D)™ PIWT (g, )l -
< e PN gl < 307
Plugging this into equation (7.17) gives equation (7.9) provided &; is sufficiently small. O

7.2. Preliminary bounds

Recall that our main aim from now on is to prove Proposition 7.2. Therefore, we will work under the
a priori assumptions in equation (7.10) on f, as well as the a priori assumptions in equation (7.7) on g.
We collect below several bounds on f that are immediate consequences of the a priori assumptions.

Lemma 7.5. Under the a priori assumptions in equation (7.10), for all t € [0,T], the following hold
true:

(i) (Basic bounds for f) We have

IF @)l + K2 F()ll o < &1, (7.18)
14€)0s F()]l,> < &1ty **F7, (7.19)
I, z0e FOIl,, < &2, (7 <2l <1 (7.20)
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(ii) (Improved low-frequency bounds) For all k < -5,

g <ks2ds fll 2 < £1(0)°, (7.21)
lex F@D)llps < 212420, (7.22)
leef(Dlls s &2 ), (7.23)
and forall k € Z,
||6§(<,0k]7)(t)||Llc < emin(2%/2, 1)(1) . (7.24)

(iii) (Linear dispersive estimates) For all t € R, we have
e P £ (0)]| o + [le™ OBV £ ()|, < £1¢8) 72 (7.25)

Proof. Proof of (i): The first norm in equation (7.18) is bounded in view of the conservation of the
Hamiltonian (see equation (7.13)), while the second is part of the a priori assumptions in equation (7.10).
Equation (7.19) follows from equation (7.10) and the definition of W, in equation (2.30) by summation
over £ with ¢(#)™Y < 2 < 1. For equation (7.20), we apply the Cauchy-Schwarz inequality and the a
priori bound on the W; norm to estimate

I y30e i < 2N, y50e Flle < £12727P4 () = 627 (1)°.

Proof of (ii): Equation (7.21) follows from the definition of the norm in equation (2.30). Since f(O) =0,
we have, for k < -5,

—~ & —~
@ F(©1 = @) [ 0,701 ] < ul@lel Pllpacad, fly 2707, 020
and

el < 2N flle < e12**2 (). (7.27)

The estimate in equation (7.24) follows from the a priori if assumption on the weighted norm in equation
(7.10) and from equations (7.22)—(7.23) above as long as ||&| — V3| > 1, and it follows from equation
(7.20) when ||£] — V3| < 1 (which implies |k| < 5).

Proof of (iii). These estimates follow directly from the linear dispersive estimate in equations (3.31)
and (3.32) and the a priori bounds in equation (7.10). |

We now prove a weak bound on the basic weighted norm of g. This and the a priori bounds in equation
(7.7) will help us to estimate various remainders that come from expanding the nonlinear expressions
in g; see the right-hand side of equation (5.55), in terms of the renormalised profile f; see Section 7.3.

Lemma 7.6. Under the a priori assumptions in equations (7.10) and (7.7), for all t € [0,T],
I(€)0£8l 2 < Cenl)!/>+mP2, (7.28)
&
Proof. We obtain equation (7.28) through a bootstrap argument. More precisely, assuming that for some
C large enough, equation (7.28) holds, it suffices to show the same inequality with C/2 instead of C.

In view of the formula ¢ = f + T(g, g) in equations (5.53)—(5.54), the bootstrap assumptions on f (in
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particular the bound in equation (7.19), with C above chosen much larger than the implicit constant
there), it is enough to prove that

II<§>BJ(g,g)IIL§ < e3(ry!/Frol? (7.29)

under the assumptions in equations (7.28) and (7.7) (recall &, = ai/ 3).
From the explicit formula in equation (5.54), we see that

(€)0: FTE, (8.8) = Tl(g,g) +T2(g. 8),
Ti(fi, f2) = ité F FTy, (fis ), (7.30)

T(fi, fo) = // P EMTV (1 Y fo (1, 00) (€)DemE (€., 0) dyp dor.

We need to analyse the formula for m“ b from equations (5.54), (5.11) and (4.4). We can restrict our
attention to the more complicated contribution involving the p.v., since the § part is easier to estimate.
This main contribution is (we are dropping all the irrelevant signs, such as A, g, v, and numerical
constants from our notation)

oy, = 1 L&) o) py. ¢(p)

D, ,(En0) (o) ip (7.31)
@ (&.1,p) =¢<p,(PR(n,0))  p =6 —uun—uvo.

For T7, we can use equation (6.15), the L™ decay in equation (7.7) and the interpolation of equation
(7.13) and the Sobolev bound in equation (7.7) to obtain

17112, 8] (D)2 < (DKOIWT[g, g1l 2 5 (Dl @MW g|| 1160 gl 12
S () - e e 5 550!

To handle T3, we need to look more closely at the formulas in equation (5.54) and equation (5.11)
for m; . .We apply 9 and write the result as

Lt

(€)0gmyy :=a+Db,

B 1 ' a(é,n, o) $(p)
0= % ) oy ¢ PP (1.32)
o 1 calgn.o) ¢(p)
A Ry A LS

and, according to this, we define T, and Ty similarly to 7> in equation (7.30).

By the estimate in equation (5.26), we deduce that a is a symbol that behaves like (the p.v. contribution
to) mj; ,, times an extra factor of (¢) - R(n, o). In practice, the factor of R loses one derivative on the
input with smaller frequency. Using the Holder bound from Lemma 6.10, estimating in L* the input
with higher frequency and in L? the one with lower frequency, we obtain

ITalg, g1l 12 < (0 e PIWr gl LW gl < 85~ P02,

having used interpolation of the Sobolev a priori bound in equations (7.7) and (7.13) on both norms in
the last inequality.

We now estimate the contribution involving b, assuming without loss of generality that || > |o|.
The idea is to use that p = A — (yun — 1, vo to convert 65 into 8, and integrate by parts in 7; this gives

three types of terms: (1) a term where d,, hits the profile f (17) (2) a term where 9, hits e""®qa and (3)
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a term where its hits the rest of the symbol. This last term is essentially the same as a in equation (7.32)
(with 8y, replacing d,¢ there) and can be handled identically, so we skip it. The contribution from (2) is

of the same form as that of 7 in equation (7.30), with (n/ (n))ﬁ instead of ]71, and therefore satisfies
the same bound. The remaining term is

// P (EnD g, 5 )G (1, ) (€)M (€., ) dn dor. (7.33)

~ ~—1

This term is of the form (¢)T(F 9,8, g), where the symbol is given by the p.v. part of the full
symbol mfl ,,- An application of Lemma 6.10 with the bounds in equations (7.28) and (7.7) gives the
following upper bound:

llequation (7.33)l12 < |[F (&) 0] [ (0) e @OWrg| .

S ex()1HPOI2 gy (1)1 < (1) P02,

This concludes the estimate in equation (7.29). |

Remark 7.7. The argument in the proof of Lemma 7.6 shows that we have the following schematic
identity for the operator T in equation (5.54):

E0T (i, ) ~ t - EOT (i, o) + ETF e fi. f2). (7.34)

This is the analogue of equation (6.26) for QR. In particular, equation (7.34) implies, via Lemma 6.10,
that

e OO F VT (fis ol 2y po
< Ol OO F ET(fis o + e " PO F OT(F 06 i )2
< O OIWT(, Bl + e CIWT(E 0570, 1)l (7:3)
< Olle™ P20 W il ol O 000 W Ao o
+[E% e fill M0 e IV B o

7.3. Expansions of the nonlinear terms

Our starting point to prove Proposition 7.2 is equation (5.55). To obtain the desired bounds, we first need
to convert the nonlinear terms on the right-hand side of equation (5.55) into multilinear expressions
that depend only on f, plus remainders that depend on both f and g but have a higher degree of
homogeneity (they are at least quartic terms) and, therefore, are easier to bound. This is done by
expanding g = f+T(g, g); see equations (5.53)—(5.54). Thanks to the expansions below, we will obtain
leading order quadratic and cubic (and some quartic) terms that only depend on the renormalised f. For
these leading orders, we can use the stronger bootstrap assumptions in equation (7.10), but the analysis
is still quite involved and will occupy Sections 8—11. The higher-order remainder terms involving both
f and g are taken care of in Lemmas 7.8 and 7.9 below.

Recall the bracket notation introduced after equation (5.56). The following Lemma gives an expansion
for the regular quadratic terms.

Lemma 7.8 (Expansion of OR). Consider QR as defined in equation (5.56) and T as in equations
(5.53)—(5.54). Under the a priori assumptions in equations (7.7) and (7.10), we can write

QR[g’g] = QR[f’f] +R1(f’g)

7.36
:QR[f’f]-'-QR[f’T(f’f)]+QR[T(f’f)’f]+R2(f’g) ( )
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with

OIE RIS ) (Dl 2 + () IEIR(F. ) (D] 5 3D)7" (7.37)

Proof. For any bilinear form A, using g = f + T (g, g), we have A(g,g) — A(f, f) = A(f,T(g,g)) +
A(T(g,g),g)- Thus, we see that the remainders in equation (7.36) are given by

Rl(f’g)z QR[f’T(g’g)]+QR[T(g’g)’g]’ (738)
and

RZ(f’g) = QR[f’T(g’g) - T(f’f)] + QR[T(g’g) - T(f’f)’f] + QR[T(g’g)’g _f]
= ORI, T(f. T(g.8)]+ QR [f.T(T(g,9).2)] (7.39)
+OR([T(f.T(g.8)). f1+QR[T(T(g.8).8). f1+ QR[T(g.2).T(g.8)].

Let us first show how to obtain the Sobolev type bound in equation (7.37). Since f enjoys better
estimates than g, it suffices to bound

166)* QR [T (2. 8). glll2 < &3()P . (7.40)
From equation (6.21), we get
<€y QR [a,b1(1)],> < 1€ all 2 le ™ COW b o+ le T OOWr all o (€YDl 2. (7.41)

Interpolating between equations (7.7) and (7.13), and using the bilinear bounds in equations (6.14) and
(6.15), we have

€Y QR (T (g, 8) gl 2
S I ZN 2 lle™ PIW T (g, )l + e P IWr gl Lo [166) 7T (g, 8) I 2
< e2(t) P OIW g 4 ea () e OIW gl 1460 R 2

< 5;<t>(3/4+)po N

which is bounded by &3 (r)Po~!.

We now show how to obtain the weighted bound in equation (7.37) for each of the terms on the
right-hand side of equation (7.39). We will use the identity in equation (6.26), which we restate here for
ease of reference,

0O f1, fo] ~ 1t - (E)QR 1. fo] + €)OQR[F 0 fu. fal. (7.42)

and the bilinear estimate in equation (6.21). The idea is that applying (£)d¢ to the quartic expressions
in equation (7.39) will cost at most a factor of ¢ as we see from equation (7.42). Then estimating all the
inputs in L™~ will give a decaying factor of £,(¢)~'/?* for each of them, for a total gain of sg(t)_2+, and
this will suffice to obtain equation (7.37).

Let us look more in detail at the term QR [T'(g, ¢),T(g, )], the other terms being similar or better
since they contain at least one f. According to equation (7.42), we need to estimate

HIOR[F ()T (3.).T(g. )12 and  [(OQRIF 9:T(3.9).T(g. 9)ll,..  (143)
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For the first term, we use equation (6.21) followed by equation (6.14):

14 Q[T (8.8). T(8: )11l
< OO PIWT (g, ©)llp-lle™ PIWT (g, )l -

. 4
< Olle™PIWgl o s e3¢0 71

For the second term in equation (7.43), we first estimate the first input: using equation (7.35), the a
priori bounds and equation (7.28), give us

(@)™ CIW (F 0T (g, )]0,y
< (Of[(0) e M PIWrg]| o |[(Ox) e OIWrg |, o
+[[()* 03]l 2 [0x) e O 1 (DYW g,
Sty - ety en ()T e ()PP gy (1) g 3 (1) P02,

(7.44)

Then, using equation (6.21) with p, = ps = co— and p; = p3 = 2+ or co—, and equation (6.15), we
have
~—1 ~
€)Y QR [F 0T (g.8), T(g: )1 (D)l 1
. ~1 ~ .
< [0xye  COWNF 0T (2, @) 12y o - I1€0) e PIW T (g, )| -
s &P g™,
which is sufficient since pg < a.
The remaining terms in equation (7.39) can be treated iimilarly, using the estimates of Lemmas 6.10

and 6.11 see also the expressions for (£)ds OR and (£)0¢T in equations (6.26)—(6.27) and (7.34)—(7.35)
and the weighted bound in equation (7.28) for (¢)0,g. ]

Here is a similar expansion for the cubic terms.

Lemma 7.9 (Expansion of C3). Consider CS defined in equation (5.57). Under the a priori assumptions
in equations (7.7) and (7.10), we have

Colg.8.81 =C3Lf. £ F1+CO LT (£ ). £ F1+ COLE T (L 1), 1+ COLE £ T(f, )] + Ra(f. 8)

(7.45)
with
)0 RA(f, &) (1)l 2 < 83"+ (7.46)
Moreover,
1) C% (g, & &)l < &3¢0y~ 7. (7.47)
Proof. We have
R3(f,g) = C°[T(2.8),8.8] = C°[T(f, /), /- F1+C°[f. T (8. 2). 8] = C° L, T(f f). ] 7.48)

+Cs[f’f’T(g’g)] _Cs[f’f’T(f»f)]
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Let us analyse the first two terms, the others being similar, and write the difference as a sum of 5-linear
terms:

CS[T(g.8).8.81 —C°IT(f. f). . f1=C°[T(T(g.8).8).8.8] +C°[T(f.T(g.8)). 8.8l
+CS[T(f, ). T(g,8). gl +C[T(f. f), [, T(g,8)].

The terms on the right-hand side of equation (7.49) are all 5-linear convolution terms with bounded
and sufficiently regular symbols, where each entry, f or g, satisfies a linear decay estimate at the rate
of (1)~1/? (see equations (7.7) and (7.12)) and an L?-weighted bound (see equations (7.28) and (7.19)).
It suffices to look at the first term on the right-hand side of equation (7.49) — the other terms are better
since they contain a factor of f, which satisfies stronger assumptions — and show that

(7.49)

1(€)0£C5[T(T(g,8),8), 8 glll» < e3(t)™". (7.50)

Inspecting the formula for C5, we see that applying J¢ gives three types of terms: (1) a term where
d¢ hits the exponential, which will cost a factor of #; (2) terms where ¢ hits the symbol; and (3) terms
where d¢ hits ¢ or p.v. In the terms (3), we can convert d¢ into d,,, integrate by parts in 77 and obtain
terms like (1) and (2) above, plus terms where the derivatives hit one of the three inputs; see the similar
argument detailed in the proof of Lemma 7.6.

The terms (2) are lower-order, so we skip them. The main contribution comes from the terms of the
type (1). In the case of equation (7.50), this gives a term whose L> norm can be bounded using the
trilinear estimate of Lemma 6.13 and the bilinear bounds for 7 in Lemma 6.10 as follows:

(OIECST(T(g,8)8)- 8 &Il 12
< (VMW T(T (g, 8), )12 [1(0) e P IWrg|[7
S HIWT(g. 9l lle P IWrgll o - 3¢) 71

i 2 _ _
< Olle™ W gl llgll - 507 s o307

having also used the a priori assumptions on g in equations (7.7) and (7.13).
Terms of the type (3) above are of the form

ECSIF  0:T(T(g.8).8).8.¢ll,  and  [ECSIT(T(g.8).8). F  (Deg).glll. (7.51)

The second one is estimated directly using the weak weighted bound in equation (7.28) for ||dzg, ..
and estimating the other 4 terms in L™ via Lemma 6.13 followed by Lemma 6.10: this gives a bound of
sg (t)73/%*. The first term in equation (7.51) can be handled similarly to the proof of Lemma 7.8 above.
In particular, iterating the identity in equation (7.34) gives

€€)0:T(T (g, 8), 8)l,» < &3(t)P0/2. (7.52)

Then up to faster-decaying terms, we can use Lemma 6.13 to bound the L?-norm of the first term in
equation (7.51) by

~ . 2 _
CIE DT (T (g, 8), ) 2 1€00) e PIW gl 5 &5 - £5(0) ™1 TP/,

which suffices for equation (7.46).
The last estimate in equation (7.47) follows from a direct application of Lemma 6.13 and the a priori
bounds in equation (7.7). ]

Since we will need to look at iterations of Duhamel’s formula, it is also useful to establish some
bounds for 0, f.
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Lemma 7.10 (Estimates for 9, f). Let f be the renormalised profile defined in equations (5.54)—(5.53).
Following the notation in equations (5.55)—(5.57), we can write, under the a priori assumptions in
equations (7.7) and (7.10),

nf=C(f. f.))+R(S.8). (7.53)
where
IRy < &3(r) /22 (7:54)
In particular, we have
le™ CIW G, fll - S £3(0) 22 (7.55)
and
19:fllz2 < &3¢0~ (7.56)

Proof. From equation (5.55), we can write

O f = QR(8.8) +C5(5.8.8) +CR(8.8.8) =C5(f. f. ) + R(f.8) (7.57)

with (recall the notation introduced after equation (5.56))

R(f.g) = OR[f, f1+ QR [f.T(g.8)] + Q[T (g.8),8] +C*(g.5.8)

(7.58)
+C5[T(g,8).8.81 +C°[f,T(g,8). 81 +C°[f, £, T(g.,8)].

We estimate each of the terms above, with the exception of QR [, f]. The treatment of this term is
postponed to Section 11.3, where the desired bound is given in equation (11.45) (and proven using an
argument from Section 8).

Recall the multilinear estimates of Lemmas 6.10, 6.11 and 6.13. For the second term on the right-
hand side of equation (7.58), we use equation (6.20) followed by equation (6.14) and the a priori decay
estimate in equation (7.25) to obtain

1QR £, T(8. &) lI2 |l POW f|, - |le ™ P IW T (g, 9)|), -
< [l OO f - e @OW g

s ety P (e (1)),

which suffices for equation (7.54). The third term on the right-hand side of equation (7.58) can be
estimated identically. For the fifth term, we have

ICS[T (2, 2). & elll2 < |l @OWT (g, 0)|| ]l @ 1 (DI g
Sl @Wrg| Ll @ (DYW gy < by

The remaining two terms involving C5 can be estimated in the same way. O

7.4. Summary and remaining estimates

Recall equation (5.55) for the evolution of f According to Lemmas 7.8 and 7.9, the right-hand side of
equation (5.55) can be expressed in terms of f itself, up to remainders of sufficiently high homogeneity
(in f and g), depending on the norms that one wants to bound.
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For further reference, we recall here (see equations (7.36) and (7.45)) that we can write

o f = QR f1+C5g.8.8] +Ri(f.2)
= OR[f, f1+ QR T(f, )]+ ORIT (S, ), f1+C5L S, o f] (7.59)
+C[T(f, ). [ f1+COLE TS ), f14CLf £ T(f, O]+ Ra(f. 8) + Ra(f.8).

Notice that, compared to equation (5.55), here we are discarding the CR terms, according to the discussion
in Section 5.7. The remainder terms R 1, respectively R, and R3, decay sufficiently fast in the Sobolev-
type, respectively, weighted norm, that they can be bounded by simply integrating in time the estimates
in equation (7.37), respectively equations (7.37) and (7.46).

‘We now list the terms that we still need to handle in order to conclude the proof of the main bootstrap
Proposition 7.2.

Sobolev estimate. In view of equations (7.59) and (7.47), only QR (f, f) remains to be bounded in the
Sobolev type norm; we do this in Section 11.2.

Weighted estimate. So far, we have only taken care of higher-order remainder terms, which did not
require any refined multilinear analysis. The estimate for the main terms, which are much more delicate,
are distributed as follows:

o OR(f, f) is treated in Section § for the main interacting frequencies and in Section 11.1 for the rest
of the interactions.

e The terms QR [, T(f, f)] and QR[T (£, f), f] are estimated in Section 11.3.

e For C5(f, f, f), see Section 9 for the main interactions and Section 11.4 for the other interactions.

e The terms C3[T(f, f), f, f1. CSLf. T(f, f), f] and C3[f, £, T(f, f)] are estimated in

Section 11.3.

Distorted Fourier L™-norm. We deal with the last piece of the bootstrap norm in equation (7.10) as
follows:

e Section 10 contains the main part of the argument: we analyse the cubic terms of the form
C5(f, f, f) and derive an asymptotic expression for them as  — co. We first do this with formal _
stationary phase arguments in Section 10.1. The expressions obtained will lead to an ODE for 4, f,
which we show is Hamiltonian at leading order, and preserves | f (k)| + | f(—=k)|?; see Section 10.2.
From this, we derive a long-range scattering correction and estimates for the leading order terms in
the L% -type norm. Then, in Section 10.3, we show how to rigorously justify the above asymptotics

and complete the control over the L‘; norm of the ‘singular’ cubic terms.

e The results in Section 11.3 give us integrable-in-time decay for the L‘;"-norm of QR (£, f) and of all
the other cubic and quartic order terms on the right-hand side of equation (7.59).

8. Weighted estimates part I: the main ‘regular’ interaction

The weighted estimates for the ‘regular’ interactions are one of the most technical parts of the paper due
to the presence of a fully coherent interaction at output frequencies +V3. Our main goal is to show the
following:

Proposition 8.1. Consider the u solution of equation (KG) such that the a priori assumptions in equation
(7.10) on the renormalised profile f hold. The ‘regular’ quadratic term QR = QR(f, f) (see equation
(5.15)) satisfies

< el 8.1)
Wr

H<§>ag /0 QR [ f. £](s.£) ds
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After setting up the framework for the proof of equation (8.1), in the rest of this section we will focus
on the main interactions within QR, which, using the notation from equation (5.15), are those involving
frequencies

Inl +lo[+1(¢) -2l < L. (8.2)

We will leave the rest of the interactions, for example those with || ~ 1 or |£] # V3, for later; see
Section 11.1.
For ease of reference, we recall the definition of the norm we are estimating (see equations (2.26)—

(2.30)):
lgllw, =sup  sup I ) Ty (0 g 2027, (8.3)
Wr n20 eezn[|—yn),0]  EV3 .11 LPLY
where our parameters satisfy 0 < «, 8,y < 1/2 with
’ 1 ’ ’ l ’ l
vB <cx<§ﬁ, y:=§—y<ﬁ:=§—,8<<l. (8.4)

We also recall the a priori assumptions in equation (7.10) that we will use throughout the proof:

sup |1 F (D)l + O IE* Fllz | + 14D fllyy, < 261 (8.5)

t€l0,T]

8.1. Setup and reductions

In view of the definitions, we aim to show that for any integern = 0,1, ..., [log,(T+2)] + 1 and ¢ € Z,
we have, for ¢t ~ 2",

t
re oo [t rnwas| set (8.6)
f,\/g N 0 L2
Recall from equation (5.15) and Remarks 5.1 and 7.4 that we can effectively work with

wer= Y Ly 1), 8.7)
tu,0e{+,~} oK

K0,K1,K2 € {+,~}

where

Qfl’l(lz [f? f] (t’ f) = _L1L21K0 (f) ﬂ eitq)[] LZ(‘E’U’O—) qkéll(ﬁ(z (f* n, O—) 7?1 (t’ 77) 7;2 (t’ 0-) dT] d(T,
0K1K2

(8.8)
(I)L] 2 (é:’ n, 0_) = <§> - <77> - L2<0->’
and the symbols satisfy for any a, b, ¢
Ik (P (PVILD 05 0 gz (€, )] 5 27 hid)plasbremmin(l ko), (8.9)

Notation convention for the indexes. For notational simplicity, we will drop the superscripts «;, which
play no role. We will also drop the subscripts ¢1, ¢, from the profiles f, since f/ enjoys the same
bootstrap bounds as f. We do keep the signs 1, ¢, for the phases ®,, ,, as these do play a role in the

estimates. Also, recall that we are adopting the notation introduced after equation (5.56).

When applying d¢ to Qﬁ 1,» We can, by Lemma 5.9, omit the prefactor 1, (¢); furthermore, we only

need to estimate the terms where 9, hits the phase as the terms where d¢ hits the symbols q are much
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easier to treat. In other words, we can consider that

(£)0:9R (1,&) ~ IR (1,6),

where

IR (1.6) = 1 // im0 g(60m0) Tt F (b, o) diy dor, (8.10)

and restrict all our attention to these terms.
In view of equation (8.6) and the definitions in equations (2.26)—(2.28), it will suffice to show that
forn=0,1,...,[logy,(T+2)] + 1 and ¢ = 2" (¢ € [0,T]), we have

and that foralln = 1,...,[log,(T +2)] + 1, any € € Z N (—yn,0), and for any m = 0, 1, ..., we have,
for all r ~ 2",

O<yn(l€] = ‘/_)/ IR (s, )dsH < g7 29mhn (8.11)

Jeenst@ [ 20 )m(s)dsH < 2 aemyh, 8.12)

where the functions 7, 71, . .. in equation (8.12) are a partition of the interval [0, ¢], with properties as
in equation (2.26).
‘We begin with a reduction of the main bounds in equations (8.11)—(8.12) to estimates for each fixed m.

Lemma 8.2. To prove equations (8.10)—(8.12), it suffices to show the following three inequalities:

(1) Forallm=0,1,...

2) Forallm=1,2,...,and € € ({y,—ym]|NZ

1
o<ty (1€1 - V3) / ZE () T () ds)| SE2MPI fyi=om-Ims (3.13)
||90€(|§| ‘/_)/ LILZ(S)Tm(S)dS“ < gpamp Al . p=2'm, (8.13b)
(3) Forallm=1,2,...,and € € (-ym,0] NZ
”w(lfl \/_)/ M(s)fm(s)dsH < g2 2amp Bt (8.13¢)

Proof. Let us first show how equations (8.132)—(8.13b) imply equation (8.11). Foralln =0, 1,..., we
estimate

‘90< yn(1€] = \/_)/ mz(s)ds“

o<y (1€l = V3) / M(s)rm(sms”

0< <n
< 3 foeantiei-va [ M(s)m(s)dsﬂ (814
0<m<n
+O<;<ngo<;ym )w(lfl \/—)/ IR (5) Tm(s) ds B (8.15)
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The inequality in equation (8.13a) takes care directly of equation (8.14) giving a bound of s% 2an2Byn
as desired. For equation (8.15), we use equation (8.13b) to obtain

equation (8.15) < 8% Z pamy=Bly 2—2,B'm — g% 2zm2,3(1/2+3ﬁ/)n ,2—2[3% < 8% 2“"2’67",

0<m<n

where the last inequality follows from S(1/2 +38’) =28’ = B/2+ B’ (38 -2) < B/2 - By’ = By; see
equation (8.4).

Next, observe that the inequalities in equations (8.13b) and (8.13c) directly imply equation (8.12)
when € € (£p,0] NZ. When —yn < € < £y, equation (8.13a) gives

< gl 2ampPym < g2 pamy Bl

Jectier =3 [ TR, () 7 (s)d

L
since y < 1/2<%+3ﬁ’. O
8.2. Proof of equation (8.13a)
For any function ¢, m = 0,1, ... and k < 0, we define
Xi,m(c) = min(ll‘ﬁkﬂhl,Z_m_k(llaf(t/)kally + Z_kllw[k—s,kw]aly)). (8.16)
A more general variant of this quantity will appear in equation (11.11) when we will also include the

treatment of input frequencies > 1. Note that in view of the a priori assumptions in equation (8.5) and
the consequent bounds in equations (7.23)—(7.24), for the profile f, we have, for k < 0,

Xieom = Xiem (F (DT (2)) S slmin(23k/2,2_m_k/2)2“m,

ZXk,m < 812—3m/42(xm. (817)
k<0

We have the following lemma.

R . . . o Lo
Lemma 8.3. Let 7, ,, be the term defined in equation (8.10). Then, under the a priori assumptions in

equation (8.5), we have

72 ol s 72722, s 2, (8.18)

Proof. The signs (t1t) are not relevant for this bound, so we drop them from our notation and denote

R . . . . . .
T}, simply as Z. We look at the expression in equation (8.10) and decompose dyadically the frequencies

n and o, estimating

sup |Z(s,€)] s 2™ )" sup [1M70(5,8)),

sx2m k1 ko sx2m

1495 (5,8) = 1R f, £)(5.6). (8.19)

1% [a,b](s, &) :=//ei‘@‘m(g"””)Q(f,n,v) r, (Mx, (o) alt,mb(t, o) dn dor.

Note that we are adopting the same notation used for OR (see below equation (5.56)) for the above
bilinear terms. We claim that for any two functions a, b, we have

15 [a, b1(5.6)] S Xiym(@) - Xigm(b), s~ 2™, (8.20)
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Then equations (8.19), (8.20) and (8.17) give the desired conclusion in equation (8.18).
Let us prove equation (8.20). A first estimate is obtained by using |q| < 1:

1% [a, 61 (5, )] < llgw,all 1 lnbll 1 (8:21)
For our second estimate, we integrate by parts in 7 to obtain
1115 [a, b] (s, £)|
<] [[esvaniena o[ Laten.o) onmasmlenbs.oddol. 622
We then have a few different contributions depending on the term upon which d,; falls. The term when
0y, hits ¢y, a is bounded by

2275116, (e @Dl ks D11+ (8.23)

and the term when d,, hits the factor 1/7 is upper bounded by
€272 M o ()l 1 gk B(S)l - (8.24)

The term where d,, hits q is a lower-order term since |9,,q| < 1, so we can disregard it.
Finally, for our last estimate, we can integrate by parts in equation (8.22) also in the o variable.
Arguing as above, we obtain

1142 [a, b](5,€)] < Xiym(a)

— - (8.25)
X (272718, (ryb ()l 11 + 27272 ok, b(5)) ] 1)

Putting together equations (8.21), (8.24) and (8.25) gives equation (8.20) and completes the proof. O

As an immediate application of Lemma 8.3, we complete the proof of equation (8.13a). Using
Holder’s and equation (8.18), recalling that £y := —m /2 — 38’m, we have

2—am2—,8ym’

o<t (€1 - V3) /0 IR t(s)ds

< 2—(xm2—,3“/m2[0/2 .m sup “Iﬁ LZ(S)HL‘>o
L2 Szzm
< 2B =GR 2gm2gem o2,

since, by equation (8.4),
—By+1/4-B/2)B +a=p"12+y'2-Bv - 3B/2) +a<-B'/2+a < 0.

In view of the above estimate and Lemma 8.2, to show the desired bounds in equations (8.11)—(8.12),
it remains to prove equations (8.13b)—(8.13c¢).

8.3. Proof of equations (8.13b)—(8.13c): preliminary decompositions

We proceed with the proofs of equations (8.13b) and (8.13c) by looking at various subcases depending
on the sizes of the modulation and frequencies relative to time. For the remainder of the section, we
assume furthermore that

¢ < -78'm. (8.26)

We will deal with € > —78’m in Section 11.1.

https://doi.org/10.1017/fmp.2022.9 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2022.9

96 Pierre Germain and Fabio Pusateri

For notational convenience, we slightly redefine the time-cutoff function appearing in the expression
in equation (8.10) for Iﬁ ., (1) to be 27"ty (1) (but still denote it with the same letter 7,,) so that we can
estimate

2 ) |xm /0 PRk ff(s,8) Ta(s) ds|,  (8.27)

P=po, ki,kz

t
.5 /0 IR () T(s) ds
where, for any two functions a, b, we denote

ki, k i
Iﬁtzl z[a’b] (l‘, é‘:) = ﬂe 1P1y (£:17.7) (péPO) (q)uLz(fa n, 0’)) qutz(‘f, n, 0')

X o, My, () ¢r ()b, (o) dndo, — po = —m+6m,
(I)Lle (é‘:’ 1, O—) = <§> - t1<77> - t2<0->’

(8.28)

for some fixed & € (0,107%). Note that we have inserted a localisation gag,pO) (®,,,,) in the size of the
phase; see the notation in equations (2.23)—(2.24). Also note that the parameter pg here is not the same
as the one appearing in the a priori estimates, such as in equation (7.10); however, this should not cause
any confusion here since the one in equation (8.28) is the only pg that will appear in this section.

To better focus on the main interactions, for the remainder of this section, we will assume in addition

that
ki,ko < -10 (8.29)

(see equation (8.2)), and we will deal with the complementary case in Section 11.1. Note that equations
(8.29) and (8.26) imply that p < 10. Without loss of generality, we can also assume that

ki > k.

The a priori bound in equation (7.23) gives

t —_— —_—
s [ T s <27 D sup llon FoMusllon o)l

~Qm

S
ol (8.30)
< 22m Z 23k1/22am£l . 23k2/22am81.
p.ki.ky

Since there are at most O (m) indexes p (because pg < p < 10), if we take the sum in equation (8.30) over

ky < —2m or k; < —2m /3, we obtain an upper bound of C 8%22‘”"m, which, also in view of equations

(8.26) and @ < B’/2, gives equations (8.13b)—(8.13c). We can then assume k > —2m and k| > —2m/3.
At this point we also restrict our estimates to the case

(1) = (++) (8.31)

in equation (8.28) and will deal with the other relatively simpler cases in Section 11.1. We drop the
signs from the expression in equation (8.28) by denoting

PRk gy = IR f F1(1,6)
= // 1OET) o (@£, ) a (&1, ) r, (1) F(1.1) @y (0) F (2, ) d dor,
(£, n,0) = (€) - () — (o).
(8.32)
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Note that, since ||, |o-| < 1/100, we have

@£, 0) = ?(m V3) - 37 = 507+ 016l -V 7+ o), (833)

Moreover, on the support of the integrals in equation (8.32), we have, when p > po,

& n,0)~2P, [pl=2N, & -3]x2f
Then in particular,

2P ~ 20 if 20 » 22k
2P~ 22k jf 2f « 22k, (8.34)
2P <20 if2f & 2%k,

In the case p = pg, we have |®| < 27"+ « 2% since £ > £y = —m/2 — 33’m (see equation (8.13a)).
Summarizing the reductions above, we have the following lemma:

Lemma 8.4. Let 17515 pe as in equation (8.32). To prove equations (8.13b)—(8.13¢) for (11t2) = (++),
it will suffice to show that for allm = 1,2, ...

2m

s & 2P (8.35)
L

t
PO / 1Pk (L 6) 1 (5) di
’ 0

for all

—(1/2+38 )Ym=: £y <t < -18'm,
-m+om=:py<p<0, (8.36)
-2m < ky < k1 < -10, ki > -2m/3.

Note that the quantity on the right-hand side of equation (8.35), with no 24" factor, also takes into
consideration the summation over k1, k; and p, which is made of at most 0(m3) terms. In several cases
we will not need to use cancellations coming from the time integration and will prove the following
stronger version of the bound in equations (8.35)—(8.36):

2@ (s )]y s 222 Vs (8.37)

Let us now prove a general lemma that improves on Lemma 8.3 and will help deal with several basic
cases.

Lemma 8.5. With the definition in equation (8.28) (but omitting the signs t1, 1 for lighter notation) and
equation (8.16), we have, for all s =~ 2™,

Doz 17K L f. £105. 6] $ Xy (F) - Xy (), (8.38)

and, in particular,

ez 172 L P10 <27 Xaym () - Xiom () (8.39)

Furthermore,

e s P42 1) 2078972 2775 g L T2 + 27 gt -s.k0051 L2 | Xiom (),
(8.40)
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As the proof below will show, the estimates of Lemma 8.5 hold for general expressions as in equation
(8.28) with any combination of signs (¢,¢;) and not only for the expression in equation (8.32). In
particular, we can use this result in Section 1 1.1 for the proof of equation (11.5).

Proof of Lemma 8.5. The bound in equation (8.38) follows similarly to the bound in equation (8.20),
the only difference being the presence of the cutoff goi,p 0) (®) in the definition of I7-K1-k2 (see equation
(8.28)) versus that of 7¥1:¥2 (see equation (8.19)). However, this is easily dealt with by observing that,
for |n| ~ 2k,

(PO)( )’ (Po) (q))anq) < 2MP < TmmPo 2—5m’

1
Onep |
s()nd) (9,7d>
so that hitting this additional cutoff gives lower-order contributions, and one can iterate the integration
by parts in 7 again.

Remark 8.6. We will apply the above argument several times in what follows and treat as lower-
order remainders all those terms where derivatives in 7 and o fall on an expression of the form
x(27P®(&,n,0)) for some smooth y.

Equation (8.39) follows directly from Cauchy-Schwarz in £. Let us now prove equation (8.40). Notice
that we may assume p < 2k; — 10, for otherwise equation (8.39) already gives the desired inequality.
Indeed, if p > 2k; — 10, then we must have 2¢ < 27 and 2¢/2 < 2P7%1 50 that using

Xiym < 2752 106 [or Al 12 + 27 @ a, -5 10451 Fll 2

recalls equations (8.16)—(8.17) and we get equation (8.40) from equation (8.39).
We look at the integral in equation (8.28) and begin with an integration by parts in 7 obtaining a
main contribution of

lﬂ pis®(£..0) (pépo) (q)(f, 7 O’)) (m) a(é,n.0) 8, [(;Dkl (n)f(s n)] Ok, (O')f(s o)dndo. (8.41)

N

A lower-order contribution comes from d,, hitting the symbol q. We can bound in equation (8.41) by

co-my-ha / K(&) |0y Lo () f(s.m)]| dn.

(8.42)
K(En) = einna () [ 07 (@(E0.0)n (@) Fls.0)] dor
‘We have
Jkemans [ aneronsis.oli,
where
Epp={neR : [nl~2", [ = (&) + )+ (o) ~ 2"}, (8.43)

Notice that for fixed ¢ and o, the set Ey,, is contained in at most two intervals of length ~ 2771, We
can then estimate

sup / K(En)dn < 274 i Fll (8.44)
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Similarly, we also have
sup [ K(e.n dé < 2 ow Tl (8.45)
n

The first bound needed for equation (8.40) then follows from the definition in equation (8.16), equation
(8.42), equations (8.44)—(8.45) and Schur’s test:

s 1755 (9] 2 < 2774 / K& onlon D F sl dn|
s 27k 2P=R2 16, [or F1Nl o lers fl -

To complete the proof of equation (8.40), we integrate by parts also in o in equation (8.41) and then
use Schur’s test as above. O

Before proceeding, let us note that, as a corollary of Lemma 8.5, we may assume the two following
inequalities on our parameters:

(% +ﬁ) € +min(=m — ky/2,3k1/2) + min(=m — k2/2,3k2/2) = —2m — Qa +28)m  (8.46)

and
B+ p —3k1/2+min(-m — ky/2,3k2/2) > —m — Qa + 28" )m. (8.47)

Indeed, if equation (8.46) does not hold, the bound in equation (8.37) follows using equation (8.39).
Similarly, if equation (8.47) does not hold, then we can use equation (8.40) to obtain equation (8.37).

We now proceed with the proof of equations (8.35)—(8.36), or the stronger equation (8.37) when
possible. We will analyse the following regions separately:

Region 1 (Section 8.4): p <-m/2-38"m-10,
Region 2 (Section 8.5): -m/2-38m-10<p <-m/3-108'm, ¢€>p+10,

(8.48)
Region 3 (Section 8.6): -m/2-38'm-10 < p, < p+10,

Region 4 (Section 8.7): p>-m/3-108"m, ¢ > p+10.

84. Case p < —m[2-38'm —10

In this region there is almost no oscillation in time s, and we prove equation (8.37). Since we are working
under the assumptions —m /2 —38’m < £ < —10, we have

|6 = 2ky| < 5. (8.49)

Applying equation (8.39) and (8.40), we see that to obtain a bound consistent with equation (8.37), it
suffices to show that

min(zf/Zz—kl/z, 2p—3k1/2) . 2(—3/4+2(Z)m s 2—m2—B[’2—ZB’m.
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In view of equation (8.49), it then suffices that
either ~ 23k1/2 < pmm/Ap=2amp=3im o gp=ki/2 < pmm[dn=2amy=3f'm (8.50)

The verification of equation (8.50) follows from p < —m/2.

8.5. Case —-m[2 -3 m—-10<p <-m/[3-108'm,and ¢ > p + 10

In this case, we also have |£ —2k;| < 10. Relying again on equation (8.40), for equation (8.35) it suffices
to prove that

op=3ki/2p2amy=3m/4 o 5-mp-Bly=2p'm (8.51)

We then consider two possibilities:
- If we use that p < 2k + 20 and |€ — 2k| < 10, equation (8.51) is implied by

23](1/2 < 2—(1/4+2a/+3ﬁ’)m' (852)
- If we use that p < =% — 108'm and |¢ — 2k;| < 10, equation (8.51) is implied by

2—k1/2 S 2m