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§ 1. Introduction.

The roots of the equation in A

- ^ «2n

were named by Sylvester the toen< roo<» of the determinant
| OJI OK ... <*„„ | . So early as 1852, Sylvester showed* that if any
determinant D is given, we can at once write down a determinant
whose latent roots are the squares of the latent roots of D : this
determinant is in fact the square of D, the process of squaring
being performed by multiplying rows into columns: so that, e.g.

are X, and A,, then the roots ofif the latent roots of c d

are Aj2 and A,2. Spottiswoode had also shown fa?+bc ab + bd
ac + cd bc + dr

in 1851 that the latent roots of the reciprocal of a determinant
are the reciprocals of the latent roots of the determinant itself.
Both these theorems were soon found to be particular cases of a
general theorem which 'was enunciated by Sylvester thus: The
latent roots of any function of a matrix are respectively the same
Junctions of the latent roots of the matrix itself.

* First in connexion with axisymmetric determinants, in Noxiv. Ann.
1852 : CoU. Ptipers 1, p. 364.

f Elementary theorems relating to determinants, London, 1851.

https://doi.org/10.1017/S0013091500029631 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500029631


In order to complete the definition of the terms used in the
title of this paper, we must now explain what compound deter-
minants and Brill's determinants are.

First, as regards compound determinants. Let D be any
determinant of order n. Consider all those minors of D which

/n\2*
are of order m: they are in number tm\ : and arrange them

so that in any one row (or column) those minors stand which are
contained in the same m rows (or columns) of D. The determinant
thus formed, which was first considered by Cauchy,f is called the
ma compound of D. The principal known theorem regarding
compound determinants is due to Sylvester, J and asserts that the
mtt compound of any determinant D is equal to

Next, as regards Brill's determinants. In 1870, Brill, § in the
course of some investigations regarding those members of a pencil
of curves, which touch a given curve, came upon the determinant

y2
2 y,1 2y2 2 / 3

y2 z3 + z2 ys

*»yj

which he proved equal to

x3 •

ys

( m ) means the number of combinations of n things TO at a time,

m ! (n - m)!"

t Journal de VEc. Pol., oah. 17, p. 93.

+ Phil. Mag. (4) 1 (1851), pp. 295, 415.

§ Math. Ann. 3, p. 458.
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I t is evident that this determinant of Brill's is the eliminant of
the d's between the equations

)
e3) 3 es) o

o
0

and that it is therefore only one of an infinite set of determinants
which may be found by taking a set of linear equations

+.. .+xlnen=o
t+... +xiH en=o

forming all combinations of these equations which are homogeneous
of degree m in the d's, and then eliminating the 0's determinantally.
Brill's original determinant given above represents the case
n = 3,»» = 2. When there are n variables 0,, &,, ...#„, and the
linear equations are raised to the power m, we shall call the deter-
minant the mib Brill's determinant formed from the determinant

The object of the present paper is to find the latent roots of all
compound determinants and Brill's determinants, in terms of the
latent roots of the determinant from which they are formed.

§ 2. The latent roots of compound determinants.

We propose to show first that the latent roots of the m"1

compound of a determinant D are the products, m at a time, of the
latent roots of D. To prove this, suppose that A,, A,, ...Am are
TO distinct latent roots of a determinant D = | alla&a33,...aHn | : so
that the values of (*n, xl2, ... a;lB), which are not all zero, can be
found to satisfy the n equations

ari
ahi + a,aXi2+ •••+<*r«xl«=°Kxi, (i»= 1, 2, ... n) (1)

and values of {x^, x^, ..., x,J), which are not all zero and are
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not all identical respectively with (xn,x12, ...ar]n), can be found
to satisfy the n equations

ap,!B21 + ap2x22+...+apna:2B=X2x2p (j»=l, 2, ...n) (2)

and so on. These equations (1), (2), etc., show that the deter-
minant

U - *m 1*11 «•.*!•••*„,» I (3)

is the product of the two arrays

and
a;n x]2 a;13 ...
xa asa â a ...

and is therefore equal to

a sum of products of determinants formed from\
these arrays, the first of these products being, e.g. \. ...(4)

Equating (3) to (4), we have a linear equation

\1X2...XmX1 = A1X1 + A2Xi + A3X1+...

in which the variables Xlt X2, X3, ... are all the (mj deter-

minants that can be formed by taking m columns of the array

while the coefficients AltA2,A3, ... are all the ( m J minors that

can be formed from the first m lines of the determinant
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In the same way we may obtain other linear equations in
which the variables are the same quantities 2T,, Xa, X,, ..., and
the coefficients are (on the left-hand side) ^X,... km and (on the

right-hand side) all the (mj determinants that can be formed

from some other m lines of the determinant \ <*>nan ••• a**\ • We

obtain altogether | m ) of these linear equations. Since the

variables JT,, X2, X, , ... in these equations are not all zero, we
may eliminate them in the usual way, by equating to zero the
determinant of the coefficients. But it is obvious that this
determinant is simply the mth compound of D, with the quantity
A., A, ... A.,, subtracted from each term in the principal diagonal.
Therefore the quantity A, A2 ... Am is one of the latent roots of the
wi01 compound of D. Similarly, any other product of m distinct
latent roots of D is one of the latent roots of the mih compound of
D. But when the latent roots of D are all distinct, the number of

distinct products of this kind is ()'• and the number of latent

roots of the mth compound is equal to its order, which is also

j ) , Therefore the latent roots of the w"1 compound of D are

precisely the products, m at a time, of the latent roots of D.* The
principle of continuity shows that this statement is still true even
if the latent roots of D are not all distinct.

I t may be remarked that this result furnishes a simple proof
of Sylvester's theorem on compound determinants. For any
determinant is evidently equal to the product of its own latent
roots : so if A denotes the m" compound of D, we have D equal to
the product of its own latent roots, and A equal to the product of

the ( I products of these roots taken m at a time. Now, of the

products of the latent roots taken m at a time, the number which

• Professor Metzler, in Amer. Jour, of Math. 16 (1894), p. 131, in the
course of researohea on the minors of compound determinants, placed on
record a suspicion of this theorem, but apparently did not pursue the matter
further.
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contain any particular latent root is (m-i) '• a n d therefore

have

which is precisely Sylvester's formula.

We may note also that the theorem determines at once the
number of latent roots of the mth compound which become equal to
each other when any number of latent roots of the original deter-
minant are equal.

§3. The latent roots of Brill's determinants.

We shall next show that the latent roots of the m" Brill's deter-
minant formed from a determinant D are the products m at a time
of the latent roots of D, when repetitions are allowed. The meaning
of the phrase " when repetitions are allowed " may be illustrated
by taking the case n = 3, in which case the latent roots of D may
be denoted by A,, X,, \ , ; the products two at a time when
repetitions are not allowed are Aj A3, A, Aa, Aj Aj ; while the
products two at a time when repetitions are allowed are
A i t A j , A , , AjAs, A,Aj, A]Aj.

To prove the theorem, suppose that Alt A,,, ..., Am are
any m (the same or different) latent roots of a determinant
D = | «], Ojo... am j : so that values of seu, x12, ... xln which are not
all zero can be found to satisfy the n equations

*Pi<Cn + <*,*Xii+ •••+*pnXi» = K<ciP (*>=!> 2, . . . , n) (1)

and values of <%, x.s, •••,x^t which are not all zero (but which
may be identical with xn, xn, ..., &„,) can be found which satisfy
the n equations

«,l«n+«^«B+-"+«jm«Sn = A,«!!p (j>=l, 2, . . . . fl), (2)

and so on.

Now form the continued product of any one of the equations
(1), any one of the equations (2), and so on. We thus obtain an
equation which is homogeneous of degree m in the x's, and has on
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its left hand side (say)

X, X2 A. j . . . Xm x i p x . ^ x 3 r . . . .

Add to this the similar equations in which the second suffixes
p, q, r, ... are permuted in every possible way. We thus obtain
an equation which we may write

.XmXit = ̂ 1X1 + 4!X2 + 4 . Z s + . . . (3)

where X,, X5, X3, ... are functions homogeneous of degree m in
the x's, which are symmetric as between the different sets of x's;
e.g. in the case n — 3, m = 2, they would be the 6 quantities

^ n ^ i ) &w&w> 3hi®n> (x^xn + Xi}®n)> (Silvia+ aasa:si). (^n^a + Si^si) .

and the coefficients Ait A.2, Az, ... are the quantities which occur
in some one row of the m" Brill's determinant formed from D.

If now we eliminate the X 's determinan tally between (3) and
all other equations of the same type, we have a certain deter-
minant equal to zero: and this determinant is simply the m*
Brill's determinant of D with At X, ... Xm subtracted from each
term in the principal diagonal. This shows that A, A,... Xm is one
of the latent roots of the m* Brill's determinant of D, where
Xj, X,, ... Xm are any m (the same or different) latent roots of D ;
whence the theorem enunciated above follows readily.

§ 4. A further determinant whose latent roots depend on those
o/D.

If, instead of forming equation (3) of § 3 by adding similar
equations in which the second suffixes are permuted, we had left
these equations in their original form, they would have constituted
a set of equations linear in variables Yt, Y«, Yit ... where
Yr, Y3, Ys, ... are all the nm products which can be formed by
taking one factor from the set (xn, xs2, ...,x,,), one factor from
the set (xa, x&, ..., a^,), and so on : e.g. in the case » = 3, m = 2,
Y1, Yt, Yt... are the 9 quantities

"hi^kn a h i ^ a . *ii*a») «i2«i!i. *12*M> EijBa,, XlsXa, X^Xm, XjjBa.

If we eliminate Ylt Ylt Yt, ... from the equations determinan tally,
we have zero equal to a determinant of order nm, which has
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KK---^m subtracted from every element in its principal
diagonal: so that At Â  ... Am is one of the latent roots of this
determinant, which we call A. It may readily be shown that the
latent roots of A are the same as those of the mih Brill's deter-
minant of D, namely, all the products m at a time of the latent
roots of D, when repetitions are allowed : but that some of these
latent roots of the Brill's determinant are. repeated roots of A.
Thus in the case n = 3, m = 2, the latent roots of A, which is in this
case of the 9 th order, are

Wi ^t> »̂*> 2̂ -̂3 repeated, A3 A: repeated, and X1ki repeated,

where A:, A ,̂ A3, are the latent roots of the original deter-
minant D.

2 Vol. 35
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