J. Austral. Math. Soc. 22 (Series A) (1976), 469-475.

HADAMARD MATRICES AND SUBMATRICES

K. VIJAYAN

(Received 11 August 1975; revised 1 December 1975)

Abstract

Shrinkande and Bhagwan Das (1970) showed how to extend a (4t - 1, 4t) row-orthogonal matrix with entries ± 1 to a Hadamard matrix of order 4t. Using a slightly different approach we consider extensions of (4t - k, 4t) row-orthogonal matrix to a Hadamard matrix of order 4t.

Introduction

An (m, n)-matrix $H_{m, n}$ with entries ± 1 is called a Hadamard submatrix if the rows of $H_{m, n}$ are orthogonal to one-another. If $m \ge 3$, one can easily note that n is divisible by 4.

If m = n, we call the matrix a Hadamard matrix of order n.

In this note we investigate when and how one can extend a matrix $H_{m,n}$ to a matrix $H_{n,n}$ by adding n - m rows to $H_{m,n}$. The particular case when m = n - 1 is done by Shrikhande and Bhagwan Das (1970) using a different method.

Hereafter, weight of a vector means the sum of squares of the components of that vector.

2. General approach

From the general theory of linear algebra, there exists a row orthogonal matrix A of order (n - m, n) such that the rows of A are orthogonal to the rows of $H_{m,n}$ and such that

$$AA' = n \cdot I_{n-m}$$

where I_{n-m} is the identity matrix of order n-m. If all the entries of A are ± 1 , then if we augment the rows of A to $H_{m,n}$ we get an $H_{n,n}$. Hence, essentially what we have to look for is an A with these properties.

From the discussion, we have,

(1)
$$\binom{H_{m,n}}{\cdots}_{A}(H'_{m,n}:A') = nI_{n}.$$

From (1), it is immediate that

(2)
$$(H'_{m,n} \colon A') \begin{pmatrix} H_{m,n} \\ \cdots \\ A \end{pmatrix} = nI_n .$$

From (2), we get

$$(3) A'A = nI_n - R,$$

where

$$R = (r_{ij}) = H'_{m,n}H_{m,n}$$

and

$$r_{ij}=m, \qquad i=1,2,\cdots,n.$$

If we denote the columns of A as A_1, A_2, \dots, A_n , (3) means that the weight of A_i is n - m and

(4) $A'_{i}A_{j} = -r_{ij}$ if $i \neq j$, $i, j = 1, 2, \dots, n$.

By retracing the steps, one notices that to extend $H_{m,n}$ to $H_{n,n}$ one need have to only construct n m-vectors A_1, A_2, \dots, A_n with entries ± 1 satisfying condition (4).

Since an A satisfying (1) always exists, from Schwartz inequality we have,

(5)
$$|r_{ij}| \leq n-m, \quad i,j=1\cdots n$$

where

(6)
$$r_{ij} = n - m \quad \text{iff} \quad A_i = -A_j$$

and
$$-r_{ij} = n - m$$
 iff $A_i = A_j$

Hereafter we would say that two columns A_i and A_j are distinct if and only if $A_i \neq A_j$ and $A_i + A_j \neq 0$.

Obviously A_i and A_j are distinct if and only if

$$(7) |r_{ij}| < n-m,$$

and mainly we will be looking for distinct A_i 's.

One can also notice that $n - m - r_{ij}$ is divisible by 2. This follows by observing that if *i*th and *j*th columns of H_{n-m} have a common entry, then

$$r_{ij}=a-(m-a)=2a-m$$

which implies $r_{ij} + m$ is divisible by 2, and from a previous remark that n is a multiple of 4. So the possible values of r_{ij} are

(8)
$$(n-m)-2k, \quad k=0,1,\cdots,(n-m).$$

470

Hadamard matrices

471

When n - m = 1, from (6) and (8), we note that $H_{m,n}$ is uniquely extendable to $H_{n,n}$. In later sections, we use (6), (7) and (8) to extend $H_{m,n}$ to $H_{n,n}$.

3. Extension of $H_{n-2,n}$ to $H_{n,n}$

From (7) and (8) we note that any two distinct vectors A_i and A_j are orthogonal to one another. If a_{ik} is the k th component of A_i , this means that,

(9)
$$a_{i1}a_{j1} + a_{i2}a_{j2} = 0.$$

At least one of a_{j1} and a_{j2} should be different from 0. Without loss of generality we may take a_{j1} to be different from 0. Then from (9), we have

(10)
$$a_{i1} = -a_{i2} \cdot \frac{a_{j2}}{a_{j1}}.$$

Remembering that the weights of A_i and A_j are 2, we get

$$2 = a_{i1}^{2} + a_{i2}^{2} = a_{i2}^{2} \left(1 + \frac{a_{i2}^{2}}{a_{j1}^{2}} \right) = \frac{a_{i2}^{2}}{a_{j1}^{2}} \cdot 2$$

and hence

(11)
$$a_{i2} = \pm a_{j1}$$

Substituting in (10),

(12) $-a_{i1} = \pm a_{j2}$.

Thus if we choose A_1 , the remaining columns of A are determined from (6), (11) and (12). To preserve Hadamard property, we choose A_1 as $\binom{1}{i}$. For the first *i* such that $r_{1i} = 0$, we might choose without any loss of generality

$$A_i = \begin{pmatrix} 1 \\ -1 \end{pmatrix},$$

as the other solution is obtained by interchanging the two rows of A. Thus we have:

THEOREM 1. An $H_{n-2, n}$ can be extended to an $H_{n, n}$ essentially uniquely.

4. Extension of $H_{n-3,n}$ to $H_{n,n}$

From (7) and (8) we find that any two distinct pair of columns A_i and A_j is such that

$$A_i A_i = \pm 1.$$

K. Vijayan

Consider all A_i 's that are distinct from A_1 . Without any loss of generality we can assume that if A_i is distinct from A_1 , then

$$r_{1i} = 1$$
.

If A_i and $A_{i'}$, are any two columns of A, that are distinct from A_1 , one notices that

(14)
$$r_{ij'} = 1 \pmod{4}$$

= 1 or - 3.

Hence if A_i and $A_{i'}$ are distinct, then

$$r_{ii'} = 1$$
.

Hence to determine the distinct columns of A, one is only to look for 3-vectors of weight 3, such that the inner product between any two vectors is -1. Now we show that there can be at most 4 distinct columns for A. If there are more than 4, let B_1, B_2, B_3, B_4 be any 4 of them. Then we note that

(15)
$$\left(\sum_{i=1}^{4} B_{i}\right)' B_{j} = 0 \quad j = 1, 2, 3, 4.$$

Since any three of the B's are easily seen to be independent, (15) implies that

$$\sum_{i=1}^4 B_i = 0$$

i.e. any three of B's uniquely determine the fourth and hence there cannot be a fifth one.

For our purpose entries in B_i 's should be ± 1 . As usual, we choose B_1 with all entries ± 1 . Then the other three B_i 's are uniquely determined (except for permutation of suffixes) as

$$B_2 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \quad B_3 = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}, \quad B_4 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}.$$

Now the construction of A is obvious. One can also see that A-matrix obtained by permutating the suffixes 2, 3, 4 of B-vectors, can also be obtained by permutating the rows of A. This is proved by noting that if there are r_i columns in A not distinct from B_i (i = 1, 2, 3, 4), then the orthogonality between rows of A implies that,

(16)
$$r_1 - r_2 - r_3 + r_4 = 0$$
$$r_1 - r_2 + r_3 - r_4 = 0$$

and

[5]

 $\boldsymbol{r}_1+\boldsymbol{r}_2-\boldsymbol{r}_3-\boldsymbol{r}_4=0\,,$

and (16) implies that

 $r_1 = r_2 = r_3 = r_4$.

Thus the A-matrix obtained is essentially unique. Hence we can state the theorem,

THEOREM 2. An H_{n-3} can be extended to an $H_{n,n}$ essentially uniquely.

5. Extension of $H_{n-4,n}$ to $H_{n,n}$

From (7) and (8), if any pair of columns of A are distinct then they are either mutually orthogonal or their inner product is ± 2 .

REMARK 1. If all distinct columns of A are orthogonal to one another then we could replace them by any set of orthogonal 4-vectors of weight 4 and hence in particular columns of an H_4 and the extension is trivially true.

In view of the Remark 1, we hereafter only consider the case when there is a pair of non-orthogonal distinct columns.

REMARK 2. If the two distinct columns A_i and A_j are not orthogonal to one another, then any columns A_k distinct from these two would be orthogonal to one of A_i and A_j , but not to both. This follows from the equation

 $n - 4 + r_{ii} + r_{ik} + r_{ik} = 0 \pmod{4}$.

It follows from Remark 2 that we could divide the columns of A into two sets, such that any pair of distinct columns from the same set are mutually orthogonal, while from different sets will have an inner product ± 2 .

Let there be b distinct columns B_1, \dots, B_b in the first set and c distinct columns C_1, \dots, C_c in the second set. Without any loss of generality we assume that $b \ge c$ and

$$B_i^{\prime}C_1 = 2$$
 $i = 1, \cdots, b$

and

$$B_1'C_j=2 \qquad j=1,\cdots,c.$$

To prove the extension we only have to show that B's and C's can be replaced by 4-vectors having components ± 1 without affecting the inner product properties.

Let $D = (d_{ii})$ be a $c \times b$ matrix with

$$d_{ij} = C'_i B_j.$$

We first prove the following lemma.

LEMMA. There exists a Hadamard matrix H_4 such that the first principal $c \times b$ submatrix of H_4 is $\frac{1}{2}D$.

PROOF. If b = 4, D is a Hadamard submatrix and from previous sections we note that we can extend $\frac{1}{2}D$ to an H_4 .

If b = 3, any 4-vector say B_4 having weight 4 and orthogonal to B_1 , B_2 and B_3 should have inner product ± 2 with C's. This follows from the fact that C's should be in the space generated by B_1 , B_2 , B_3 and B_4 and hence could be written as

$$C_i = \sum_{j=1}^4 l_{ij} B_j$$

where

$$l_{ij}=\frac{B'_jC_i}{B'_jB_j}=\frac{1}{4}B'_jC_i$$

and

$$\sum_{j} l_{ij}^2 = 1.$$

Hence by adding a column to D of inner products of C's with B_4 , we are in the same case as b = 4.

If b = 2, then c would have to be 2 and hence either the two rows of D are same as (11) or orthogonal to one another (remember that we have chosen B's such that $d_{11} = d_{21} = 1$).

If D is orthogonal then the matrix

$$\frac{1}{2} \begin{pmatrix} D & D \\ D & -D \end{pmatrix}$$

is an H_4 .

If D has both rows the same, then we have

1	1	1	1
1	1	- 1	- 1
1	- 1	1	- 1
1	- 1	- 1	1

as an H_4 with the required property. Hence the lemma.

Now we can show how to choose B's and C's having components ± 1 with the required inner product.

474

Hadamard matrices

For an H_4 defined as above, derive a matrix B by changing the sign of the last column. i.e. if u is the last column of H_4 , then

$$B = H_2 - 2A$$

where A is a 4×4 matrix with last column same as u and the rest of the elements 0.

Note that the entries of B are ± 1 and is actually a Hadamard matrix.

Define $C = \frac{1}{2}B \cdot H'_4$. The entries of C also are ± 1 as

$$C = \frac{1}{2}B \cdot H'_{4} = \frac{1}{2}(H_{4} - 2A)H'_{4} = \frac{1}{2}(H_{4}H'_{4} - 2AH'_{4}) = \frac{1}{2}(4I - 2uu').$$

Hence if we take the first b columns of B as B_1, \dots, B_b and the first c columns of C as C_1, \dots, C_c we have the required result as we note that

$$B'C = \frac{1}{2}B'BH'_4 \approx 2H'_4$$

which has D' as its principal $b \times c$ matrix.

Hence we have the theorem,

THEOREM 3. We can extend an $H_{n-4, n}$ to an $H_{n, n}$.

One can easily note that if b = 4, the extension is not essentially unique.

6. Concluding remarks

We have proved so far that we can always extend an $H_{n-k,n}$ to $H_{n,n}$ when $k \leq 4$. The author feels that the result is true if $k \leq n/2$, but this approach would obviously be very tedious to be of use to establish the result.

Reference

S. S. Shrikhande and Bhagwan Das (1970). A note on embedding for Hadamard matrices, (Essays in Probability and Statistics, University of North Carolina Press, Chapel Hill).

Department of Mathematics, University of Western Australia, Nedlands, W.A. 6009.

https://doi.org/10.1017/S1446788700016335 Published online by Cambridge University Press