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Group Actions on Quasi-Baer Rings

Dedicated to Professor J. W. Fisher on his sixty-fifth birthday

Hai Lan Jin, Jaekyung Doh, and Jae Keol Park

Abstract. A ring R is called quasi-Baer if the right annihilator of every right ideal of R is generated by

an idempotent as a right ideal. We investigate the quasi-Baer property of skew group rings and fixed

rings under a finite group action on a semiprime ring and their applications to C∗-algebras. Various

examples to illustrate and delimit our results are provided.

Introduction

Throughout this paper all rings are associative with identity unless indicated other-

wise, and R denotes such a ring. Recall from [34] and [25] that a ring R is called
(quasi-) Baer if the right annihilator of every (right ideal) nonempty subset of R is

generated by an idempotent as a right ideal.

The quasi-Baer condition was used to characterize a finite dimensional algebra
over an algebraically closed field as a twisted matrix units semigroup algebra [25].

The class of quasi-Baer rings is a nontrivial generalization of the class of Baer rings.

Every prime ring is quasi-Baer. Thus prime rings with nonzero right singular ideal
[22, 36] are quasi-Baer but not Baer. The n-by-n (n > 1) matrix ring over a com-

mutative non-Prüfer domain is a quasi-Baer ring, but it is not Baer. Also the n-by-n

(n > 1) upper triangular matrix ring over a domain which is not a division ring is

quasi-Baer but not Baer [43] and [34, p.16]. Polynomial extensions of Baer rings are

quasi-Baer, but in general they are not Baer. From [11], a ring R is called right FI -
extending if for any two-sided ideal I of R there exists an idempotent e ∈ R such that

I is right essential in eR. In [18] it is shown that if R is a semiprime ring then R is

right FI-extending if and only if R is quasi-Baer.

For another interesting class of quasi-Baer rings, it is shown in [21] that the sym-

metric normed algebra of quotients Qb(A) of a C∗-algebra A is quasi-Baer. Also it is
shown in [4] that the local multiplier algebra Mloc(A) of a C∗-algebra A is quasi-Baer.

For studying a wider class of C∗-algebras, quasi-AW ∗-algebras are defined. Recall

from [21] that a unital C∗-algebra is called a quasi-AW ∗-algebra if it is a quasi-Baer
∗-ring (i.e., the right annihilator of every right ideal of A is generated by a projection

as a right ideal). It is shown in [21] that a unital C∗-algebra is a quasi-AW ∗-algebra
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if and only if A is quasi-Baer. Thereby Mloc(A) and every prime unital C∗-algebra are
quasi-AW ∗-algebras. In [20] and [21], the concept of ring hulls is introduced and it is

also shown that every semiprime ring R (hence every unital C∗-algebra) has a quasi-
Baer absolute to Q(R) right ring hulls Q̂qB(R), where Q(R) is a maximal right ring of

quotients of R. It is proved in [21] that for a unital C∗-algebra A with only finitely

many minimal prime ideals, Q̂qB(A) is a quasi-AW ∗-algebra. Moreover, examples of
quasi-AW ∗-algebras which are not AW ∗-algebras are provided in [21].

Many authors have studied the Baer and quasi-Baer properties of rings as well as

the transference of the Baer and quasi-Baer properties between a ring R and various
extensions of R including polynomial type extensions and group ring extensions (see

[7, 10–21, 23, 30, 31, 33, 37, 45, 46]). Moreover in [6] and [44], the skew group ring
A ∗G and the fixed ring AG of a C∗-algebra A with a group G of ring automorphisms

of A have been investigated. In [27] the skew group ring A ∗ G of a locally compact

group G over a C∗-algebra A has also been studied.

Motivated by the above considerations, we are mainly concerned here with the

quasi-Baer property of skew group rings and fixed rings under a finite group action

on a given semiprime ring and their applications to C∗-algebras. Assume that R is
a semiprime ring with a finite group G of X-outer ring automorphisms of R. Then

we show that R ∗ G is quasi-Baer if and only if RG is quasi-Baer if and only if R is

G-quasi-Baer (Theorem 1.10).

As applications of our results, for a unital C∗-algebra A with a finite group G of

X-outer ∗-automorphisms of A, we obtain that A ∗ G is a quasi-AW ∗-algebra if and

only if AG is a quasi-AW ∗-algebra if and only if A is G-quasi-Baer (Theorem 3.3).
Thereby, if G is a finite group of X-outer ∗-automorphisms of a boundedly centrally

closed unital C∗-algebra A, then A∗G and AG are quasi-AW ∗-algebras. In particular,
if G is a finite group of X-outer ∗-automorphisms of Mloc(A), then Mloc(A) ∗ G and

Mloc(A)G are quasi-AW ∗-algebras. Moreover, for a unital C∗-algebra A, if G is a finite

group of X-outer ∗-automorphisms of A, then Qb(A) ∗ G and Qb(A)G are quasi-Baer
rings (Corollary 3.4).

Also as applications, assume that A is a unital C∗-algebra and G is a finite group

of X-outer ∗-automorphisms of A. We show that if |Minspec(A)| < ∞, then

|Minspec(AG)| = |Minspec(A ∗ G)| ≤ |Minspec(A)| ≤ |Minspec(A ∗ G)| · |G|,

where Minspec(−) is the set of all minimal prime ideals of a ring and | · | denotes the

cardinality of a set (Theorem 3.5). In addition, if A is a quasi-AW ∗-algebra, we prove

that Tdim(AG) = Tdim(A ∗ G) ≤ Tdim(A) ≤ Tdim(A ∗ G) · |G|, where Tdim(−)
is the triangulating dimension of a ring (Theorem 3.6). Thereby, our results provide

answers to Open Problems (3) and (4) in [19] for triangulating dimension of certain

skew group ring extensions. Furthermore, we show that if A is a finite direct sum of
n prime unital C∗-algebras, then for any finite group G of X-outer ∗-automorphisms

of A, there exists k ≤ n such that both A ∗G and AG are direct sums of k prime unital
C∗-algebras (Theorem 3.6).

Various examples are provided to illustrate and delimit our results. In fact, we

show that the following exist:
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(i) a semiprime quasi-Baer ring R with a finite group G of ring automorphisms
of R such that R has no nonzero |G|-torsion, however R ∗ G is not quasi-Baer

(Example 2.1);
(ii) a semiprime ring R with a finite group G of X-outer ring automorphisms of R

such that R has no nonzero |G|-torsion, R ∗ G is quasi-Baer, and R is G-quasi-

Baer, but R is not quasi-Baer. Moreover Q̂qB(R∗G) 6∼= Q̂qB(R)∗G (Example 2.2);
(iii) a semiprime Baer ring R with a finite group G of X-outer ring automorphisms

of R such that R has no nonzero |G|-torsion, but R∗G is not Baer (Example 2.3);

(iv) a commutative domain R (hence right extending or equivalently, right CS) with
a finite group G of X-outer ring automorphisms of R such that R has no nonzero

|G|-torsion, however R ∗ G is not right extending (Example2.4); and
(v) a quasi-AW ∗-algebra A with a finite group G of X-outer ∗-automorphisms of A

such that Tdim(A ∗ G) � Tdim(A) (Example 3.7).

For a ring R, we use Q(R) and B(R) to denote a maximal right ring of quotients
of R and the set of all central idempotents of R, respectively. According to [9] an

idempotent e of a ring R is called left (resp., right ) semicentral if ae = eae (resp.,

ea = eae) for all a ∈ R. Equivalently, an idempotent e is left (resp., right) semicentral
if and only if eR (resp., Re) is a two-sided ideal of R. For a ring R, we let Sℓ(R) (resp.,

Sr(R)) denote the set of all left (resp., right) semicentral idempotents. An idempotent

e of a ring R is called semicentral reduced if Sℓ(eRe) = {0, e}. It can be seen that
Sℓ(eRe) = {0, e} if and only if Sr(eRe) = {0, e}. Note that B(R) = Sℓ(R) ∩ Sr(R).

Recall from [12] that a ring R is called semicentral reduced if Sℓ(R) = {0, 1}, i.e., 1 is
a semicentral reduced idempotent of R.

For a nonempty subset X of a ring R, we let rR(X) and ℓR(X) denote the right

annihilator and the left annihilator of X in R, respectively. If R is semiprime and I is a

two-sided ideal of R, then rR(I) = ℓR(I). In this case, we use AnnR(I) to denote rR(I)
(or ℓR(I)). For a right R-module MR and a submodule NR of MR, we use NR ≤ess MR

to denote that NR is essential in MR.

In a sequel to this paper, we will investigate the p.q.-Baer property of skew group
rings and fixed rings under a finite group action.

1 Results

In this section, we establish the quasi-Baer property of certain skew group rings and

fixed rings under a finite group action. Also we provide various examples to illustrate

and delimit our results.

For a ring R, we let Aut(R) denote the group of ring automorphisms of R. Let G be
a subgroup of Aut(R). For r ∈ R and g ∈ G we let rg denote the image of r under g.

We use RG to denote the fixed ring of R under G, i.e.,

RG
= {r ∈ R | rg

= r for every g ∈ G}.

The skew group ring, R ∗ G, is defined to be R ∗ G =
⊕∑

g∈G Rg with addition given
componentwise and multiplication given as follows: if a, b ∈ R and g, h ∈ G, then

(ag)(bh) = abg−1

gh ∈ Rgh.
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Skew group ring R ∗ G is an important tool for Galois theory because it is related
to the fixed ring RG. The skew group ring R ∗ G and the fixed ring RG have been

extensively studied in [8, 26, 29, 39, 41] when G is X-outer or R has no |G|-torsion.

We begin with the following example.

Example 1.1 (See also [46, Examples 3.2 and 3.3]) There exist a ring R and a finite
group G of ring automorphisms of R such that R is Baer but neither R ∗ G nor RG

is quasi-Baer. Let R =
(

F F
0 F

)
, where F is a field of characteristic 2. Then note that

R is Baer. Let g ∈ Aut(R) be the conjugation by
(

1 1
0 1

)
. Then g2

= 1 since the

characteristic of F is 2. Let G = {1, g}.

First, we show that R∗G is not quasi-Baer. Suppose rR∗G((1+g)(R∗G)) = e(R∗G)

for some e = e2 ∈ R ∗ G. Note that the idempotents of R ∗ G are 0, 1,
(

1 a
0 0

)
+(

0 b
0 0

)
g,

(
0 a
0 1

)
+

(
0 b
0 0

)
g with a, b ∈ F. Since e ∈ rR∗G((1 + g)(R ∗ G)), the only

possible choice for e is 0, hence rR∗G((1 + g)(R ∗ G)) = 0. This is a contradiction
because

rR∗G((1 + g)(R ∗ G)) =

{(
x y

0 0

)
+

(
x x + y

0 0

)
g
∣∣x, y ∈ F

}
.

Therefore R ∗ G is not quasi-Baer. Now the fixed ring under G is

RG
=

{(
x y

0 x

)
∈ R

∣∣x, y ∈ F

}
.

We see that the only idempotents of RG are 0 and 1, thus RG is semicentral reduced.
So if RG is quasi-Baer, then RG is a prime ring by [12, Lemma 4.2], a contradiction.

Thus RG is not quasi-Baer.

Definition 1.2 Let R be a semiprime ring. For g ∈ Aut(R), let φg = {x ∈ Qm(R) |
xrg

= rx for each r ∈ R}, where Qm(R) is the Martindale right ring of quotients of

R (see [1] for more on Qm(R)). We say that g is X -outer if φg = 0. A subgroup G of
Aut(R) is called X-outer on R if every 1 6= g ∈ G is X-outer.

Assume that R is a semiprime ring. For g ∈ Aut(R), let Φg = {x ∈ Q(R) |
xrg

= rx for each r ∈ R}. Then, for g ∈ Aut(R), clearly φg ⊆ Φg . Conversely,
if x ∈ Φg , then x is an R-normalizing element (i.e., xR = Rx) in Q(R). Therefore

x ∈ Qs(R) by [35, Theorem 14.30, p. 395], where Qs(R) is the symmetric Martindale
ring of quotients of R. Since Qs(R) ⊆ Qm(R), it follows that x ∈ Qm(R). Hence

x ∈ φg . Therefore Φg = φg . So if G is X-outer on R, then G is X-outer on any right

ring of quotients of R. For more details on X-outer ring automorphisms of a ring,
see [29] and [35, p.396].

We say that a ring R has no nonzero n-torsion (n is a positive integer) if na = 0
with a ∈ R implies a = 0. The following lemma follows from [8, Proposition 2.3],

[26, Theorem 1.21], [29, Theorem 7 and Corollary 3], and [39, Theorem 2.1 and

Theorem 3.1].
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Lemma 1.3 Let R be a semiprime ring and G a group of ring automorphisms of R.

(i) If G is X-outer, then every nonzero two-sided ideal of R∗G intersects R nontrivially.

Hence R ∗ G and RG are semiprime.

(ii) If G is finite and R has no nonzero |G|-torsion, then R ∗ G and RG are semiprime.

In [21], it is shown that a semiprime ring R has a smallest quasi-Baer right ring
of quotients Q̂qB(R), called the quasi-Baer absolute to Q(R) right ring hull of R. This

satisfies the following: (1) Q̂qB(R) is a quasi-Baer ring. (2) If T is a quasi-Baer right
ring of quotients of R, then Q̂qB(R) is a subring of T. It is proved in [21] that Q̂qB(R)

is the subring, RB(Q(R)), of Q(R) generated by R and B(Q(R)). For more details on

ring hulls, see [20, 21].
From these results, we have the following.

Lemma 1.4 ([21, Theorem 3.3]) Let R be a semiprime ring. Then R is quasi-Baer if

and only if B(Q(R)) ⊆ R. Thereby, a right ring of quotients S of R is quasi-Baer if and

only if Q̂qB(R) ⊆ S.

For a ring R, we let Cen(R) denote the center of R.

Lemma 1.5 For a semiprime ring R, let G be a group of X-outer ring automorphisms

of R. Then Cen(R ∗ G) = Cen(R)G.

Proof Let α = a11 + a2g2 + · · ·+ angn ∈ Cen(R ∗G) with ai ∈ R, 1 the identity of G,

and gi ∈ G. Then (a11 + a2g2 + · · ·+ angn)b = b(a11 + a2g2 + · · ·+ angn) for all b ∈ R.

So a1b = ba1, a2bg2
−1

= ba2, . . . , and anbgn
−1

= ban for all b ∈ R. Since G is X-outer,

it follows that a2 = · · · = an = 0. Hence α = a11 = a1 ∈ R. Also since αb = bα
for all b ∈ R, we have that a1 ∈ Cen(R). Note that for all g ∈ G, a1g = ga1 = a

g−1

1 g

implies a1 = a
g−1

1 . Hence α = a1 ∈ Cen(R)G. So Cen(R∗G) ⊆ Cen(R)G. Conversely,

Cen(R)G ⊆ Cen(R ∗ G) is clear. Therefore Cen(R ∗ G) = Cen(R)G.

Lemma 1.6 ([38, Theorem 5] and [41, Theorem]) Let R be a ring and G a finite

group of ring automorphisms of R. Then Q(R ∗ G) ∼= Q(R) ∗ G.

Assume that G is a finite group of ring automorphisms of a ring R. Then for a ∈ R,

let tr(a) =
∑

g∈G ag , which is called the trace of a. Also for a right ideal I of R, the

right ideal tr(I) = {tr(a) | a ∈ I} of RG is called the trace of I. Say G = {g1, . . . , gn}.
We put

t = g1 + · · · + gn ∈ R ∗ G.

For r ∈ R and α = a1g1 + · · · + angn ∈ R ∗ G with ai ∈ R, define

r · α = rg1 a
g1

1 + · · · + rgn agn
n .

Then R is a right R ∗ G-module. Moreover, we see that RG RR∗G is an (RG, R ∗ G)-

bimodule. Consider the following pairings

( · , · ) : Rt ⊗RG R → R ∗ G and [ · , · ] : R ⊗R∗G Rt → RG

defined by (at, b) = atb and [a, bt] = tr(ab). By [26], (R ∗ G, RG RR∗G, R∗GRtRG , RG)

is a Morita context with the pairings.
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The following lemma is of interest in its own right. As a byproduct, under the
same assumption as in Lemma 1.7, we see that the fixed ring of the extended centroid

is isomorphic to the extended centroid of the fixed ring by Lemmas 1.7 and 1.9(ii).

Lemma 1.7 Assume that R is a semiprime ring and G is a finite group of X-outer ring

automorphisms of R. Then Cen(Q(R)G) = [Cen(Q(R))]G.

Proof Note that Q(R) is semiprime and G is also X-outer on Q(R). So we may
assume that R = Q(R) and it is enough to show that Cen(RG) = Cen(R)G.

Define θ : R ∗ G → Hom(RtRG , RtRG ) by θ(x)(rt) = xrt for x ∈ R ∗ G and r ∈ R.

We claim that θ is a ring isomorphism.
First θ is a ring homomorphism because Rt is a left ideal of R ∗ G. Now Ker(θ) =

AnnR∗G(RtR). Since AnnR∗G(RtR) ∩ R = 0, it follows that AnnR∗G(RtR) = 0 by
Lemma 1.3(i). Therefore θ is one-to-one.

Next, to show that θ is onto, take f ∈ Hom(RtRG , RtRG ). Define λ : Rt×R → R∗G

by λ(at, b) = f (at)b with a, b ∈ R. Then λ is biadditive. Moreover, for r ∈ RG,
we have that λ(atr, b) = λ(art, b) = f (art)b = f (atr)b = f (at)rb = λ(at, rb).
Therefore there exists an additive group homomorphism

α : Rt ⊗RG R → R ∗ G

such that α(a1t ⊗ b1 + · · · + akt ⊗ bk) = f (a1t)b1 + · · · + f (akt)bk. In this case, we
prove that

α ∈ Hom(Rt ⊗RG RR∗G, R ∗ GR∗G).

For this, first note that α[(a1t ⊗ b1 + · · ·+ akt ⊗ bk)r] = α(a1t ⊗ b1 + · · ·+ akt ⊗ bk)r

for r ∈ R. Take g ∈ G. Then

α[(a1t ⊗ b1 + · · · + akt ⊗ bk) · g] = α[a1t ⊗ (b1 · g) + · · · + akt ⊗ (bk · g)]

= α(a1t ⊗ b
g
1 + · · · + akt ⊗ b

g
k)

= f (a1t)b
g
1 + · · · + f (akt)b

g
k.

On the other hand, there exist r1, . . . , rk ∈ R such that

f (a1t) = r1t, . . . , f (akt) = rkt.

So it follows that

α(a1t ⊗ b1 + · · · + akt ⊗ bk)g = ( f (a1t)b1 + · · · + f (akt)bk)g

= (r1tb1 + · · · + rktbk)g = r1tb1g + · · · + rktbkg

= r1tgb
g
1 + · · · + rktgb

g
k

= r1tb
g
1 + · · · + rktb

g
k = f (a1t)b

g
1 + · · · + f (akt)b

g
k.

Thus

α[(a1t ⊗ b1 + · · · + akt ⊗ bk) · g] = α(a1t ⊗ b1 + · · · + akt ⊗ bk)g

https://doi.org/10.4153/CMB-2009-057-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-057-6


570 H. L. Jin, J. Doh, and J. K. Park

for g ∈ G. Therefore α ∈ Hom(Rt ⊗RG RR∗G, R ∗ GR∗G).

Define f : RtR → R ∗ G by

f (a1tb1 + · · · + aktbk) = f (a1t)b1 + · · · + f (akt)bk

for a1, bi ∈ R, i = 1, . . . , k. To see that f is well-defined, suppose that c1td1 + · · · +

cmtdm = u1tv1 + · · · + untvn with ci , di ∈ R and u j, v j ∈ R for i = 1, . . . , m, j =

1, . . . , n. Then c1td1 + · · · + cmtdm + (−u1)tv1 + · · · + (−un)tvn = 0. Then by an
argument in the proof of [40, Theorem 3]

α(c1t ⊗ d1 + · · · + cmt ⊗ dm + (−u1)t ⊗ v1 + · · · + (−un)t ⊗ vn)(RtR) = 0

because α ∈ Hom(Rt ⊗RG RR∗G, R ∗ GR∗G). Note that AnnR∗G(RtR) = 0. So

0 = α(c1t ⊗ d1 + · · · + c1t ⊗ dm + (−u1)t ⊗ v1 + · · · + (−un) ⊗ vn)

= f (c1t)d1 + · · · + f (cmt)dm + f (−u1t)v1 + · · · + f (−unt)vn.

Hence f (c1t)d1 + · · · + f (cmt)dm = f (u1t)v1 + · · · + f (unt)vn. Therefore f is well-
defined. Obviously f is additive. Also, for r ∈ R, f [(a1tb1 + · · · + aktbk)r] =

[ f (a1tb1 + · · · + aktbk)]r. Take g ∈ G. Then similarly as above

f [(a1tb1 + · · · + aktbk)g] = f (a1tb1g + · · · + aktbkg) = f (a1tgb
g
1 + · · · + aktgb

g
k)

= f (a1tb
g
1 + · · · + aktb

g
k) = f (a1t)b

g
1 + · · · + f (akt)b

g
k.

Also note that f (a1t) = r1t, . . . , f (akt) = rkt for some r1, . . . , rk ∈ R. Hence

[ f (a1tb1 + · · · + aktbk)]g = [ f (a1t)b1 + · · · + f (akt)bk]g = (r1tb1 + · · · + rktbk)g

= r1tb1g + · · · + rktbkg = r1tgb
g
1 + · · · + rktgb

g
k

= r1tb
g
1 + · · · + rktb

g
k = f (a1t)b

g
1 + · · · + f (akt)b

g
k.

Thus f [(a1tb1 + · · ·+ aktbk)g] = [ f (a1tb1 + · · ·+ aktbk)]g. So f ∈ Hom(RtRR∗G, R ∗
GR∗G). Since R = Q(R), so is R ∗ G by Lemma 1.6. Also we see that RtR is a dense
right ideal of R ∗ G because RtR is a two-sided ideal of R ∗ G with AnnR∗G(RtR) = 0.

Hence, from [35, Proposition 13.20, p.369], there exists q ∈ Q(R ∗ G) = R ∗ G such

that f = qℓ|RtR, where qℓ is the left multiplication by q. Now

θ(q)(rt) = qrt = qℓ(rt) = f (rt) = f (rt)

for r ∈ R. Thus θ(q) = f , so θ is onto. Therefore θ is a ring isomorphism.

It is obvious that Cen(R)G ⊆ Cen(RG). Let a ∈ Cen(RG). Define fa : Rt → Rt by
fa(rt) = rat for r ∈ R. Note that for b ∈ RG,

fa(rtb) = fa(rbt) = rbat = rabt = ratb = fa(rt)b.
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So fa ∈ Hom(RtRG , RtRG ), since fa is additive. To see fa ∈ Cen(Hom(RtRG , RtRG )),
take f ∈ Hom(RtRG , RtRG ). For rt ∈ Rt with r ∈ R, let f (rt) = srt with sr ∈ R. Then

( f ◦ fa)(rt) = f ( fa(rt)) = f (rat) = f (rta) = f (rt)a = srat . Also ( fa ◦ f )(rt) =

fa( f (rt)) = fa(srt) = srat . Thus f ◦ fa = fa ◦ f . Hence fa ∈ Cen(Hom(RtRG , RtRG )).

Since Cen(R ∗ G) ∼= Cen(Hom(RtRG , RtRG )) via θ, there exists q ∈ Cen(R ∗ G) such

that θ(q) = fa. So θ(q)(rt) = fa(rt), thus qrt = rat for r ∈ R. By Lemma 1.5,
Cen(R ∗ G) = Cen(R)G. Hence q ∈ Cen(R)G. Taking r = 1 in qrt = rat , we have

that qt = at . Therefore a = q because q ∈ Cen(R)G ⊆ R. Thus a ∈ Cen(R)G.

Consequently, Cen(RG) = Cen(R)G.

Lemma 1.8 Assume that R is a semiprime ring and e ∈ B(Q(R)). Let I be a two-sided

ideal of R such that IR ≤ess eRR and AnnR(I) = f R with f ∈ B(R). Then e = 1 − f .

Proof If I = 0, then we are done. So we may assume that I 6= 0. Note that I ⊆
AnnR[AnnR(I)]. Hence I ⊆ (1 − f )R(1 − f ). Now

Ann(1− f )R(1− f )(I) = AnnR(I) ∩ (1 − f )R(1 − f ) = f R ∩ (1 − f )R = 0.

Since 1− f 6= 0 and (1− f )R(1− f ) is a semiprime ring, I(1− f )R(1− f ) ≤
ess (1− f )R(1−

f )(1− f )R(1− f ). So we can see that IR ≤ess (1− f )RR. Hence IR ≤ess (1− f )Q(R)R. Also

we have IR ≤ess eQ(R)R. Therefore IR ≤ess [(1− f )Q(R)∩ eQ(R)]R = (1− f )eQ(R)R

since e and 1 − f are central in Q(R). So (1 − f )eQ(R)R ≤ess (1 − f )Q(R)R and
(1 − f )eQ(R)R ≤ess eQ(R)R. By using the modular law, we get (1 − f )Q(R) =

(1 − f )eQ(R) = eQ(R). Thus e = 1 − f ∈ R.

Lemma 1.9 ([41, Theorem 2]) Let R be a semiprime ring and G a finite group of

X-outer ring automorphisms of R. Then we have the following.

(i) For q ∈ Q(RG), let J be a dense right ideal of RG such that q J ⊆ RG. Then JR is a

dense right ideal of R and the map q̃ : JR → R defined by q̃ (
∑

airi) =
∑

q(ai)ri ,
with ai ∈ J and ri ∈ R, is a right R-homomorphism. Moreover q̃ ∈ Q(R)G.

(ii) The map σ : Q(RG) → Q(R)G defined by σ(q) = q̃ is a ring isomorphism.

(iii) For a right ideal I of R, IR is dense in RR if and only if tr(I) is a dense right ideal of

RG.

(iv) Let q̃ ∈ Q(R)G and let K be a dense right ideal of R such that q̃K ⊆ R. Then

K ∩ RG is a dense right ideal of RG and q̃ |K∩RG (K ∩ RG) ⊆ RG, where q̃ |K∩RG is

the restriction of q̃ to K ∩ RG. Thus q̃ |K∩RG ∈ Q(RG).

For a ring R with a group G of ring automorphisms of R, we say that a right ideal

I of R is G-invariant if Ig ⊆ I for every g ∈ G, where Ig
= {ag | a ∈ I}. Also, we say

that R is G-quasi-Baer if the right annihilator of every G-invariant two-sided ideal is

generated by an idempotent as a right ideal. The condition G-quasi-Baer is right-left

symmetric. In fact, suppose that R is G-quasi-Baer. Say I is a G-invariant two-sided
ideal of R. Then ℓR(I) is also a G-invariant two-sided ideal, thus rR(ℓR(I)) = eR for

some e = e2 ∈ R. So ℓR(I) = ℓR[rR(ℓR(I))] = ℓR(eR) = R(1 − e). Obviously if R

is quasi-Baer, then R is G-quasi-Baer. But in Example 2.1, there exists a ring and a

finite group G of X-outer automorphisms of R such that R is G-quasi-Baer, but not

quasi-Baer.
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With these preparations, in spite of Example 1.1, we have the following result for
the quasi-Baer condition of R ∗ G and RG for the case when R is semiprime, and G is

finite and X-outer.

Theorem 1.10 Assume that R is a semiprime ring and G is a finite group of X-outer

ring automorphisms of R. Then the following are equivalent.

(i) R ∗ G is quasi-Baer.

(ii) R is G-quasi-Baer.

(iii) RG is quasi-Baer.

Proof By Lemma 1.3(i), R ∗ G is semiprime. Note that Q(R) ∗ G is a maximal right

ring of quotients of R ∗ G by Lemma 1.6.
(i) ⇒ (ii): Suppose that R∗G is quasi-Baer. Let I be a G-invariant two-sided ideal

of R. Then I ∗ G is a two-sided ideal of R ∗ G. Since R ∗ G is semiprime quasi-Baer,

there exists e ∈ B(R ∗ G) such that

(I ∗ G)R∗G ≤ess e(R ∗ G)R∗G

by [18, Theorem 4.7]. From Lemma 1.5, note that e ∈ Cen(R)G. First, we show that

IR ≤ess eRR. To see this, take 0 6= er ∈ eR with r ∈ R. Since (I∗G)R∗G ≤ess e(R∗G)R∗G,

it follows that there exists β ∈ R ∗ G such that 0 6= erβ ∈ I ∗ G. Say

β = b1g1 + b2g2 + · · · + bngn

with bi ∈ R and gi ∈ G for i = 1, . . . , n. Then

erβ = (erb1)g1 + (erb2)g2 + · · · + (erbn)gn ∈ I ∗ G.

Hence there exists j such that 0 6= erb j ∈ I. Thus IR ≤ess eRR. Note that e ∈ Cen(R)G

and e = e2, hence I ⊆ eRe. So we can see that IeRe ≤
ess eReeRe .

Now we show that AnnR(I) = (1 − e)R. If e = 0, then I = 0. Thus AnnR(I) = R.

So we may assume that e 6= 0. Note that eRe is semiprime. Thus AnneRe(I) = 0

because IeRe ≤ess eReeRe. Hence 0 = eR ∩ AnnR(I) = eRe ∩ AnnR(I). Since I ⊆ eR,
we have that (1 − e)R ⊆ AnnR(I). From the modular law, it follows that AnnR(I) =

(1 − e)R ⊕ (eR ∩ AnnR(I)). But since eR ∩ AnnR(I) = 0, AnnR(I) = (1 − e)R.

Therefore R is G-quasi-Baer.
(ii) ⇒ (iii): Assume that R is G-quasi-Baer. By Lemma 1.3(i), since RG is semi-

prime, it is enough to see that B(Q(RG)) ⊆ RG to prove that RG is quasi-Baer by
Lemma 1.4. Let e ∈ B(Q(RG)). Then ẽ ∈ B(Q(R)G) since Q(RG) ∼= Q(R)G by

Lemma 1.9(ii). Also [Cen(Q(R))]G
= Cen(Q(R)G) from Lemma 1.7. Thus

ẽ ∈ B(Q(R)G) ⊆ Cen(Q(R)G) = [Cen(Q(R))]G ⊆ Cen(Q(R)).

Let I = R ∩ ẽ R. Then IR ≤ess ẽ RR since ẽ ∈ Q(R) and RR ≤ess Q(R)R. If I = 0,
then ẽ = 0, hence ẽ ∈ RG. Thus we may assume that I 6= 0 or equivalently, ẽ 6= 0.

Note that I is a G-invariant two-sided ideal of R. So there exists f ∈ Sℓ(R) such that

AnnR(I) = f R. Since R is semiprime, f ∈ B(R) by [9]. Note that ẽ ∈ Cen(Q(R)) and

https://doi.org/10.4153/CMB-2009-057-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-057-6


Group Actions on Quasi-Baer Rings 573

ẽ = ẽ2, so ẽ ∈ B(Q(R)). Thus from Lemma 1.8, ẽ = 1 − f ∈ R. Since ẽ ∈ B(Q(R)G),
we have that ẽ ∈ RG ⊆ R. Therefore ẽR ⊆ R. Hence eRG

= e(R ∩ RG) ⊆ RG by

Lemma 1.9(iv), so e ∈ RG. Hence B(Q(RG)) ⊆ RG. Therefore RG is a quasi-Baer ring
by Lemma 1.4.

(iii)⇒(i): Assume that RG is quasi-Baer. Let e ∈ B(Q(R)∗G). Then by Lemma 1.5,

e ∈ [B(Q(R)]G since G is X-outer on Q(R). Thus R ∩ eR is a G-invariant two-sided
ideal of R. Therefore AnnR(R ∩ eR) is also a G-invariant two-sided ideal of A. So

tr(R ∩ eR) ⊆ R ∩ eR and tr(AnnR(R ∩ eR)) ⊆ AnnR(R ∩ eR). Now (R ∩ eR) ⊕
AnnR(R ∩ eR) is a dense right ideal of R. We prove that e[AnnR(R ∩ eR)] = 0. To see
this, let x ∈ AnnR(R ∩ eR). Then ex(R ∩ eR) = 0. If ex 6= 0, then there exists b ∈ R

such that 0 6= exb ∈ R ∩ eR because (R ∩ eR)R ≤ess eRR. So

exb(R ∩ eR) ⊆ ex(R ∩ eR) = 0,

hence 0 6= exb ∈ (R ∩ eR) ∩ AnnR(R ∩ eR) = 0, which is a contradiction. Therefore

e[AnnR(R∩ eR)] = 0. Thus e[(R∩ eR) ⊕AnnR(R∩ eR)] = e(R∩ eR) = R∩ eR ⊆ R.
By Lemma 1.9(iii),

tr[(R ∩ eR) ⊕ AnnR(R ∩ eR)] = tr(R ∩ eR) ⊕ tr(AnnR(R ∩ eR))

is a dense right ideal of RG. Now let e0 be the restriction of e to

tr[(R ∩ eR) ⊕ AnnR(R ∩ eR)] = tr(R ∩ eR) ⊕ tr(AnnR(R ∩ eR)).

Then e = ẽ0 and e0 ∈ B(Q(RG)) by Lemma 1.9(ii) and (iv). Since e ∈ [B(Q(R)]G, it

follows that tr(R ∩ eR) ⊆ eRG. Thus tr(R ∩ eR) ⊆ e0RG.
We claim that tr(R ∩ eR)RG ≤ess e0RG

RG . For this, take 0 6= e0a ∈ e0RG such

that a ∈ RG. Note that RG
RG ≤ess Q(RG)RG . Thus there exists c ∈ RG such that

0 6= e0ac ∈ RG. Since [tr(R ∩ eR) ⊕ tr(AnnR(R ∩ eR))]RG ≤ess RG
RG , there is r ∈ RG

with 0 6= e0acr ∈ [tr(R ∩ eR) ⊕ tr(AnnR(R ∩ eR))]. By noting that

e0[tr(AnnR(R ∩ eR))] = e[tr(AnnR(R ∩ eR))] ⊆ e[AnnR(R ∩ eR)] = 0,

we have 0 6= e0acr ∈ tr(R ∩ eR) and cr ∈ RG. Hence tr(R ∩ eR)RG ≤ess e0RG
RG .

Note that RG is semiprime from Lemma 1.3(i), tr(R ∩ eR) is a two-sided ideal

of RG, and e0 is a central idempotent in Q(RG). Since RG is quasi-Baer, there exists

f ∈ Sℓ(RG) such that AnnRG (tr(R ∩ eR)) = f RG. From [9] f ∈ B(RG) since RG

is semiprime. Thus from Lemma 1.8, e0 = 1 − f because e0 ∈ B(Q(RG)). Thus

e0 ∈ RG, so e0RG ⊆ RG. By Lemma 1.9(i), eR = ẽ0(RGR) = (e0RG)R ⊆ RGR = R,
hence e ∈ R. So B(Q(R) ∗ G) ⊆ R ⊆ R ∗ G. Note that R ∗ G is semiprime by

Lemma 1.3(i). Therefore R ∗ G is quasi-Baer by Lemma 1.4.

For a semiprime ring R and a group G of X-outer ring automorphisms of R, we
note that G also acts as X-outer ring automorphisms on the semiprime ring Q̂qB(R).

Thus we get the following corollary immediately from Theorem 1.10.

Corollary 1.11 Let R be a semiprime ring and G a finite group of X-outer ring auto-

morphisms of R. Then both Q̂qB(R) ∗ G and Q̂qB(R)G are quasi-Baer.
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A ring R is called reduced if R has no nonzero nilpotent element. By observing
that a reduced quasi-Baer ring is Baer, we get the following immediately.

Corollary 1.12 Let R be a reduced ring with a finite group G of X-outer ring auto-

morphisms of R. Then R is G-quasi-Baer if and only if RG is Baer.

2 Examples

In this section, we provide various examples which illustrate and delimit the results in

Section 1. From Lemma 1.3 and Theorem 1.10, we may raise the following question:

Assume that a ring R is semiprime quasi-Baer and G is a finite group of ring

automorphisms of R such that R has no nonzero |G|-torsion. Then is R ∗ G

quasi-Baer?

The following example answers the question in the negative.

Example 2.1 For a commutative domain A with no nonzero 2-torsion, let R =

A ⊕ A ⊕ Z and g ∈ Aut(R) defined by g[(a, b, n)] = (b, a, n) for a, b ∈ A and n ∈ Z,
where Z is the ring of integers. Put G = {1, g}, S = A ⊕ A, and h = g|S. Then

h ∈ Aut(S). Let H = {1, h}. In this case, R ∗ G ∼= (S ∗ H) ⊕ Z[G], where Z[G]

is the group ring of G over Z. Since H is X-outer on S, the ring S ∗ H is quasi-Baer
by Theorem 1.10. Thus if R ∗ G is quasi-Baer, then Z[G] is quasi-Baer. But this is

a contradiction by [19, Example 1.11]. Thus R is a semiprime quasi-Baer with no

nonzero |G|-torsion; however the ring R ∗ G is not quasi-Baer.

In Example 2.2, there is a semiprime ring R with a finite group G of X-outer ring

automorphisms such that R has no |G|-torsion and R is G-quasi-Baer; however R is
not quasi-Baer. We see that, for a semiprime ring R, if G is a group of ring automor-

phisms of R, then it can be checked that G induces group actions on Q̂qB(R). Thus

we also have the skew group ring Q̂qB(R)∗G. If G is a finite group of X-outer ring au-
tomorphisms of R, then G is also X-outer on Q̂qB(R). Thus Q̂qB(R) ∗ G is semiprime

and quasi-Baer by Lemma 1.3(i) and Theorem 1.10 because Q̂qB(R) is semiprime
quasi-Baer. Hence by Lemma 1.4, Q̂qB(R ∗G) ⊆ Q̂qB(R) ∗G. Thus one might expect

that Q̂qB(R ∗ G) = Q̂qB(R) ∗ G when R is a semiprime ring and G is a finite group of

X-outer ring automorphisms of R. But Example 2.2 eliminates the possibility. More-
over, we can see that Q̂qB(R ∗ G) 6∼= Q̂qB(R) ∗ G. Therefore in Lemma 1.6, “Q( · )”

cannot be replaced by “Q̂qB( · )”.

Example 2.2 Assume that A is a commutative domain which is not a field and A has
no 2-torsion. Take a nonzero proper ideal I of A. Let R = {(a, b) ∈ A⊕A | a−b ∈ I},

which is a subring of A⊕A. Note that Q(R) = K⊕K , where K is the field of fractions
of A. Define g ∈ Aut(R) by g[(a, b)] = (b, a) for (a, b) ∈ R. Let G = {1, g}, where

g2
= 1. By noting that I 6= 0 it can be checked that G is X-outer. Since R is semiprime,

so is R ∗ G by Lemma 1.3(i). Now

Q̂qB(R ∗ G) = (R ∗ G)B(Q(R) ∗ G) = (R ∗ G)[B(Q(R))]G
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by Lemma 1.5 since G is X-outer on Q(R). Note that [B(Q(R)]G
= {(0, 0), (1, 1)},

hence we have that Q̂qB(R ∗ G) = R ∗ G. Thus R ∗ G is quasi-Baer. In this case,

R is not quasi-Baer. In fact, assume to the contrary that R is quasi-Baer. Since R is
semicentral reduced, R is a prime ring by [12, Lemma 4.2], which is a contradiction.

Thus R is G-quasi-Baer by Theorem 1.10, but R is not quasi-Baer.

Next note that (1, 0) ∈ Q̂qB(R) = RB(Q(R)), but (1, 0) 6∈ R. Therefore
Q̂qB(R ∗ G) = R ∗ G ( Q̂qB(R) ∗ G. Also, note that R has no nonzero |G|-torsion

because A has no 2-torsion. Take A = Z and I = 2Z. Then R ∗ G = Q̂qB(R ∗ G)

has only trivial idempotents 0 and 1 = (1, 1) + (0, 0)g. Now Q̂qB(R) = Z ⊕ Z,
hence Q̂qB(R) ∗ G has a nontrivial idempotent, for example (0, 1) ∈ Q̂qB(R). Thus

Q̂qB(R ∗ G) 6∼= Q̂qB(R) ∗ G.

The following example shows that Theorem 1.10 does not hold if “quasi-Baer” is

replaced by “Baer”.

Example 2.3 Let A be a commutative domain in which 2 is not invertible and let
R = A[x, y], the ordinary polynomial ring. Define g ∈ Aut(R) by g[a(x, y)] =

a(y, x) for a(x, y) ∈ R. Then g2
= 1. Let G = {1, g}. Let K be the field of fractions of

A. Then note that Q(R) = K(x, y), where K(x, y) is the field of fractions of K[x, y].
First we check that Φg = 0, i.e., g is X-outer. For this, take α(x, y) ∈ Φg . Then

α(x, y)a(x, y)g
= a(x, y)α(x, y) for every a(x, y) ∈ R. Thus α(x, y)xg

= xα(x, y)
and so α(x, y)y = xα(x, y). Hence α(x, y)(y − x) = 0. Therefore α(x, y) = 0, i.e.,

g is an X-outer ring automorphism of R. Thus the group G is X-outer, so R ∗ G is

quasi-Baer by Theorem 1.10. Now we show that R ∗ G is not Baer. Say e = a(x, y) +
b(x, y)g ∈ R ∗ G is an idempotent. Then

e = [a(x, y)+b(x, y)g]2
= a(x, y)2 +b(x, y)b(y, x)+[a(x, y)b(x, y)+b(x, y)a(y, x)]g.

So we have that

a(x, y) = a(x, y)2 + b(x, y)b(y, x),

b(x, y) = a(x, y)b(x, y) + a(y, x)b(x, y).

Thus, from the second equation, b(x, y)[1 − a(x, y) − a(y, x)] = 0, hence either

b(x, y) = 0 or 1 = a(x, y) + a(y, x). Assume 1 = a(x, y) + a(y, x). Then 2a0 = 1,
where a0 ∈ A is the constant term of a(x, y). This is a contradiction. Hence b(x, y) =

0, so e = a(x, y). Therefore e = 0 or e = 1. Consider the right annihilator rR∗G(x +

yg). If R ∗ G is Baer, then rR∗G(x + yg) = 0 or rR∗G(x + yg) = R ∗ G. But since
x + yg 6= 0, it follows that rR∗G(x + yg) = 0. Now note that y + (−y)g ∈ rR∗G(x + yg),

a contradiction. Therefore the skew group ring R ∗ G is not Baer.

Moreover, if A = Z, then G is X-outer and R has no nonzero |G|-torsion. But the
skew group ring R ∗ G is not Baer.

According to [24] and [32], a ring R is said to be right extending (or right CS) if
for every right ideal I of R there exists e = e2 ∈ R such that IR ≤ess eRR. Note that

if R is a semiprime ring, then R is right FI-extending if and only if R is quasi-Baer by

[18, Theorem 4.7]. Thus by Theorem 1.10, if a ring R is semiprime right FI-extending
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with a finite group G of X-outer automorphisms of R, then R∗G is right FI-extending.
So we may raise the following question:

Assume that R is a semiprime right extending ring and G is a finite group of

X-outer ring automorphisms of R. Then is R ∗ G right extending?

The following example gives a negative answer to the question.

Example 2.4 Let A = Z and let G = {1, g} as in Example 2.3. Then R = Z[x, y] is

right extending, G is X-outer and moreover R has no nonzero |G|-torsion. We claim
that the skew group ring R ∗ G is not right extending. Assume to the contrary that

R ∗ G is right extending. Note that R ∗ G has only trivial idempotents as is shown
in Example 2.3. Hence R ∗ G is right uniform. Now Q(R) ∗ G = Q(x, y) ∗ G is

a maximal right ring of quotients of R ∗ G by Lemma 1.6, where Q is the field of

rational numbers and Q(x, y) is the field of fractions of Q[x, y]. Thus Q(x, y) ∗ G is
also right uniform. But e = 1/2 + (1/2)g is a nontrivial idempotent in Q(x, y) ∗ G.

This is a contradiction. Therefore R ∗ G is not right extending.

3 Applications

In this section, C∗-algebras are assumed to be nonunital unless indicated otherwise.

We apply our results from Section 1 to quasi-AW ∗-algebras (for example, the local

multiplier C∗-algebra Mloc(A) of C∗-algebra A). Also as applications, for a unital
C∗-algebra A and a finite group G of X-outer ∗-automorphisms of A, the relation-

ship between |Minspec(A)|, |Minspec(A ∗ G)|, and |Minspec(AG)| is investigated.

Using this relationship, we study the triangulating dimension of A ∗ G and AG for a
unital C∗-algebra A which gives answers to Open Problems (3) and (4) in [19] for

certain skew group ring extensions. As a byproduct we obtain that if a quasi-AW ∗-
algebra A is a direct sum of n prime C∗-algebras, then for a finite group G of X-outer

∗-automorphisms of A there exists k with k ≤ n such that both A ∗ G and AG are

direct sums of k prime C∗-algebras.
If A is a C∗-algebra, then the set F of all norm closed essential two-sided ideals

forms a filter directed downward by inclusion. The ring Qb(A) denotes the algebraic

inductive limit of {M(I)}I∈F , where M(I) is the C∗-algebra multipliers of I. In [3],
the ring Qb(A) is called the symmetric normed algebra of quotients of A. The norm

completion of Qb(A), i.e., the C∗-algebra inductive limit Mloc(A) of {M(I)}I∈F , is
called the local multiplier algebra of A which was used to solve operator equations

on A (see [28] and [42]). In [2–5], Qb(A) and Mloc(A) of a C∗-algebra A have been

extensively studied. For more details on local multiplier algebras, see [6].
According to [6, Definition 3.2.1, p.73], for a C∗-algebra A, the C∗-subalgebra

ACb(A) (the norm closure of ACb(A) in Mloc(A)) of Mloc(A) is called the bounded

central closure of A and denoted by cA, where Cb(A) is Cen(Qb(A)). If A =
cA,

then A is called boundedly centrally closed. It was shown in [6, Theorem 3.2.8 and

Corollary 3.2.9, pp.75-76] that the local multiplier algebra and the bounded central
closure of a C∗-algebra are boundedly centrally closed.

Recall from [34] that an AW ∗-algebra is a C∗-algebra which is also a Baer ∗-ring.

From [13, Proposition 1.5] and [34, p.10], a reduced quasi-AW ∗-algebra is a com-
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mutative AW ∗-algebra. In [21], it is proved that the center of a quasi-AW ∗-algebra is
an AW ∗-algebra.

By [6] a ∗-preserving algebra automorphism of a C∗-algebra is called a ∗-auto-

morphism. When A is a C∗-algebra with a finite group G of X-outer ∗-automorph-
isms of A, it was shown in [6, Section 4.4, pp.139–141] that A ∗ G and AG are

C∗-algebras.

For a C∗-algebra A, let A1
= {a + λ1M(A) | a ∈ A and λ ∈ C}, where M(A)

is the multiplier algebra of A, 1M(A) is the identity of M(A), and C is the field of
complex numbers. Note that quasi-AW ∗-algebras are unital. For the class of quasi-

AW ∗-algebras, we have the following.

Theorem 3.1 ([21, Theorem 4.15 and Corollary 4.17]) Let A be a C∗-algebra and n

a positive integer. Then the following are equivalent.

(i) |Minspec(A)| = n.

(ii) The extended centroid of A is isomorphic to Cn.

(iii) Q̂qB(A1) is a direct sum of n prime C∗-algebras.

(iv) Q(A) is a direct product n prime rings.

(v) Some boundedly centrally closed intermediate C∗-algebra between A and Mloc(A)

is a direct sum of n prime C∗-algebras.

(vi) Every boundedly centrally closed intermediate C∗-algebra between A and Mloc(A)
is a direct sum of n prime C∗-algebras.

In this case, Q̂qB(A1) is a quasi-AW ∗-algebra.

Proposition 3.2 ([21, Lemma 4.12(i)]) A unital C∗-algebra is boundedly centrally

closed if and only if it is quasi-AW ∗-algebra. In particular, the local multiplier algebra

Mloc(A) of a C∗-algebra A is a quasi-AW ∗-algebra [4, Lemma 3].

Noting that C∗-algebras are semiprime, we have the following immediately from

Theorem 1.10 and [6, Section 4.4, pp. 139–141].

Theorem 3.3 Assume that A is a unital C∗-algebra and G is a finite group of X-outer

∗-automorphisms of A. Then the following are equivalent.

(i) A ∗ G is a quasi-AW ∗-algebra.

(ii) A is G-quasi-Baer.

(iii) AG is a quasi-AW ∗-algebra.

Observe that if G is a finite group of X-outer ∗-automorphisms of A, then G

also acts as X-outer ∗-automorphisms on Qb(A). It is shown in [21, Lemma 4.9]
that Qb(A) is quasi-Baer. The following corollary follows immediately from Theo-

rems 1.10, 3.1, and 3.3 and Proposition 3.2.

Corollary 3.4 (i) Assume that A is a unital C∗-algebra and G is a finite group of

X-outer ∗-automorphisms of A. Then Qb(A) ∗ G and Qb(A)G are quasi-Baer.

(ii) If G is a finite group of X-outer ∗-automorphisms of the local multiplier alge-

bra Mloc(A) of a C∗-algebra A, then Mloc(A) ∗ G and Mloc(A)G are quasi-AW ∗-

algebras.
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(iii) If A is a unital C∗-algebra with only finitely many minimal prime ideals and G is

a finite group of X-outer ∗-automorphisms of A, then Q̂qB(A)∗G is a quasi-AW ∗-

algebra.

Theorem 3.5 Assume that A is a unital C∗-algebra and G is a finite group of X-outer

∗-automorphisms of A. Then the following are equivalent.

(i) |Minspec(A)| < ∞.

(ii) |Minspec(AG)| < ∞.

(iii) |Minspec(A ∗ G)| < ∞.

In this case, |Minspec(A ∗ G)| ≤ |Minspec(A)| ≤ |Minspec(A ∗ G)| · |G| and

|Minspec(A ∗ G)| = |Minspec(AG)|.

Proof Since G is X-outer on Q(A), we have that

Cen(Q(A ∗ G)) ∼= Cen(Q(A) ∗ G) = [Cen(Q(A))]G

= Cen(Q(A)G) ∼= Cen(Q(AG))

by Lemmas 1.5, 1.6, 1.7, and 1.9(ii).

(i)⇒(ii), (i)⇒(iii): Suppose that |Minspec(A)| = n < ∞. Then Cen(Q(A)) ∼=
Cn by Theorem 3.1 because Cen(Q(A)) = Cen(Qm(A)). Hence u.dim[Cen(Q(A))] =

n. Note that G induces a group H of ring automorphisms of Cen(Q(A)) and H

is an epimorphic image of G. In this case |H| is invertible in Cen(Q(A)). Thus

Cen(Q(A)) ∗ H is semiprime by Lemma 1.3(ii). Hence by [39, Theorem 2.1 and
Proposition 2.2(1)],

u.dim[Cen(Q(A))]H ≤ u.dim[Cen(Q(A))],

where u.dim(−) is the right uniform dimension of a ring. Let

k = u.dim[Cen(Q(A))]H.

Then k ≤ n.

By noting that [Cen(Q(A))]H
= [Cen(Q(A))]G, we have that [Cen(Q(A))]H

=

Cen(Q(AG)) by Lemma 1.7. Also note that by Lemma 1.3(ii) AG is semiprime. Thus

Cen(Q(AG)) is von Neumann regular by [1, Theorem 5]. Thus Cen(Q(AG)) is a direct
sum of k fields because u.dim[Cen(Q(AG))] = k < ∞. Therefore |Minspec(AG)| =

k by [1, Theorem 10]. Since AG is a C∗-algebra from [6, Section 4.4, pp. 139–141],

Cen(Q(AG)) ∼= Ck from Theorem 3.1. Hence Cen(Q(A ∗ G)) ∼= Cen(Q(AG)) ∼= Ck.
Since A ∗ G is a C∗-algebra by [6, Section 4.4, pp. 139–141], |Minspec(A ∗ G)| =

|Minspec(AG)| = k ≤ n by Theorem 3.1.

(ii)⇔(iii) It follows immediately from the fact that Cen(Q(A∗G)) ∼= Cen(Q(AG))

and Theorem 3.1 because AG and A∗G are C∗-algebras from [6, Section 4.4, pp. 139–

141].

(ii)⇒(i): Let |Minspec(AG)| = k < ∞. Since AG is a C∗-algebra from [6, Section

4.4, pp. 139–141], Cen(Q(AG)) ∼= Ck by Theorem 3.1. Note that, as above, G induces
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a group H of ring automorphisms of Cen(Q(A)) induced by G and H is an epimor-
phic image of G. Note that [Cen(Q(A))]H

= [Cen(Q(A))]G ∼= Cen(Q(AG)) ∼= Ck,

so u.dim[Cen(Q(A))]H
= k. Since |H| is invertible, Cen(Q(A)) ∗ H is semiprime by

Lemma 1.3(ii). Hence

u.dim[Cen(Q(A))]H ≤ u.dim[Cen(Q(A))] ≤ u.dim[Cen(Q(A)]H · |H|

from [39, Theorem 2.1 and Proposition 2.2(1)]. Now

u.dim[Cen(Q(A)]G ≤ u.dim[Cen(Q(A))] ≤ u.dim[Cen(Q(A)]G · |G|

because |H| ≤ |G|. Note that u.dim[Cen(Q(A)]G
= k. Thus

n := u.dim[Cen(Q(A))] ≤ k · |G|.

Since Cen(Q(A)) is von Neumann regular by [1, Theorem 5], Cen(Q(A)) is a finite
direct sum of n fields. Therefore |Minspec(A)| = n by [1, Theorem 10].

Recall from [12] that an ordered set {b1, . . . , bn} of nonzero distinct idempotents

in a ring R is called a set of left triangulating idempotents of R if all the following hold:

(i) 1 = b1 + · · · + bn;

(ii) b1 ∈ Sℓ(R);
(iii) bk+1 ∈ Sℓ(ckRck), where ck = 1 − (b1 + · · · + bk), for 1 ≤ k ≤ n − 1.

Similarly we define a set of right triangulating idempotents of R using (i), b1 ∈
Sr(R), and bk+1 ∈ Sr(ckRck). From part (iii) of the above definition, a set of left
(right) triangulating idempotents is a set of pairwise orthogonal idempotents. A set

{b1, . . . , bn} of left (right) triangulating idempotents is said to be complete if each bi

is also semicentral reduced.

Observe from [12, Corollary 1.7 and Theorem 2.10] that the number of elements

in a complete set of left triangulating idempotents is unique for a given ring R (which
has such a set) and this is also the number of elements in any complete set of right

triangulating idempotents of R. This motivates the following definition: R has tri-

angulating dimension n, written Tdim(R) = n, if R has a complete set of left trian-
gulating idempotents with exactly n elements. Note that R is semicentral reduced

if and only if Tdim(R) = 1. If R has no complete set of left triangulating idempo-

tents, then we say R has infinite triangulating dimension, denoted Tdim(R) = ∞.
In [12, Theorem 4.4], a structure theorem for a quasi-Baer ring with finite triangu-

lating dimension is given. Also in [19, Theorem 3.4], for a quasi-Baer ring R, it is
shown that Tdim(R) = n < ∞ if and only if R has exactly n minimal prime ideals.

Also in [19] the equality of triangulating dimension of a ring R and its various ring

extensions of R has been investigated.

The following theorem gives answers to Open Problems (3) and (4) in [19] for

triangulating dimension of certain skew group ring extensions.

Theorem 3.6 Let A be a quasi-AW ∗-algebra and G a finite group of X-outer

∗-automorphisms of A. Then we have the following.
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(i) Tdim(A ∗ G) = Tdim(AG).

(ii) Tdim(A ∗ G) ≤ Tdim(A) ≤ Tdim(A ∗ G) · |G|.
(iii) If Tdim(A) = n < ∞, then there exists a positive integer k ≤ n such that both

A ∗ G and AG are direct sums of k prime C∗-algebras.

Proof (i) From Theorem 3.3, A∗G and AG are quasi-AW ∗-algebras. If Tdim(A∗G) =

n < ∞, then by [19, Theorem 3.4] and Theorem 3.5, n = |Minspec(A ∗ G)| =

|Minspec(AG)| = Tdim(AG). Next if Tdim(A∗G) = ∞, then |Minspec(A∗G)| = ∞
by [19, Theorem 3.4], since A ∗ G is a quasi-AW ∗-algebra. Thus from Theorem 3.5,
|Minspec(AG)| = ∞. Hence Tdim(AG) = ∞ by [19, Theorem 3.4] because AG is a

quasi-AW ∗-algebra. Consequently, Tdim(A ∗ G) = Tdim(AG).

(ii) From Theorem 3.5 and [19, Theorem 3.4], if one of Tdim(A), Tdim(A ∗ G),
and Tdim(AG) is finite, then all are finite and also Tdim(A ∗ G) ≤ Tdim(A) ≤
Tdim(A ∗ G) · |G|. Next, if one of Tdim(A), Tdim(A ∗ G), and Tdim(AG) is infinite,

then we are also done by Theorem 3.5 and [19, Theorem 3.4].

(iii) Suppose that Tdim(A) = n < ∞ (note that by [19, Theorem 3.4] and Theo-

rem 3.1, it is equivalent to the fact that A is a direct sum of n prime C∗-algebras).

Then by Theorem 3.3, Theorem 3.5, and [19, Theorem 3.4], Tdim(A ∗ G) =

Tdim(AG) = k ≤ n for some k. Therefore A ∗ G and AG are direct sums of k prime

C∗-algebras by Theorem 3.3 and [12, Theorem 4.4].

In the following example, there exist a quasi-AW ∗-algebra A and a finite group G

of X-outer ∗-automorphisms of A such that Tdim(A ∗ G) � Tdim(A).

Example 3.7 Let A = C ⊕ C ⊕ · · · ⊕ C (n-times with n ≥ 2) and ∗ be the com-

ponentwise conjugate involution. Define g ∈ Aut(A) such that g[(a1, a2, . . . , an)] =

(a2, a3, . . . , an, a1) for (a1, a2, . . . , an) ∈ A. Then g is an X-outer ∗-automorphism
and gn

= 1. Let G be the cyclic group generated by g. Then G is X-outer. By

Lemma 1.3(i), AG is semiprime. Thus Sℓ(AG) = B(AG) by [9]. Now B(AG) =

{0, 1}. Therefore AG is semicentral reduced. Hence by Theorem3.6, Tdim(A ∗ G) =

Tdim(AG) = 1, but Tdim(A) = n ≥ 2.
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Boston, MA, 2001, pp. 67–84.
[17] , Polynomial extensions of Baer and quasi-Baer rings. J. Pure Appl. Algebra 159(2001), no. 1,

25–42.
[18] G. F. Birkenmeier, B. J. Müller, and S. T. Rizvi, Modules in which every fully invariant submodule is

essential in a direct summand. Comm. Algebra 30(2002), no. 3, 1395–1415.
[19] , Triangular matrix representations of ring extensions. J. Algebra 265(2003), no. 2, 457–477.
[20] G. F. Birkenmeier, J. K. Park, and S. T. Rizvi, Ring hulls and applications. J. Algebra 304(2006),

no. 2, 633–665.
[21] , Hulls of semiprime rings with applications to C∗-algebras. To appear in J. Algebra.
[22] K. A. Brown, The singular ideals of group rings. Quart. J. Math. Oxford 28(1977), no. 109, 41–60.
[23] V. P. Camillo, F. J. Costa-Cano, and J. J. Simon, Relating properties of a ring and its ring of row and

column finite matrices. J. Algebra 244(2001), no. 2, 435–449.
[24] A. W. Chatters and C. R. Hajarnavis, Rings in which every complement right ideal is a direct

summand. Quart. J. Math. Oxford 28(1977), no. 109, 61–80.
[25] W. E. Clark, Twisted matrix units semigroup algebras. Duke Math. J. 34(1967), 417–423.
[26] M. Cohen, A Morita context related to finite automorphism groups of rings. Pacific J. Math.

98(1982), no. 1, 37–54.
[27] K. R. Davidson, C∗-algebras by example. Fields Inst. Monograph 6, American Mathematical

Society, Providence, RI, 1996.
[28] G. A. Elliott, Automorphisms determined by multipliers on ideals of a C∗-algebra. J. Functional

Analysis 23(1976), no. 1, 1–10.
[29] J. W. Fisher and S. Montgomery, Semiprime skew group rings. J. Algebra 52(1978), no. 1, 241–247.
[30] N. J. Groenewald, A note on extensions of Baer and P.P.-rings. Publ. Inst. Math. 34(1983), 71–72.
[31] J. Han, Y. Hirano, and H. Kim, Semiprime ore extensions. Comm. Algebra 28(2000), no. 8,

3795–3801.
[32] M. Harada, On modules with extending properties. Osaka J. Math. 19(1982), no. 1, 203–215.
[33] Y. Hirano, On ordered monoid rings over a quasi-Baer ring. Comm. Algebra 29(2001), no. 5,

2089–2095.
[34] I. Kaplansky, Rings of operators. W. A. Benjamin, New York, 1968.
[35] T. Y. Lam, Lectures on modules and rings. Graduate Texts in Mathematics 189, Springer-Verlag, New

York, 1999.
[36] J. Lawrence, A singular primitive ring. Proc. Amer. Math. Soc. 45(1974), 59–62.
[37] Z. Liu, A note on principally quasi-Baer rings. Comm. Algebra 30(2002), no. 8, 3885–3890.
[38] K. Louden, Maximal quotient rings of ring extensions. Pacific J. Math. 62(1976), no. 2, 489–496.
[39] S. Montgomery, Outer automorphisms of semi-prime rings. J. London Math. Soc. 18(1978), no. 2,

209–220.
[40] B. J. Müller, The quotient category of a Morita context. J. Algebra 28(1974), 389–407.
[41] J. Osterburg and J. K. Park, Morita contexts and quotient rings of fixed rings. Houston J. Math.

10(1984), no. 1, 75–80.
[42] G. K. Pedersen, Approximating derivations on ideals of C∗-algebras. Invent. Math. 45(1978), no. 3,

299–305.
[43] A. Pollingher and A. Zaks, On Baer and quasi-Baer rings. Duke Math. J. 37(1970), 127–138.
[44] M. A. Rieffel, Actions of finite groups on C∗-algebras. Math. Scand. 47(1980), no. 1, 157–176.

https://doi.org/10.4153/CMB-2009-057-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-057-6


582 H. L. Jin, J. Doh, and J. K. Park

[45] S. T. Rizvi and C. S. Roman, Baer and quasi-Baer modules. Comm. Algebra 32(2004), no. 1,
103–123.

[46] Z. Yi and Y. Zhou, Baer and quasi-Baer properties of group rings. J. Austral. Math. Soc. 83(2007),
no. 2, 285–296.

(Jin) Department of Mathematics, Yanbian University, Yanji 133002, People’s Republic of China
e-mail: hljin98@hanmail.net

(Doh, Park) Department of Mathematics, Busan National University, Busan 609–735, South Korea
e-mail: jkpark@pusan.ac.kr

https://doi.org/10.4153/CMB-2009-057-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-057-6

