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FINITE RINGS IN WHICH 1 IS A SUM 
OF TWO NON-p-th POWER UNITS 

DAVID JACOBSON 

Introduction. Let R be a finite ring with 1 and let R* denote the group of 
units of R. Let p be a prime number. In this paper we consider the question of 
whether there exist a, b in R* such that a and b are non-£-th powers whose sum 
is 1. If such units a, & exist ing, we say that i? is an TV (^)-ring. Of course if p does 
not divide |i?*|, the order of i?*, then every element in R* is a pth power. 

Let J denote the Jacobson radical of R. Hence R/J is a direct product of full 
matrix rings over finite fields. If the two-element field occurs as a factor in R/J, 
then clearly 1 cannot be written as a sum of two units in R. On the other hand, if 
the two-element field does not occur in R/J, then it follows from [3, Theorem 11] 
that every element of R is a sum of two units. So henceforth we assume that R 
is a ring of this type. 

We say that i^isan iV-ring if R is an N(p)-rmg for all primes^? dividing \R*\. 
For example, it is shown that a ring of one of the following kinds is an iV-ring, 
namely a commutative ring, or a ring of odd order, or the ring Fn of all n X n 
matrices over a finite field F where \F\ > 2. However if \F\ = 2 and p divides 
| iV | , then Fn is an N(p)-r'mg except if the order of 2(modp) is n — 1 or p = 2 
and n = 2, 3, 5 (see Theorem 2). 

In Section 1 we consider finite commutative rings and in Section 2 we deal 
with finite semisimple rings. Section 3 is devoted to rings of odd order and 
finally in Section 4 we deduce additional results. 

I wish to express my thanks to Professor G. Krause for his helpful comments. 

1. Commutative rings. Let R be a finite commutative ring and let J be its 
Jacobson radical. We prove the following theorem. 

THEOREM 1. Let R be a finite commutative ring such that the two-element field 
does not occur as a factor in R/J. Then R is an N-ring. 

Proof. Let p be any prime dividing \R*\. We prove that R is a TV (p)-ring. 
Since R is a direct product of local rings, we may assume that R is a local ring 
with maximal ideal / . Let F denote the finite field R/J. There exists an 
epimorphisrri R* —> F* with kernel 1 + / . As \J\ and \F*\ are relatively prime, 
R* is isomorphic to the direct product of the groups 1 + J and F*. Now let 5 
(resp. N) denote the set of pth (resp. non-p-ih) powers in R* which are not in 
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FINITE RINGS 95 

1 + J. Let g : N —» i? be the mapping defined by g (a) = 1 — a for a in TV. 
Since / is the set of all non-units in R, g(N) Ç 5 U N and as \N\ = \g(N)\, it 
suffices to prove that |iV| > |S|. We distinguish the two cases p\\F*\ and p\\J\. 

First suppose that £||F*|. Let Si be the subgroup of p-th powers in F*. As 
every element in 1 + J is a p-th power, 

\S\ = 1/1(15x1 - 1) and \N\ = \J\(\F*\ - |5:|). 

Thus it suffices to prove that \F*\ + 1 > 21511. L e t / be the pth power map in 
F*. Then \F*\ = |Ker/ | |5i | where |Ker/ | = p since F* is cyclic. Hence 
\F*\ + 1 > 2|5i|, proving that \N\ > \S\. 

Assume now that p\\J\. Let 50 be the subgroup of pth powers in 1 + J. As 
every element in F* is a pth power, 

|5| = |S„|(|f*| - 1) and \N\ = (|/ | - \S0\)(\F*\ - 1). 

Since |F*| — 1 > 0, it suffices to show that |7| > 2|50|. Let/0 be the pth. power 
map in 1 + J. Then | / | = |Ker/0 | |5o| where |Ker/0 | è p- Thus if p > 2, then 
\N\ > \S\. So let p = 2. Suppose that |Ker/0 | = 2, that is, 1 + / has a unique 
element of order 2. Since 1 + / is an abelian 2-group, 1 + / is cyclic and hence 
R* is cyclic. Referring to the classification in [2], we see that R is isomorphic to 
one of the following rings: Z/(4), F0[x]/(xm) where F0 = Z/(2) and m = 2 or 3, 
or Z[x]/(4, 2x, x2 — 2). However each of these rings has a residue field of order 
2, contrary to our hypothesis. Hence |Ker/0 | > 2 and again \N\ > \S\, com
pleting the proof. 

2. Semisimple rings. Let n be a positive integer and F a finite field. As 
usual, we let Fn denote the ring of all n X n matrices with entries in F. 

THEOREM 2. Let F be a finite field. 
(1) If \F\ > 2, then Fn is an N-ring. 
(2) If \F\ = 2 and p divides \Fn*\, then Fn is an N(p)-ring except if 
(a) £|2W_1 — 1 and n — 1 is the least positive integer with this property or 
(b) p = 2 and n = 2, 3, 5. 

The proof of the theorem is preceded by the following lemma. 

LEMMA 1. Let F be a finite field of characteristic p. Let A be a matrix in Fn 

whose minimum polynomial is f(x). If f(x) and f ' (x) are relatively prime, then A 
is a pth power. Conversely if A is a pth power and f(x) has degree n, then fix) 
andf(x) are relatively prime. 

Proof. Let F[A] denote the .F-subalgebra generated by A. We prove that /(x) 
and its derivative / ' (x) are relatively prime if and only if A is a £th power in 
F[A]. 

hetf(x) andf'(x) be relatively prime. It follows that 

/(*) = / i W • • -fm(x) 

https://doi.org/10.4153/CJM-1976-011-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-011-6


96 DAVID JACOBSON 

where/i , . . . ,fm are distinct monic irreducibles in F[x], Hence F[A] is iso
morphic to the direct product of the finite fields 

m/(fi), • • • - m/if*), 
each of characteristic p and thus (F[A])P = F[A], 

Conversely let A = Bp for B in F[A]. Since F[A] is isomorphic to F[x]/(f(x)) 
where A —» x + (/(#)), there exist g(x) and fe(x) in F[x] such that 

* - [gO)P = f(x)h(x). 

Differentiating each side yields that 1 = f(x)h'(x) + f(x)h(x), proving that 
f(x) and/ ' (x ) are relatively prime. 

Finally suppose that A = Bp where B is in Fn and f(x) has degree n. To 
prove that / (x) and / ' (x) are relatively prime, it suffices to show that B Ç F[A]. 
Now F[A] Ç F[B] and thus |F[i4]| ^ |F[B]|, that is |^|w g |^|Wl where «i is 
the degree of the minimum polynomial of B. However n\ S n and hence 
F[A] = F[B], completing the proof of the lemma. 

Note that if A is a unit in Fn such that p divides \A\ and/ (x) is of degree n, 
then A is not a pth power in Fn. 

We also remark that Lemma 1 does not always hold if deg/(x) < n. For let 
n = p2 and let B be a matrix in Fn whose minimum polynomial is (x — a)n 

where a is in the prime subfield of F. Then A = Bv has minimum polynomial 
f{x) = (x — a)p, whence/'(x) = 0. 

We now return to the proof of the theorem. Let \F\ = q. It is well known that 

\Fn*\ = f " 1 ) K / 2 ( f - 1 ) . . . (<Z~ 1). 

Let p be a prime dividing |Fn*|. 
We first assume that p = char. F, so that n ^ 2. Let q > 2 and choose a in i7, 

a 7e 0, 1. Let A = aln + E, where E is the matrix with 1 in the (i, i + 1) entry 
and zeros elsewhere. Set B = In — A. Then the minimum polynomials of A 
and B are respectively (x — a)n and (x — (1 — a))w. Hence by Lemma 1, A 
and B are non-^-th power units in Fn whose sum is In. 

Now let q = 2, so that p = 2. We prove that ^n is an iV(2)-ring if and only 
if n = 4 or n ^ 6. 

Suppose that w = 2m where m ^ 2. Let 4 in 7^ be the companion matrix of 
f(x) = (x2 + x + l)m and let 4̂ + B = In. Thus the minimum polynomial of 
B is /(x + 1) = fix) and by Lemma 1, A and 5 are non-square units in Fn. 

Now let n = 2m + 3 where m ^ 2. Let 4 in Fn be the companion matrix of 

f(x) = (x2 + x + l)w(x3 + x + 1) 

and let A + B = /„. Thus the minimum polynomial of B is 

f{x + 1) = (x2 + x + l)w(x3 + x2 + 1) 

and again by the lemma, A and B are non-square units in Fn. 

https://doi.org/10.4153/CJM-1976-011-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-011-6


FINITE RINGS 97 

This proves tha t Fn is an iV(2)-ring for n = 4 or n ^ 6. 
Assume now tha t A is a non-square unit in Fn where n is 2, 3 or 5. L e t / ( x ) be 

the minimum polynomial of A. Since f(x) a n d / ' ( x ) are not relatively prime and 
x \ f(x), it is easy to verify t ha t x + 1 is a divisor o f / (x ) . Hence if A + B = In, 
then B is a non-unit in Fn since x d iv ides / (x + 1), the minimum polynomial 
of B. 

Now suppose tha t p divides \Fn*\ and p 9e char. F. Let k be the least integer 
in {1, . . . , n] such tha t p\(qk — 1). Letfo(x) be a monic irreducible in F[x] of 
degree k and let A 0 in Fk be the companion matrix of/0 (x). Let (̂ 4 0 )* denote the 
7^-subalgebra of Fk generated by A0. Thus (A0)jc is a field of order qk. Hence 
there exist non-£-th power units Aly A2 in (A0)k such tha t Ai + ^42 = /*. 
Moreover the subfield (̂ 4 ! )k is of order g*1. However if ki < k, then p \ (qkl — 1 ), 
which contradicts t ha t Ai is not a pth power in {A\ ) k . Hence the minimum 
polynomial fi(x) of Ai is of degree k and irreducible in F[x], I t follows tha t Ai is 
not a £ th power in Fk. Similarly A 2 is not a £ th power in Fk. Thus if k = w, then 
Fw is an N(p)-r'mg. 

So let 1 ^ k < w. Suppose tha t there exists a monic irreducible gi(x) in .F[x] 
of degree n — k such t h a t / i ( x ) and gi(x) are relatively prime and neither x nor 
x — 1 divides gi(x). Then we claim tha t Fn is a TV(p)-ring. For let J5i in Fn-k be 
the companion matrix of gi(x). Let 

'At 0 

. 0 5 i . 

belong to Fn. Clearly there is a monomorphism of the ring (A )n into the direct 
product of the fields {A\ )k and {B\ ) n - k where A —> (^4i, ^ i ) . Thus yl is not a 
£-th power in (A ) n . However the minimum polynomial of A i s / i (x )g i (x ) of 
degree n and hence A is not a pt\\ power in Fn. Now let A + 5 = In . A similar 
a rgument shows tha t B is not a pth power in Fn. Since A and 5 are units in Fn, 
the claim is established. 

I t is easy to see tha t there exists a gi(x) with the above properties except for 
the cases (i) q = 3, n = 2, k = 1, (ii) g = 2, w = 4, k = 2 and (iii) g = 2, 
w — & = 1. 

We now consider these remaining cases. 
(i) Let q = 3, n = 2, k = 1, whence p = 2. Let / ( x ) = x2 — x — 1. As 

/ ( l — x) = / ( x ) , it is clear tha t there exist A, B in F2 such tha t 4̂ + B = I2 

a n d / ( x ) is their minimum polynomial. Since/(x 2 ) = x4 — x2 — 1 is irreducible 
in F[x], it follows tha t A and B are non-square units in F2. 

(ii) Let q = 2, n = 4, k = 2, whence £ = 3. Clearly we may choose A, B in 
7̂ 4 such tha t ^1 + B — 74 and x2 + x + 1 is their minimum polynomial. How
ever x6 + x3 + 1 is irreducible in F[x] and thus A and B are non-cube units in 
FA. 

(iii) Finally let q = 2, k = n - 1. As ^ |2 W - ! - 1, w è 3. Let 4 be any 
non-£-th power unit in Fn. We show tha t In — A is a non-unit in 7 v L e t / ( x ) be 
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the minimum polynomial of A. Thus 

where/i , . . . ,fs are distinct monic irreducibles in F[x], Let (̂ 4) denote the 
^-subalgebra generated by A. Hence (A) is isomorphic to the direct product 
Ri X . . . X Rs where each 

Rt = F[*]/(fi")-

However Rt is a local ring whose residue field is isomorphic to F[x]/(ft). Thus 
letting dt denote the degree of fit we have 

\R*\ = 2d«,*-1>(2d< - 1) 

and 

\(A)*\ = \R!*\ . . . \R*\. 

Since A is not a >̂th power, £ divides | (-4)*| and as p is prime to 2, we may 
suppose that p| (2dl — l ) . T h u s d i = « or di = n — 1. If d\ = n, then p divides 
(2n - 1) - (2n~1 - 1), tha t i s£ |2 w - \ a contradiction. So di = n - 1. However 

d\h + . . . + d8lH É n 

and since n > 2, it follows that /(x) = / i or f(x) =/1/2. Let g(x) be the 
characteristic polynomial of A. It is well known tha t / (x ) and g(x) have the 
same irreducible factors. Thus/(x) = f\ is impossible since/1 contains no linear 
factor. Hence/(x) = / i / 2 where/2 is of degree 1. As ̂ 4 is a unit,/2 = x + 1. Now let 
A -\- B = In. Thus the minimum polynomial of B is/(x + 1) = xfi(x + 1), so 
that B is not a unit. This completes the proof of Theorem 2. 

For example, ii\F\ = 2, then Fz is neither an N(2)- nor an 7V(3)-ring, but F7 

is an JV-ring. 
Note that if | F\ = 2 and p is a fixed odd prime, then Fw is an iV(£)-ring for all 

n ^ m + 2 where m is the order of 2 (mod p). 
A finite ring R is semisimple if its radical / = (0). By the Wedderburn 

theorem, R is semisimple if and only if it is a direct product of finite simple 
rings Ri, . . . , Rm, where each Ri is isomorphic to a matrix ring over a finite 
field. 

THEOREM 3. Let R be a direct product of finite simple rings, R\, . . . , Rm such 
that \Rt\ > 2 for i = 1, . . . , m. 

(i) R is an N{p)-ring if and only if some Ri is an N(p)-ring. 
(ii) If the center of each Rt has more than two elements, then R is an N-ring. 

Proof, (i) Let R be an iV(£)-ring. It follows that there exist units au bt in 
some Rt such that at is not a pûi power in Rt and at + bt = 1. If the center Ft 

of Rt is not the two-element field, then Rt is a N(p)-r'mg by (1) of Theorem 2. 
On the other hand, let \Fi\ = 2. Since b{ is a unit in J?*, the proof of Theorem 2 
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shows that neither (a) nor (b) applies to p. Hence Rt is an N(p)-rmg. The 
converse is clear. 

(ii) The result follows immediately from (1) of Theorem 2 and part (i). 

3. Rings of odd order. In the sequel we shall often use the next result. 

LEMMA 2. Let K be an ideal of the finite ring R where K Ç / , the Jacob son 
radical of R. 

(i) If p is a prime divisor of \R*\, then p divides \K\ or p divides \ (R/K)*\. 
(ii) If R/K is an N(p)-ring, then R is an N(p)-ring. 

Proof. Since units lift (mod / ) , the natural map R —> R/K induces an epi-
morphism R* —> (R/K)* with kernel 1 + K. Hence (i) and (ii) follow. 

In the remainder of this section we assume that R is a ring of odd order. 

THEOREM 4. Let R be a ring of odd order. Then R is an N-ring. 

Proof. Since a finite ring is a direct product of rings of prime power order, we 
may assume that \R\ = pQ

m where po is an odd prime. Thus R/J is a direct 
product of matrix rings over finite fields of characteristic po and by Theorem 
3, R/J is an iV-ring. If p is a prime divisor of \R*\ and p ^ p0, then p divides 
| (R/J)*\ and hence R is an N(p)-r'mg by Lemma 2. Thus it remains to prove 
that if po divides \R*\, then R is an N(p0)-r'mg. Of course if po divides | (R/J)*\, 
then R is an iV(^0)-ring. 

So we can assume that po divides \R*\ but po does not divide \(R/J)*\. It 
follows that J 9^ (0) and R/J is a direct product of finite fields each of charac
teristic po. 

We first consider the case that R is a ring of characteristic po. Let Fo denote 
the subfield of R of order po generated by 1. Since R is a finite dimensional 
algebra over Fo, the Wedderburn Factor Theorem [1, p. 471] yields that 
R = S + / where 5 is a subring isomorphic to R/J and S C\ J = 0. Thus 
Fo Q S and we note that if a G S and aPo = a G F, then a = a. Now as J is 
nilpotent and non-zero, there exists x in J such that x is not in the ideal JPo. 
Let a G F0. We claim that a + x is not a £0th power in R. For let 

(a + y)?* = a + x 

where a G S and y G J. Then aPo + y\ — a + x where y\ G / . Thus aP0 = a 
and as noted a = a. However a is in the center of R and char. R = p0, so that 

(a + y)P0 = aPQ + yp\ 

Hence yPo — x, which contradicts that x G JPo and establishes the claim. As 
po > 2 there exist units a, fi in Fo such that a + /3 = 1 and hence a + x and 
13 — x are non-£0-th power units in R whose sum is 1. 

Now let R not be of characteristic p0. The ideal poR is contained in / . 
Suppose that p0R is not equal to J. Let Ri = R/p0R. Then the Jacobson 
radical of Ri is J i = J/poR and po divides \Ri*\. Since Ri/Ji is isomorphic to 
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R/J and char. Ri = po, the preceding case shows that Ri is an N(po)-r'mg and 
hence by Lemma 2, R is an N(po)-r'mg. 

Thus we may suppose that / = pGR. Assume that J2 = (0). We prove that R 
is a commutative ring. As R/J is a direct product of finite fields, there exists an 
integer r > 1 such that aT — a £ / for all a in R. By [4, Theorem 3.2.3, p. 81], 
it suffices to prove that J is contained in the center of R. Let x £ J and let 
a (z R. Then x — pob where b £ R and hence ax — xa = po(ab — ba). How
ever ab — ba £ J and (0) = J2 = po2R, so that ax = xa. Thus i? is commuta
tive and by Theorem 1, R is an N(p0)-r'mg. 

Finally let J2 9e (0). S ince/ i s nilpotent, J2 9e J.hetR2 = R/J2. The radical 
of R2 is J2 = J/J2 and £0 divides \R2*\. Since / 2 = P0R2 and J2

2 = (0), the 
above argument shows that R2 is commutative. Hence R2 is an iV(£o)-ring and by 
Lemma 2, i? is an iVr(^0)-ring. This completes the proof of the theorem. 

THEOREM 5. A ring of odd order is an N(2)-ring. 

Proof. Let R be a ring of odd order. Then R/J is of odd order and hence R/J 
is an TV-ring by Theorem 4. However 2 divides | ( i? / / )* | and thus Lemma 2 
yields that R is an N(2)-ring. 

4. Additional results. 

THEOREM 6. Let R be a finite dimensional algebra over a finite field F of charac
teristic po > 2. Then R is an N-ring. 

Proof. Let m = dimF R. Then \R\ = | F\m and since po is an odd prime, R is of 
odd order. Thus by Theorem 4, i£ is an iV-ring. 

THEOREM 7. Let R be a finite ring with Jacob son radical J. 
(1) / / the two-element field does not occur as a factor in R/J, then for n ^ 2, Rn 

is an N(2)-ring. 
(2) If the two element field does not occur as a factor in the center of R/J, then 

for n ^ 2, Rn is an N-ring. 
(3) / / R/J is a direct product of finite fields each having more than two elements, 

then for n ^ 2, Rn is an N-ring. 

Proof. Since a ring of odd order is both an TV-ring and an iV(2)-ring, it suffices 
to prove the theorem for the case that \R\ is a power of 2. 

(1) Suppose that the two-element field does not occur as a factor in R/J. As 
\R\ = 2m, it follows that each factor in R/J is of the form Fk where F is a field 
of characteristic 2 and k > 1 if \F\ = 2. Now let n ^ 2. The radical of Rn is Jn 

and 

Rn/Jn ^ (R/J)n. 

Hence each factor in Rn/Jn is of the form Fkn where kn = 4 or kn ^ 6 if | F\ = 2, 
while kn ^ 2 if \F\ > 2. Thus by Theorem 2, each Fkn is an iV(2)-ring and hence 
Rn is an iV(2)-ring. 
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(2) Suppose t ha t each factor in R/J is of the form Fk where F is a field of 

characteristic 2 and \F\ > 2. Let n ^ 2. Then by (1), Rn is an TV(2)-ring. How

ever by Theorem 3, Rn/Jn is an TV-ring. Since \R\ = 2m, it follows tha t R is 

an TV-ring. 

(3) This is an immediate consequence of (2). 

T H E O R E M 8. Let R be a finite commutative ring such that the two-element field 
does not occur as a factor in R/J. Then for all n, Rn is an N-ring. 

Proof. For n ^ 2, Rn is an TV-ring by Theorem 7 (2), while R itself is an TV-ring 
by Theorem 1. 

T H E O R E M 9. Let R be the ring of lower (upper) triangular matrices over a finite 
field F where \F\ > 2. Then for all n, Rn is an N-ring. 

Proof. R is a subring of Fk for some k. Let J be the radical of R. Then R/J is 
a direct product of k copies of F and hence by Theorem 7 (3), Rn is an TV-ring for 
n ^ 2. We now prove tha t R itself is an TV-ring. We may take k ^ 2. Let 
p = char. F. Since R/J is an TV-ring and \R\ is a power of p, it remains to prove 
tha t R is an TV(p)-ring. However the proof of Theorem 2 showed tha t there exist 
A, B in R such tha t A -\- B = 1 and ^4, 5 are non-£-th power units in Fk. 
Hence A, B are also non-p-th power units in R, which completes the proof. 

We note tha t if R is an TV-ring, then Rn is not always an TV-ring. For R = FT is 
an TV-ring where F is the two-element field, but R2 = Fu is not an TV-ring 
since 213 — 1 is a prime. 

Raghavendran [6, Theorem 3] has shown tha t a finite local ring of prime 
characteristic p0 whose radical / satisfies J2 = (0) is isomorphic to the ring R 
of all n X n matrices of the form 

b* . . . bn "I 
0 . . . 0 
aiS3 . . . 0 

[_0 0 0 . . . ais» J 

where au b2, . . . , bn range over the field of order p0
r and for i = 2, . . . , n, 

Si = pou for fixed integers tt with 1 ^ tt ^ r. Conversely for every choice of 
the integers tu R is local of characteristic po and its radical / satisfies J2 = (0). 

If po > 2, then R is an TV(£>0)-ring by Theorem 4. However for p0 = 2, R is not 
always an TV(2)-ring. Namely we prove the following. 

T H E O R E M 10. Let R be the above ring of matrices where po = 2 and n ^ 2. Then 
R is not an TV'(2)-ring if and only if GCD(tu r) = 1 for all i. 

Proof. T h e radical J of R consists of those matrices for which a,\ = 0. Also 
R = F © / w h e r e 7MS the field consisting of those matrices for which all bt = 0. 

a\ bi 
0 a^ 
0 0 
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We shall identify ai in the field of order 2r with 

diag(ai, a^2, . . . , aiSn) in F. 

Let Yi be the matrix with 1 in the (1, i) position and zeros elsewhere. Then 
F2, . . . , Yn is a left F-basis for J and 

Yxa = aSiYi 

for a in F and all i. Let x be an element in R. Then there exist unique elements 
ai, a2, . . . , an in F such that 

x = ai + a2Y2 + . . . + anYn. 

Since/ 2 = (0), 

x2 = a,2 + a2(a, + m'*) F2 + . . . + an{ax + a^) Yn. 

Now as |F| = 2r, note that if GCD(t, r) = 1 and a 6 i7, then a + a2' = 0 only 
for a = 0, 1. It follows that if GCD(ti} r) = 1 for all 2, then every non-square 
unit of R belongs to 1 + / and thus R is not an N(2)-r'mg. 

Conversely suppose that for some i, GCD(tu r) > 1. Then there exists a,\ in F 
such that 

d\ + ai2' = 0 and a,\ 7e 0, 1. 

Hence X\ = ai2 + Yt is a non-square unit in i?. Since char. R = 2, xi + 1 is also 
a non-square unit, which proves that R is an iV(2)-ring. 

Theorem 10 provides an example of a ring R such that R/J is an TV-ring but 
R is not an iV-ring. 

We now give an example of an TV-ring R such that R/J is not an TV-ring. Let 
S = F2 where F is the two-element field. Let x be an indeterminate over 5 and 
let R = S[x]/(x2). We may identify 5 as a subring of R and moreover each 
element of R can be written uniquely as 

a + by where a, b (z S and y = x + (x2). 

Clearly J = Sy and R/J = S. By Theorem 2, 5 is an TV(3)-ring but not an 
7V(2)-ring. Thus as \R*\ = (25)3, we have only to show that R is an TV(2)-ring. 
Define 

T(a + by) = trace (6). 

Then T((a + by)2) = 0 since (a + by)2 = a2 + (a& + fra);y and char. R = 2. 
Let ai, a2 be units in 5 such that a,\ + a2 = 1. Choose 60 in S such that 
trace (&o) = 1- Hence a,\ + b0y and a2 + fr0;y are non-square units in R whose 
sum is 1, that is R is an TV(2)-ring. This proves that R is an TV-ring. 

Finally we deduce the following result which is well known for fields 
[5, Theorem 12, p. 15]. 
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THEOREM 11. Let Rbe a commutative local ring of odd order. Then for any units 
a, b in R, the equation ax2 -\- by2 = I is solvable in R. 

Proof. Let a, b be units in R. If a or & is a square, the result is immediate. So 
let a, b be non-squares. By Theorem 4, there exist non-square units a\, b\ such 
that ai + bi = 1. However the index [7?* : S] = 2 where 5 is the subgroup of 
squares in R*. Hence a~lax = x2 and b~lb\ = y2 for x, y in R*, completing the 
proof. 
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