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ABSTR ACT. A model for the calculation of two-dimensional temperature fields 
is described and applied along the central flowline of Jakobshavns Isbnf!, West 
Greenland, and along a flowline through the adjacent ice sheet. The model calculates 
the velocity-depth distribution based on Glen's flow law and subject to the condition 
that the calculated velocities agree with the measured surface velocity and the 
estimated sliding velocity. The model allows for two-dimensional conduction and 
advection, for deformational energy dissipation and for the development of a basal 
layer of temperate ice. The results of modeling are compared to the englacial 
temperatures measured in boreholes reaching a depth of 1550 m which corresponds 
to 60% of the total depth at the cen ter line. While there is a good agreement of the 
measured and modeled minimum temperatures, the shape of the temperature-depth 
profiles is quite different. We attribute this difference in shape to a characteristic 
three-dimensional ice deformation taking place in the convergent sub-surface 
channel of the actual ice stream. The model does not account for this three­
dimensional effect. Adjustment of the modeled central temperature profile, so that its 
shape matches that of the measured profile, leads to an increase of thickness of the 
temperate basal layer by about 30%. Hence, the predicted temperate basal layer in 
the ice stream is likely to be about 300 m thick while the two-dimensional model 
suggests about 230 m. Such a thickening of the temperate basal layer by three­
dimensional ice deformation may be an important mechanism offast ice-stream flow. 

LIST OF SYMBOLS h Ice thickness, measured vertically in space 
Ice thickness, measured perpendicular to 

the bed a Ratio of velocity gradients; 
a = (8U/8X)/(8Ud /8X) 

A(19) Flow-law parameter, temperature-
dependent 

ci Mass balance 
A Mass balance, "measured" in Z direction of 

the bed-parallel coordinate system 
b Ratio of sliding velocity and mean deform-

ation velocity (in X direction) 
B(x) Vertical coordinate of bed 
c Specific heat capacity of ice; 

c = 2009 (J kg-I K- 1
) 

CTS (x, z) Transition surface between the cold and the 

Ex,Ey,Ez 
temperate zone 

Normal strain rates in the bed-parallel 
coordinate system 

f Shape factor accounting for friction along 
the ice-stream boundaries 

F Adjustment factor defined as 
F(x) = (uo - Ub)/Uod 

9 Gravity 

H*, h.l 

H(x) 

K 

L 

n 
p 
q 

QL 

R 

R* 

s 
t 
TGcc 
u(x, z) 

Vertical coordinate of ice surface, 
H=B+h 

Thermal conductivity of ice; 
K =2.2 (Wm- I K-1

) 

Latent heat of fusion of ice; 
L =3.35 x 105 Okg-I) 

Flow-law exponent 
Mean stress, p = a;;j3 
Heat produced per unit volume and unit 

time 
Heat produced per unit time and per area 

1/ cos n of transition surface CTS 
Radius of curvature of surface-contour lines 

in a horizon tal plane 
Radius of curvature of surface-contour lines 

in a bed-parallel plane 
Distance along flowline in temperate zone 
Time 
C lausius-Clapeyron temperature gradient 
Total ice velocity in x direction 
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Deformational part ofu calculated by integ­
ration of Equation (9) with respect to z 

Sliding velocity (component in X direction), 
estimated based on preliminary flow 
modeling 

Horizontal velocity, measured at the surface 
(input) 

Deformational part of surface velocity 
( calculated) 

Mean total velocity in X direction, 
U = Ud +Ub 

Mean deformational velocity in X direction, 
defined by Ud = k IX uddz 

Downstream velocity in the bed-parallel 
coordinate system 

Deformational part of U 
Value of Ud at surface 
Sliding part of U 
Ice-velocity vector 
Vector of velocity with which the CTS is 

moving, relative to a coordinate system 
fixed in space 

Vertical velocity 
Downstream gradient of distance between 

flowlines 
Horizontal coordinate, positive in down­

stream direction 
Bed-parallel coordinate in downstream 

direction 
Transverse horizontal coordinate 
Bed-parallel transverse coordinate 
Vertical coordinate, positive upward 
Vertical coordinate, normal to the bed, 

positive upward 
Dimensionless vertical coordinate 

z= (z- B)/h 
Dimensionless vertical coordinate, normal 

to bed; i' = Z/H· 
Surface slope 
Bed slope 
Second invariant of strain rate tensor, i 
Normal strain rates 
Shear strain rate 
Temperature 
Pressure-melting-point pressure 
Thermal diffusivity of ice; 

/'i. = 1.2 x 1O~ (m2 s-l
) 

Parameter to determine the degree of 
variation of vertical grid space 

Water content of temperate ice (volume of 
water/volume of ice) 

Velocity of ice, normal and relative to the 
transition surface CTS 

Flux of ice through an area 1/ n of the 
transition surface CTS 

Density of ice (917 kg m -3) 
Density of water (1000kgm- 3

) 

Normal stress 
Stress deviator 
Shear stress 
Effective stress = A( B) -(l/n) fll 1/ 2n 

Basal shear stress in horizontal direction 
Bed-parallel basal shear stress 

P(Z) Function describing shape of velocity 
profile, 4>(Z) = Ud/Ud 

n Slope of the transition surface CTS 

1. INTRODUCTION 

Many polar ice steams flow at high velocities. Jakob­
shavns Isbra: in West Greenland is the fastest ice stream 
known. The dynamics of this glacier have recently been 
investigated in detail (Echelmeyer and Harrison, 1990; 
Echelmeyer and others, 1991, 1992). Unlike the ice 
streams of the Siple Coast, Antarctica, Jakobshavns Isbra: 
flows through a deeply eroded bedrock trough, which 
extends about 80 km inland (Clarke and Echelmeyer, 
1989). A possible mechanism contributing to the fast flow 
of this, and similar ice streams, is related to the three­
dimensional ice deformation which takes place when the 
ice flows into and along this sub-surface channel. A hint 
on an unusual ice deformation comes from the unex­
pected, seemingly distorted shape of temperature-depth 
profiles measured in the ice stream (Fig. 1). The shape of 
these temperature profiles, measured at the center line 
and near the ice-stream margins, differs greatly. The 
temperature minimum of the central profile is located at a 
surprisingly shallow depth. In order to investigate how 
this temperature distribution may have developed, we 
model two-dimensional flow fields and temperature 
distributions . 

Our model accounts for the actual topographic, 
dynamic and climatic conditions along the central 
flowline of the J akobshavn Isbra: drainage basin. 
However, modeling does not account for the three­
dimensional ice flow which occurs in the sub-surface 
bedrock channel of the ice stream. Therefore, the 
modeled temperature profiles remain "undistorted" and 
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Fig. 1. Englacial temperatures measured in Jakobshavns 
IsbrtE, 50 km upstream of the calving front (from Iken and 
others, 1993). A. Near the ice margin; B. At the center 
line; total depth 2500 m. 
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are expected to differ in shape from the actual profiles . By 
comparing modeled and measured profiles, we obtain a 
rough estimate of the depth distribution of vertical 
straining taking place in the actual ice stream. We 
suspect that this type of vertical straining plays a role as a 
mechanism of fast flow of this ice stream. 

Another important objective of this study concerns the 
possible existence of a temperate basal layer. This is 
suggested by extrapolation of the measured central 
temperature profile B (Fig. I). For this reason, based on 
theoretical previous works (Hutter, 1982; Hutter and 
others, 1988), we have designed a model which allows for 
the formation of such a layer and calculates its thickness 
precisely. 

This paper is organized as follows. In sections 2 and 3 
two complementary numerical models are described: a 
model for the dynamics and a model for the temperature 
field. The first of these models calculates the internal 
distribution of velocities and deformation rates. It is based 
on Glen's flow law and on prescribed velocities along the 
surface and base of the ice which, in case of J akobshavns 
Isbne, are more or less known. The temperature field, 
influencing the rate factor in Glen's flow law, is obtained 
with the temperature model. This model solves the two­
dimensional heat-transfer equation for successive vertical 
columns using a finite-difference scheme (Hutter and 
others, 1986), subject to prescribed temperatures along 
the surface and a geothermal heat flux (or pressure­
melting point temperature) along the base. We first 
calculate a steady-state situation with present climatic 
and topographic conditions as input. Since neither the 
flow field nor the temperature field are known at the 
beginning, an iterative procedure is used by running 
both, the dynamic and the temperature models, alter­
nating until reaching convergence of the results . Sections 
4 and 5 deal with the input to the models. In section 6, 
various results of modeling are presented and in section 7 
the modeled temperature-depth profiles are compared to 
the measured ones, and conclusions are drawn on the 
amount of vertical stretching of the basal ice. 

2. DYNAMIC MODEL 

The purpose of this model is to provide a reasonable 
distribution of velocities and related quantities with depth 
based on measured surface velocities and estimated 
sliding velocities. It formulates two-dimensional flow in 
a sheet but allows for convergence of flow to ensure 
continuity. An iterative procedure is applied, alternating 
with the temperature model described in section 3, 
because the velocity field and temperature distribution 
are interdependent. The following assumptions are made: 

1. The shear stress, T xz , varies linearly with depth (x is 
the horizontal coordinate in the downstream direc­
tion, z is the vertical coordinate, positive upward; Fig. 
2a). 

2. Surface and bed slopes are small. Moreover, 
'Tbu cos(2,8) » a'Xb ll sin(2,8) , where ,8 is the bed slope 
and 'Tbu and a' Xb are the basal shear stress and the 
basal longitudin~l deviatoric stress, respectively, in a 
coordinate system oriented parallel to the bed. 
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Fig. 2. a. Sketch of a longitudinal section of ice sheet or 
glacier with horizontal coordinate axis x and vertical 
axis z . b. Transformed longitudinal section. 

3. The tra nsverse shear stress, Txy , referring to shearing 
between flow lines, is negligible. The strain-rate tensor, 
i, which is considered in the present model, is 

~ (€x 
E = . 

(In case of the central flowline of the stream, the 
friction along the boundaries is, however, accounted 
for by adjusting the basal shear stress with a shape 
factor .) 

4. The transverse strain which develops while the ice 
flows a unit distance downstream is ' independent of 
depth or, equivalently, the azimuth of flow does not 
vary with depth. 

These conditions characterize the type of flow we are 
modeling: assumptions I and 4 imply that a strain change 
over unit distance downstream is approximately indep­
endent of depth. In other words, any two surface-parallel 
layers of equal thickness, located at different depths, 
expand by the same amount while the ice is moving a unit 
distance downstream. This characterization applies to an 
ice sheet which has nearly parallel top and bottom 
surfaces and which does not slide. In contrast, "exten­
ding" or "compressive" flow, as analyzed by Nye (1957), 
refers to a situation where the sliding velocity is not zero 
and increases linearly with distance downstream. In that 
flow, the vertical strain rate, not the vertical strain 
developing over unit distance downstream, is indep­
endent of depth. In Appendix B we will discuss in which 
sense the type of flow described above is modified when 
sliding is allowed for. Here, we will return to the 
assumptions and subsequently develop the equations of 
the model. 

Assumption I is valid when the longitudinal stress gradient, 
8u'Jj8x, is approximately independent of depth. In this 
case, integration of the equilibrium equation 
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(1) 

with respect to z under assumption 3 results in the stated 
linear relation between Txz and z. Assumption 1 holds 
only approximately in Jakobshavns Isbrre; the deviations 
are examined in Appendix A. 

Assumption 2 allows a simple calculation of the basal shear 
stress: if slopes are small (tan/1 ~ (3), the bed-parallel 
basal shear stress, 7b

1l
, of a wedge-shaped glacier is (Nye, 

1952) 
(2) 

where a is the surface slope, h.l is the ice thickness 
measured normal to the bed, p is the density of ice and 9 is 
the gravity. Variations of surface and bed slope are 
admissible and accounted for by averaging h.la with a 
triangular weighting function over a distance equal to ten 
times the local Ice thickness (Kamb and Echelmeyer, 
1986), thus 

(3) 

This equation allows for the effect of a longitudinal stress 
gradient on the basal shear stress. 

The horizontal shear stress, Txz , is related to the bed­
parallel shear stress, Txzll , by 

Txz = Txz lI cos(2/1) + a'XII sin(2/J) . (4) 

At the base, Txz(B) is denoted 'Tb and, by assumption 2, 
reduces to 

7b ~ 'Tbll cos(2/J) . (5) 

In general, assumption 2 holds in ice sheets but also over 
most of the length of the central flowline of J akobshavns 
Isbrre. Exceptions are the confluence of tributaries, about 
80 km inland from the calving front and a zone near the 
line where the ice begins floating. There, both the bed 
slope /1 and the longitudinal stress gradient are 
significant. 

Assumption 3 applies to an ice sheet or at the center line of 
the ice stream. 

Assumption 4 is, in general, valid for flow in an ice sheet. It 
does not hold for an ice stream where the flow of the basal 
ice is influenced by the geometry of a sub-surface channel. 
Therefore, we expect that failure of this assumption will 
lead to certain differences between modeled and actual 
temperature distribution in the ice stream. 

2.1. Distribution of horizontal velocity with depth 

The procedures in this and the subsequent paragraph are 
similar to those developed by Reeh (1988). In contrast to 
that study, the present model does not exclude basal 
sliding. From assumption 1, the shear stress Txz can be 
written: 

( 
z- B) 

Txz(X, z) ~ 'Tb 1 - -h- (6) 

where B is the bed coordinate and h is the local Ice 
thickness measured vertically. 

In accordance with Equations (3) and (5), and 
making allowance for friction along the ice-stream 
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boundaries by means of a shape factor f, 7b can be 
written: 

7b ~ 'Tbll cos(2/J) ~ f pgh cos (/J) a cos (2/1) (7) 

or, since {3 is small, 

'Tb ~ fpgha. (8) 

The shear strain rate Exz is related to Txz by Glen's flow 
law: 

1 (aUd 8Wd). ( ) n-l "2 az + 8x = €xz = A {} Teff Txz • (9) 

In this equation 8wd/ax will be neglected. n is the flow­
law exponent and A( (}) is the temperature-dependent 
rate factor. U and ware the horizontal and vertical 
components of velocity, respectively. The index d refers to 
the deformational part of the velocity. Teff is the effective 
stress which is related to the second invariant of the 
strain-rate tensor, Err, by: 

(10) 

Neither the effective shear stress, Teff, nor the temper­
ature-dependent rate factor, A({}), are known at the 
beginning; these variables have to be determined 
iteratively. The iteration starts by calculating a rough 
distribution of the horizontal and vertical velocity 
components with depth . The horizontal velocity com­
ponent U is initially calculated as: 

The vertical velocity component w is initially: 

(Z-B) w(x,z) = (wo - Wb) -h- +Wb (12) 

where Wo is the measured vertical velocity at the surface 
and Wb is the vertical component of the estimated sliding 
velocity. With this very rough flow field, a first 
temperature field is calculated (according to section 3) . 
It is used to determine the rate factor as a function of 
temperature following Smith and Morland (1981, 
equation 21, case a). In the next iteration steps, the 
horizontal and vertical velocity components are calcul­
ated with the temperature-dependent rate factor as 
follows: the horizontal surface velocity due to deform­
ation, Uod, is calculated by integrating Equation (9) over 
the ice thickness h. The thus calculated surface velocity 
does in general not match the deformational part of the 
measured surface velocity, u o . Therefore, the rate factor 
A({}) is multiplied by an adjustment factor F: 

F(x)=Uo-Ub, 
Uod 

(13) 

Ub being the horizontal component of the sliding velocity. 
Equation (9) is integrated again using the new rate factor, 
equal to A({})F. 

2.2. Distribution of vertical velocity with depth 

Surface and bed topography of the ice sheet are variable; 
therefore, it is convenient to introduce a body-fitted 
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coordinate system by defining the following transform- or 
ation: 

z-B 
Z=--

h 
x=x. 

(14a) 

(14b) 

1 - Z therefore represents relative depth. A longitudinal 
section of the ice sheet (Fig. 2a) is transformed into a 
rectangle (Fig. 2b). 

We begin by expressing the diagonal components of 
the strain-rate tensor in terms of z: the horizontal 
component, Ex, of the strain-rate tensor Eis: 

where 

. ( ) _ ou _ OUb OUd 
Ex x, Z - ox - ox + ox 

OUd (OUd I ) ox (OUd I ) oz 
ox = ox z=const ox + oi x=const ox 

with 

(15) 

(16a) 

0- 0 0 0- 8B+-8h 
~ = 1 Ud I = Ud I and -..!.. = _ 8x Zax 
ox 'ox z=const ox z=const ox h' 

(16b) 

Inserting Equation (16b) into Equation (16a) and Equat­
ion (16a) into Equation (15), we get: 

. OUdl OUb €x(x,z) =~ _ +~ 
uX z=const uX 

+ (OU_d I ) (_ ¥X + z~) . 
oz x=const h 

(17) 

The last term in Equation (17) accounts for a change in 
velocity with relative depth which occurs together with an 
increment of the horizontal coordinate x. 

Assumption 2 implies that the transverse strain Ey, which 
develops while the ice flows from a position x to a position 
x + .1x, is independent of depth or, equivalently, that Ey 
varies as the velocity u: 

(18) 

where R is the radius of curvature of the elevation 
contour lines which are perpendicular to the flowlines. 
The term I/R is equivalent to oiiJ/ox(l/w), where iiJ is 
the distance separating two flowlines. From incompressi­
bility follows: 

. () . . . U Ez x, Z = -Ex - Ey = -Ex - R (19a) 

or, using Equation (17), 

. (OUd I OUb (OUd I )) Ez=-- +-+--
ox Z=const ox OZ x=const 

( 
8B+Z8h) U 8x ax 

. - h - R' (19b) 

The radius of curvature, R, can be determined either 
from a contour map or by integrating the continuity 
Equation (19a) with respect to z: 

l
z
=H ow l z

=H OU • l1 z
=H 

-dz= - -dz-- udz 
z=B OZ z=B ox R z=B 

(20a) 

l
z=H OU 1 

w(x, z = H) - w(x, z = B) = - l'ldz - Rq(x) 
z=B uX 

where q(x) is the volume flux of ice: 

q(x) = ilh . 

il is the mean of the total veloci ty: 

u= Ud +Ub 

and Ud is: 

Ud =~lH uddz. 

(20b) 

(21a) 

(21b) 

(21c) 

The first term on the righthand side of Equation (20b) is 
evaluated as: 

l
z
=H OU (OH OB) 0 l z

=H - -dz= Uo--Ub- -- udz. 
z=B ox ox ox ox z=B 

(22a) 

The first term on the lefthand side of Equation (20b) is: 

. oH oH 
w(x, z = H) = a + U o ox + Tt (22b) 

where a is the net mass balance at the surface (mass loss is 
here defined positive). The second term is: 

oB 
w(x,z= B) = U o ox . (22c) 

In Equation (22c) we have neglected basal melting. 
Inserting Equations (22a) through (22c) into Equation 
(20b) gives: 

(23) 

In the model runs, we set oH / ot = 0 because insufficient 
is known about the changes of the ice-sheet geometry in 
the pas t. Solving Equation (23 ) for 1/ R and inserting this 
expression into Equation (19b) we obtain: 

. ( ) __ ~ Ud ex + Zax J:l 0 (8B -8h) 
Ez x, z - ox + oi h 

__ b+ u h 8x 8x + __ . OU (~+~+~ 10h) 
ox U hox 

(24) 

Finally, the vertical velocity w is: 

w(x, z) = lZ Ez(X, z)dz + w(x, B) . (25) 

3. TEMPERATURE MODEL 

The model calculates the two-dimensional temperature 
distribution in a longitudinal section of an ice sheet or a 
glacier. It allows for both cold and temperate zones which 
are treated separately. The transition surface, which 
separates a cold from a temperate zone will be referred to 
as CTS. The model has been developed using the 
concepts formulated by Hutter (1982), Hutter and 
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others (1988) and Blatter and Hutter (1991). The 
following assumptions are made: 

1. Thermal diffusivity K, thermal conductivity K (heat 
capacity c and density of the ice p) are assumed to be 
constant throughout the ice sheet. 

2. We presume that when ice enters the temperate 
zone it has a negligible water content J1.. We neglect 
moisture diffusion and assume that the water content 
increases gradually by deformational energy dissipat­
ion as the ice flows further downstream: 

1 l s 
•.• 

1-"=1-"0+£ qds 
pw SCTS 

(26) 

where s is the positIOn along a flowline within the 
temperate zone and q is the internal heat generation 
per unit volume and unit time. It is given by: 

(27) 

where A('!9) is the temperature-dependent rate factor, 
n is the flow-law exponent and ~II the second invariant 
of the strain-rate tensor E. Presumably, the water 
content approaches a maximum value asymptotically. 
The additional water supply and water produced by 
sliding at the base is supposed to drain away. We 
assume I-"max = 1 %, which is a value within the range 
of experimental results quoted by Lliboutry and 
Duval (1985). 

The field equation, which describes the temperature 
distribution '!9(x, z) in the cold zone is (Carslaw and 
jaeger, 1959): 

f)'!9 -
pc f)t = K"iJ("iJ'!9) - pcV"iJ'!9 + q (28) 

where "iJ is the two-dimensional operator, K is the 
thermal conductivity, V is the velocity vector, p is the 
density of ice, c is the specific-heat capacity of ice, '!9 is the 
temperature and t is the time. 

In the temperate zone, the ice is everywhere at the 
pressure-melting-point temperature which is given by the 
Clausius-Clapeyron equation for air-saturated water. 
The small temperature gradient corresponding to the 
pressure gradient, TGcc , is constant within the temperate 

ice. 
If f)'!9 / f)t =I- 0, the transition surface CTS betwsen the 

cold and temperate zone moves with a velocity V given 

by: 

(29) 

Equation (29) is valid in the case where the CTS moves 

into the cold zone. 

3.1. Boundary conditions 

The boundary condition at the surface is a prescribed 
value of temperature '!9s . At the bottom, a temperature 
gradient f)'!9/f)z which corresponds to the geothermal heat 
flux is prescribed . This applies where the bottom 
temperature is below the pressure-melting point '!9m . 

Where the base is temperate, '!9m is prescribed and the 
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temperature gradient is a result of the calculation. In this 
case, a part (or eventually all) of the geothermal heat flux 
is consumed for melting ice from the base. The larger the 
proportion of geothermal heat flux which causes melt 
from the base, the smaller is the proportion conducted 
upward into the ice. The basal temperature gradient 
decreases accordingly and eventually approaches the 
Clausius-Clapeyron gradient TGcc . Under this cond­
ition, a temperate layer of finite thickness can exist at the 
base and no geothermal heat can be conducted upward. 
In this case, two conditions have to be specified for the 
CTS. These two conditions are important for determining 
the CTS location: 

The temperature at the CTS is, by definition, equal to 
the pressure-melting-point temperature '!9m . 

With regard to the cold zone, the temperature 
gradient at the CTS, f)'!9/f)z(CTS), depends on the 
direction of the ice flux. The following two situations 
can appear: 

1. The ice flux is directed from the cold zone into the 
temperate zone. In this case, the moisture content at 
the CTS is negligible (assumption 2). Thus, no phase 
change occurs and the temperature gradient at the 
CTS is equal to the Clausius-Clapeyron gradient: 

f)'!9 
f)z (CTS) = TGcc • (30) 

2. The ice flux is directed from the temperate zone into 
the cold zone. In this case, water, which (after a 
sufficient transit time of the ice in the temperate zone) 
is present at the CTS, is transported into the cold 
zone. The corresponding latent heat of freezing, 
released per unit time and area 1/cos!t is: 

(31) 

where L is the latent heat of freezing, Pw is the density 
of water, E is the upward flux of ice through an 
element of the CTS of size 1/cos!t and !t is the slope 
of the CTS. The ice velocity normal to the CTS and 
with respect to coordinates fixed in space is given by: 

U.L = -usin.!? + wcos!t . (32) 

In one of the model runs, we consider a time­
dependent situation where, starting from a steady 
state with ice-age conditions, a gradual warming is 
precribed during the following millennia. In that case, 
the CTS is not stationary but moves gradually upward 
and the total veloci ty of the ice relative to the CTS is: 

~.L = -(u - '11) sin.!? + (w - w) cos.!? (33) 

where '11 and ware the horizontal and vertical 
components, respectively, of the velocity V with 
which the CTS moves. Hence 

1 
S = ------n (( -u + '11) sin!t + (w - w) cos!t) 

cOSJ& 

= (-u+u)tan!t+w-w 

( 
• f)zCTS • 

= -u+u)---a;- + w - w. 

(34a) 

(34b) 

(34c) 

We assume, for simplicity, that the latent heat QL is 
released at the CTS rather than distributed over a 
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finite volume of cold ice. An equal quantity of heat has 
to be conducted away from the CTS into the cold 
zone, so that the temperature at the CTS remains 
unchanged (at the pressure-melting point '!9m). This is 
accomplished by adjusting the vertical temperature 
gradient, fM/{Jz(CTS), accordingly: 

_ {J'IJ (CTS) = QL -ITGccl. (35) 
{Jz K 

In this energy-balance formulation, we have neglected 
the small contribution of horizontal heat conduction 
into the cold zone. The three prescribed conditions 
(surface temperature, temperature and temperature 
gradient at the CTS) serve as boundary conditions for 
the solution of Equation (28) in the cold zone and 
determine the location of the CTS. 

The above formulations imply that in case (2) there is 
a kink in the temperature profile at the CTS. In reality, 
however, the change of the temperature gradient at the 
CTS is more gradual because there also exists a small 
amount of water in the cold ice. This amount decreases 
with decreasing temperature and distance from the CTS. 
The water is located in the veins at the three-grain 
intersections (Raymond and Harrison, 1975) (here the 
freezing-point depression is larger than that given by the 
Clausius-Clapeyron equation because of the difference in 
pressure in the ice and in the veins, which corresponds to 
the curvature of the ice/water interface). Disregarding 
this feature has, however, no effect on the simulations in 
the interior of the cold zone, away from the CTS. 

3.2. NUlUerical integration 

The model first solves the steady-state case of Equation 
(28) for given boundary conditions. Based on the study by 
Hutter and others (1988), a finite-difference scheme has 
been developed to solve Equation (28). The discretization 
of Equation (28) for the finite-difference formulation has 
been performed in the z-coordinate system described in 
section 2. It has the advantage that complicated 
interpolations at the boundaries can be avoided, but 
Equation (28) and the boundary conditions have to be 
transformed accordingly (Hindmarsh and Hutter, 1988). 
The vertical resolution of the discretization necessary to 
determine the velocity and the temperature field with the 
finite-difference method has to be high especially near the 
glacier bed because the vertical gradients of temperature 
and horizontal velocity generally increase toward the 
glacier bed. Numerical experiments have shown that a 
vertical resolution of h/200 (h is local glacier thickness) is 
necessary to obtain a stable solution of the CTS in our 
case. In order to reduce array size, we used a vertical 
continuously decreasing grid size in the z coordinate 
defined by the following function: 

(36) 

where j = 0 ... rn, m is the number of vertical grid 
intervals, h is the local glacier thickness, B is the glacier­
bed z coordinate and A is a parameter (A> 0) which 
determines the degree of varia tion of the vertical grid size. 
We use a grid interval of I km in the horizontal direction 

and h/IOO with A = 50 in the vertical direction. For 
more details see Fabri and others (1992). 

Horizontal diffusion is omitted in the first step. This 
simplification allows the integration of Equation (28) to 
be performed for each vertical column separately with 
consequent saving in array size. We used an implicit 
scheme with centered differences in the vertical direction 
and upstream differences in the horizontal direction. 
First, the temperature distribution in the vertical column 
located at the center of the ice cap is calculated, where the 
horizontal advection is zero and thus Equation (28) is 
one-dimensional. Next, the temperature distribution in 
the adjacent downstream vertical column is calculated by 
taking into account the results of the previous upstream 
column for the horizontal advection between the two 
vertical columns considered. This procedure is then 
repeated for successive columns until the glacier snout is 
reached. Afterwards, the solution is improved by taking 
into account the horizontal diffusion with an explicit 
finite-difference procedure, starting with the solution 
without horizontal diffusion. The differences of the 
results with and without horizontal diffusion are very 
small, less than 0.1 K standard deviation for the steady­
state solution for the examples discussed below, so that 
neglecting the horizontal diffusion for calculating tem­
perature fields in glaciers or ice sheets is a good 
approximation. 

If, during the calculations, the basal temperature is 
equal to the pressure-melting point and the basal 
temperature gradient is larger than the Clausius­
Clapeyron gradient, a basal layer of temperate ice is 
assumed to exist. In this case, the location of the CTS is 
determined iteratively: in a preliminary procedure, we 
determine the location of the CTS under the condition 
that the temperature gradient at the CTS is equal to the 
Clausius- Clapeyron gradient (i.e. we neglect the effect of 
the possible transport of water through the CTS). The 
iteration is started with a provisonal position of the CTS 
at z = B + (h/2) . The further step depends on the 
calculated value of temperature at the presumed location 
of the CTS; if this temperature is negative (smaller than 
'!9m ), the new location of the CTS is chosen closer to the 
bed; if it is positive, the location of the CTS is moved 
upward. An interval-splitting technique is employed, 
where the new location is assigned to the midpoint 
between the previous location and the bed or the surface, 
respectively. This procedure is continued until the desired 
precision 8z is obtained. The last-obtained z is the 
position of the CTS for the vertical column considered. 
For each column, 10-12 interval splitings were necessary 
to obtain a CTS position with a precision 8z = I m. This 
procedure is repeated for each column. With the position 
thus obtained for the CTS, the temperature gradient 
{J'!9 / {Jz at the CTS is then calculated for each column 
involved using Equations (34a) and (35), and the position 
is recalculated as explained before. This procedure is 
repeated as long as necessary to obtain a convergent mean 
position of the CTS within a prescribed precision 8z 
between the two iterations. In our cases, 3-4 iterations 
were necessary. 

Based on the steady-state solution of Equation (28), a 
computation forward in time can be performed by varying 
the boundary conditions, surface temperature and 
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geometry with time (in our case, we kept the geometry 
constant) . We used the Crank-Nicolson numerical scheme 
(Fletcher, 1988) for the discretization of the time 
derivative. The boundary condition at the bed and the 
method of determining the CTS position is the same as in 
the steady-state case described before. However, in the 
case of a cold base, the temperature gradient is introduced 
below the bed, as explained by Ritz (1987). 

4. INPUT OF FLOW AND TEMPERATURE 
MODELS 

The input to the flow and temperature models is shown in 
Figures 3 and 4, and in Figure 7a and b. 

Surface topography is plotted in accordance with maps 
derived from satellite altimetry (Bindschadler and others, 
1989) . The surface topography along the central flowline 
of the drainage basin and of the ice stream is shown in 
Figure 7a; that along a flowline about 10 km further south 
representing the "ice sheet" is shown in Figure 7b. In the 
coastal area, up to 150 km inland, more precise data from 
surveying and helicopter altimetry (Echelmeyer and 

o 100 200 

horizontal ve loci ty [ma-1] 

Ub (s trea ml -

300 400 

1000 

100 

10 

0 .1 
500 x [km) 

Fig. 3. Prescribed values of horizontal velocity versus 
distance x from the center of the ice sheet. The velocity 
values along the ice stream are shown with afullline, those 
along a flowline in the adjacent sheet with a broken line. 
uo, surface velocity; Ub, sliding velocity. 

o 
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Fig. 4. a. Mass balance versus distance x. The full line 
represents the mass balance along a flowline through 
Jakobshavns Isbn2; the dotted line gives a lower bound. 
The dashed line refers to an area north of Jakobshavns 
Isbrl2, included for comparison. b. Surface temperature 
versus distance x. 
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others, 1991) and from photogrammetric mapping 
(personal communication from T. Hughes) are avail­
able. These data are included in the graphs. 

In the upper part of the drainage basin, bed topography 
(Fig. 7a and b) is assumed to be equal to that determined 
along the EGIG traverse (Hofmann, 1974) . The EGIG 
traverse runs approximately along the northern boundary 
of the J akobshavns Isbrre drainage basin. Airborne radar 
profiles cross the central flowline of the drainage basin at 
certain points and provide information on the depth at 
these locations. The main ice stream forms at the 
confluence of two tributaries; this confluence is located 
80 km upstream from the terminus or, in the model, at 
x =470km (Fig. 7a). Seismic reflection studies (paper in 
preparation by T. Clarke and K. Echelmeyer) provide 
information on the depth of the main ice stream and 
locate the confluence. These seismic profiles also extend 
some distance into the ice sheet bordering the ice stream. 

Certain features on aerial photographs (unpublished 
information from H. Brecher) and on satellite images 
suggest that several tributaries exist between x = 440 km 
and x = 470 km. With respect to these tributaries, we 
assume in the model that a channel incised into bedrock 
exists along the central flow line, downstream of x = 
440 km (Fig. 7a). 

In the upper part of the drainage basin, horizontal 
components of surface velocities (Fig. 3) were inferred from 
those measured along the EGIG line (Hofmann, 1974). 
These velocities were corrected for differences in ice 
thickness using: 

with n = 3. U o is the surface velocity and h is the ice 
thickness. The index J refers to the central flowline of the 
Jakobshavns Isbfa'! drainage basin and E to the EGIG 
traverse. Correcting with n = 2 rather than 3 might be 
more appropriate in the light of considerations in section 
5; however, in any case, these corrections are small. Along 
the ice stream, the surface velocity is known in detail 
(paper in preparation by K. Echelmeyer). For the zone 
bordering the ice stream, velocity data from repeated 
photogrammetry (personal communication from T. 
Hughes) were made available to us. The sliding 
velocity, also shown in Figure 3, is estimated very 
roughly, based on preliminary three-dimensional flow 
modeling at x = 500 km. 

Mass balance is shown in Figure 4. In the upper part of 
the drainage basin, balance was taken to be equal to that 
measured at corresponding latitudes along the EGIG 
traverse. Near the coast, however, local variations in 
topography modify the mass balance significantly. 
According to measurements by Bender (1984) and 
Echelmeyer and others (1992), the mass balance in the 
area of the ice stream is distinctly smaller (less 
precipitation) than at the EGIG line. 

Near-surface ice temperatures (Fig. 4) were prescribed at 
locations along the upper part of the J akobshavns Isbfa'! 
flowline using the results assembled by Ohmura (1987). 
Along the ice stream, englacial temperatures to depths of 
12 m have been measured by Echelmeyer and others 
(1992). 
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Table 1. Assumed tolerances of input 

Input parameter Assumed tolerances of model input 

Upper drainage basin Ice stream 

Mass balance ±O.lma-1 ±O.l ma-I 
Horizontal surface ±IO% ±6% 

velocity 
Sliding velocity ±50% 
Total ice depth ±5% ±I% 
Shape factor ±20% 
Geothermal heat flow ±20% ±20% 
Surface temperature ±Ioe ±ose 

A geothermal heat flow, corresponding to a basal 
gradient of 0.02°e m-I has been assumed. 

The shape factor accounting for the friction along the 
ice-stream boundaries has been assumed to decrease from 
f = 0.8 at x = 470km to f = 0.55 at x = 485 km. For 
larger x, the shape factor increases again up to f = 0.8 
and remains at that level down to the terminus. 

Some of the input data are not well-known; estimated 
tolerances are given in Table I. To a large extent, the 
input for the "ice-stream" model is based on measure­
ments. In contrast, the input for the model of the adjacent 
"sheet" is mainly estimated. The latter model is not 
intended to simulate precisely the actual conditions but to 
demonstrate specific differences between the temperature 
distributions in the ice stream and in the ice sheet beside 
it. The effect of changes in input on the calculated 
temperature distribution has been investigated in a 
sensitivity study (Fabri and others, 1992). Results of 
that study are included in section 6 and Table 2. 

5. FLOW-LAW PARAMETERS 

Initially, the model has been run with flow-law parameters 
n = 3 and A(O°C) = 0.17 bar-3 a-I = 5.39 x 10-24 Pa-3 S-I. 
The temperature-dependence of A was formulated as 
suggested by Smith and Morland (19 81 ). If the 
deformation properties of the ice are described ade­
quately by this choice of the numerical values of n and A 
anywhere along the flowline, the adjustment factor F 
(defined by F = (uo - Ub)/Uod, Equation (13)) would be 
independent of x. Inspection of F(x) shows, however, a 
marked decrease of F with distance downstream (Fig. 5). 
The model has therefore been run with two smaller values 
of the flow-law exponent n, namely n = 2.5 and n = 2. 
(Corresponding values of A(O°C) are A 2.5 (O°C) = 1.7 x 

F-F 7:.b F,-________________________________ --, 

n= 3.17 
[bar] 

1.2 

3.0 

2.0 

1.0 

-L--.-----r-,---r--,----,--,----,--,--.----;- 0.0 
500 X[km] 100 200 300 400 

Fig. 5. Basal shear stress, 'Tb, and normali<:,ed variations 
of adjustment factor F(x) versus distance x. The basal 
shear stress, calculated from Equation (6), is shown with 
a dotted line. Normali<:,ed variations of adjustment factors 
referring to different values of the flow-law exponent n: 
full line: n = 3.17, P = 4.96; dashed-dotted line: 
n = 2.5, P = 3.67; broken line: n = 2, P = 3.07. P 
is the mean value of the adjustment factor, taken along x. 

Table 2. Changes of modeled englacial temperatures zn the ice stream at x = 500 km caused by changes of input 
parameters. Assembledfrom Fabri and others (1992) 

Input parameter Change Changes of modeled temperature profile 

Change of thickness Change of minimum Change of depth of 
of temperate layer in temperature temperature minimum in 
% of total ice depth % of total ice depth 

Mass balance +0.1 ma- I -0.5% +ose +2.5% 
(more ace.) 

Horizontal surface +20% Insignificant -a.9°e Insignificant 
velocity 

Sliding velocity +50% -1% I nsignifican t +2% 
Total ice depth -10% Insignificant +0.8°e - 1% 
Shape factor -20% -0.5% I nsignifican t Insignificant 
Geothermal heat flow -20% Insignificant I nsignifican t <+1.0% 
Surface temperature -10°C -3.0% -9.7°e -1.5% 
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1O-~1 p~-2.5S-1 and A2(O°C) = 5.39 x 1O-19 Pa-2 s-\ res­
pectively.) 

Variations of F(x) expressed as (F(x) - P)/P are 
shown in Figure 5. P is the mean value of F(x), taken 
along the flowline between x = 10 km and x = 530 km. 
For n = 2, these variations are relatively small. We have 
therefore adopted n = 2 for the present model. 

A value of n, smaller than 3, has been suggested for 
polar ice by Doake and W olff (1985) . Our result seems to 
be consistent with their suggestion. On the other hand, 
stress deviator and strain history of the ice vary 
considerably with depth and also with distance along 
the flowline. These different conditions cause changes of 
fabrics and of deformation properties of the ice, so that 

3.0 

2.0 

1.0 

0.0 

-1 .0 

o 100 200 

one cannot expect a single value of n to apply for the 
whole ice sheet (Alley, 1992). Thus, a variation of the 
deformation properties of the ice with distance x 
downstream may well occur. If n is kept constant, it 
would be manifest in a variation of F with x. 

The choice of the (overall) value of n has no 
significant effect on the calculated temperature field. 

6. RESULTS OF TEMPERATURE MODELING 

Figures 6-9 refer to a steady state. Figure 6 shows the 
flowlines in a longitudinal section along the center line of 
the ice stream. Figure 7a and b depicts the calculated 

300 400 500 x [km] 

Fig. 6. Longitudinal section along the center line of an ice stream withflowlines. Numbers shown on theflowlines indicate 
total travel time of an "ice particle" along a flowline. Heavy triangles mark the distances traveled during 1000 years. 
Shaded zones indicate temperate ice. 
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Fig. 7. Calculated isotherms. a. Ice streamj b. Ice sheet near ice stream. Shaded zones indicate temperate ice. 
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Fig. 8. Calculated temperature-depth profiles at various 
locations x along the flowline . a. Ice stream; b. Ice sheet. 

0.2 

0.4 

temperature distribution in the same longitudinal section 
and in a section along a flow line through the ice sheet, 
south of the ice stream. The two sections are equal 
upstream of x = 430 km. The base becomes temperate at 
x = 225 km and the temperate basal layer exists down- ' 
stream of x = 330 km. Where the bedrock channel of the 
ice stream forms, the temperate layer thickens consider­
ably. Figure 8a and b shows plots of temperature versus 
relative depth, (h - (z - B))/h, for the ice stream and the 
ice sheet, respectively. At x = 500 km, the temper-ature 
profiles are distinctly different in the two models. The 
thickness of the temperate layer in the ice stream amounts 
to 9% of the total thickness, 2500 m, and in the sheet to 
only 3% of 1000 m. On the other hand, the minimum 
temperature is higher (warmer) in the ice sheet by 1.3°C. 
The relative depth of the temperature minimum is 0.47, 

relative depth 
0.0 

b 
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Fig. 9. Calculated temperature-depth profiles at x = 
500 km for three different input values of mass balance. 
a. Ice stream; b. Ice sheet. The different mass-balance 
distributions are shown in Figure 4. 

whereas in the ice stream it is 0.55. There are obvious 
reasons for these differences: 

The deformational energy dissipation which is equiv­
alent to the loss of potential energy (or drop in 
altitude) is much larger in the ice stream than in the 
ice sheet. The corresponding "heat sources" are 
concentrated near the base where they cause the 
formation of the temperate layer. 

The veloci ty of the ice is considerably larger in the ice 
stream than in the ice sheet . Hence, there is less time 
for warming up by conductive heating in the ice 
stream and the cold core of the ice remains cold er. 

The equilibrium line is located near x = 485 km. In 
the ablation zone, ice flow becomes more upward-
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directed. The corresponding upward displacement of 
the ice which occurs between x = 4S5 km and 
x = 500 km is larger in the ice sheet because of the 
longer transit time; this explains the smaller relative 
depth of the temperature minimum at x = 500 km in 
the ice sheet compared to the ice stream. The 
difference in response to changes of mass balance in 
the ice stream and ice sheet is further illustrated by 
Figure 9a and b. 

The curvature of the temperature profiles just below 
the location of the temperature minimum is larger 
than above it. The corresponding difference in 
conductive heating tends to "shift" the temperature 
minimum upward. In the ice sheet, this process is 
more effective because of the longer transit time. 

The relative depth of the temperature minimum is 
further influenced by the effect of basal sliding on the 
distribution of vertical strain rate, as discussed in 
Appendix B. In the zone where sliding is still small 
compared to deformational ice flow but where the 

downstream gradient of the sliding velocity is large, 
the basal ice tends to expand less in the vertical 
direction than the ice near the surface. Under this 
condition, the relative depth of the temperature 
minimum increases. This effect may have contributed 
to the relatively large depth of the temperature 
minimum in the ice stream downstream of x = 
360 km (Figure Sa compared to Figure Sb). Figure 
9a and b illustrates the strong influence of the changes 
in mass balance, indicated in Figure 4. The broken 
line refers to an increase in mass balance (more 
precipitation), which becomes significant downstream 
of x = 4S0 km. Between x = 4S0 km and x = 500 km, 
the transit time in the ice sheet amounts to about 
200 years compared to 25 years in the ice stream. 
Therefore (and because of the smaller total ice depth of 
the ice sheet in this reach), this change in mass balance 
is much more effective in the ice sheet (Fig. 9b). 

Uncertainties in other input parameters are less 
influential; this was shown in a sensitivity study (Fabri 
and others, 1992). Some results of that study are 
summarized in Table 2. In general, the changes of input 
parameters indicated in this table refer to the full length 
of the flowline (i.e. the changes are applied at all x). 
Exceptions are, of course, the sliding velocity which 
occurs only near the ice-sheet margin, and the shape 
factor which accounts for friction along the ice-stream 
boundaries. In contrast to the assumption in the 
sensitivity study, the actual deviations from the pre­
scribed input vary along the flowline and therefore have a 
smaller effect on the calculated temperature field than 
that indicated in Table 2. We believe that the actual 
deviations vary within the tolerances shown in Table 1. 

In the calculations described so far, all input 
conditions have been kept constant in time. Actually, 
however, considerable variations of surface temperature 
have occurred in the past. In order to estimate the effect 
of such temperature variations in time, the following 
scenario has been modeled. Starting from a steady state, 
resembling "ice-age conditions" (-100 e cold er surface 
temperatures) at 10000 years BP, the surface temperature 
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Fig. 10. Temperature-depth profiles at various distances x 
along the central flowline of the ice stream for a time­
dependent input of surface temperature, starting from ice­
age conditions. 

o 

has been increased gradually by soe during 200 years and 
then by 2°e during SOO years until the present. All other 
input parameters are the same as in the steady-state 
model. The resulting englacial temperature distribution is 
depicted in Figure 10. The temperature profile at 
x = 500 km is not very different from that obtained with 
constant surface temperatures (Fig. Sa): the temperate 
basal layer is slightly thinner (by 35 m), the minimum 
temperature is 2°e colder and is located at a somewhat 
greater depth (0.61 of total depth). Moreover, the 
assumed change of temperature with time is probably 
too gradual, so that the calculated temperature distrib­
ution represents a lower bound in this case. Thw>, 
assuming a steady state rather than time-dependent 
surface temperatures does not introduce large errors into 
the results at x = 500 km. 

Another test has been made concerning the smaller 
viscosity of "Wisconsin" ice. Prescribing for the viscosity 
of ice, older than 10 000 years (located along the base), an 
enhancement factor of 3 (e.g. Dahl-Jensen, 19S5) had no 
noticeable effect on the temperature distribution at 
x = 500 km. This was to be expected, because the effect 
of this change on the velocity-depth distribution is similar 
to that of an increase in the flow-law exponent. (The 
latter change also had no significant effect on the 
temperature distribution.) 

7. COMPARISON WITH MEASURED TEMPER­
ATURE PROFILES 

Details of measurements of englacial temperatures have 
been described by Iken and others (1993). In Figure 11, 
measured and modeled temperature profiles are shown 
together. We start with comparing the profiles located at 
the center line of the ice stream (Fig. 11 a). The general 
agreement is good, except for the following differences: 

The measured minimum temperature is o.soe warmer 
than the modeled one. 
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Fig. 11. Measured and modeled temperature profiles at x = 500 km. a. Temperature profiles at the center line of the ice 
stream (heavy line: measured profile; thin line: mode led profile). The dashed line is an extrapolation of the measured 
temperature profile, based on results of modeling (section 7). b. Temperature profile measured near the margin, at site A 
(heavy line) and modeled profile, referring to a location in the adjacent ice sheet (thin line) . The locations of boreholes A 
and B in a cross-section of the ice stream, where ice temperatures were measured, are indicated in the inserted box. 

The measured minimum temperature is located at a 
relative depth of 0.48, whereas the modeled minimum 
is located at 0.55 of the total ice depth. 

The first of these differences is within the range 
corresponding to uncertainties of the model input. (For 
instance, a reduction of prescribed surface velocities by 
8% and an increase of surface temperature by 0.5°C 
would produce agreement of the modeled minimum 
temperature with the measured one.) 

Possible reasons for the large difference in relative 
depth of the temperature minima in the model and reality 
are: 

I. Inaccurate input 
The calculated temperature profiles are quite sensitive 
to changes in prescribed mass balance (see Figs 4 and 
9; Table 2). However, it is unlikely that the actual 
mass balance deviates from that prescribed by more 
than 0.1 ma- I, except perhaps locally. Other input 
parameters are less influential than mass balance. 
Therefore, we do not expect that the differences 
between measured and modeled temperature profiles 
can be attributed to inaccurate input. More likely it is 
an effect of three-dimensional flow. 

2. Effects of three-dimensional ]low at the confluence of 
tributaries 
First, one may think of a non-uniform distribution of 
heat sources created by the convergence of flow at the 
confluence. However, the overall amount of heat 
production by convergent flow is small: a uniform 
reduction in width of the ice stream by 50%, together 
with a longitudinal extension, causes an overall 
warming by about 0.1 QC due to strain heating. 

Variations of the respective straining with depth in the 
actual ice stream may cause certain deviations from 
the depth distribution of these heat sources. However, 

since the overall heating on this account is quite small, 
the deviations from uniform heating are likely to be 
insufficient to produce a substantial difference in the 
depth of the modeled and measured minima. 

The second possibility is that the three-dimensional 
flow may produce an enhanced vertical stretching of 
the basal ice near the center line. This was proposed 
and discussed in Part I (Iken and others, 1993). As a 
consequence, the temperature minimum would be 
displaced upward, leading to a shape of the central 
temperature profile which is similar to that observed. 
Vice versa, the difference in relative depth of the 
measured and modeled temperature minima may be 
taken as indirect evidence of the outlined kinematic 
effect. 

Accepting the existence of such a stretching mechan­
ism at the center line of the ice stream, one may estimate, 
very roughly, the corresponding vertical stretching of the 
basal layer of temperate ice. This will be done in the 
following: 

On the assumption that the extra vertical strain increases 
linearly from zero at a relative depth of 0.5 to max(..1Ez) 
at the bed, the thickness of the lower half of the ice 
increases by a factor (I + max(..1Ez)/2) and the upper 
half decreases by the corresponding amount, since the 
total ice depth is approximately independent of x in this 
part of the ice stream. Thereby, the temperature 
minimum is shifted upward from a relative depth of 
0.55 (as calculated in the model ) to a relative depth dm 

given by 

(
maX(L1Ez)) 

dm ~ 0.55 - (1 - 0.55) 2 . (37) 

According to the measurements, dm = 0.48 . Inserting this 
value into Equation (37) yields: 

max(L1Ez) ~ 0.311 . 
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Under these conditions, the temperate basal layer 
expands from 228 to 293 m, that is, to 12% of the total 
ice depth . The extrapolation of the central temperature 
profile (dotted line in Figure 11) is based on this result. (If 
the outlined analysis is carried out with the results of 
time-dependent modeling (Fig. 10) rather than with 
numerical values referring to a steady input, a similar 
result is obtained: in this case, the thickness of the 
temperate layer increases to 287 m, nearly the same value 
as 293 m, given above for the steady conditions.) 

The minimum temperature, measured near the 
margin at site A, is essentially equal to that at the center 
line, which indicates that the ice arriving at the 
considered depth at this site has traveled for most of its 
path in the ice stream at high velocity. The high near­
surface temperatures have been attributed to meltwater 
percolation into the numerous crevasses along the ice­
stream boundaries and to enhanced strain heating (Part 
I). The shape of the observed temperature profile differs 
from both the ice-sheet and the ice-stream models. 
Interesting features are the large depth of the temper­
ature minimum and the small thickness of the temperate 
basal layer. These features are probably effects of the 
three-dimensional flow. The thin temperate layer may in 
part also be an effect of remnants of ice-age conditions, 
which tend to reduce the thickness of the temperate layer 
by about 30 m as has been shown above. 

8. CONCLUSIONS 

Modeling of ice temperatures in Jakobshavns Isbrre and 
in the adjacent ice sheet has confirmed that a basal layer 
of temperate ice exists in a zone extending from near the 
ice-sheet margin to about 200 km inland. This temperate 
layer owes its existence to the large deformational heat 
production near the base. 

If a steady state at the present climatic conditions is 
assumed, this layer has a thickness of about 230 m in the 
ice stream and of about 30 m in the adjacent ice sheet, at a 
distance of 50 km from the ice-sheet margin. A time­
dependent model, which accounts for the lower surface 
temperatures 10 000 years ago, still predicts a temperate 
basal layer for the present, but of reduced thickness. 

The modeled temperatures, in general, agree quite 
well with the measured englacial temperatures; however, 
the shape of the measured temperature-depth profiles 
appears to be distorted compared to the modeled profiles. 
We attribute this distortion to a characteristic ice 
deformation taking place in the ice stream, due to a 
convergent bedrock channel at depth (as discussed in Part 
I). The present study seems to support this hypothesis and 
suggests that this type of ice deformation is responsible for 
an increase in thickness of the temperate basal layer at the 
center line of the ice stream by about 30% (or by 65 m). 
This estimate is based on the difference in relative depth 
of the modeled and the measured temperature minimum 
at the center line of the ice stream, together with the 
assumption of a linear increase in the corresponding 
additional vertical strain in the ice stream with depth. As 
a consequence, the surface velocity increases by a 
comparable percentage. The outlined stretching mechan­
ism, if real, therefore plays an important role in the fast 
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flow of those ice streams which possess a convergent 
bedrock channel. 

A direct verification of the outlined stretching 
mechanism is needed and presently under way by three­
dimensional flow modeling of the ice stream. 
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APPENDIX A 

VARIATION OF LONGITUDINAL STRESS 
GRADIENT 8u",/& WITH DEPTH 

The calculations of the ice flow (section 2) which are 
required for modeling englacial temperatures were based 
on the assumption that the shear stress, Txz , varies linearly 
with depth (assumption I, section 2). This requires that 
the longitudinal stress gradient, 80'x/8x is independent of 
depth. As a consistency check, 80'",/8x(z) has been calcul­
ated numerically, based on the following equations: 

O'x = p + o'x (AI) 

where dx is the stress deviator and p is the mean stress 
which is given by: 

(A2) 

where 

O'z ~ -pg(h - z + B) cos a cos(J . (A3) 

If the slopes Cl' and {3 vary only slowly with x, and if p is 
constant, 

80'z (J' (J 8x ~ -pgtanacosacos = -pgsm a cos . (A4) 

The stress deviators are related to the strain rates by the 
flow law: 

0'. = Ez 

Z ATeffn - 1 
(A5) 

0'. = Ex 
x ATeffn - 1 

(A6) 

Inserting Equations (A2), (A3) and (A6) into Equation 
(AI) and differentiating with respect to x gives, using 
Equation (A4) : 

relative 
depth 
0 .0 50150 
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0 .8 
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350 450 470 490 500 520 km 

I \\ \ 

) ('( ( 
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longitudinal stress gradient, 880'xx [palm] 

Fig. 12. Longitudinal stress gradient, 80'x/8x, versus 
relative depth . 

80'x . 8(Are~n-') 8 (Ar!n-r) 
8x ~ -pgsmacos(J - 8x + 8x . (A7) 

Ex and Ez are calculated from Equations (17) and (24) 
(section 2); this means that they are calculated based 
(already) on the assumption of a linear variation of Txz 
with z. Therefore, the calculated values of 80'x/8x are 
only approximate. They are plotted versus relative depth, 
(h - z + B)/h, for various locations of x, in Figure 12. 
Downstream of x = 450 km, where the ice stream starts, 
80'x/8x shows distinct variations with depth. The 
influence of the temperature-dependence of the flow-law 
parameter A is visible in the bottom parts of the profiles 
between x = 470 km and x = 520 km: the straight parts 
of these profiles correspond to locations within the 
temperate layer where A is la rge . On the whole, 
however, the variations of 80'x/8x with depth are small. 
In principle, also, they could be accounted for in further 
iteration steps of the model by adjusting Txz(Z) in accord 
with Equations ( I) and (A7). 

APPENDIXB 

TYPICAL FEATURES OF THE DYNAMIC MODEL 

In section 2 we have briefly described the type offlow we 
are modeling. Here we will consider the depth distrib­
ution of strain in more detail. We start with the case 
where sliding is absent and subsequently discuss how the 
strain distribution is modified if sliding is allowed for. 

For simplicity, we will assume here that the traces of 
surface and bed in a vertical section along a flowline are 
parallel and are essentially straight lines. The X axis is 
parallel to the glacier surface and directed in the flow 
direction. The Z axis is oriented perpendicular to the bed, 
positive upward. The (curvilinear) Y axis follows the 
elevation contours of the glacier bed. In this coordinate 
system the velocities (U, V, W ) and the strain rates (Ex, 
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By, Ez ) are denoted by capital letters. As before, it is 
assumed that the azimuth of flow does not change with 
depth. Therefore, the transverse strain rate, By, can be 
written: 

. U 
Ey =-

R" 
(Bl) 

where U is the X component of the velocity and R" is the 
curvature of the contour lines in a plane tangent to the 
bed or surface. 

To begin with, we make the additional assumption 
that the shape of the velocity-depth profile varies only 
slowly with X. This condition is satisfied if the glacier 
does not slide and if the flow-law parameters vary only 
slowly with X. The velocity U can then be expressed as a 
product of two factors (Reeh, 1988), the first of which 
depends on X only and the second on Z: 

U = U(X)tJ>(Z) . (B2) 

U(X) is the depth-averaged velocity and 4J(Z) describes 
the variation of velocity with depth. The strain rate Ex is 
therefore: 

. 8U 
Ex= 8X 

= 8U tJ>(Z) 
8X 
8U U 
8X U 

(B3) 

Since both By and Ex vary proportionally with the 
velocity, U, it follows, that Bz also varies as the velocity: 

Bz= - Ex-By 

= _ (8U ~+~)U. 
8X U R" 

(B4) 

In this equation, the value of the bracket does not depend 
on depth. 

The increment of vertical strain, 6.Ez, which develops 
while the ice moves an infinitesimal distance LlX, is given 
by: 

. LlX 
6.Ez = EzU 

= BzLlt 

and, by equation (B4), 

(
8U 1 1 ) LlEz = - - -+- 6.X 
8X U R* 

(B5) 

(B6) 

which means that 6.Ez, and similarly 6.Ex and LlEy, 
are independent of depth . Moreover, the integral 

is independent of depth. It can be shown that this feature 
is essentially preserved if a small change in ice thickness 
with distance X is permitted. This implies that, near the 
equilibrium line where the mass balance is negligible, a 
temperature profile, plotted versus dimension less depth, 
1 - ft, does not change while the ice moves downstream 
to a location with different ice thickness-except for 
temperature changes by heat production or conduction. 
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So far, we have excluded basal sliding. If sliding takes 
place, the total velocity can no longer be express~d by an 
equation analogous to Equation (B2) and consequently 
Bx and Ez vary no longer proportionally to the velocity. 
Ez is given by: 

(B7) 

where U is the total velocity in the X direction and Ud 
and Ub are the deformational and the sliding velocity, 
respectively. R" can be evaluated by integrating the 
continuity equation, as was done in section 2, Equation 
(23). The result is: 

1 _ 1 (A 8Ud 8Ub) 
R" - U H" - 8X - 8X . (B8) 

A and H" are mass balance and ice thickness, 
respectively, which are measured in the Z direction. 
Inserting Equation (B8) into Equation (B7) yields: 

Ez = _ BUd _ 8Ub _ £ (~ _ 8Ud _ BUb) (B9) 
BX 8X U H* 8X BX . 

The strain increment, developing over an infinitesimal 
displacement 6.X, is: 

LlEz = Ez 6.X 
U 

= 6.X (_ 8Ud _ 8Ub) _ Ll~ (~_ BUd _ 8Ub) 
U 8X 8X U H" BX 8X ' 

(BIO) 

a quantity varying with depth. In the following we will 
investigate this variation. For transparentness, we define 
the following quantities: 

a = (8Ub/BX)/(8Ud/8X) 

b = Ub/Ud. 

Introducing these quantities In Equation (BID), re­
arranging it, and making use of the relation: 

we get: 

6.X 
LlEz =---

U 

[_( f!.d) 8Ud (b+l) _~+ BUd(l+a)]. 
a+ Ud 8X b+Q.i H" 8X 

Ud 

(Bll) 

Next, we inspect the variation of the square bracket with 
depth: at the surface, Ud attains the value Usd which is 
approximately related to Ud by 

n+2-
Usd =--Ud· n+l 

Hence the surface-value of 6.Ez is: 

* LlX [( a - b ) BUd A 1 LlEz(Z=H)~ U b(n+l)+n+2 8X-H" . 

(B12) 
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At the depth where Ud = Od and Z = ZM: 

LlEz(Z = ZM) = --- - - . LlX [ A] 
U H* 

(BI3) 

At this depth, the strain rate is the same as without sliding 
(except that 0 in Equation (B 13) stands for the total 
velocity, averaged over depth). 

At the bed, Ud = 0 and: 

LlEz(Z = 0) = Ll~ [_ (a -b) 8Ud _~] (BI4) 
U b 8X H* . 

In the zone where the ice stream forms, the sliding 
velocity is still small but is rapidly increasing; here we 
have a > b and, in the case of Jakobshavns Isbne, 
8Ud/8X> O. Under these conditions: 

LlX A 
LlEz > - --- -­

U H* 
(BI5) 

near the surface, where Z > ZM. Near the bed, for 
Z<ZM, 

LlX A 
LlEz < ---- --. 

U H* 
(BI6) 

At some place downstream, the sliding velocity has grown 
so that a = band : 

LlX A 
LlEz = ------

U H* 

at any depth, like without sliding. When the sliding 
velocity is large but hardly increasing, a < b and the 
symbols > and < are reversed in the relations (B 15) and 
(BI6). However, near the coast, 80d/8X < 0 and relations 
(BI5) and (BI6) apply again . 

If the ice surface and bed are not parallel, similar 
equations can be formulated; however, the parameters a 
and b vary slightly with depth. At a depth where U = U, 
a simple expression for Ez similar to the case without 
sliding, is retained: 

LlX (A 8H*) LlEz(Z = ZM) = -- -=+­H* U 8X . 

MS received 5 January 1993 and in revised form 29 July 1993 
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