FINITE RINGS IN WHICH 1 IS A SUM OF TWO NON-*p*-th POWER UNITS

DAVID JACOBSON

Introduction. Let R be a finite ring with 1 and let R^* denote the group of units of R. Let p be a prime number. In this paper we consider the question of whether there exist a, b in R^* such that a and b are non-p-th powers whose sum is 1. If such units a, b exist in R, we say that R is an N(p)-ring. Of course if p does not divide $|R^*|$, the order of R^* , then every element in R^* is a pth power.

Let *J* denote the Jacobson radical of *R*. Hence R/J is a direct product of full matrix rings over finite fields. If the two-element field occurs as a factor in R/J, then clearly 1 cannot be written as a sum of two units in *R*. On the other hand, if the two-element field does not occur in R/J, then it follows from [3, Theorem 11] that every element of *R* is a sum of two units. So henceforth we assume that *R* is a ring of this type.

We say that R is an N-ring if R is an N(p)-ring for all primes p dividing $|R^*|$. For example, it is shown that a ring of one of the following kinds is an N-ring, namely a commutative ring, or a ring of odd order, or the ring F_n of all $n \times n$ matrices over a finite field F where |F| > 2. However if |F| = 2 and p divides $|F_n^*|$, then F_n is an N(p)-ring except if the order of $2 \pmod{p}$ is n - 1 or p = 2 and n = 2, 3, 5 (see Theorem 2).

In Section 1 we consider finite commutative rings and in Section 2 we deal with finite semisimple rings. Section 3 is devoted to rings of odd order and finally in Section 4 we deduce additional results.

I wish to express my thanks to Professor G. Krause for his helpful comments.

1. Commutative rings. Let R be a finite commutative ring and let J be its Jacobson radical. We prove the following theorem.

THEOREM 1. Let R be a finite commutative ring such that the two-element field does not occur as a factor in R/J. Then R is an N-ring.

Proof. Let p be any prime dividing $|R^*|$. We prove that R is a N(p)-ring. Since R is a direct product of local rings, we may assume that R is a local ring with maximal ideal J. Let F denote the finite field R/J. There exists an epimorphism $R^* \to F^*$ with kernel 1 + J. As |J| and $|F^*|$ are relatively prime, R^* is isomorphic to the direct product of the groups 1 + J and F^* . Now let S(resp. N) denote the set of pth (resp. non-p-th) powers in R^* which are not in

Received January 8, 1975.

This research was supported in part by NRC grant A8749.

1 + J. Let $g: N \to R$ be the mapping defined by g(a) = 1 - a for a in N. Since J is the set of all non-units in R, $g(N) \subseteq S \cup N$ and as |N| = |g(N)|, it suffices to prove that |N| > |S|. We distinguish the two cases $p||F^*|$ and p||J|.

First suppose that $p||F^*|$. Let S_1 be the subgroup of *p*-th powers in F^* . As every element in 1 + J is a *p*-th power,

$$|S| = |J|(|S_1| - 1)$$
 and $|N| = |J|(|F^*| - |S_1|)$.

Thus it suffices to prove that $|F^*| + 1 > 2|S_1|$. Let f be the pth power map in F^* . Then $|F^*| = |\text{Ker } f||S_1|$ where |Ker f| = p since F^* is cyclic. Hence $|F^*| + 1 > 2|S_1|$, proving that |N| > |S|.

Assume now that p||J|. Let S_0 be the subgroup of pth powers in 1 + J. As every element in F^* is a pth power,

$$|S| = |S_0|(|F^*| - 1)$$
 and $|N| = (|J| - |S_0|)(|F^*| - 1)$.

Since $|F^*| - 1 > 0$, it suffices to show that $|J| > 2|S_0|$. Let f_0 be the *p*th power map in 1 + J. Then $|J| = |\operatorname{Ker} f_0||S_0|$ where $|\operatorname{Ker} f_0| \ge p$. Thus if p > 2, then |N| > |S|. So let p = 2. Suppose that $|\operatorname{Ker} f_0| = 2$, that is, 1 + J has a unique element of order 2. Since 1 + J is an abelian 2-group, 1 + J is cyclic and hence R^* is cyclic. Referring to the classification in [2], we see that R is isomorphic to one of the following rings: Z/(4), $F_0[x]/(x^m)$ where $F_0 = Z/(2)$ and m = 2 or 3, or $Z[x]/(4, 2x, x^2 - 2)$. However each of these rings has a residue field of order 2, contrary to our hypothesis. Hence $|\operatorname{Ker} f_0| > 2$ and again |N| > |S|, completing the proof.

2. Semisimple rings. Let *n* be a positive integer and *F* a finite field. As usual, we let F_n denote the ring of all $n \times n$ matrices with entries in *F*.

THEOREM 2. Let F be a finite field. (1) If |F| > 2, then F_n is an N-ring. (2) If |F| = 2 and p divides $|F_n^*|$, then F_n is an N(p)-ring except if (a) $p|2^{n-1} - 1$ and n - 1 is the least positive integer with this property or (b) p = 2 and n = 2, 3, 5.

The proof of the theorem is preceded by the following lemma.

LEMMA 1. Let F be a finite field of characteristic p. Let A be a matrix in F_n whose minimum polynomial is f(x). If f(x) and f'(x) are relatively prime, then A is a pth power. Conversely if A is a pth power and f(x) has degree n, then f(x) and f'(x) are relatively prime.

Proof. Let F[A] denote the *F*-subalgebra generated by *A*. We prove that f(x) and its derivative f'(x) are relatively prime if and only if *A* is a *p*th power in F[A].

Let f(x) and f'(x) be relatively prime. It follows that

 $f(x) = f_1(x) \dots f_m(x)$

where f_1, \ldots, f_m are distinct monic irreducibles in F[x]. Hence F[A] is isomorphic to the direct product of the finite fields

$$F[x]/(f_1), \ldots, F[x]/(f_m),$$

each of characteristic p and thus $(F[A])^p = F[A]$.

Conversely let $A = B^p$ for B in F[A]. Since F[A] is isomorphic to F[x]/(f(x)) where $A \to x + (f(x))$, there exist g(x) and h(x) in F[x] such that

$$x - [g(x)]^p = f(x)h(x).$$

Differentiating each side yields that 1 = f(x)h'(x) + f'(x)h(x), proving that f(x) and f'(x) are relatively prime.

Finally suppose that $A = B^p$ where B is in F_n and f(x) has degree n. To prove that f(x) and f'(x) are relatively prime, it suffices to show that $B \in F[A]$. Now $F[A] \subseteq F[B]$ and thus $|F[A]| \leq |F[B]|$, that is $|F|^n \leq |F|^{n_1}$ where n_1 is the degree of the minimum polynomial of B. However $n_1 \leq n$ and hence F[A] = F[B], completing the proof of the lemma.

Note that if A is a unit in F_n such that p divides |A| and f(x) is of degree n, then A is not a pth power in F_n .

We also remark that Lemma 1 does not always hold if deg f(x) < n. For let $n = p^2$ and let B be a matrix in F_n whose minimum polynomial is $(x - \alpha)^n$ where α is in the prime subfield of F. Then $A = B^p$ has minimum polynomial $f(x) = (x - \alpha)^p$, whence f'(x) = 0.

We now return to the proof of the theorem. Let |F| = q. It is well known that

$$|F_n^*| = q^{(n-1)n/2}(q^n - 1) \dots (q - 1).$$

Let p be a prime dividing $|F_n^*|$.

We first assume that p = char. F, so that $n \ge 2$. Let q > 2 and choose α in F, $\alpha \ne 0, 1$. Let $A = \alpha I_n + E$, where E is the matrix with 1 in the (i, i + 1) entry and zeros elsewhere. Set $B = I_n - A$. Then the minimum polynomials of A and B are respectively $(x - \alpha)^n$ and $(x - (1 - \alpha))^n$. Hence by Lemma 1, A and B are non-p-th power units in F_n whose sum is I_n .

Now let q = 2, so that p = 2. We prove that F_n is an N(2)-ring if and only if n = 4 or $n \ge 6$.

Suppose that n = 2m where $m \ge 2$. Let A in F_n be the companion matrix of $f(x) = (x^2 + x + 1)^m$ and let $A + B = I_n$. Thus the minimum polynomial of B is f(x + 1) = f(x) and by Lemma 1, A and B are non-square units in F_n .

Now let n = 2m + 3 where $m \ge 2$. Let A in F_n be the companion matrix of

$$f(x) = (x^{2} + x + 1)^{m}(x^{3} + x + 1)$$

and let $A + B = I_n$. Thus the minimum polynomial of B is

$$f(x + 1) = (x^{2} + x + 1)^{m}(x^{3} + x^{2} + 1)$$

and again by the lemma, A and B are non-square units in F_n .

96

This proves that F_n is an N(2)-ring for n = 4 or $n \ge 6$.

Assume now that A is a non-square unit in F_n where n is 2, 3 or 5. Let f(x) be the minimum polynomial of A. Since f(x) and f'(x) are not relatively prime and $x \nmid f(x)$, it is easy to verify that x + 1 is a divisor of f(x). Hence if $A + B = I_n$, then B is a non-unit in F_n since x divides f(x + 1), the minimum polynomial of B.

Now suppose that p divides $|F_n^*|$ and $p \neq \text{char. } F$. Let k be the least integer in $\{1, \ldots, n\}$ such that $p|(q^k - 1)$. Let $f_0(x)$ be a monic irreducible in F[x] of degree k and let A_0 in F_k be the companion matrix of $f_0(x)$. Let $\langle A_0 \rangle_k$ denote the F-subalgebra of F_k generated by A_0 . Thus $\langle A_0 \rangle_k$ is a field of order q^k . Hence there exist non-p-th power units A_1 , A_2 in $\langle A_0 \rangle_k$ such that $A_1 + A_2 = I_k$. Moreover the subfield $\langle A_1 \rangle_k$ is of order q^{k_1} . However if $k_1 < k$, then $p \neq (q^{k_1} - 1)$, which contradicts that A_1 is not a pth power in $\langle A_1 \rangle_k$. Hence the minimum polynomial $f_1(x)$ of A_1 is of degree k and irreducible in F[x]. It follows that A_1 is not a pth power in F_k . Similarly A_2 is not a pth power in F_k . Thus if k = n, then F_n is an N(p)-ring.

So let $1 \leq k < n$. Suppose that there exists a monic irreducible $g_1(x)$ in F[x] of degree n - k such that $f_1(x)$ and $g_1(x)$ are relatively prime and neither x nor x - 1 divides $g_1(x)$. Then we claim that F_n is a N(p)-ring. For let B_1 in F_{n-k} be the companion matrix of $g_1(x)$. Let

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & B_1 \end{bmatrix}$$

belong to F_n . Clearly there is a monomorphism of the ring $\langle A \rangle_n$ into the direct product of the fields $\langle A_1 \rangle_k$ and $\langle B_1 \rangle_{n-k}$ where $A \to (A_1, B_1)$. Thus A is not a p-th power in $\langle A \rangle_n$. However the minimum polynomial of A is $f_1(x)g_1(x)$ of degree n and hence A is not a pth power in F_n . Now let $A + B = I_n$. A similar argument shows that B is not a pth power in F_n . Since A and B are units in F_n , the claim is established.

It is easy to see that there exists a $g_1(x)$ with the above properties except for the cases (i) q = 3, n = 2, k = 1, (ii) q = 2, n = 4, k = 2 and (iii) q = 2, n - k = 1.

We now consider these remaining cases.

(i) Let q = 3, n = 2, k = 1, whence p = 2. Let $f(x) = x^2 - x - 1$. As f(1 - x) = f(x), it is clear that there exist A, B in F_2 such that $A + B = I_2$ and f(x) is their minimum polynomial. Since $f(x^2) = x^4 - x^2 - 1$ is irreducible in F[x], it follows that A and B are non-square units in F_2 .

(ii) Let q = 2, n = 4, k = 2, whence p = 3. Clearly we may choose A, B in F_4 such that $A + B = I_4$ and $x^2 + x + 1$ is their minimum polynomial. However $x^6 + x^3 + 1$ is irreducible in F[x] and thus A and B are non-cube units in F_4 .

(iii) Finally let q = 2, k = n - 1. As $p|2^{n-1} - 1$, $n \ge 3$. Let A be any non-p-th power unit in F_n . We show that $I_n - A$ is a non-unit in F_n . Let f(x) be

97

the minimum polynomial of A. Thus

 $f(x) = f_1^{l_1} \dots f_s^{l_s}$

where f_1, \ldots, f_s are distinct monic irreducibles in F[x]. Let $\langle A \rangle$ denote the *F*-subalgebra generated by *A*. Hence $\langle A \rangle$ is isomorphic to the direct product $R_1 \times \ldots \times R_s$ where each

 $R_i = F[x]/(f_i^{l_i}).$

However R_i is a local ring whose residue field is isomorphic to $F[x]/(f_i)$. Thus letting d_i denote the degree of f_i , we have

$$|R_i^*| = 2^{d_i(l_i-1)}(2^{d_i} - 1)$$

and

$$|\langle A \rangle^*| = |R_1^*| \dots |R_s^*|.$$

Since A is not a *p*th power, *p* divides $|\langle A \rangle^*|$ and as *p* is prime to 2, we may suppose that $p|(2^{d_1}-1)$. Thus $d_1 = n$ or $d_1 = n - 1$. If $d_1 = n$, then *p* divides $(2^n - 1) - (2^{n-1} - 1)$, that is $p|2^{n-1}$, a contradiction. So $d_1 = n - 1$. However

 $d_1l_1 + \ldots + d_sl_s \stackrel{\cdot}{\leq} n$

and since n > 2, it follows that $f(x) = f_1$ or $f(x) = f_1 f_2$. Let g(x) be the characteristic polynomial of A. It is well known that f(x) and g(x) have the same irreducible factors. Thus $f(x) = f_1$ is impossible since f_1 contains no linear factor. Hence $f(x) = f_1 f_2$ where f_2 is of degree 1. As A is a unit, $f_2 = x + 1$. Now let $A + B = I_n$. Thus the minimum polynomial of B is $f(x + 1) = xf_1(x + 1)$, so that B is not a unit. This completes the proof of Theorem 2.

For example, if |F| = 2, then F_3 is neither an N(2)- nor an N(3)-ring, but F_7 is an N-ring.

Note that if |F| = 2 and p is a fixed odd prime, then F_n is an N(p)-ring for all $n \ge m + 2$ where m is the order of $2 \pmod{p}$.

A finite ring R is semisimple if its radical J = (0). By the Wedderburn theorem, R is semisimple if and only if it is a direct product of finite simple rings R_1, \ldots, R_m , where each R_i is isomorphic to a matrix ring over a finite field.

THEOREM 3. Let R be a direct product of finite simple rings, R_1, \ldots, R_m such that $|R_i| > 2$ for $i = 1, \ldots, m$.

- (i) R is an N(p)-ring if and only if some R_i is an N(p)-ring.
- (ii) If the center of each R_i has more than two elements, then R is an N-ring.

Proof. (i) Let R be an N(p)-ring. It follows that there exist units a_i , b_i in some R_i such that a_i is not a pth power in R_i and $a_i + b_i = 1$. If the center F_i of R_i is not the two-element field, then R_i is a N(p)-ring by (1) of Theorem 2. On the other hand, let $|F_i| = 2$. Since b_i is a unit in R_i , the proof of Theorem 2

https://doi.org/10.4153/CJM-1976-011-6 Published online by Cambridge University Press

shows that neither (a) nor (b) applies to p. Hence R_i is an N(p)-ring. The converse is clear.

(ii) The result follows immediately from (1) of Theorem 2 and part (i).

3. Rings of odd order. In the sequel we shall often use the next result.

LEMMA 2. Let K be an ideal of the finite ring R where $K \subseteq J$, the Jacobson radical of R.

(i) If p is a prime divisor of $|R^*|$, then p divides |K| or p divides $|(R/K)^*|$.

(ii) If R/K is an N(p)-ring, then R is an N(p)-ring.

Proof. Since units lift (mod J), the natural map $R \to R/K$ induces an epimorphism $R^* \to (R/K)^*$ with kernel 1 + K. Hence (i) and (ii) follow.

In the remainder of this section we assume that R is a ring of odd order.

THEOREM 4. Let R be a ring of odd order. Then R is an N-ring.

Proof. Since a finite ring is a direct product of rings of prime power order, we may assume that $|R| = p_0^m$ where p_0 is an odd prime. Thus R/J is a direct product of matrix rings over finite fields of characteristic p_0 and by Theorem 3, R/J is an N-ring. If p is a prime divisor of $|R^*|$ and $p \neq p_0$, then p divides $|(R/J)^*|$ and hence R is an N(p)-ring by Lemma 2. Thus it remains to prove that if p_0 divides $|R^*|$, then R is an $N(p_0)$ -ring. Of course if p_0 divides $|(R/J)^*|$, then R is an $N(p_0)$ -ring.

So we can assume that p_0 divides $|R^*|$ but p_0 does not divide $|(R/J)^*|$. It follows that $J \neq (0)$ and R/J is a direct product of finite fields each of characteristic p_0 .

We first consider the case that R is a ring of characteristic p_0 . Let F_0 denote the subfield of R of order p_0 generated by 1. Since R is a finite dimensional algebra over F_0 , the Wedderburn Factor Theorem [1, p. 471] yields that R = S + J where S is a subring isomorphic to R/J and $S \cap J = 0$. Thus $F_0 \subseteq S$ and we note that if $a \in S$ and $a^{p_0} = \alpha \in F$, then $a = \alpha$. Now as J is nilpotent and non-zero, there exists x in J such that x is not in the ideal J^{p_0} . Let $\alpha \in F_0$. We claim that $\alpha + x$ is not a p_0 th power in R. For let

$$(a+y)^{p_0} = \alpha + x$$

where $a \in S$ and $y \in J$. Then $a^{p_0} + y_1 = \alpha + x$ where $y_1 \in J$. Thus $a^{p_0} = \alpha$ and as noted $a = \alpha$. However α is in the center of R and char. $R = p_0$, so that

$$(\alpha + y)^{p_0} = \alpha^{p_0} + y^{p_0}.$$

Hence $y^{p_0} = x$, which contradicts that $x \notin J^{p_0}$ and establishes the claim. As $p_0 > 2$ there exist units α , β in F_0 such that $\alpha + \beta = 1$ and hence $\alpha + x$ and $\beta - x$ are non- p_0 -th power units in R whose sum is 1.

Now let R not be of characteristic p_0 . The ideal p_0R is contained in J. Suppose that p_0R is not equal to J. Let $R_1 = R/p_0R$. Then the Jacobson radical of R_1 is $J_1 = J/p_0R$ and p_0 divides $|R_1^*|$. Since R_1/J_1 is isomorphic to R/J and char. $R_1 = p_0$, the preceding case shows that R_1 is an $N(p_0)$ -ring and hence by Lemma 2, R is an $N(p_0)$ -ring.

Thus we may suppose that $J = p_0 R$. Assume that $J^2 = (0)$. We prove that R is a commutative ring. As R/J is a direct product of finite fields, there exists an integer r > 1 such that $a^r - a \in J$ for all a in R. By [4, Theorem 3.2.3, p. 81], it suffices to prove that J is contained in the center of R. Let $x \in J$ and let $a \in R$. Then $x = p_0 b$ where $b \in R$ and hence $ax - xa = p_0(ab - ba)$. However $ab - ba \in J$ and $(0) = J^2 = p_0^2 R$, so that ax = xa. Thus R is commutative and by Theorem 1, R is an $N(p_0)$ -ring.

Finally let $J^2 \neq (0)$. Since J is nilpotent, $J^2 \neq J$. Let $R_2 = R/J^2$. The radical of R_2 is $J_2 = J/J^2$ and p_0 divides $|R_2^*|$. Since $J_2 = p_0R_2$ and $J_2^2 = (0)$, the above argument shows that R_2 is commutative. Hence R_2 is an $N(p_0)$ -ring and by Lemma 2, R is an $N(p_0)$ -ring. This completes the proof of the theorem.

THEOREM 5. A ring of odd order is an N(2)-ring.

Proof. Let R be a ring of odd order. Then R/J is of odd order and hence R/J is an N-ring by Theorem 4. However 2 divides $|(R/J)^*|$ and thus Lemma 2 yields that R is an N(2)-ring.

4. Additional results.

THEOREM 6. Let R be a finite dimensional algebra over a finite field F of characteristic $p_0 > 2$. Then R is an N-ring.

Proof. Let $m = \dim_F R$. Then $|R| = |F|^m$ and since p_0 is an odd prime, R is of odd order. Thus by Theorem 4, R is an N-ring.

THEOREM 7. Let R be a finite ring with Jacobson radical J.

(1) If the two-element field does not occur as a factor in R/J, then for $n \ge 2$, R_n is an N(2)-ring.

(2) If the two element field does not occur as a factor in the center of R/J, then for $n \ge 2$, R_n is an N-ring.

(3) If R/J is a direct product of finite fields each having more than two elements, then for $n \ge 2$, R_n is an N-ring.

Proof. Since a ring of odd order is both an N-ring and an N(2)-ring, it suffices to prove the theorem for the case that |R| is a power of 2.

(1) Suppose that the two-element field does not occur as a factor in R/J. As $|R| = 2^m$, it follows that each factor in R/J is of the form F_k where F is a field of characteristic 2 and k > 1 if |F| = 2. Now let $n \ge 2$. The radical of R_n is J_n and

 $R_n/J_n \cong (R/J)_n$.

Hence each factor in R_n/J_n is of the form F_{kn} where kn = 4 or $kn \ge 6$ if |F| = 2, while $kn \ge 2$ if |F| > 2. Thus by Theorem 2, each F_{kn} is an N(2)-ring and hence R_n is an N(2)-ring.

(2) Suppose that each factor in R/J is of the form F_k where F is a field of characteristic 2 and |F| > 2. Let $n \ge 2$. Then by (1), R_n is an N(2)-ring. However by Theorem 3, R_n/J_n is an N-ring. Since $|R| = 2^m$, it follows that R is an N-ring.

(3) This is an immediate consequence of (2).

THEOREM 8. Let R be a finite commutative ring such that the two-element field does not occur as a factor in R/J. Then for all n, R_n is an N-ring.

Proof. For $n \ge 2$, R_n is an *N*-ring by Theorem 7(2), while *R* itself is an *N*-ring by Theorem 1.

THEOREM 9. Let R be the ring of lower (upper) triangular matrices over a finite field F where |F| > 2. Then for all n, R_n is an N-ring.

Proof. R is a subring of F_k for some k. Let J be the radical of R. Then R/J is a direct product of k copies of F and hence by Theorem 7(3), R_n is an N-ring for $n \ge 2$. We now prove that R itself is an N-ring. We may take $k \ge 2$. Let p = char. F. Since R/J is an N-ring and |R| is a power of p, it remains to prove that R is an N(p)-ring. However the proof of Theorem 2 showed that there exist A, B in R such that A + B = 1 and A, B are non-p-th power units in F_k . Hence A, B are also non-p-th power units in R, which completes the proof.

We note that if R is an N-ring, then R_n is not always an N-ring. For $R = F_7$ is an N-ring where F is the two-element field, but $R_2 \cong F_{14}$ is not an N-ring since $2^{13} - 1$ is a prime.

Raghavendran [6, Theorem 3] has shown that a finite local ring of prime characteristic p_0 whose radical J satisfies $J^2 = (0)$ is isomorphic to the ring R of all $n \times n$ matrices of the form

$$\begin{bmatrix} a_1 & b_2 & b_3 & \dots & b_n \\ 0 & a_1^{s_2} & 0 & \dots & 0 \\ 0 & 0 & a_1^{s_3} & \dots & 0 \\ \vdots & & & & \\ \vdots & & & & \\ 0 & 0 & 0 & \dots & a_1^{s_n} \end{bmatrix}$$

where a_1, b_2, \ldots, b_n range over the field of order p_0^r and for $i = 2, \ldots, n$, $s_i = p_0^{t_i}$ for fixed integers t_i with $1 \leq t_i \leq r$. Conversely for every choice of the integers t_i , R is local of characteristic p_0 and its radical J satisfies $J^2 = (0)$.

If $p_0 > 2$, then R is an $N(p_0)$ -ring by Theorem 4. However for $p_0 = 2$, R is not always an N(2)-ring. Namely we prove the following.

THEOREM 10. Let R be the above ring of matrices where $p_0 = 2$ and $n \ge 2$. Then R is not an N(2)-ring if and only if $GCD(t_i, r) = 1$ for all i.

Proof. The radical J of R consists of those matrices for which $a_1 = 0$. Also $R = F \oplus J$ where F is the field consisting of those matrices for which all $b_i = 0$.

We shall identify a_1 in the field of order 2^r with

diag $(a_1, a_1^{s_2}, \ldots, a_1^{s_n})$ in F.

Let Y_i be the matrix with 1 in the (1, i) position and zeros elsewhere. Then Y_2, \ldots, Y_n is a left *F*-basis for *J* and

 $Y_i a = a^{s_i} Y_i$

for a in F and all i. Let x be an element in R. Then there exist unique elements a_1, a_2, \ldots, a_n in F such that

$$x = a_1 + a_2 Y_2 + \ldots + a_n Y_n.$$

Since $J^2 = (0)$,

$$x^{2} = a_{1}^{2} + a_{2}(a_{1} + a_{1}^{s_{2}})Y_{2} + \ldots + a_{n}(a_{1} + a_{1}^{s_{n}})Y_{n}$$

Now as $|F| = 2^r$, note that if GCD(t, r) = 1 and $a \in F$, then $a + a^{2^t} = 0$ only for a = 0, 1. It follows that if $GCD(t_i, r) = 1$ for all *i*, then every non-square unit of *R* belongs to 1 + J and thus *R* is not an N(2)-ring.

Conversely suppose that for some *i*, $GCD(t_i, r) > 1$. Then there exists a_1 in *F* such that

 $a_1 + a_1^{2^t} = 0$ and $a_1 \neq 0, 1$.

Hence $x_1 = a_1^2 + Y_i$ is a non-square unit in *R*. Since char. $R = 2, x_1 + 1$ is also a non-square unit, which proves that *R* is an N(2)-ring.

Theorem 10 provides an example of a ring R such that R/J is an N-ring but R is not an N-ring.

We now give an example of an *N*-ring *R* such that R/J is not an *N*-ring. Let $S = F_2$ where *F* is the two-element field. Let *x* be an indeterminate over *S* and let $R = S[x]/(x^2)$. We may identify *S* as a subring of *R* and moreover each element of *R* can be written uniquely as

a + by where $a, b \in S$ and $y = x + (x^2)$.

Clearly J = Sy and $R/J \cong S$. By Theorem 2, S is an N(3)-ring but not an N(2)-ring. Thus as $|R^*| = (2^5)3$, we have only to show that R is an N(2)-ring. Define

T(a + by) = trace(b).

Then $T((a + by)^2) = 0$ since $(a + by)^2 = a^2 + (ab + ba)y$ and char. R = 2. Let a_1, a_2 be units in S such that $a_1 + a_2 = 1$. Choose b_0 in S such that trace $(b_0) = 1$. Hence $a_1 + b_0y$ and $a_2 + b_0y$ are non-square units in R whose sum is 1, that is R is an N(2)-ring. This proves that R is an N-ring.

Finally we deduce the following result which is well known for fields [5, Theorem 12, p. 15].

102

FINITE RINGS

THEOREM 11. Let R be a commutative local ring of odd order. Then for any units a, b in R, the equation $ax^2 + by^2 = 1$ is solvable in R.

Proof. Let a, b be units in R. If a or b is a square, the result is immediate. So let a, b be non-squares. By Theorem 4, there exist non-square units a_1, b_1 such that $a_1 + b_1 = 1$. However the index $[R^*:S] = 2$ where S is the subgroup of squares in R^* . Hence $a^{-1}a_1 = x^2$ and $b^{-1}b_1 = y^2$ for x, y in R^* , completing the proof.

References

- 1. Carl Faith, Algebra: rings, modules and categories I (Springer-Verlag, New York, 1973).
- 2. R. Gilmer, Finite rings having a cyclic multiplicative group of units, Amer. J. Math., 85 (1963), 447-452.
- 3. Melvin Henriksen, Two classes of rings generated by their units, (to appear).
- 4. I. N. Herstein, Noncommutative rings, Carus Mathematical Monographs, Number 15, 1968.
- 5. Irving Kaplansky, Linear algebra and geometry (Allyn and Bacon, Inc., Boston, 1969).
- 6. R. Raghavendran, Finite associative rings, Compositio Math., 21 (1969), 195-229.

University of Manitoba, Winnipeg, Manitoba