FINITE RINGS IN WHICH 1 IS A SUM OF TWO NON-p-th POWER UNITS

DAVID JACOBSON

Introduction. Let R be a finite ring with 1 and let R^{*} denote the group of units of R. Let p be a prime number. In this paper we consider the question of whether there exist a, b in R^{*} such that a and b are non- p-th powers whose sum is 1 . If such units a, b exist in R, we say that R is an $N(p)$-ring. Of course if p does not divide $\left|R^{*}\right|$, the order of R^{*}, then every element in R^{*} is a p th power.

Let J denote the Jacobson radical of R. Hence R / J is a direct product of full matrix rings over finite fields. If the two-element field occurs as a factor in R / J, then clearly 1 cannot be written as a sum of two units in R. On the other hand, if the two-element field does not occur in R / J, then it follows from [3, Theorem 11] that every element of R is a sum of two units. So henceforth we assume that R is a ring of this type.

We say that R is an N-ring if R is an $N(p)$-ring for all primes p dividing $\left|R^{*}\right|$. For example, it is shown that a ring of one of the following kinds is an N-ring, namely a commutative ring, or a ring of odd order, or the ring F_{n} of all $n \times n$ matrices over a finite field F where $|F|>2$. However if $|F|=2$ and p divides $\left|F_{n}{ }^{*}\right|$, then F_{n} is an $N(p)$-ring except if the order of $2(\bmod p)$ is $n-1$ or $p=2$ and $n=2,3,5$ (see Theorem 2).

In Section 1 we consider finite commutative rings and in Section 2 we deal with finite semisimple rings. Section 3 is devoted to rings of odd order and finally in Section 4 we deduce additional results.

I wish to express my thanks to Professor G. Krause for his helpful comments.

1. Commutative rings. Let R be a finite commutative ring and let J be its Jacobson radical. We prove the following theorem.

Theorem 1. Let R be a finite commutative ring such that the two-element field does not occur as a factor in R / J. Then R is an N-ring.

Proof. Let p be any prime dividing $\left|R^{*}\right|$. We prove that R is a $N(p)$-ring. Since R is a direct product of local rings, we may assume that R is a local ring with maximal ideal J. Let F denote the finite field R / J. There exists an epimorphism $R^{*} \rightarrow F^{*}$ with kernel $1+J$. As $|J|$ and $\left|F^{*}\right|$ are relatively prime, R^{*} is isomorphic to the direct product of the groups $1+J$ and F^{*}. Now let S (resp. N) denote the set of p th (resp. non- p-th) powers in R^{*} which are not in

[^0]$1+J$. Let $g: N \rightarrow R$ be the mapping defined by $g(a)=1-a$ for a in N. Since J is the set of all non-units in $R, g(N) \subseteq S \cup N$ and as $|N|=|g(N)|$, it suffices to prove that $|N|>|S|$. We distinguish the two cases $p\left|\left|F^{*}\right|\right.$ and $\left.p\right||J|$.

First suppose that $p \| F^{*} \mid$. Let S_{1} be the subgroup of p-th powers in F^{*}. As every element in $1+J$ is a p-th power,

$$
|S|=|J|\left(\left|S_{1}\right|-1\right) \text { and }|N|=|J|\left(\left|F^{*}\right|-\left|S_{1}\right|\right) .
$$

Thus it suffices to prove that $\left|F^{*}\right|+1>2\left|S_{1}\right|$. Let f be the p th power map in F^{*}. Then $\left|F^{*}\right|=|\operatorname{Ker} f|\left|S_{1}\right|$ where $|\operatorname{Ker} f|=p$ since F^{*} is cyclic. Hence $\left|F^{*}\right|+1>2\left|S_{1}\right|$, proving that $|N|>|S|$.

Assume now that $p \| J \mid$. Let S_{0} be the subgroup of p th powers in $1+J$. As every element in F^{*} is a p th power,

$$
|S|=\left|S_{0}\right|\left(\left|F^{*}\right|-1\right) \text { and }|N|=\left(|J|-\left|S_{0}\right|\right)\left(\left|F^{*}\right|-1\right)
$$

Since $\left|F^{*}\right|-1>0$, it suffices to show that $|J|>2\left|S_{0}\right|$. Let f_{0} be the p th power map in $1+J$. Then $|J|=\left|\operatorname{Ker} f_{0}\right|\left|S_{0}\right|$ where $\left|\operatorname{Ker} f_{0}\right| \geqq p$. Thus if $p>2$, then $|N|>|S|$. So let $p=2$. Suppose that $\left|\operatorname{Ker} f_{0}\right|=2$, that is, $1+J$ has a unique element of order 2 . Since $1+J$ is an abelian 2 -group, $1+J$ is cyclic and hence R^{*} is cyclic. Referring to the classification in [2], we see that R is isomorphic to one of the following rings: $Z /(4), F_{0}[x] /\left(x^{m}\right)$ where $F_{0}=Z /(2)$ and $m=2$ or 3 , or $Z[x] /\left(4,2 x, x^{2}-2\right)$. However each of these rings has a residue field of order 2 , contrary to our hypothesis. Hence $\left|\operatorname{Ker} f_{0}\right|>2$ and again $|N|>|S|$, completing the proof.
2. Semisimple rings. Let n be a positive integer and F a finite field. As usual, we let F_{n} denote the ring of all $n \times n$ matrices with entries in F.

Theorem 2. Let F be a finite field.
(1) If $|F|>2$, then F_{n} is an N-ring.
(2) If $|F|=2$ and p divides $\left|F_{n}{ }^{*}\right|$, then F_{n} is an $N(p)$-ring except if
(a) $p \mid 2^{n-1}-1$ and $n-1$ is the least positive integer with this property or
(b) $p=2$ and $n=2,3,5$.

The proof of the theorem is preceded by the following lemma.
Lemma 1. Let F be a finite field of characteristic p. Let A be a matrix in F_{n} whose minimum polynomial is $f(x)$. If $f(x)$ and $f^{\prime}(x)$ are relatively prime, then A is a pth power. Conversely if A is a pth power and $f(x)$ has degree n, then $f(x)$ and $f^{\prime}(x)$ are relatively prime.

Proof. Let $F[A]$ denote the F-subalgebra generated by A. We prove that $f(x)$ and its derivative $f^{\prime}(x)$ are relatively prime if and only if A is a p th power in $F[A]$.

Let $f(x)$ and $f^{\prime}(x)$ be relatively prime. It follows that

$$
f(x)=f_{1}(x) \ldots f_{m}(x)
$$

where f_{1}, \ldots, f_{m} are distinct monic irreducibles in $F[x]$. Hence $F[A]$ is isomorphic to the direct product of the finite fields

$$
F[x] /\left(f_{1}\right), \ldots, F[x] /\left(f_{m}\right)
$$

each of characteristic p and thus $(F[A])^{p}=F[A]$.
Conversely let $A=B^{p}$ for B in $F[A]$. Since $F[A]$ is isomorphic to $F[x] /(f(x))$ where $A \rightarrow x+(f(x))$, there exist $g(x)$ and $h(x)$ in $F[x]$ such that

$$
x-[g(x)]^{p}=f(x) h(x)
$$

Differentiating each side yields that $1=f(x) h^{\prime}(x)+f^{\prime}(x) h(x)$, proving that $f(x)$ and $f^{\prime}(x)$ are relatively prime.

Finally suppose that $A=B^{p}$ where B is in F_{n} and $f(x)$ has degree n. To prove that $f(x)$ and $f^{\prime}(x)$ are relatively prime, it suffices to show that $B \in F[A]$. Now $F[A] \subseteq F[B]$ and thus $|F[A]| \leqq|F[B]|$, that is $|F|^{n} \leqq|F|^{n_{1}}$ where n_{1} is the degree of the minimum polynomial of B. However $n_{1} \leqq n$ and hence $F[A]=F[B]$, completing the proof of the lemma.

Note that if A is a unit in F_{n} such that p divides $|A|$ and $f(x)$ is of degree n, then A is not a p th power in F_{n}.

We also remark that Lemma 1 does not always hold if $\operatorname{deg} f(x)<n$. For let $n=p^{2}$ and let B be a matrix in F_{n} whose minimum polynomial is $(x-\alpha)^{n}$ where α is in the prime subfield of F. Then $A=B^{p}$ has minimum polynomial $f(x)=(x-\alpha)^{p}$, whence $f^{\prime}(x)=0$.

We now return to the proof of the theorem. Let $|F|=q$. It is well known that

$$
\left|F_{n}{ }^{*}\right|=q^{(n-1) n / 2}\left(q^{n}-1\right) \ldots(q-1)
$$

Let p be a prime dividing $\left|F_{n}{ }^{*}\right|$.
We first assume that $p=$ char. F, so that $n \geqq 2$. Let $q>2$ and choose α in F, $\alpha \neq 0,1$. Let $A=\alpha I_{n}+E$, where E is the matrix with 1 in the ($i, i+1$) entry and zeros elsewhere. Set $B=I_{n}-A$. Then the minimum polynomials of A and B are respectively $(x-\alpha)^{n}$ and $(x-(1-\alpha))^{n}$. Hence by Lemma $1, A$ and B are non- p-th power units in F_{n} whose sum is I_{n}.

Now let $q=2$, so that $p=2$. We prove that F_{n} is an $N(2)$-ring if and only if $n=4$ or $n \geqq 6$.

Suppose that $n=2 m$ where $m \geqq 2$. Let A in F_{n} be the companion matrix of $f(x)=\left(x^{2}+x+1\right)^{m}$ and let $A+B=I_{n}$. Thus the minimum polynomial of B is $f(x+1)=f(x)$ and by Lemma $1, A$ and B are non-square units in F_{n}.

Now let $n=2 m+3$ where $m \geqq 2$. Let A in F_{n} be the companion matrix of

$$
f(x)=\left(x^{2}+x+1\right)^{m}\left(x^{3}+x+1\right)
$$

and let $A+B=I_{n}$. Thus the minimum polynomial of B is

$$
f(x+1)=\left(x^{2}+x+1\right)^{m}\left(x^{3}+x^{2}+1\right)
$$

and again by the lemma, A and B are non-square units in F_{n}.

This proves that F_{n} is an $N(2)$-ring for $n=4$ or $n \geqq 6$.
Assume now that A is a non-square unit in F_{n} where n is 2,3 or 5 . Let $f(x)$ be the minimum polynomial of A. Since $f(x)$ and $f^{\prime}(x)$ are not relatively prime and $x \nmid f(x)$, it is easy to verify that $x+1$ is a divisor of $f(x)$. Hence if $A+B=I_{n}$, then B is a non-unit in F_{n} since x divides $f(x+1)$, the minimum polynomial of B.

Now suppose that p divides $\left|F_{n}{ }^{*}\right|$ and $p \neq$ char. F. Let k be the least integer in $\{1, \ldots, n\}$ such that $p \mid\left(q^{k}-1\right)$. Let $f_{0}(x)$ be a monic irreducible in $F[x]$ of degree k and let A_{0} in F_{k} be the companion matrix of $f_{0}(x)$. Let $\left\langle A_{0}\right\rangle_{k}$ denote the F-subalgebra of F_{k} generated by A_{0}. Thus $\left\langle A_{0}\right\rangle_{k}$ is a field of order q^{k}. Hence there exist non-p-th power units A_{1}, A_{2} in $\left\langle A_{0}\right\rangle_{k}$ such that $A_{1}+A_{2}=I_{k}$. Moreover the subfield $\left\langle A_{1}\right\rangle_{k}$ is of order $q^{k_{1}}$. However if $k_{1}<k$, then $p \nmid\left(q^{k_{1}}-1\right)$, which contradicts that A_{1} is not a p th power in $\left\langle A_{1}\right\rangle_{k}$. Hence the minimum polynomial $f_{1}(x)$ of A_{1} is of degree k and irreducible in $F[x]$. It follows that A_{1} is not a p th power in F_{k}. Similarly A_{2} is not a p th power in F_{k}. Thus if $k=n$, then F_{n} is an $N(p)$-ring.

So let $1 \leqq k<n$. Suppose that there exists a monic irreducible $g_{1}(x)$ in $F[x]$ of degree $n-k$ such that $f_{1}(x)$ and $g_{1}(x)$ are relatively prime and neither x nor $x-1$ divides $g_{1}(x)$. Then we claim that F_{n} is a $N(p)$-ring. For let B_{1} in F_{n-k} be the companion matrix of $g_{1}(x)$. Let

$$
A=\left[\begin{array}{c|c}
A_{1} & 0 \\
\hline 0 & B_{1}
\end{array}\right]
$$

belong to F_{n}. Clearly there is a monomorphism of the ring $\langle A\rangle_{n}$ into the direct product of the fields $\left\langle A_{1}\right\rangle_{k}$ and $\left\langle B_{1}\right\rangle_{n-k}$ where $A \rightarrow\left(A_{1}, B_{1}\right)$. Thus A is not a p-th power in $\langle A\rangle_{n}$. However the minimum polynomial of A is $f_{1}(x) g_{1}(x)$ of degree n and hence A is not a p th power in F_{n}. Now let $A+B=I_{n}$. A similar argument shows that B is not a p th power in F_{n}. Since A and B are units in F_{n}, the claim is established.

It is easy to see that there exists a $g_{1}(x)$ with the above properties except for the cases (i) $q=3, n=2, k=1$, (ii) $q=2, n=4, k=2$ and (iii) $q=2$, $n-k=1$.

We now consider these remaining cases.
(i) Let $q=3, n=2, k=1$, whence $p=2$. Let $f(x)=x^{2}-x-1$. As $f(1-x)=f(x)$, it is clear that there exist A, B in F_{2} such that $A+B=I_{2}$ and $f(x)$ is their minimum polynomial. Since $f\left(x^{2}\right)=x^{4}-x^{2}-1$ is irreducible in $F[x]$, it follows that A and B are non-square units in F_{2}.
(ii) Let $q=2, n=4, k=2$, whence $p=3$. Clearly we may choose A, B in F_{4} such that $A+B=I_{4}$ and $x^{2}+x+1$ is their minimum polynomial. However $x^{6}+x^{3}+1$ is irreducible in $F[x]$ and thus A and B are non-cube units in F_{4}.
(iii) Finally let $q=2, k=n-1$. As $p \mid 2^{n-1}-1, n \geqq 3$. Let A be any non- p-th power unit in F_{n}. We show that $I_{n}-A$ is a non-unit in F_{n}. Let $f(x)$ be
the minimum polynomial of A. Thus

$$
f(x)=f_{1} l_{1} \ldots f_{s}^{l_{s}}
$$

where f_{1}, \ldots, f_{s} are distinct monic irreducibles in $F[x]$. Let $\langle A\rangle$ denote the F-subalgebra generated by A. Hence $\langle A\rangle$ is isomorphic to the direct product $R_{1} \times \ldots \times R_{s}$ where each

$$
R_{i}=F[x] /\left(f_{i}^{l_{i}}\right) .
$$

However R_{i} is a local ring whose residue field is isomorphic to $F[x] /\left(f_{i}\right)$. Thus letting d_{i} denote the degree of f_{i}, we have

$$
\left|R_{i}{ }^{*}\right|=2^{d_{i}\left(l_{i}-1\right)}\left(2^{d_{i}}-1\right)
$$

and

$$
\left|\langle A\rangle^{*}\right|=\left|R_{1}{ }^{*}\right| \ldots\left|R_{s}^{*}\right|
$$

Since A is not a p th power, p divides $\left|\langle A\rangle^{*}\right|$ and as p is prime to 2 , we may suppose that $p \mid\left(2^{d_{1}}-1\right)$. Thus $d_{1}=n$ or $d_{1}=n-1$. If $d_{1}=n$, then p divides $\left(2^{n}-1\right)-\left(2^{n-1}-1\right)$, that is $p \mid 2^{n-1}$, a contradiction. So $d_{1}=n-1$. However

$$
d_{1} l_{1}+\ldots+d_{s} l_{s} \leqq n
$$

and since $n>2$, it follows that $f(x)=f_{1}$ or $f(x)=f_{1} f_{2}$. Let $g(x)$ be the characteristic polynomial of A. It is well known that $f(x)$ and $g(x)$ have the same irreducible factors. Thus $f(x)=f_{1}$ is impossible since f_{1} contains no linear factor. Hence $f(x)=f_{1} f_{2}$ where f_{2} is of degree 1 . As A is a unit, $f_{2}=x+1$. Now let $A+B=I_{n}$. Thus the minimum polynomial of B is $f(x+1)=x f_{1}(x+1)$, so that B is not a unit. This completes the proof of Theorem 2.

For example, if $|F|=2$, then F_{3} is neither an $N(2)$ - nor an $N(3)$-ring, but F_{7} is an N-ring.

Note that if $|F|=2$ and p is a fixed odd prime, then F_{n} is an $N(p)$-ring for all $n \geqq m+2$ where m is the order of $2(\bmod p)$.

A finite ring R is semisimple if its radical $J=(0)$. By the Wedderburn theorem, R is semisimple if and only if it is a direct product of finite simple rings R_{1}, \ldots, R_{m}, where each R_{i} is isomorphic to a matrix ring over a finite field.

Theorem 3. Let R be a direct product of finite simple rings, R_{1}, \ldots, R_{m} such that $\left|R_{i}\right|>2$ for $i=1, \ldots, m$.
(i) R is an $N(p)$-ring if and only if some R_{i} is an $N(p)$-ring.
(ii) If the center of each R_{i} has more than two elements, then R is an N-ring.

Proof. (i) Let R be an $N(p)$-ring. It follows that there exist units a_{i}, b_{i} in some R_{i} such that a_{i} is not a p th power in R_{i} and $a_{i}+b_{i}=1$. If the center F_{i} of R_{i} is not the two-element field, then R_{i} is a $N(p)$-ring by (1) of Theorem 2. On the other hand, let $\left|F_{i}\right|=2$. Since b_{i} is a unit in R_{i}, the proof of Theorem 2
shows that neither (a) nor (b) applies to p. Hence R_{i} is an $N(p)$-ring. The converse is clear.
(ii) The result follows immediately from (1) of Theorem 2 and part (i).
3. Rings of odd order. In the sequel we shall often use the next result.

Lemma 2. Let K be an ideal of the finite ring R where $K \subseteq J$, the Jacobson radical of R.
(i) If p is a prime divisor of $\left|R^{*}\right|$, then p divides $|K|$ or p divides $\left|(R / K)^{*}\right|$.
(ii) If R / K is an $N(p)$-ring, then R is an $N(p)$-ring.

Proof. Since units lift $(\bmod J)$, the natural $\operatorname{map} R \rightarrow R / K$ induces an epimorphism $R^{*} \rightarrow(R / K)^{*}$ with kernel $1+K$. Hence (i) and (ii) follow.

In the remainder of this section we assume that R is a ring of odd order.
Theorem 4. Let R be a ring of odd order. Then R is an N-ring.
Proof. Since a finite ring is a direct product of rings of prime power order, we may assume that $|R|=p_{0}{ }^{m}$ where p_{0} is an odd prime. Thus R / J is a direct product of matrix rings over finite fields of characteristic p_{0} and by Theorem $3, R / J$ is an N-ring. If p is a prime divisor of $\left|R^{*}\right|$ and $p \neq p_{0}$, then p divides $\left|(R / J)^{*}\right|$ and hence R is an $N(p)$-ring by Lemma 2 . Thus it remains to prove that if p_{0} divides $\left|R^{*}\right|$, then R is an $N\left(p_{0}\right)$-ring. Of course if p_{0} divides $\left|(R / J)^{*}\right|$, then R is an $N\left(p_{0}\right)$-ring.

So we can assume that p_{0} divides $\left|R^{*}\right|$ but p_{0} does not divide $\left|(R / J)^{*}\right|$. It follows that $J \neq(0)$ and R / J is a direct product of finite fields each of characteristic p_{0}.

We first consider the case that R is a ring of characteristic p_{0}. Let F_{0} denote the subfield of R of order p_{0} generated by 1 . Since R is a finite dimensional algebra over F_{0}, the Wedderburn Factor Theorem [1, p. 471] yields that $R=S+J$ where S is a subring isomorphic to R / J and $S \cap J=0$. Thus $F_{0} \subseteq S$ and we note that if $a \in S$ and $a^{p_{0}}=\alpha \in F$, then $a=\alpha$. Now as J is nilpotent and non-zero, there exists x in J such that x is not in the ideal $J^{p_{0}}$. Let $\alpha \in F_{0}$. We claim that $\alpha+x$ is not a p_{0} th power in R. For let

$$
(a+y)^{p_{0}}=\alpha+x
$$

where $a \in S$ and $y \in J$. Then $a^{p_{0}}+y_{1}=\alpha+x$ where $y_{1} \in J$. Thus $a^{p_{0}}=\alpha$ and as noted $a=\alpha$. However α is in the center of R and char. $R=p_{0}$, so that

$$
(\alpha+y)^{p_{0}}=\alpha^{p_{0}}+y^{p_{0}} .
$$

Hence $y^{p_{0}}=x$, which contradicts that $x \notin J^{p_{0}}$ and establishes the claim. As $p_{0}>2$ there exist units α, β in F_{0} such that $\alpha+\beta=1$ and hence $\alpha+x$ and $\beta-x$ are non- p_{0}-th power units in R whose sum is 1 .

Now let R not be of characteristic p_{0}. The ideal $p_{0} R$ is contained in J. Suppose that $p_{0} R$ is not equal to J. Let $R_{1}=R / p_{0} R$. Then the Jacobson radical of R_{1} is $J_{1}=J / p_{0} R$ and p_{0} divides $\left|R_{1}{ }^{*}\right|$. Since R_{1} / J_{1} is isomorphic to
R / J and char. $R_{1}=p_{0}$, the preceding case shows that R_{1} is an $N\left(p_{0}\right)$-ring and hence by Lemma $2, R$ is an $N\left(p_{0}\right)$-ring.

Thus we may suppose that $J=p_{0} R$. Assume that $J^{2}=(0)$. We prove that R is a commutative ring. As R / J is a direct product of finite fields, there exists an integer $r>1$ such that $a^{r}-a \in J$ for all a in R. By [4, Theorem 3.2.3, p. 81], it suffices to prove that J is contained in the center of R. Let $x \in J$ and let $a \in R$. Then $x=p_{0} b$ where $b \in R$ and hence $a x-x a=p_{0}(a b-b a)$. However $a b-b a \in J$ and $(0)=J^{2}=p_{0}{ }^{2} R$, so that $a x=x a$. Thus R is commutative and by Theorem $1, R$ is an $N\left(p_{0}\right)$-ring.

Finally let $J^{2} \neq(0)$. Since J is nilpotent, $J^{2} \neq J$. Let $R_{2}=R / J^{2}$. The radical of R_{2} is $J_{2}=J / J^{2}$ and p_{0} divides $\left|R_{2}{ }^{*}\right|$. Since $J_{2}=p_{0} R_{2}$ and $J_{2}{ }^{2}=(0)$, the above argument shows that R_{2} is commutative. Hence R_{2} is an $N\left(p_{0}\right)$-ring and by Lemma $2, R$ is an $N\left(p_{0}\right)$-ring. This completes the proof of the theorem.

Theorem 5. A ring of odd order is an $N(2)$-ring.
Proof. Let R be a ring of odd order. Then R / J is of odd order and hence R / J is an N-ring by Theorem 4. However 2 divides $\left|(R / J)^{*}\right|$ and thus Lemma 2 yields that R is an $N(2)$-ring.

4. Additional results.

Theorem 6. Let R be a finite dimensional algebra over a finite field F of characteristic $p_{0}>2$. Then R is an N-ring.

Proof. Let $m=\operatorname{dim}_{F} R$. Then $|R|=|F|^{m}$ and since p_{0} is an odd prime, R is of odd order. Thus by Theorem $4, R$ is an N-ring.

Theorem 7. Let R be a finite ring with Jacobson radical J.
(1) If the two-element field does not occur as a factor in R / J, then for $n \geqq 2, R_{n}$ is an $N(2)$-ring.
(2) If the two element field does not occur as a factor in the center of R / J, then for $n \geqq 2, R_{n}$ is an N-ring.
(3) If R / J is a direct product of finite fields each having more than two elements, then for $n \geqq 2, R_{n}$ is an N-ring.

Proof. Since a ring of odd order is both an N-ring and an $N(2)$-ring, it suffices to prove the theorem for the case that $|R|$ is a power of 2 .
(1) Suppose that the two-element field does not occur as a factor in R / J. As $|R|=2^{m}$, it follows that each factor in R / J is of the form F_{k} where F is a field of characteristic 2 and $k>1$ if $|F|=2$. Now let $n \geqq 2$. The radical of R_{n} is J_{n} and

$$
R_{n} / J_{n} \cong(R / J)_{n}
$$

Hence each factor in R_{n} / J_{n} is of the form $F_{k n}$ where $k n=4$ or $k n \geqq 6$ if $|F|=2$, while $k n \geqq 2$ if $|F|>2$. Thus by Theorem 2 , each $F_{k n}$ is an $N(2)$-ring and hence R_{n} is an $N(2)$-ring.
(2) Suppose that each factor in R / J is of the form F_{k} where F is a field of characteristic 2 and $|F|>2$. Let $n \geqq 2$. Then by (1), R_{n} is an $N(2)$-ring. However by Theorem $3, R_{n} / J_{n}$ is an N-ring. Since $|R|=2^{m}$, it follows that R is an N-ring.
(3) This is an immediate consequence of (2).

Theorem 8. Let R be a finite commutative ring such that the two-element field does not occur as a factor in R / J. Then for all n, R_{n} is an N-ring.

Proof. For $n \geqq 2, R_{n}$ is an N-ring by Theorem 7(2), while R itself is an N-ring by Theorem 1.

Theorem 9. Let R be the ring of lower (upper) triangular matrices over a finite field F where $|F|>2$. Then for all n, R_{n} is an N-ring.

Proof. R is a subring of F_{k} for some k. Let J be the radical of R. Then R / J is a direct product of k copies of F and hence by Theorem 7 (3), R_{n} is an N-ring for $n \geqq 2$. We now prove that R itself is an N-ring. We may take $k \geqq 2$. Let $p=$ char. F. Since R / J is an N-ring and $|R|$ is a power of p, it remains to prove that R is an $N(p)$-ring. However the proof of Theorem 2 showed that there exist A, B in R such that $A+B=1$ and A, B are non- p-th power units in F_{k}. Hence A, B are also non- p-th power units in R, which completes the proof.

We note that if R is an N-ring, then R_{n} is not always an N-ring. For $R=F_{7}$ is an N-ring where F is the two-element field, but $R_{2} \cong F_{14}$ is not an N-ring since $2^{13}-1$ is a prime.

Raghavendran [6, Theorem 3] has shown that a finite local ring of prime characteristic p_{0} whose radical J satisfies $J^{2}=(0)$ is isomorphic to the ring R of all $n \times n$ matrices of the form

$$
\left[\begin{array}{lllll}
a_{1} & b_{2} & b_{3} & \ldots & b_{n} \\
0 & a_{1}{ }^{s_{2}} & 0 & \ldots & 0 \\
0 & 0 & a_{1}{ }^{s_{3}} & \ldots & 0 \\
. & & & & \\
. & & & & \\
0 & 0 & 0 & \ldots & a_{1}{ }^{s_{n}}
\end{array}\right]
$$

where $a_{1}, b_{2}, \ldots, b_{n}$ range over the field of order $p_{0}{ }^{r}$ and for $i=2, \ldots, n$, $s_{i}=p_{0}{ }^{t_{i}}$ for fixed integers t_{i} with $1 \leqq t_{i} \leqq r$. Conversely for every choice of the integers t_{i}, R is local of characteristic p_{0} and its radical J satisfies $J^{2}=(0)$.

If $p_{0}>2$, then R is an $N\left(p_{0}\right)$-ring by Theorem 4 . However for $p_{0}=2, R$ is not always an $N(2)$-ring. Namely we prove the following.

Theorem 10. Let R be the above ring of matrices where $p_{0}=2$ and $n \geqq 2$. Then R is not an $N(2)$-ring if and only if $G C D\left(t_{i}, r\right)=1$ for all i.
Proof. The radical J of R consists of those matrices for which $a_{1}=0$. Also $R=F \oplus J$ where F is the field consisting of those matrices for which all $b_{i}=0$.

We shall identify a_{1} in the field of order 2^{r} with

$$
\operatorname{diag}\left(a_{1}, a_{1}^{s_{2}}, \ldots, a_{1}^{s_{n}}\right) \text { in } F
$$

Let Y_{i} be the matrix with 1 in the $(1, i)$ position and zeros elsewhere. Then Y_{2}, \ldots, Y_{n} is a left F-basis for J and

$$
Y_{i} a=a^{s_{i}} Y_{i}
$$

for a in F and all i. Let x be an element in R. Then there exist unique elements $a_{1}, a_{2}, \ldots, a_{n}$ in F such that

$$
x=a_{1}+a_{2} Y_{2}+\ldots+a_{n} Y_{n}
$$

Since $J^{2}=(0)$,

$$
x^{2}=a_{1}^{2}+a_{2}\left(a_{1}+a_{1}^{s_{2}}\right) Y_{2}+\ldots+a_{n}\left(a_{1}+a_{1}^{s_{n}}\right) Y_{n}
$$

Now as $|F|=2^{r}$, note that if $G C D(t, r)=1$ and $a \in F$, then $a+a^{2^{t}}=0$ only for $a=0,1$. It follows that if $G C D\left(t_{i}, r\right)=1$ for all i, then every non-square unit of R belongs to $1+J$ and thus R is not an $N(2)$-ring.

Conversely suppose that for some $i, G C D\left(t_{i}, r\right)>1$. Then there exists a_{1} in F such that

$$
a_{1}+a_{1}{ }^{2 t}=0 \text { and } a_{1} \neq 0,1
$$

Hence $x_{1}=a_{1}{ }^{2}+Y_{i}$ is a non-square unit in R. Since char. $R=2, x_{1}+1$ is also a non-square unit, which proves that R is an $N(2)$-ring.

Theorem 10 provides an example of a ring R such that R / J is an N-ring but R is not an N-ring.

We now give an example of an N-ring R such that R / J is not an N-ring. Let $S=F_{2}$ where F is the two-element field. Let x be an indeterminate over S and let $R=S[x] /\left(x^{2}\right)$. We may identify S as a subring of R and moreover each element of R can be written uniquely as

$$
a+b y \text { where } a, b \in S \text { and } y=x+\left(x^{2}\right)
$$

Clearly $J=S y$ and $R / J \cong S$. By Theorem $2, S$ is an $N(3)$-ring but not an $N(2)$-ring. Thus as $\left|R^{*}\right|=\left(2^{5}\right) 3$, we have only to show that R is an $N(2)$-ring. Define

$$
T(a+b y)=\operatorname{trace}(b)
$$

Then $T\left((a+b y)^{2}\right)=0$ since $(a+b y)^{2}=a^{2}+(a b+b a) y$ and char. $R=2$. Let a_{1}, a_{2} be units in S such that $a_{1}+a_{2}=1$. Choose b_{0} in S such that $\operatorname{trace}\left(b_{0}\right)=1$. Hence $a_{1}+b_{0} y$ and $a_{2}+b_{0} y$ are non-square units in R whose sum is 1 , that is R is an $N(2)$-ring. This proves that R is an N-ring.

Finally we deduce the following result which is well known for fields [5, Theorem 12, p. 15].

Theorem 11. Let R be a commutative local ring of odd order. Then for any units a, b in R, the equation $a x^{2}+b y^{2}=1$ is solvable in R.

Proof. Let a, b be units in R. If a or b is a square, the result is immediate. So let a, b be non-squares. By Theorem 4, there exist non-square units a_{1}, b_{1} such that $a_{1}+b_{1}=1$. However the index $\left[R^{*}: S\right]=2$ where S is the subgroup of squares in R^{*}. Hence $a^{-1} a_{1}=x^{2}$ and $b^{-1} b_{1}=y^{2}$ for x, y in R^{*}, completing the proof.

References

1. Carl Faith, Algebra: rings, modules and categories I (Springer-Verlag, New York, 1973).
2. R. Gilmer, Finite rings having a cyclic multiplicative group of units, Amer. J. Math., 85 (1963), 447-452.
3. Melvin Henriksen, Two classes of rings generated by their units, (to appear).
4. I. N. Herstein, Noncommutative rings, Carus Mathematical Monographs, Number 15, 1968.
5. Irving Kaplansky, Linear algebra and geometry (Allyn and Bacon, Inc., Boston, 1969).
6. R. Raghavendran, Finite associative rings, Compositio Math., 21 (1969), 195-229.

University of Manitoba, Winnipeg, Manitoba

[^0]: Received January 8, 1975.
 This research was supported in part by NRC grant A8749.

