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Resolvent analysis identifies the most responsive forcings and most receptive states of a
dynamical system, in an input–output sense, based on its governing equations. Interest
in the method has continued to grow during the past decade due to its potential to
reveal structures in turbulent flows, to guide sensor/actuator placement and for flow
control applications. However, resolvent analysis requires access to high-fidelity numerical
solvers to produce the linearized dynamics operator. In this work, we develop a purely
data-driven algorithm to perform resolvent analysis to obtain the leading forcing and
response modes, without recourse to the governing equations, but instead based on
snapshots of the transient evolution of linearly stable flows. The formulation of our method
follows from two established facts: (i) dynamic mode decomposition can approximate
eigenvalues and eigenvectors of the underlying operator governing the evolution of a
system from measurement data, and (ii) a projection of the resolvent operator onto an
invariant subspace can be built from this learned eigendecomposition. We demonstrate the
method on numerical data of the linearized complex Ginzburg–Landau equation and of
three-dimensional transitional channel flow, and discuss data requirements. Presently, the
method is suitable for the analysis of laminar equilibria, and its application to turbulent
flows would require disambiguation between the linear and nonlinear dynamics driving
the flow. The ability to perform resolvent analysis in a completely equation-free and
adjoint-free manner will play a significant role in lowering the barrier of entry to resolvent
research and applications.
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1. Introduction

The resolvent is a linear operator that governs how harmonic forcing inputs are amplified
by the linear dynamics of a system and mapped onto harmonic response outputs. Resolvent
analysis refers to the inspection of this operator to find the most responsive inputs,
their gains and the most receptive outputs. The resulting low-rank approximation of
the forcing-response dynamics of the full system is extremely valuable for modelling,
controlling and understanding the physics of fluid flows. Interest in the approach has
continued to grow since McKeon & Sharma (2010) showed that, by interpreting the
nonlinear term in the Fourier-transformed Navier–Stokes equations as an exogenous
harmonic forcing, resolvent analysis can uncover elements of the structure in wall
turbulence.

Two decades before it was coined as such, resolvent analysis was first used in the
seminal work of Trefethen et al. (1993) to study the response of linearly stable flows to
deterministic external disturbances, such as those coming from wall roughness, acoustic
perturbations, body forces or free-stream turbulence. A key result was to identify the
non-normality of the linearized operator as the cause of transient energy amplification
of disturbances, even for cases deemed as stable by eigenvalue analysis. During the 1990s,
non-modal stability theory emerged to provide a more complete picture of the linear
perturbation dynamics for fluid flows using an initial-value problem formulation, as a
complement to the eigenproblem from classic hydrodynamic stability theory (Schmid
& Henningson 2001; Schmid 2007; Schmid & Brandt 2014). This formulation allowed
the study of the response of fluid flows to initial conditions (Gustavsson 1991; Butler
& Farrell 1992; Farrell & Ioannou 1993a; Reddy & Henningson 1993; Hwang & Cossu
2010b; Herrmann, Calderón-Muñoz & Soto 2018b), stochastic inputs (Farrell & Ioannou
1993b; Del Alamo & Jimenez 2006; Hwang & Cossu 2010a,b) and harmonic forcing
(Jovanović & Bamieh 2005; Hwang & Cossu 2010a,b; Herrmann et al. 2018b). Another
landmark is the framework adopted by Jovanović & Bamieh (2005) that focuses on the
response of certain outputs of interest to forcing of specific input components. This
input–output viewpoint (Jovanović 2021) allows the examination of localized disturbances
and provides mechanistic insight into multi-physics systems (Jeun, Nichols & Jovanović
2016; Herrmann et al. 2018a), making it particularly relevant for control applications.
Reduced-order models based on resolvent modes have been studied for turbulent channel
flows (Moarref et al. 2013, 2014; McKeon 2017; Abreu et al. 2020), laminar and turbulent
cavity flows (Gómez et al. 2016; Sun et al. 2020) and turbulent jets (Schmidt et al.
2018; Lesshafft et al. 2019). Other exciting recent developments include the design of an
airfoil separation control strategy based on resolvent analysis by Yeh & Taira (2019), the
harmonic resolvent formalism to capture cross-frequency interactions in periodic flows by
Padovan, Otto & Rowley (2020), and the application of a nonlinear input–output analysis
to boundary layer transition by Rigas, Sipp & Colonius (2021).

Even though there is a growing interest in the community to study flows with two and
three inhomogeneous directions, global resolvent analysis is still far from commonplace.
The main reasons for this are the requirement of a high-fidelity solver for the linearized
governing equations, and the computational cost and memory allocation associated with
handling a very large operator. The latter challenge has been addressed using matrix-free
iterative techniques (Bagheri et al. 2009a; Monokrousos et al. 2010; Loiseau et al. 2019;
Martini et al. 2020). However, this approach requires having access to a high-fidelity solver
for the adjoint equations, which adds to the first challenge. A promising alternative, first
used by Moarref et al. (2013) and further investigated by Ribeiro, Yeh & Taira (2020), is
the use of randomized numerical linear algebra techniques (Liberty et al. 2007; Halko,
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Martinsson & Tropp 2011). To simultaneously address both challenges, we propose a
purely data-driven approach to obtain the resolvent operator that does not rely on access
to the governing equations and can be combined with randomized methods to alleviate the
computational expense if needed.

The unprecedented availability of high-fidelity numerical simulations and experimental
measurements has led to incredible growth of research in data-driven modelling of
dynamical systems during the past decade (Schmid 2010; Williams, Kevrekidis &
Rowley 2015; Brunton, Proctor & Kutz 2016; Rudy et al. 2017; Loiseau & Brunton
2018; Blanchard & Sapsis 2019; Brunton & Kutz 2019; Duraisamy, Iaccarino & Xiao
2019; Raissi, Perdikaris & Karniadakis 2019; Qian et al. 2020; Raissi, Yazdani &
Karniadakis 2020; Li et al. 2021). In fluid dynamics, this has led to the development
and application of machine learning algorithms to extract dominant coherent structures
from flow data (Taira et al. 2017; Brenner, Eldredge & Freund 2019; Taira et al. 2019;
Brunton, Noack & Koumoutsakos 2020). Dynamic mode decomposition (DMD) is a
particularly relevant technique introduced by Schmid (2010) to learn spatio-temporal
patterns from time-resolved data that are each associated with a single frequency
and growth/decay rate (Kutz et al. 2016). During the last decade, considerable effort
has been devoted to interpret its application to nonlinear dynamical systems, based
on a deep connection to Koopman theory (Rowley et al. 2009; Mezić 2013), and
to develop numerous extensions to allow the use of non-sequential measurements
(Tu et al. 2014b), promote sparsity in the solution (Jovanović, Schmid & Nichols 2014),
work with streaming datasets (Hemati, Williams & Rowley 2014), improve its accuracy
with nonlinear observables (Williams et al. 2015), incorporate the effect of control
inputs (Proctor, Brunton & Kutz 2016), add robustness using nonlinear optimization
(Askham & Kutz 2018) and enable its application to massive datasets with randomized
linear algebra techniques (Erichson et al. 2019b). Recently, Towne, Schmidt & Colonius
(2018) showed that, for statistically stationary flow data, modes obtained from spectral
proper orthogonal decomposition (Lumley 1970) are equivalent to the output resolvent
modes if the nonlinear forcing exhibits no preferential direction. Nonetheless, it is the
input resolvent modes that provide insight into the most amplified flow structures, the
most sensitive actuator locations and the most responsive control inputs. Also recently,
Gómez & Blackburn (2017) developed a promising data-driven method to identify
sensitive spatial locations in unsteady flows and demonstrated its use for the design
of passive flow control strategies. However, this approach requires using time-resolved
snapshots of both, the state (velocity field) and of the nonlinear forcing (Reynolds stress
divergence).

In this work, we present an algorithm to obtain the leading input and output resolvent
modes, and the associated gains, of linearly stable flows directly from data by following
the procedure shown in figure 1. The method relies on DMD to approximate the
eigenvalues and eigenfunctions of the system based on snapshots from one or more
transient trajectories of the flow. We show that, using an appropriate inner product, the
resolvent of the matrix of DMD eigenvalues is the resolvent of the system projected
onto the span of the DMD eigenvectors, which are subsequently used to synthesize the
resolvent modes in physical coordinates. Our method is able to find the optimal forcing,
response and gain of a linear dynamical system in an equation-free manner, and without
access to data from adjoint simulations, therefore opening the possibility of resolvent
analysis purely based on experimental measurements. Further work is required to allow
data-driven resolvent analysis of turbulent flows, which calls for another new method that
is capable of distinguishing between linear and nonlinear dynamics driving the evolution
of spatio-temporal measurements of a system. To promote ease of reproducibility of our

918 A10-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

33
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.337


B. Herrmann and others

1. Collect state snapshots xk
( j)

Multiple initial conditionsTransient

evolution

t

y

ω

x

z

y

x

z

y

x

z

2. Assemble data matrices

3. Approximate eigendecomposition

4. Build projected resolvent

5. Synthesize modes

φ1

Gain distribution

σ1

Forcing modes

Wall-normal

velocity

+ – + –Streamwise

velocity

Q = F∗F physical inner product weight

Rank truncation

Sampling time

DMD(X, Y, �t, r)

F~ 
(–iωI – Λr)

–1 F~–1 = ΨF~ Σ ΦF~
∗

Λr, Vr, Wr

Eigenvalues

Direct and adjoint

eigenvectors

Eigen-coordinates

inner product weight
Vr

∗QVr = F~∗F~

Φ = VrF~–1ΦF~

Response modes

Ψ = VrF~–1ΨF~

Ψ1

X = F [x1
(1) . . . xm

(1) . . . x1
( p) . . . xm

( p)]

Y = F [x2
(1) . . . xm+1 . . . x2

( p) . . . xm+1]( p)(1)

Figure 1. Schematic of the data-driven resolvent analysis algorithm demonstrated on the transitional channel
flow example detailed in § 4.2. Data are collected from time recordings of the system of interest, where one
or more initial conditions are used to generate the transient dynamics. Measurements are stacked into data
matrices that are used to approximate an eigendecomposition of the underlying system via DMD. A projection
of the resolvent operator onto the span of the learned eigenvectors is analysed, and, finally, the produced modes
are lifted to physical coordinates.

results, all of the code developed for this work is available on github.com/ben-herrmann,
and all the data are available for sharing upon request to the corresponding author.

The remainder of the paper is organized as follows. A formulation of resolvent analysis is
presented in § 2, followed by a description of our proposed method in § 3. We demonstrate
the approach on two examples in § 4 and discuss its main limitations and possible
extensions in § 5. Our conclusions are offered in § 6.

2. Resolvent analysis

In this section, we present a brief and practical formulation of the conventional resolvent
and input–output analyses.
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2.1. General description
Let us consider a forced linear dynamical system

ẋ = A x + f , (2.1)

where the dot denotes time differentiation, x ∈ Cn is the state vector, A ∈ Cn×n is the
linear dynamics matrix and f ∈ Cn is an external driving force. Such a system may arise
from a semi-discretized partial differential equation, and in the case of fluid flows, the
incompressible Navier–Stokes equations can be written in this form by projecting the
velocity field onto a divergence-free basis to eliminate the pressure variable. The state
x may either represent the deviation from a steady state of a laminar flow, or fluctuations
about the temporal mean of a statistically stationary unsteady flow. In both cases the matrix
A is the linearization of the underlying nonlinear system about the corresponding base
flow, either the equilibrium or the mean. However, if we are dealing with an unsteady flow,
it is important to note that a Reynolds decomposition yields a nonlinear term that typically
cannot be neglected. In this scenario, the nonlinearity is lumped into f and considered as
an external forcing, with the caveat that the system may exhibit preferred input directions
due to internal feedback between linear amplification and nonlinear interactions (McKeon
& Sharma 2010; Beneddine et al. 2016).

In this work, we focus on the case where x is the deviation from a stable steady state
and f is an exogenous input with no preferential direction, representing disturbances from
the environment, model discrepancy, or an open-loop control actuation. For a harmonic
forcing f (t) = f̂ e−iωt + c.c., where c.c. means complex conjugate, ω ∈ R is the angular
driving frequency and t ∈ R the time variable, the long-term response is also harmonic,
x(t) = x̂ e−iωt + c.c., and is governed by the particular solution to (2.1) given by

x̂ = (−iωI − A)−1 f̂ , (2.2)

where I is the n × n identity matrix. Let H(ω) = (−iωI − A)−1 be the matrix
approximation of the resolvent operator, where the negative sign accompanying the ω-term
follows the convention used for travelling waves. We seek the largest input–output gain,
σ1(ω), optimized over all possible forcing vectors f̂ , or more formally

σ1(ω) = max
f̂ /= 0

‖x̂‖2
Q

‖ f̂ ‖2
Q

= max
f̂ /= 0

‖H(ω)f̂ ‖2
Q

‖ f̂ ‖2
Q

, (2.3)

where ‖x̂‖2
Q = x̂∗Qx̂, with ( )∗ denoting the Hermitian transpose, measures the size

of the state based on a physically meaningful metric given by the positive–definite
weighting matrix Q. This weighting accounts for integration quadratures, non-uniform
spatial discretizations and appropriate scaling of heterogeneous variables in multi-physics
systems (Herrmann et al. 2018a). The Cholesky decomposition is used to factorize Q =
F∗F and relate the physically relevant norm to the standard Euclidean 2-norm via ‖x̂‖2

Q =
‖F x̂‖2

2. With this scaling of the states, and using the definition of the vector-induced matrix
norm, the optimal gain optimization problem (2.3) is equivalent to

σ1(ω) = ‖FH(ω)F−1‖2
2. (2.4)

The solution to (2.4), along with a hierarchy of optimal and sub-optimal forcing and
response vectors, is given by the singular value decomposition (SVD) of the weighted

918 A10-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

33
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.337


B. Herrmann and others

resolvent

FH(ω)F−1 = Ψ F (ω)Σ(ω)Φ∗
F (ω), (2.5)

where Σ ∈ Rn is a diagonal matrix containing the gains σ1 ≥ σ2 ≥ · · · ≥ σn ≥
0, also known as singular values, and ΦF = F [φ1 φ2 · · ·φn] ∈ Cn×n and Ψ F =
F [ψ1 ψ2 · · ·ψn] ∈ Cn×n are unitary matrices whose columns, when left multiplied by
F−1, yield the input and output resolvent modes, φj and ψ j, respectively.

2.2. Input–output analysis
The more general input–output analysis (Jovanović & Bamieh 2005; Jovanović 2021)
follows from considering that only measurements of the state y = Cx are observed, and
that the forcing is constrained to be of the form f = Bu, where y ∈ Cny and u ∈ Cnu .
In this framework, the matrices B ∈ Cn×nu and C ∈ Cny×n restrict the input and output
subspaces, allowing the analysis of scenarios where only certain measurements are
available (e.g. on a specific region of the spatial domain) and where the possible types
of actuation are limited. In this case, the long-term response to harmonic forcing of the
measured variables is governed by

ŷ = C (−iωI − A)−1 Bû, (2.6)

where, instead of the resolvent, the transfer function CH(ω)B governs the amplification
of the allowed inputs to produce the observed outputs. The analysis of the latter
operator requires introducing norms based on inner products for both the input and
output spaces, ‖û‖2

Qu
= û∗Quû = û∗F∗

uF uû = ‖F uû‖2
2 and ‖ŷ‖2

Qy
= ŷ∗Qyŷ = ŷ∗F∗

yF yŷ =
‖F yŷ‖2

2, respectively. Input–output analysis then amounts to taking the SVD of the
weighted transfer function

F yCH(ω)BF−1
u = Ψ F y(ω)Σ(ω)Φ∗

F u
(ω), (2.7)

where Σ contains the input–output gains in its diagonal, and the input and output modes
are given by Φu = F−1

u ΦF u and Ψ y = F−1
y Ψ F y , respectively.

3. Data-driven resolvent analysis

In this section, we present a general description of the proposed method to perform
resolvent analysis based on data followed by comments on its extension to the input–output
framework.

3.1. General description
Data-driven resolvent analysis relies on DMD to approximate the eigenvalues and
eigenvectors of the underlying dynamical system. Among the many choices of DMD
variants, we use the exact DMD approach of Tu et al. (2014b). In the absence of forcing,
the evolution of measurements of the dynamical system of interest (2.1) is governed by

xk+1 = exp(AΔt)xk, (3.1)

where xk is the measurement at time tk = kΔt, and Δt is the sampling time. As in the
previous section, let the the weight matrix Q = F∗F define a physically meaningful norm
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to quantify the size of the state vector. The following transformation allows us to work in
the 2-norm framework,

Fxk+1 = F exp(AΔt)F−1Fxk = ΘFxk, (3.2)

where Θ = F exp(AΔt)F−1 evolves the weighted measurements Fxk one time step into
the future. Under this transformation, the adjoint of Θ based on the Q-norm is equivalent
to the Hermitian adjoint. Thus, using the weighted measurements, we can proceed using
readily available DMD codes. To begin, we collect snapshots of the state denoted by x(j)

k ,
where the subscript k ∈ {1, . . . , m + 1} denotes the sample number, and the superscript
j ∈ {1, . . . , p} denotes different trajectories started from p ≥ 1 initial conditions. The next
step is to assemble the weighted data matrices

X = F
[
x(1)

1 x(1)
2 · · · x(1)

m

∣∣∣ x(2)
1 x(2)

2 · · · x(2)
m

∣∣∣ · · · ∣∣∣ x( p)

1 x( p)

2 · · · x( p)
m

]
, (3.3a)

Y = F
[
x(1)

2 x(1)
3 · · · x(1)

m+1

∣∣∣ x(2)
2 x(2)

3 · · · x(2)
m+1

∣∣∣ · · · ∣∣∣ x( p)

2 x( p)

3 · · · x( p)

m+1

]
, (3.3b)

where X and Y are of size n × pm. Based on these data matrices, the DMD framework with
a rank-r truncated SVD yields the matrices Dr = diag(ρ1, ρ2, . . . , ρr) ∈ Cr×r containing
the approximated eigenvalues, and V r,F ∈ Cn×r and W r,F ∈ Cn×r, whose columns are the
approximated direct and adjoint eigenvectors of the underlying operator Θ . The reader
is referred to the work of Tu et al. (2014b) for the derivation of the adjoint DMD modes.
These eigenvalues and vectors are related to those corresponding to A via λj = log(ρj)/Δt,
V r = F−1V r,F and W r = F−1W r,F . Hence, we obtain Λr = diag(λ1, λ2, . . . , λr) ∈ Cr×r,
V r = [v1 v2 · · · vr] ∈ Cn×r, and W r = [w1 w2 · · · wr] ∈ Cn×r, that satisfy

AV = VΛ, and A+W = WΛ∗, (3.4a,b)

for an unknown underlying operator A, where A+ = Q−1A∗Q is its Q-norm adjoint. In
other words, we use DMD as a data-driven eigendecomposition, which is not surprising
considering that its connection to Arnoldi methods and Krylov subspaces has been clear
since the origins of the algorithm (Schmid 2010).

Next, we seek an approximation of the resolvent operator built on Λr, V r and W r. Our
approach leverages an operator-based dimensionality reduction technique first used in the
context of non-modal stability analysis by Reddy & Henningson (1993). We now return
our attention to the forced system (2.1), and consider an eigenvector expansion of x and f ,
as follows

x(t) = V ra(t), and f (t) = V rb(t), (3.5a,b)

where a = [a1 a2 · · · ar]T ∈ Cr, and b = [b1 b2 · · · br]T ∈ Cr are the vector of expansion
coefficients in eigenvector coordinates. In the work of Reddy & Henningson (1993), V r are
the eigenvectors associated with the first r eigenvalues with largest real part of a known
operator A, whereas here they are the DMD modes. Substitution of (3.5a,b) in (2.1), and
taking the inner product with W r at both sides yields

ȧ = Λra + b, (3.6)

where we have used the bi-orthogonality property between the sets of direct and adjoint
eigenvectors, and assumed that they have been normalized such that W ∗

r QV r = I ∈ Rr×r.
Because we are now working in different coordinates, if we want to retain the physical
meaning of the norm, we need to adjust our inner product accordingly. The new weighting
matrix is derived as ‖x‖2

Q = x∗Qx = a∗V∗
r QV ra = ‖F̃a‖2

2, where we have defined the
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new matrix F̃ ∈ Cr×r from the Cholesky factorization of V∗
r QV r = F̃∗F̃ . We are now

ready to proceed with the resolvent analysis for the system (3.6). As presented in the
previous section, the weighted resolvent modes and gains are obtained from the SVD of

F̃ (−iωI −Λr)
−1F̃−1 = Ψ F̃ (ω)Σ(ω)Φ∗

F̃ (ω). (3.7)

The final step is to synthesize the resolvent modes in physical coordinates, as follows

Φ = V rF̃−1
Φ F̃ , and Ψ = V rF̃−1

Ψ F̃ . (3.8a,b)

A schematic that summarizes the entire procedure is shown in figure 1. It is worth
pointing out that an analogous procedure can be carried out to obtain data-driven transient
growth modes, simply by replacing the resolvent operator with the matrix exponential
propagator evaluated at a finite time horizon. In addition, notice that the reduced-order
resolvent matrix in (3.7) is of size r × r, meaning that its full SVD requires O(r3)
operations instead of O(n3), and therefore is considerably cheaper to compute. This
projection onto the span of the eigenvectors has been successfully used in operator-based
non-modal stability analyses to achieve computational speedups of orders of magnitude
(Reddy & Henningson 1993; Herrmann et al. 2018b).

3.2. Data-driven input–output analysis
The extension of the above presented method to the input–output framework is quite
straightforward if the dataset is composed from full-state measurements. Just as in the
operator-based approach, this allows exploration of what the forcing-response dynamics
would be like if the inputs and outputs were restricted by the linear mappings y = Cx and
f = Bu. In a similar fashion to (2.7), data-driven input–output analysis follows from the
SVD of

F yCV r(−iωI −Λr)
−1W ∗QBF−1

u = Ψ F y(ω)Σ(ω)Φ∗
F u

(ω), (3.9)

where, again, Σ contains the input–output gains in its diagonal, and the input and output
modes are given by Φu = F−1

u ΦF u and Ψ y = F−1
y Ψ F y , respectively. In (3.9) we have once

more leveraged the projection onto the eigen-basis learned from DMD.
We stress the fact that the presented framework considers full-state measurement data,

which are generally required to approximate Λr, V r and W r. Learning the spectrum and
eigenvectors of a linear system from a dataset composed of partial state recordings of the
dynamics generated using limited actuation remains an open challenge. This is further
discussed in § 5 with our results at hand.

4. Examples and discussion

In this section, we demonstrate the application of data-driven resolvent analysis on two
example problems.

4.1. Complex Ginzburg–Landau equation
Our first example is the linearized complex Ginzburg–Landau equation, which is a typical
model for instabilities in spatially evolving flows. The system is governed by the linear
operator

A = −νDx + γ D2
x + μ(x), (4.1)

where x is the spatial coordinate, and Dx and D2
x are the first- and second-order spatial

differentiation matrices with homogeneous boundary conditions at x → ±∞. We choose
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Figure 2. Data-driven resolvent analysis of the linearized complex Ginzburg–Landau equation. (a) The first
four forcing and response modes at ω1 = 0.55, where solid and dashed lines show the real part and magnitude
of the modes. (b) The same as (a), but for a frequency ω2 = 2 where there is much less gain separation.
(c) The Q-norm error between the operator-based and the data-driven resolvent modes at ω1 as a function of
the number of trajectories p considered in the dataset. (d) Resolvent gain distribution for the first four modes as
a function of frequency. (e) The same as (c), but for ω2. In (a), (b,d), the thick grey lines show operator-based
quantities for a ground-truth comparison.

a quadratic spatial dependence for the parameter μ(x) = (μ0 − c2
μ) + (μ2/2)x2, that has

been used previously by several authors, e.g. Bagheri et al. (2009b). The other parameters
are set to μ0 = 0.23, μ2 = −0.01, ν = 2 + 0.4i and γ = 1 − i, giving rise to a linearly
stable dynamics. As in Bagheri et al. (2009b), we use spectral collocation based on
Gauss-weighted Hermite polynomials to build the differentiation matrices Dx and D2

x and
the integration quadrature Q. The spatial coordinate is discretized into n = 220 collocation
points, and the domain is truncated to x ∈ [−85, 85], which is sufficient to enforce the
far-field boundary conditions.

Data are generated from 30 simulations that are each started from different
initial conditions which we choose to be the first 30 Gauss-weighted Hermite
polynomials. We record m = 100 snapshots that are sampled every Δt = 0.5 time
units. Data-driven resolvent analysis is performed using snapshot matrices assembled
considering measurements from the first trajectory only. Subsequently, the method is
applied on snapshot matrices where measurements from the other simulations are
sequentially concatenated one by one, to investigate the convergence behaviour in regards
to the amount of data required. The Q-norm error between the first four operator-based
and data-driven resolvent modes as a function of the number of trajectories considered
is shown in figures 2(c) and 2(e) for two different input frequencies ω1 = 0.55 and
ω2 = 2, respectively. As more data are included, the abrupt drop in the error is expected,
since DMD is able to accurately approximate a larger number of eigenvectors, therefore
enriching the basis we use to represent the resolvent modes.
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The first four resolvent modes at ω1 and at ω2, as well as their gains as a function the
input frequency are shown in figures 2(a), 2(b) and 2(d). In this case, the data-driven
analysis provides an accurate approximation of the true leading and sub-optimal resolvent
modes, even at frequencies where there is a relatively small gain separation, albeit with
a larger mode error. We also note that the error in the approximation of the forcing
modes is consistently larger than that of the response modes by approximately an order
of magnitude. A reason for this may be that, in the case of non-normal systems, the spatial
support of the direct eigenvectors is similar to that of the response modes, but it is typically
separated from that of the forcing modes. For all results presented in this section, we used
r = 24 for the rank truncation in both DMD and the data-driven eigenbasis V r. Note that
caution is needed when retaining more vectors in V r to not include spurious eigenvectors,
which instead of enriching the basis can be detrimental to the performance of the method.

4.2. Transitional channel flow
Our second example is the three-dimensional flow in a plane channel of finite length and
depth, and with periodic streamwise and spanwise boundary conditions. The system is
governed by the incompressible Navier–Stokes equations, and we consider a Reynolds
number Re = 2000 based on the channel half-height and the centreline velocity, and a
domain size of 2π × 2 × 2π dimensionless length units along the x, y and z coordinates
that indicate the streamwise, wall-normal and spanwise directions, respectively. The state
vector in this case is composed of the three-dimensional flow field of disturbances about
the base parabolic velocity profile.

In the case of single-wavenumber perturbations, the dynamics is described by the
traditional Orr–Sommerfeld and Squire equations (Schmid & Henningson 2001). The
corresponding linear operator is built using Chebyshev spectral collocation to discretize
the wall-normal direction. The Orr–Sommerfeld/Squire operator is then used to compute
the operator-based spectrum and the leading resolvent gain of the three-dimensional flow,
as shown in figure 1. This is achieved looping over wavenumber combinations that are
compatible with the finite channel dimensions, i.e. integers for the current set-up. We
consider Ny = 101 collocation points, and wavenumbers in the range |α| ≤ 7 for the
streamwise component, and |β| ≤ 7 for the spanwise component. The operator-based
leading resolvent modes, shown in figure 3, are computed using ω = 0, α = 0, β = 2,
for which the maximum gain is observed to occur. The optimal forcing and response
correspond to the familiar streamwise vortices that excite streamwise streaks (Trefethen
et al. 1993).

To demonstrate our data-driven resolvent analysis, we need snapshots from the
transient evolution of the full three-dimensional flow field. We use the spectral code
Channelflow (Gibson, Halcrow & Cvitanović 2008; Gibson 2014) to perform direct
numerical simulations of the incompressible Navier–Stokes equations. The code uses
Chebyshev and Fourier expansions of the flow field in the wall-normal and horizontal
directions, and a third-order Adams–Bashforth backward differentiation scheme for the
time integration. We find that a grid with Ny = 65 and Nx = Nz = 32 points is sufficient
to discretize the domain for the cases studied, and a time step of 0.01 time units is selected,
keeping the Courant–Friedrichs–Lewy (CFL) number at 0.32. All cases described below
are simulated for 400 time units, and snapshots are saved every Δt = 0.5 time units. The
perturbation kinetic energy of all initial conditions simulated is set to 10−5 to ensure that
the effect of nonlinearity is negligible.

In order to demonstrate our data-driven method on a higher-dimensional system than
in the previous example, rather than Fourier transforming in the streamwise and spanwise
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Figure 3. Data-driven resolvent analysis of three-dimensional plane channel flow at Re = 2000 based on the
channel half-height and the centreline velocity. The method is demonstrated using three datasets obtained from
DNS initialized with: (i) small-wavenumber random disturbances, where 15 trajectories are considered, (ii) the
optimal forcing and (iii) localized actuation. Operator-based results are also shown for comparison, including
the resolvent modes obtained when the input and output are restricted to lie in the span of the snapshots from
dataset 3.

directions to perform a separate local analysis for each wavenumber tuple, we directly use
the three-dimensional flow field data to perform a global analysis. This provides a more
challenging test bed, requiring that we learn a much larger eigen-basis.

First, we consider initial disturbances of the form

u(x, y, z, 0) =
∑
i,j,k,l

(
cijklTk( y) exp(i(ix + jz)) + c.c.

)
el, (4.2)
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Figure 4. Convergence of data-driven resolvent modes of three-dimensional plane channel flow at Re = 2000
based on the channel half-height and the centreline velocity. (a) The first three forcing and response modes at
the dominant frequency ω = 0 computed with r = 400 DMD eigenvectors learned from a dataset composed of
p = 15 simulations initialized with random disturbances of the form shown in (4.2). (b) Data-driven resolvent
gains and Q-norm error between the operator-based and the data-driven resolvent modes as a function of p
with r = 400. (c) The same, but with p = 15 fixed, and as a function of r instead. In (b,c) the superscript true
denotes the operator-based modes obtained using direct computation of the resolvent.

where i, j ∈ {−3, . . . , 3}, Tk( y) are Chebyshev polynomials with k ∈ {1, . . . , 65}, l ∈
{1, . . . , 3}, and cijkl are randomly sampled complex numbers from inside the unit disk.
Once generated, the disturbances are corrected to satisfy the boundary and divergence-free
conditions, and scaled to have the desired kinetic energy. To investigate the convergence
of the method with the amount of data, we consider growing datasets aggregating the
snapshots from 1 up to 15 simulations initialized with these random small-wavenumber
disturbances. The first three forcing and response modes at ω = 0 are computed retaining
r = 400 DMD modes and p = 15 initial conditions, and are shown in figure 4(a). With
r = 400 fixed, as the number of trajectories in the dataset p increases, the Q-norm error
between data-driven and operator-based resolvent modes slowly decreases, as shown in
figure 4(b). To put in perspective the large amount of data used, recall that the state of
the system is comprised of the three components of the velocity field at every grid point,
yielding a vector of dimension ∼ 2 × 105, and for every trajectory simulated we record
800 snapshots, resulting in a total of 12 000 snapshots for the case with p = 15. Moreover,
considering p = 15 trajectories, the convergence of the leading and sub-optimal modes
with the number of DMD eigenvectors retained r is shown in figure 4(c). It is important to
notice that the respective resolvent gains also converge around the same values of p and r,
as shown in figures 4(b) and 4(c), therefore they could be used as an alternative to assess
convergence when the reference modes are not available.
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In addition to how much data are required for the data-driven resolvent discussed
above, we now investigate the more interesting question of which data. To do so, we
learn the leading resolvent modes, spectra and resolvent gain distributions from three
datasets obtained from qualitatively different initial perturbations. The first dataset is the
one described above for the convergence study, composed of p = 15 simulations initialized
with random disturbances of the form of (4.2). Data-driven resolvent analysis is applied
retaining r = 400 DMD eigenvectors, and the learned spectrum, gains and modes are
shown in figure 3. The data-driven approximation of the optimal gain is very accurate
in a narrow band around the optimal frequency ω = 0, and closely follows the trend of
the operator-based gain distribution over a broad range of frequencies. The quality of the
approximation degrades for larger frequencies where the magnitude of the optimal gain
decreases.

The second dataset considers a single simulation started using the optimal forcing mode
as the initial condition. In this scenario, the optimal gain and modes can be learned with
only r = 20 DMD eigenvectors, as shown in figure 3. It is interesting to look at the DMD
eigenvalues, which for this case form a small subset of those learned from the first dataset,
as shown in figure 3. In the previous case we learned the eigenvalues with largest real part,
now we discover ones from a very specific subset of the complex plane. This highlights
that, although the resolvent modes can be accurately represented by very few eigenvectors,
the amount of data required to learn those eigenvectors that form an efficient basis is
highly dependent on the dynamic trajectories sampled. Moreover, this opens up exciting
research directions, emphasizing the importance of finding principled disturbance designs
to effectively probe dynamical systems.

Lastly, the third dataset considers a localized disturbance as initial condition, which was
previously studied by Ilak & Rowley (2008). The exact form of the wall-normal velocity
component is

v(x, y, z, 0) =
(

1 − r2

c2
r

)
(cos(πy) + 1) exp (−r2/c2

r − y2/c2
y), (4.3)

where r2 = (x − π)2 + (z − π)2, and the parameters are set to cr = 0.7 and cy = 0.6. This
type of disturbance is close to what could be generated in experiments using a spanwise
and streamwise periodic array of axisymmetric jets injecting fluid perpendicular to the
wall. Data-driven resolvent analysis is performed using r = 200 DMD eigenvectors, and
the resulting optimal forcing and response modes do not resemble the operator-based ones,
as shown in figure 3. In this scenario, the true resolvent modes of the system do not lie on
the span of the learned DMD eigenvectors. More importantly, this occurs because some of
the eigenvectors required to represent the true resolvent modes are not in the span of the
data snapshots, and thus cannot be learned by DMD. In fact, we show in figure 3 that the
learned resolvent modes for this dataset coincide with the operator-based ones when the
input and output subspaces are constrained to lie on the span of the data snapshots.

5. Limitations and outlook

In this section we discuss the main limitations of the presented method and offer
our perspective on future developments and applications. Specifically, we comment on
computational cost and memory allocation, data requirements in terms of spatio-temporal
resolution, inherent difficulties due to non-normality, the extension to nonlinear flows and
the application of the method using partial measurements and limited actuation.
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5.1. Computational cost and memory allocation
As already mentioned in § 3, because of the projection onto the DMD learned eigen-basis,
our method builds a reduced-order resolvent operator of size r × r. The subsequent
analysis requires taking an SVD with an operation count of up to O(r3), instead of the
O(n3) operations taxed by the standard matrix-forming operator-based approach, where n
is the number of state variables. Although the potential time savings are promising, the
computational bottleneck of the presented data-driven method is the truncated SVD in the
DMD step, with an operation count of O(np2m2), where p is the number of trajectories
evolving from different initial conditions and m is the number of snapshots recorded along
each of them. This is typically greater than O(r3), but still lower than O(n3). For a very
high-dimensional system in which many transient trajectories need to be recorded, the
memory allocation of the data matrices can also become challenging. For instance, in our
channel flow example, dataset 1 considers 12 000 snapshots of state vectors with ∼ 2 × 105

entries. Fortunately, our approach benefits from all past and future innovations to improve
the accuracy, robustness, flexibility, and speed of DMD (Kutz et al. 2016). In particular,
the randomized DMD technique developed by Erichson et al. (2019b) may be useful to
reduce the computational cost, and the streaming DMD algorithm by Hemati et al. (2014)
can be used to avoid allocating the full data matrices.

5.2. Spatio-temporal resolution
A challenging aspect for the application of our method in an experimental scenario is
the requirement of measurements that are spatially and temporally resolved. As in the
operator-based approach, an accurate spatial discretization is required, since we need to
be able to resolve a large number of DMD modes that conform the basis in which the
computed resolvent modes are synthesized. Regarding temporal resolution, the sampling
frequency for DMD is lower bounded by the Nyquist criterion, meaning that the signal of
interest should be sampled with at least twice its inherent frequency.

It is worth mentioning that there are several extensions and modifications to DMD that
may help alleviate these requirements by exploiting low-rank structure and sparsity in the
data. If there are only a few dominant modes in the dataset, compressed sensing techniques
enable the use of DMD with data that are heavily sub-sampled in space (Brunton et al.
2015; Erichson, Brunton & Kutz 2019a). Moreover, non-uniform sampling in time can
be performed at an average rate that is below the Nyquist cutoff, provided that the time
dynamics of the dominant modes admits a sparse Fourier representation (Tu et al. 2014a;
Guéniat, Mathelin & Pastur 2015).

However, the sparsity and low-rank assumptions do not typically hold for transient
dynamics of non-normal systems, as discussed in the next section. Because of this, we
advise caution in the implementation of these DMD extensions to perform data-driven
resolvent analysis. In the setting of conventional DMD, a good practice to select the time
resolution is sampling the system at approximately three times the Nyquist cutoff (Schmid
2010). A final recommendation is to use a high-order integration quadrature to define the
inner-product weighting, which may help alleviate the spatial resolution requirement.

5.3. Non-normality
As highlighted in our results for both examples, an accurate approximation of the resolvent
modes requires a dataset composed of several transient trajectories of the system initialized
from a large enough set of different initial disturbances to ensure coverage of the dynamical
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features of the system. However, for highly non-normal systems, enlarging or enriching the
dataset may not be enough.

Perhaps the most critical potential pitfall of the application of our method is the intrinsic
difficulty to get a numerically robust spectrum in highly non-normal flows (Trefethen &
Embree 2005). These systems are characterized by eigenvectors that are close to being
parallel and are therefore extremely sensitive to perturbations of the dynamics operator
(Trefethen & Embree 2005; Sipp et al. 2010). At the same time, it is well established
that, for non-normal flows, individual global modes carry no physical meaning, and only
a linear combination of a great many of them yields physically relevant features, such
as the resolvent modes (Sipp et al. 2010). As a consequence, machine precision may not
be enough to accurately compute an eigen-basis that is sufficiently large to reconstruct
the dynamics, as shown by Garnaud et al. (2013) for the case of a two-dimensional jet.
Moreover, in unbounded flows that are advection dominated, the introduction of artificial
upstream or downstream boundaries to truncate the computational domain may give rise
to spurious global modes (Lesshafft 2018).

These difficulties translate to an even more challenging approximation of the
eigenvalues and eigenvectors of the system via DMD. Further, using an eigen-basis
containing spurious vectors to perform data-driven resolvent analysis poses the risk of
producing unreliable results. Due to the ubiquity of unbounded and highly non-normal
flows, we expect future research to focus on these aspects.

5.4. Nonlinearity
An inherent limitation of the present method is that it is only suitable for systems in a linear
regime, i.e. nonlinear systems close to an equilibrium point or actual linear systems. In the
case of disturbances close to an equilibrium point, a simple test to ensure that the system is
evolving linearly and that use of our method is appropriate, would be checking if DMD is
able to reconstruct the recorded dynamics. Further, the extension to nonlinear systems
would enable the analysis of statistically stationary turbulent flows provided that the
mean-flow linearized operator was inferred from data. However, this requires yet another
new method that is capable of distinguishing between the linear and nonlinear dynamics
governing the evolution of spatio-temporal measurements, and is therefore outside of the
scope of the present work.

5.5. Partial measurements and limited actuation
In an experimental setting, full-state measurements will rarely be available, and most likely
we will only have access to measurements in a bounded spatial region and perhaps of only
certain state variables. In such a scenario, we cannot expect our data-driven method to infer
input–output relations dominated by unobserved variables, but instead it would produce
forcing and response modes that are both restricted to the measurement subspace. More
formally, if the state is represented in terms of an eigen-basis, the partial measurements
can be expressed as y = Cx = CV ra. If this basis contains the minimal set of eigenvectors
needed to represent the resolvent modes with a prescribed level of accuracy, then we
require that all columns of V r are in the row space of C, otherwise those eigenvectors
cannot be learned from the measurements. Therefore, success of data-driven resolvent
analysis using partial measurements is possible, but highly case dependent.

Moreover, in an experiment the types of actuation to generate initial disturbances
will be limited by hardware. Nevertheless, as shown in our channel flow example with
localized forcing (dataset 3), even though the flow is forced by a specific input, we
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learn about the response to inputs living in a much larger subspace. Specifically, the
learned forcing modes are constrained to the subspace spanned by the whole sequence
of data snapshots, whereas the actual impulse corresponds to the first snapshot only.
More formally, if initial disturbances are generated by an actuator configuration limited to
producing inputs f = Bu, then the learned forcing and response modes are constrained
to live in the controllable subspace of the system, rather than just the column space
of B. This result is very encouraging, demonstrating that we are able to learn a highly
amplified, albeit sub-optimal, forcing mode and its corresponding response mode from an
experimentally plausible disturbance. Interestingly, this result implies that, with enough
measurements, system controllability is a sufficient, although not necessary, condition to
guarantee convergence of data-driven results to the operator-based ones from full resolvent
analysis.

The limitations described above make it challenging for this method to approximate
the forcing and response modes of the full resolvent operator in an experimental setting.
However, even with partial measurements and a limited set of initial disturbances, we
envisage experimental applications of data-driven resolvent analysis to learn high-gain
input–output pairs that, although will not correspond to the optimal forcing and response,
may provide valuable ‘and otherwise unavailable’ information to guide controller design
in linear non-normal systems.

6. Summary and conclusions

In this work, we have developed an algorithm to perform resolvent analysis based on
time-resolved data of dynamical systems. Unlike other modal decompositions, resolvent
modes provide insight into the most amplified states, the most sensitive actuator
locations and the most responsive control inputs. Our method relies on DMD to learn
approximate eigenvalues and eigenvectors of the underlying linear operator from snapshots
of the transient dynamics of the system. Subsequently, we are able to compute the
resolvent operator projected onto the learned eigenbasis. We perform data-driven resolvent
analysis on numerical data of the linearized complex Ginzburg–Landau equation and
of disturbances in a three-dimensional plane channel flow, demonstrating agreement
between the leading data-driven and operator-based resolvent modes and gain distribution.
A critical requirement is the design of initial disturbances to generate transients that are
dynamically rich. We show that, using disturbances from a localized actuator, our method
recovers the optimal forcing and response of the underlying system projected onto the span
of the measured snapshots. This stresses the need for strategies to effectively explore the
state space of a dynamical system.

The proposed algorithm performs resolvent analysis in an equation-free and adjoint-free
manner, therefore opening the possibility of only using experimental measurements.
Data-driven resolvent analysis will play a significant role in lowering the barrier of entry to
resolvent research and applications. Our results are encouraging for linearly stable flows;
however, more work is required before applying this technique to turbulent flows, where
the linear and nonlinear contributions to the transient dynamics of the system must be
disambiguated. All of the code developed for this work is available on github.com/ben-
herrmann, and all the data are available for sharing upon request to the corresponding
author.
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MEZIĆ, I. 2013 Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech.

45 (1), 357–378.
MOARREF, R., JOVANOVIĆ, M., TROPP, J., SHARMA, A. & MCKEON, B. 2014 A low-order decomposition

of turbulent channel flow via resolvent analysis and convex optimization. Phys. Fluids 26 (5), 051701.
MOARREF, R., SHARMA, A.S., TROPP, J.A. & MCKEON, B.J. 2013 Model-based scaling of the streamwise

energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275–316.

918 A10-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

33
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2008.10904
https://doi.org/10.1017/jfm.2021.337


Data-driven resolvent analysis

MONOKROUSOS, A., ÅKERVIK, E., BRANDT, L. & HENNINGSON, D.S. 2010 Global three-dimensional
optimal disturbances in the Blasius boundary-layer flow using time-steppers. J. Fluid Mech. 650, 181–214.

PADOVAN, A., OTTO, S.E. & ROWLEY, C.W. 2020 Analysis of amplification mechanisms and
cross-frequency interactions in nonlinear flows via the harmonic resolvent. J. Fluid Mech. 900, A14.

PROCTOR, J.L., BRUNTON, S.L. & KUTZ, J.N. 2016 Dynamic mode decomposition with control. SIAM
J. Appl. Dyn. Syst. 15 (1), 142–161.

QIAN, E., KRAMER, B., PEHERSTORFER, B. & WILLCOX, K. 2020 Lift and learn: physics-informed
machine learning for large-scale nonlinear dynamical systems. Physica D 406, 132401.

RAISSI, M., PERDIKARIS, P. & KARNIADAKIS, G.E. 2019 Physics-informed neural networks: a deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
J. Comput. Phys. 378, 686–707.

RAISSI, M., YAZDANI, A. & KARNIADAKIS, G.E. 2020 Hidden fluid mechanics: learning velocity and
pressure fields from flow visualizations. Science 367 (6481), 1026–1030.

REDDY, S.C. & HENNINGSON, D.S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252,
209–238.

RIBEIRO, J.H.M., YEH, C.-A. & TAIRA, K. 2020 Randomized resolvent analysis. Phys. Rev. Fluids 5 (3),
033902.

RIGAS, G., SIPP, D. & COLONIUS, T. 2021 Nonlinear input/output analysis: application to boundary layer
transition. J. Fluid Mech. 911, A15.
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