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FINITE RINGS IN WHICH 1 IS A SUM
OF TWO NON-p-th POWER UNITS

DAVID JACOBSON

Introduction. Let R be a finite ring with 1 and let R* denote the group of
units of R. Let p be a prime number. In this paper we consider the question of
whether there exist a, b in R* such that ¢ and b are non-p-th powers whose sum
is 1. If such units @, bexistin R, we say that Risan NV (p)-ring. Of course if p does
not divide |R*|, the order of R*, then every element in R* is a pth power.

Let J denote the Jacobson radical of R. Hence R/J is a direct product of full
matrix rings over finite fields. If the two-element field occurs as a factor in R/J,
then clearly 1 cannot be written as a sum of two units in R. On the other hand, if
the two-element field does not occur in R/J, then it follows from [3, Theorem 11]
that every element of R is a sum of two units. So henceforth we assume that R
is a ring of this type.

We say that Risan N-ring if Risan N (p)-ring for all primes p dividing |R*|.
For example, it is shown that a ring of one of the following kinds is an N-ring,
namely a commutative ring, or a ring of odd order, or the ring F, of all n X
matrices over a finite field F where |F| > 2. However if |F| = 2 and p divides
| F.*|, then F, is an N (p)-ring except if the order of 2(modp)isn —lor p =2
and n = 2, 3,5 (see Theorem 2).

In Section 1 we consider finite commutative rings and in Section 2 we deal
with finite semisimple rings. Section 3 is devoted to rings of odd order and
finally in Section 4 we deduce additional results.

I wish to express my thanks to Professor G. Krause for his helpful comments.

1. Commutative rings. Let R be a finite commutative ring and let J be its
Jacobson radical. We prove the following theorem.

THEOREM 1. Let R be a finite commutative ring such that the two-element field
does not occur as a factor in R/J. Then R is an N-ring.

Proof. Let p be any prime dividing |R*|. We prove that R is a N(p)-ring.
Since R is a direct product of local rings, we may assume that R is a local ring
with maximal ideal J. Let F denote the finite field R/J. There exists an
epimorphism R* — F* with kernel 1 + J. As |J| and | F*| are relatively prime,
R* is isomorphic to the direct product of the groups 1 4+ J and F*. Now let S
(resp. N) denote the set of pth (resp. non-p-th) powers in R* which are not in
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1+ J. Let g: N — R be the mapping defined by g(a) =1 — a for a in N.
Since J is the set of all non-units in R, g(N) € SU N and as |N| = |g(V)|, it
suffices to prove that |N| > |S|. We distinguish the two cases p|| F*| and p||J|.

First suppose that p||F*|. Let S; be the subgroup of p-th powers in F*. As
every element in 1 4 J is a p-th power,

IS = [71(S1] — 1) and [N] = [J[(|F¥| — [S4]).

Thus it suffices to prove that |F*| 4+ 1 > 2|S;|. Let f be the pth power map in
F*. Then |F*| = |Ker f||Si| where |[Kerf| = p since F* is cyclic. Hence
|F¥| + 1 > 2|S)|, proving that [N| > |S].

Assume now that p||J|. Let Sy be the subgroup of pth powers in 1 + J. As
every element in F* is a pth power,

S| = [Sol ([ F*[ — 1) and [N] = ([J] = [So]) (|1F*] — 1).

Since | F*| — 1 > 0, it suffices to show that |J]| > 2|S|. Let f; be the pth power
map in 1 + J. Then |J| = |Ker fo||So| where |Ker fo| = p. Thusif p > 2, then
IN| > |S|. So let p = 2. Suppose that |Ker fy| = 2, thatis, 1 4+ J has a unique
element of order 2. Since 1 + J is an abelian 2-group, 1 4 J is cyclic and hence
R* is cyclic. Referring to the classification in [2], we see that R is isomorphic to
one of the following rings: Z/(4), Fo(x]/(x™) where Fy = Z/(2) and m = 2or 3,
or Z[x]/ (4, 2x, x* — 2). However each of these rings has a residue field of order
2, contrary to our hypothesis. Hence |Ker fo| > 2 and again |[N| > |S], com-
pleting the proof.

2. Semisimple rings. Let # be a positive integer and F a finite field. As
usual, we let F, denote the ring of all # X # matrices with entries in F.

THEOREM 2. Let F be a finite field.

(1) If |F| > 2, then F, 1is an N-ring.

(2) If |F| = 2 and p divides |F,*|, then F, is an N(p)-ring except if

(@) p|2"=' — 1 and n — 1 is the least positive integer with this property or
b)p =2and n = 2,3, 5.

The proof of the theorem is preceded by the following lemma.

LeEMMA 1. Let F be a finite field of characteristic p. Let A be a matrix in F,
whose minimum polynomial is f(x). If f(x) and f'(x) are relatively prime, then A
1s a pth power. Conversely if A is a pth power and f(x) has degree n, then f(x)
and f'(x) are relatively prime.

Proof. Let F[A] denote the F-subalgebra generated by 4. We prove that f(x)
and its derivative f’(x) are relatively prime if and only if 4 is a pth power in
F[A].

Let f(x) and f'(x) be relatively prime. It follows that

f@®) = fil®) ... fn(x)
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where f1, ..., fn are distinct monic irreducibles in F[x]. Hence F[A] is iso-
morphic to the direct product of the finite fields

F[x]/(fl)v ey F[x]/(fm)y

each of characteristic p and thus (F[4])? = F[4].
Conversely let A = B? for B in F[A]. Since F[A4] is isomorphic to Fx]/(f(x))
where 4 — x + (f(x)), there exist g(x) and &(x) in F[x] such that

x — [g)]” = fx)h(x).

Differentiating each side yields that 1 = f(x)#'(x) + f'(x)k(x), proving that
f(x) and f’(x) are relatively prime.

Finally suppose that 4 = B? where B is in F, and f(x) has degree n. To
prove that f(x) and f’(x) are relatively prime, it suffices to show that B € F[A4].
Now F[A] C F[B] and thus |F[4]| £ |F[B]|, that is |F[* £ |F|"* where 7, is
the degree of the minimum polynomial of B. However #; < n and hence
F[A)] = F[B], completing the proof of the lemma.

Note that if 4 is a unit in F, such that p divides |4| and f(x) is of degree ,
then A4 is not a pth power in F,.

We also remark that Lemma 1 does not always hold if deg f(x) < n. For let
n = p? and let B be a matrix in F, whose minimum polynomial is (x — a)”

where « is in the prime subfield of F. Then 4 = B? has minimum polynomial
flx) = (x — a)?, whence f'(x) = 0.

We now return to the proof of the theorem. Let | F| = ¢. It is well known that
|E¥ = ¢=Dm2(g" — 1) ... (¢ — 1).

Let p be a prime dividing | F,*|.

We first assume that p = char. F,so thatn = 2. Let ¢ > 2and choose a in F,
a#0,1.Let A = ol, + E, where E is the matrix with 1 in the (z,7 4+ 1) entry
and zeros elsewhere. Set B = I, — A. Then the minimum polynomials of 4
and B are respectively (x — @)” and (x — (1 — «))" Hence by Lemma 1, 4
and B are non-p-th power units in F, whose sum is 7,.

Now let ¢ = 2, so that p = 2. We prove that F, is an N(2)-ring if and only
ifn=40rn = 6.

Suppose that n = 2m where m = 2. Let 4 in F, be the companion matrix of
flx) = (x* 4+ x4+ 1) and let A + B = I,. Thus the minimum polynomial of
Bisf(x + 1) = f(x) and by Lemma 1, A and B are non-square units in F,.

Now let # = 2m + 3 where m = 2. Let 4 in F, be the companion matrix of

f&) = @+ x+ D x4 1)
and let A + B = I,. Thus the minimum polynomial of B is
f+1)=@+x+ 1) + 22+ 1)

and again by the lemma, 4 and B are non-square units in F,.
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This proves that F, is an N(2)-ring for n = 4 or n = 6.

Assume now that 4 is a non-square unit in F, where n is 2, 3 or 5. Let f(x) be
the minimum polynomial of 4. Since f(x) and f’ (x) are not relatively prime and
x 4 f(x), it is easy to verify thatx + 1isa divisor of f(x). Henceif 4 + B = I,,,
then B is a non-unit in F, since x divides f(x + 1), the minimum polynomial

of B.
Now suppose that p divides | F,*| and p # char. F. Let k be the least integer
in {1,..., n} such that p|(¢* — 1). Let fo(x) be a monic irreducible in F[x] of

degree k and let Ayin F be the companion matrix of fo(x). Let (4, ) denote the
F-subalgebra of F, generated by A,. Thus (4,); is a field of order ¢*. Hence
there exist non-p-th power units 4, 4, in (4, ); such that 4; + 4, = I;.
Moreover the subfield {4, ); is of order ¢*1. However if k; < k, then p ¢ (¢** — 1),
which contradicts that A, is not a pth power in (A4, ),. Hence the minimum
polynomial f; (x) of 4, is of degree k and irreducible in F[x]. It follows that 4, is
not a pth power in Fy. Similarly 4, is not a pth power in F;. Thusif 2 = #n, then
F, is an N (p)-ring.

So let 1 =< k < n. Suppose that there exists a monic irreducible g, (x) in F[x]
of degree n — k such that fi(x) and g, (x) are relatively prime and neither x nor
x — 1 divides g;(x). Then we claim that F, isa N (p)-ring. For let B, in F,_; be
the companion matrix of g;(x). Let

A [Al OJ
0 | By
belong to F,. Clearly there is a monomorphism of the ring (4 ), into the direct
product of the fields (4, ); and (B ),—x where A — (4., B:). Thus 4 is not a
p-th power in (4 ),. However the minimum polynomial of 4 is fi(x)g:i(x) of
degree n and hence 4 is not a pth power in F,. Now let 4 4+ B = I,. A similar
argument shows that B is not a pth power in F,. Since 4 and B are units in F,,
the claim is established.

It is easy to see that there exists a gi1(x) with the above properties except for
the cases (i) g =3, n =2, k=1, (ii) ¢=2,n =4,k =2and (iii) ¢ = 2,
n—k=1

We now consider these remaining cases.

(i) Let ¢ = 3, n = 2, k = 1, whence p = 2. Let f(x) = x> —x — 1. As
f(1 — x) = f(x), it is clear that there exist 4, B in Fysuch that 4 + B = I,
and f(x) is their minimum polynomial. Since f(x?) = x* — x* — 1 isirreducible
in Flx], it follows that 4 and B are non-square units in Fs.

(ii) Let¢ = 2, n = 4, k = 2, whence p = 3. Clearly we may choose 4, B in
Fysuch that A + B = I,and x> + x + 1 is their minimum polynomial. How-
ever x® + x® + 1 is irreducible in F[x] and thus A and B are non-cube units in
F4.
(iii) Finally let ¢ =2, k=n — 1. As |21 — 1, n = 3. Let 4 be any
non-p-th power unit in F,. We show that I, — 4 is a non-unit in F,. Let f(x) be
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the minimum polynomial of 4. Thus

fle) = filt. . fits

where fi, ..., fs are distinct monic irreducibles in F[x]. Let (4) denote the
F-subalgebra generated by A. Hence (4) is isomorphic to the direct product
Ry X ... X R, where each

Ry = Flx]/(f").

However R, is a local ring whose residue field is isomorphic to F{x]/(f;). Thus
letting d; denote the degree of f;, we have

R = 2400 (2% — 1)
and
| (AY] = [R* ... R

Since A4 is not a pth power, p divides | (4)*| and as p is prime to 2, we may
suppose that p| (291 — 1). Thusd; = nord; = n — 1. If d; = n, then p divides
(2 — 1) — (2= — 1), thatis p|2"!, a contradiction. Sod; = n — 1. However

dlll-l—...—l—dslx.én

and since n > 2, it follows that f(x) = fi1 or f(x) = fifs. Let g(x) be the
characteristic polynomial of 4. It is well known that f(x) and g(x) have the
same irreducible factors. Thus f(x) = fi is impossible since f; contains no linear
factor. Hence f(x) = fif. where foisof degree 1. As 4 isa unit, fo = x + 1. Now let
A + B = I,. Thus the minimum polynomial of B is f(x 4+ 1) = xfi(x 4+ 1), so
that B is not a unit. This completes the proof of Theorem 2.

For example, if | F| = 2, then F; is neither an N(2)- nor an N(3)-ring, but F;
is an N-ring.

Note that if | F| = 2 and p is a fixed odd prime, then F, isan N (p)-ring for all
n = m + 2 where m is the order of 2(mod p).

A finite ring R is semisimple if its radical J = (0). By the Wedderburn
theorem, R is semisimple if and only if it is a direct product of finite simple

rings R;, ..., R,, where each R; is isomorphic to a matrix ring over a finite
field.

THEOREM 3. Let R be a direct product of finite simple rings, Ry, . . ., R, such
that |[Ry| > 2 fori=1,...,m.

(i) R is an N(p)-ring if and only if some R; is an N(p)-ring.
(i1) If the center of each R; has more than two elements, then R is an N-ring.

Proof. (i) Let R be an N(p)-ring. It follows that there exist units a4, b, in
some R;such that a;is not a pth power in R; and a; + b; = 1. If the center F;
of R;is not the two-element field, then R;is a N(p)-ring by (1) of Theorem 2.
On the other hand, let |F,| = 2. Since b; is a unit in R, the proof of Theorem 2
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shows that neither (a) nor (b) applies to p. Hence R, is an N (p)-ring. The
converse is clear.
(ii) The result follows immediately from (1) of Theorem 2 and part (i).

3. Rings of odd order. In the sequel we shall often use the next result.

LEMMA 2. Let K be an ideal of the finite ring R where K C J, the Jacobson
radical of R.
() If p is a prime divisor of |R*|, then p divides |K| or p divides |(R/K)*|.
(ii) If R/K s an N (p)-ring, then R is an N(p)-ring.

Proof. Since units lift (mod J), the natural map R — R/K induces an epi-
morphism R* — (R/K)* with kernel 1 + K. Hence (i) and (ii) follow.

In the remainder of this section we assume that R is a ring of odd order.
THEOREM 4. Let R be a ring of odd order. Then R is an N-ring.

Proof. Since a finite ring is a direct product of rings of prime power order, we
may assume that |R| = po™ where p is an odd prime. Thus R/J is a direct
product of matrix rings over finite fields of characteristic po and by Theorem
3, R/J is an N-ring. If p is a prime divisor of |R*| and p # p,, then p divides
[(R/J)*| and hence R is an N(p)-ring by Lemma 2. Thus it remains to prove
that if py divides |R*|, then R is an N (p¢)-ring. Of course if po divides |(R/J)*|,
then R is an N (p¢)-ring.

So we can assume that po divides |R*| but p, does not divide |(R/J)*|. It
follows that J # (0) and R/J is a direct product of finite fields each of charac-
teristic po.

We first consider the case that R is a ring of characteristic p,. Let Fy denote
the subfield of R of order p, generated by 1. Since R is a finite dimensional
algebra over F,, the Wedderburn Factor Theorem [1, p. 471] yields that
R =S + J where S is a subring isomorphic to R/J and SN J = 0. Thus
Fo € S and we note that if ¢ € S and ¢?° = o € F, then ¢ = a. Now as J is
nilpotent and non-zero, there exists x in J such that x is not in the ideal J7o.
Let a € Fy. We claim that o + x is not a poth power in R. For let

(@a+y)=a+x

where ¢ € S and y € J. Then a¢** 4 y; = a + x where y; € J. Thus ¢*® = «
and as noted ¢ = a. However « is in the center of R and char. R = p,, so that

(a + y)Po = P ..|_ ypo.

Hence y?° = x, which contradicts that x ¢ J?° and establishes the claim. As
po > 2 there exist units @, 8 in Fy such that @ + 8 = 1 and hence & 4 x and
B — x are non-pe-th power units in R whose sum is 1.

Now let R not be of characteristic po. The ideal poR is contained in J.
Suppose that poR is not equal to J. Let R, = R/poR. Then the Jacobson
radical of R, is J; = J/peR and p, divides |R:*|. Since R/J; is isomorphic to
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R/J and char. R, = p,, the preceding case shows that R, is an N(p,)-ring and
hence by Lemma 2, R is an N (p,)-ring.

Thus we may suppose that J = poR. Assume that J2 = (0). We prove that R
is a commutative ring. As R/J is a direct product of finite fields, there exists an
integer » > 1 such that a” — a € J for all ¢ in R. By [4, Theorem 3.2.3, p. 81],
it suffices to prove that J is contained in the center of R. Let x € J and let
a € R. Then x = pob where b € R and hence ax — xa = po(ab — ba). How-
ever ab — ba € Jand (0) = J? = p¢?R, so that ax = xa. Thus R is commuta-
tive and by Theorem 1, R is an N (p,)-ring.

Finally let J2 # (0). Since J is nilpotent, J? ## J. Let R, = R/J?. The radical
of Ry is Jy = J/J? and p, divides |R.*|. Since J» = poR, and J.? = (0), the
above argument shows that R, is commutative. Hence Ryisan N (p¢)-ring and by
Lemma 2, R is an N (po)-ring. This completes the proof of the theorem.

THEOREM 5. A ring of odd order 1is an N (2)-ring.

Proof. Let R be a ring of odd order. Then R/J is of odd order and hence R/J
is an N-ring by Theorem 4. However 2 divides |(R/J)*| and thus Lemma 2
yields that R is an N(2)-ring.

4. Additional results.

THEOREM 6. Let R be a finite dimensional algebra over a finite field F of charac-
teristic po > 2. Then R is an N-ring.

Proof. Let m = dimy R. Then |R| = |F|™ and since p, is an odd prime, R is of
odd order. Thus by Theorem 4, R is an N-ring.

THEOREM 7. Let R be a finite ring with Jacobson radical J.

(1) If the two-element field does not occur as a factor in R/J, then for n = 2, R,
is an N (2)-ring.

(2) If the two element field does not occur as a factor in the center of R/J, then
forn = 2, R, is an N-ring.

(3) If R/J is a direct product of finite fields each having more than two elements,
then for n = 2, R, is an N-ring.

Proof. Since a ring of odd order is both an N-ring and an N (2)-ring, it suffices
to prove the theorem for the case that |R| is a power of 2.

(1) Suppose that the two-element field does not occur as a factor in R/J. As
|R| = 2™, it follows that each factor in R/J is of the form F) where F is a field
of characteristic 2 and £ > 1 if |F| = 2. Now let n = 2. The radical of R, is J,
and

Ro/Jw = (R/T )

Hence each factor in R,/J, is of the form Fy, where kn = 4orkn = 6if |F| = 2,
while kn = 2 if |F| > 2. Thus by Theorem 2, each Fy, is an N(2)-ring and hence
R, is an N(2)-ring.
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(2) Suppose that each factor in R/J is of the form F; where F is a field of
characteristic 2 and |F| > 2. Let n = 2. Then by (1), R, is an N(2)-ring. How-
ever by Theorem 3, R,/J, is an N-ring. Since |R| = 2™, it follows that R is
an N-ring.

(3) This is an immediate consequence of (2).

THEOREM 8. Let R be a finite commutative ring such that the two-element field
does not occur as a factor in R/J. Then for all n, R, 1s an N-ring.

Proof. For n = 2, R,isan N-ring by Theorem 7(2), while R itself is an N-ring
by Theorem 1.

THEOREM 9. Let R be the ring of lower (upper) triangular matrices over a finite
field F where |F| > 2. Then for all n, R, is an N-ring.

Proof. R is a subring of F; for some k. Let J be the radical of R. Then R/J is
a direct product of k copies of F and hence by Theorem 7(3), R, is an N-ring for
n = 2. We now prove that R itself is an N-ring. We may take & = 2. Let
p = char. F. Since R/J is an N-ring and |R| is a power of p, it remains to prove
that R is an N(p)-ring. However the proof of Theorem 2showed that there exist
A, B in R such that A + B = 1 and 4, B are non-p-th power units in Fy.
Hence A4, B are also non-p-th power units in R, which completes the proof.

We note that if R is an N-ring, then R, is not always an N-ring. For R = F;is
an N-ring where F is the two-element field, but R, =< Fy, is not an N-ring
since 2'* — 1 is a prime.

Raghavendran [6, Theorem 3] has shown that a finite local ring of prime
characteristic p, whose radical J satisfies J* = (0) is isomorphic to the ring R
of all » X »n matrices of the form

_(11 b2 b3 bn
0 aft O ... 0
O 0 (1133 “ e 0
L0 O 0 ce.oarl
where ay, by, ..., b, range over the field of order p,” and for ¢z = 2,..., n,

s; = po'i for fixed integers ¢; with 1 = ¢; = r. Conversely for every choice of
the integers ¢, R is local of characteristic p, and its radical J satisfies /> = (0).

If po > 2, then R is an N (py)-ring by Theorem 4. However for py = 2, R is not
always an N (2)-ring. Namely we prove the following.

THEOREM 10. Let R be the above ring of matrices where po = 2andn = 2. Then
R 1s not an N (2)-ring 1f and only if GCD (¢t;, ) = 1 for all 1.

Proof. The radical J of R consists of those matrices for which a¢; = 0. Also
R = F ® J where Fis the field consisting of those matrices for which all b; = 0.

v
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We shall identify a; in the field of order 27 with
diag(a, a1 . .., a;*) in F.

Let Y, be the matrix with 1 in the (1, 7) position and zeros elsewhere. Then
Y, ..., Y,is a left F-basis for J and

Yid = (J,Siyi

for @ in F and all 4. Let x be an element in R. Then there exist unique elements
ay, as, . . ., a, in Fsuch that

x=a+ aVo+ ...+ a7,
Since J? = (0),

x? = a:® + a2(d1 + 0132) Vot ... + an(al + alsn) Y”‘

Now as |F| = 27, note that if GCD(t,7) = 1 and a € F, then a 4+ a* = 0 only
for a = 0, 1. It follows that if GCD(¢;, 7) = 1 for all 7, then every non-square
unit of R belongs to 1 4+ J and thus R is not an N (2)-ring.

Conversely suppose that for some 7, GCD (¢;, 7) > 1. Then there exists ¢; in F
such that

a1+ a? =0anda; #0, 1.

Hence x; = a,®> + Y,isanon-square unitin R. Since char. R = 2, x; + 1 isalso
a non-square unit, which proves that R is an N (2)-ring.

Theorem 10 provides an example of a ring R such that R/J is an N-ring but
R is not an N-ring.

We now give an example of an N-ring R such that R/J is not an N-ring. Let
S = F, where F is the two-element field. Let x be an indeterminate over .S and
let R = S[x]/(x?). We may identify .S as a subring of R and moreover each
element of R can be written uniquely as

a + by where a,b € Sand y = x + (x2).

Clearly J = Sy and R/J = .S. By Theorem 2, S is an N (3)-ring but not an
N (2)-ring. Thus as |R*| = (2°)3, we have only to show that R is an N(2)-ring.
Define

T (a + by) = trace(b).

Then T'((a 4+ by)?) = Osince (¢ + by)? = a* + (ab + ba)y and char. R = 2.
Let ai, a; be units in S such that a; + a2 = 1. Choose by in S such that
trace(bo) = 1. Hence a1 + byy and a2 + Doy are non-square units in R whose
sum is 1, that is R is an N (2)-ring. This proves that R is an N-ring.

Finally we deduce the following result which is well known for fields
[5, Theorem 12, p. 15].
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THEOREM 11. Let R be a commutative local ring of odd order. Then for any units
a, b in R, the equation ax? + by* = 1 s solvable in R.

Proof. Let a, b be units in R. If a or b is a square, the result is immediate. So
let @, b be non-squares. By Theorem 4, there exist non-square units a1, b; such
that a; + b, = 1. However the index [R*:S] = 2 where .S is the subgroup of
squares in R*. Hence a—'a; = x? and b~1b; = y? for x, y in R*, completing the
proof.
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