HADAMARD MATRICES AND SUBMATRICES

K. VIJAYAN

(Received 11 August 1975; revised 1 December 1975)

Abstract

Shrinkande and Bhagwan Das (1970) showed how to extend a (4t-1,4t) row-orthogonal matrix with entries ± 1 to a Hadamard matrix of order $4 t$. Using a slightly different approach we consider extensions of $(4 t-k, 4 t)$ row-orthogonal matrix to a Hadamard matrix of order $4 t$.

Introduction

An (m, n)-matrix $H_{m, n}$ with entries ± 1 is called a Hadamard submatrix if the rows of $H_{m, n}$ are orthogonal to one-another. If $m \geqq 3$, one can easily note that n is divisible by 4 .

If $m=n$, we call the matrix a Hadamard matrix of order n.
In this note we investigate when and how one can extend a matrix $H_{m, n}$ to a matrix $H_{n, n}$ by adding $n-m$ rows to $H_{m, n}$. The particular case when $m=n-1$ is done by Shrikhande and Bhagwan Das (1970) using a different method.

Hereafter, weight of a vector means the sum of squares of the components of that vector.

2. General approach

From the general theory of linear algebra, there exists a row orthogonal matrix A of order $(n-m, n)$ such that the rows of A are orthogonal to the rows of $H_{m, n}$ and such that

$$
A A^{\prime}=n \cdot I_{n-m}
$$

where I_{n-m} is the identity matrix of order $n-m$. If all the entries of A are ± 1, then if we augment the rows of A to $H_{m, n}$ we get an $H_{n, n}$. Hence, essentially what we have to look for is an A with these properties.

From the discussion, we have,

$$
\left(\begin{array}{c}
H_{m, n} \tag{1}\\
\cdots \\
A
\end{array}\right)\left(H_{m, n}^{\prime}: A^{\prime}\right)=n I_{n} .
$$

From (1), it is immediate that

$$
\left(H_{m, n}^{\prime}: A^{\prime}\right)\left(\begin{array}{c}
H_{m, n} \tag{2}\\
\cdots \\
A
\end{array}\right)=n I_{n} .
$$

From (2), we get

$$
\begin{equation*}
A^{\prime} A=n I_{n}-R \tag{3}
\end{equation*}
$$

where

$$
R=\left(r_{i j}\right)=H_{m, n}^{\prime} H_{m, n}
$$

and

$$
r_{i j}=m, \quad i=1,2, \cdots, n .
$$

If we denote the columns of A as $A_{1}, A_{2}, \cdots, A_{n}$, (3) means that the weight of A_{i} is $n-m$ and

$$
\begin{equation*}
A_{i}^{\prime} A_{j}=-r_{i j} \quad \text { if } \quad i \neq j, \quad i, j=1,2, \cdots, n \tag{4}
\end{equation*}
$$

By retracing the steps, one notices that to extend $H_{m, n}$ to $H_{n, n}$ one need have to only construct $n m$-vectors $A_{1}, A_{2}, \cdots, A_{n}$ with entries ± 1 satisfying condition (4).

Since an A satisfying (1) always exists, from Schwartz inequality we have,

$$
\begin{equation*}
\left|r_{i j}\right| \leqq n-m, \quad i, j=1 \cdots n \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
r_{i j} & =n-m \tag{6}\\
-r_{i j} & =n-m \quad \text { iff } A_{i}=-A_{i} \\
\text { iff } A_{i} & =A_{i}
\end{align*}
$$

and
Hereafter we would say that two columns \boldsymbol{A}_{i} and \boldsymbol{A}_{j} are distinct if and only if $A_{i} \neq A_{j}$ and $A_{i}+A_{j} \neq 0$.

Obviously \boldsymbol{A}_{i} and \boldsymbol{A}_{i} are distinct if and only if

$$
\begin{equation*}
\left|r_{i j}\right|<n-m \tag{7}
\end{equation*}
$$

and mainly we will be looking for distinct A_{i} 's.
One can also notice that $n-m-r_{i j}$ is divisible by 2 . This follows by observing that if i th and j th columns of H_{n-m} have a common entry, then

$$
r_{i j}=a-(m-a)=2 a-m
$$

which implies $r_{i j}+m$ is divisible by 2 , and from a previous remark that n is a multiple of 4 . So the possible values of $r_{i j}$ are

$$
\begin{equation*}
(n-m)-2 k, \quad k=0,1, \cdots,(n-m) \tag{8}
\end{equation*}
$$

When $n-m=1$, from (6) and (8), we note that $H_{m, n}$ is uniquely extendable to $H_{m, n}$. In later sections, we use (6), (7) and (8) to extend $H_{m, n}$ to $H_{m, n}$.

3. Extension of $H_{n-2, n}$ to $H_{n} n$

From (7) and (8) we note that any two distinct vectors \boldsymbol{A}_{i} and \boldsymbol{A}_{i} are orthogonal to one another. If $a_{i k}$ is the k th component of A_{i}, this means that,

$$
\begin{equation*}
a_{i 1} a_{j 1}+a_{i 2} a_{j 2}=0 . \tag{9}
\end{equation*}
$$

At least one of $a_{i 1}$ and $a_{i 2}$ should be different from 0 . Without loss of generality we may take $a_{j 1}$ to be different from 0 . Then from (9), we have

$$
\begin{equation*}
a_{i 1}=-a_{i 2} \cdot \frac{a_{j 2}}{a_{i 1}} . \tag{10}
\end{equation*}
$$

Remembering that the weights of A_{i} and A_{j} are 2 , we get

$$
2=a_{i 1}^{2}+a_{i 2}^{2}=a_{i 2}^{2}\left(1+\frac{a_{i 2}^{2}}{a_{i 1}^{2}}\right)=\frac{a_{i 2}^{2}}{a_{i 1}^{2}} \cdot 2
$$

and hence

$$
\begin{equation*}
a_{i 2}= \pm a_{i 1} . \tag{11}
\end{equation*}
$$

Substituting in (10),

$$
\begin{equation*}
-a_{i 1}= \pm a_{j 2} . \tag{12}
\end{equation*}
$$

Thus if we choose A_{1}, the remaining columns of A are determined from (6), (11) and (12). To preserve Hadamard property, we choose A_{1} as (1). For the first i such that $r_{1 i}=0$, we might choose without any loss of generality

$$
A_{i}=\binom{1}{-1},
$$

as the other solution is obtained by interchanging the two rows of A. Thus we have:

Theorem 1. An $H_{n-2, n}$ can be extended to an $H_{m, n}$ essentially uniquely.

4. Extension of $\boldsymbol{H}_{\boldsymbol{n}-3, n}$ to $\boldsymbol{H}_{n, n}$

From (7) and (8) we find that any two distinct pair of columns \boldsymbol{A}_{i} and \boldsymbol{A}_{i} is such that

$$
\begin{equation*}
\boldsymbol{A}_{i}^{\prime} \boldsymbol{A}_{j}= \pm 1 \tag{13}
\end{equation*}
$$

Consider all \boldsymbol{A}_{j} 's that are distinct from \boldsymbol{A}_{1}. Without any loss of generality we can assume that if \boldsymbol{A}_{j} is distinct from \boldsymbol{A}_{1}, then

$$
r_{1 j}=1
$$

If A_{j} and $A_{j^{\prime}}$, are any two columns of A, that are distinct from A_{1}, one notices that

$$
\begin{align*}
r_{i i^{\prime}} & =1(\bmod 4) \\
& =1 \text { or }-3 \tag{14}
\end{align*}
$$

Hence if A_{j} and $A_{j^{\prime}}$ are distinct, then

$$
r_{j j^{\prime}}=1
$$

Hence to determine the distinct columns of A, one is only to look for 3-vectors of weight 3 , such that the inner product between any two vectors is -1 . Now we show that there can be at most 4 distinct columns for A. If there are more than 4 , let $B_{1}, B_{2}, B_{3}, B_{4}$ be any 4 of them. Then we note that

$$
\begin{equation*}
\left(\sum_{i=1}^{4} B_{i}\right)^{\prime} B_{i}=0 \quad j=1,2,3,4 \tag{15}
\end{equation*}
$$

Since any three of the B 's are easily seen to be independent, (15) implies that

$$
\sum_{i=1}^{4} B_{i}=0
$$

i.e. any three of B 's uniquely determine the fourth and hence there cannot be a fifth one.

For our purpose entries in B_{i} 's should be ± 1. As usual, we choose B_{1} with all entries +1 . Then the other three B_{i} 's are uniquely determined (except for permutation of suffixes) as

$$
\boldsymbol{B}_{2}=\left(\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right), \quad \boldsymbol{B}_{3}=\left(\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right), \quad \boldsymbol{B}_{4}=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)
$$

Now the construction of A is obvious. One can also see that A-matrix obtained by permutating the suffixes $2,3,4$ of B-vectors, can also be obtained by permutating the rows of A. This is proved by noting that if there are r_{i} columns in A not distinct from $B_{i}(i=1,2,3,4)$, then the orthogonality between rows of A implies that,

$$
\begin{align*}
& \boldsymbol{r}_{1}-\boldsymbol{r}_{2}-\boldsymbol{r}_{3}+\boldsymbol{r}_{4}=0 \\
& \boldsymbol{r}_{1}-\boldsymbol{r}_{2}+\boldsymbol{r}_{3}-\boldsymbol{r}_{4}=0 \tag{16}
\end{align*}
$$

and

$$
r_{1}+r_{2}-r_{3}-r_{4}=0
$$

and (16) implies that

$$
r_{1}=r_{2}=r_{3}=r_{4}
$$

Thus the A-matrix obtained is essentially unique. Hence we can state the theorem,

Theorem 2. An H_{n-3} can be extended to an $H_{n, n}$ essentially uniquely.

5. Extension of $H_{n-4, n}$ to $H_{n, n}$

From (7) and (8), if any pair of columns of A are distinct then they are either mutually orthogonal or their inner product is ± 2.

Remark 1. If all distinct columns of A are orthogonal to one another then we could replace them by any set of orthogonal 4-vectors of weight 4 and hence in particular columns of an H_{4} and the extension is trivially true.

In view of the Remark 1, we hereafter only consider the case when there is a pair of non-orthogonal distinct columns.

Remark 2. If the two distinct columns A_{i} and A_{j} are not orthogonal to one another, then any columns A_{k} distinct from these two would be orthogonal to one of A_{i} and A_{i}, but not to both. This follows from the equation

$$
n-4+r_{i j}+r_{i k}+r_{j k}=0(\bmod 4)
$$

It follows from Remark 2 that we could divide the columns of A into two sets, such that any pair of distinct columns from the same set are mutually orthogonal, while from different sets will have an inner product ± 2.

Let there be b distinct columns B_{1}, \cdots, B_{b} in the first set and c distinct columns C_{1}, \cdots, C_{c} in the second set. Without any loss of generality we assume that $b \geqq c$ and

$$
B_{i}^{\prime} C_{1}=2 \quad i=1, \cdots, b
$$

and

$$
B_{1}^{\prime} C_{j}=2 \quad j=1, \cdots, c .
$$

To prove the extension we only have to show that B 's and C 's can be replaced by 4 -vectors having components ± 1 without affecting the inner product properties.

Let $D=\left(d_{i j}\right)$ be a $c \times b$ matrix with

$$
d_{i j}=C_{i}^{\prime} B_{j}
$$

We first prove the following lemma.
Lemma. There exists a Hadamard matrix H_{4} such that the first principal $c \times b$ submatrix of H_{4} is $\frac{1}{2} D$.

Proof. If $b=4, D$ is a Hadamard submatrix and from previous sections we note that we can extend $\frac{1}{2} D$ to an H_{4}.

If $b=3$, any 4 -vector say B_{4} having weight 4 and orthogonal to B_{1}, B_{2} and B_{3} should have inner product ± 2 with C 's. This follows from the fact that C 's should be in the space generated by B_{1}, B_{2}, B_{3} and B_{4} and hence could be written as

$$
C_{i}=\sum_{j=1}^{4} l_{i j} B_{j}
$$

where

$$
l_{i j}=\frac{B_{j}^{\prime} C_{i}}{B_{j}^{\prime} B_{j}}=\frac{1}{4} B_{j}^{\prime} C_{i}
$$

and

$$
\sum_{j} l_{i j}^{2}=1 .
$$

Hence by adding a column to D of inner products of C 's with B_{4}, we are in the same case as $b=4$.

If $b=2$, then c would have to be 2 and hence either the two rows of D are same as (11) or orthogonal to one another (remember that we have chosen B 's such that $d_{11}=d_{21}=1$).

If D is orthogonal then the matrix

$$
\frac{1}{2}\left(\begin{array}{rr}
D & D \\
D & -D
\end{array}\right)
$$

is an H_{4}.
If D has both rows the same, then we have

1	1	1	1
1	1	-1	-1
1	-1	1	-1
1	-1	-1	1

as an H_{4} with the required property. Hence the lemma.
Now we can show how to choose B 's and C 's having components ± 1 with the required inner product.

For an H_{4} defined as above, derive a matrix B by changing the sign of the last column. i.e. if u is the last column of H_{4}, then

$$
B=H_{2}-2 A
$$

where A is a 4×4 matrix with last column same as u and the rest of the elements 0 .

Note that the entries of B are ± 1 and is actually a Hadamard matrix.
Define $C=\frac{1}{2} B \cdot H_{4}^{\prime}$. The entries of C also are ± 1 as

$$
C=\frac{1}{2} B \cdot H_{4}^{\prime}=\frac{1}{2}\left(H_{4}-2 A\right) H_{4}^{\prime}=\frac{1}{2}\left(H_{4} H_{4}^{\prime}-2 A H_{4}^{\prime}\right)=\frac{1}{2}\left(4 I-2 u u^{\prime}\right) .
$$

Hence if we take the first b columns of B as B_{1}, \cdots, B_{b} and the first c columns of C as C_{1}, \cdots, C_{c} we have the required result as we note that

$$
B^{\prime} C=\frac{1}{2} B^{\prime} B H_{4}^{\prime}=2 H_{4}^{\prime}
$$

which has D^{\prime} as its principal $b \times c$ matrix.
Hence we have the theorem,
Theorem 3. We can extend an $H_{n-4, n}$ to an $H_{n, n}$.
One can easily note that if $b=4$, the extension is not essentially unique.

6. Concluding remarks

We have proved so far that we can always extend an $H_{n-k, n}$ to $H_{n, n}$ when $k \leqq 4$. The author feels that the result is true if $k \leqq n / 2$, but this approach would obviously be very tedious to be of use to establish the result.

Reference

S. S. Shrikhande and Bhagwan Das (1970). A note on embedding for Hadamard matrices, (Essays in Probability and Statistics, University of North Carolina Press, Chapel Hill).

Department of Mathematics,
University of Western Australia,
Nedlands, W.A. 6009.

