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Abstract

This paper gives a complete classification of essentially commutative C-algebras whose essential spec-
trum is homeomorphic to S2""' by their characteristic numbers. Let £/u &&2 be such two C*-algebras;
then they are C*-isomorphic if and only if they have the same n-th characteristic number. Furthermore,
let yn{si) — m\ then si is C*-isomorphic to C(MZl M^) if m = 0, si is C*-isomorphic to
C*(TZI,... , 7^_,, 7̂ j>) if m ^ 0. Some examples are given to show applications of the classification
theorem. We finally remark that the proof of the theorem depends on a construction of a complete system
of representatives of Ext(52""').

2000 Mathematics subject classification: primary 47A53,47B35,47B37.
Keywords and phrases: characteristic numbers, essential spectrum, extensions, mapping degree.

1. Introduction

Let si be a C* -algebra of operators on a separable Hilbert space H. In what follows
we assume always that si contains the identity operator / and the ideal JXf of compact
operators. We say that si {^essentially commutative if A B — BA is compact for
all A, B € si. A natural problem is how to classify essentially commutative C*-
algebras in C*-isomorphism sense. Then the problem is to find invariants and models.
First if two such C*-algebras are C* -isomorphic, then the isomorphism is necessarily
implemented by a unitary operator [Dou]. Let si be essentially commutative, and M&
be the maximal ideal space of siIJV which is called the essential spectrum of si. For
a compact metrizable space X, let Hx denote the class of all essentially commutative
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C* -algebras s/ whose essential spectrum is homeomorphic to X. Now taking s/ in
Ex, one hence has a natural extension of J ^ by C(X)

C(X) • 0.

The classification problem thus is equivalent to the classification of extensions of JT
by C(X) in the following sense. Let (sf\,4>\) and (s/2,02) be two extensions of JV
by C(X). We call them weakly equivalent if there exists the following commutative
diagram

0 • JT • £/, — 2 - * C<X) • 0

• 0,

where 9i, 92 and 03 are C* -isomorphisms. Now let Extu, (X) denote the set of the classes
of weak equivalence. From Blackadar [Bla], one knows that Extu,(X) is a semigroup,
but in general, not a group. Hence intuitively, the classification problem for Ex is
closely related to the BDF-theory [BDF1, BDF2] and homotopy theory. For general
compact metrizable space X, it is extremely difficult to classify Ex in C*-isomorphism
sense. In [Guol], we introduce an invariant called the characteristic number to study
essentially normal operators. In the present paper, we will develop this invariant, and
use it to give E^-i a complete classification, where S2"~l is the boundary of the unit
ball Bn in C". For convenience, we write En for £ji.-i. Firstly, we use the mapping
degrees on the unit sphere to give a complete system of representatives of Ext(52"~'),
and hence shows that the n-th characteristic number yn is a complete invariant for the
class En in C-isomorphism sense. Some examples are given to show the applications
of the classification theorem. Since the generalized Poincare conjecture is true in the
case n ^ 3 (see [Smal, Sma2]), our example shows that Toeplitz algebra C*(£2) on
Poincare domain S2(C C , n jt 2) is necessarily C*-isomorphic to Toeplitz algebra
C*(Bn) on the unit ball in C". In the case n = 2, C*(Q) is isomorphic to C*(B2) if
and only if the Poincare conjecture is true for dQ. This fact is proved by the different
method in [Guo2].

2. Some basic lemmas

Let £? be essentially commutative. If a family {Tk\X e A}, Jf and the identity
operator / generate sf, the family {TX\X e A} is called a set of generators of si. The
rank of s/, by definition, is the minimum cardinality of such a family, and is denoted
by rank(j^). A C*-algebra is said to be finitely generated if rank(.e/) is finite. Let
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[3] Essentially commutative C*-algebras 201

rank(A) = n, and {7i, T2,... , Tn] be a set of generators of si. This induces a natural
homeomorphism

T : Mrf -> A

by r(m) = (Ti(m),... , Tn{m)), where T denotes the Gelfand transform of T onto
C(M^) and A = {(fi(m),... , Tn(m)) \ m e M^}(c C ) . It is obvious that the
topological dimension of A (< 2n) is uniquely determined by si. For the unit sphere
S2""1 of C", we have the following basic fact.

LEMMA 2.1. Let the essential spectrum M^ of si be homeomorphic to S2"~l. Then
rank(si) = n, and there exists a set [Tu T2, • • • , Tn] of generators of&/ such that

T-.M*^ S2"-1; r(m) =

is a homeomorphism.

PROOF. If the essential spectrum M^ of si is homeomorphic to S2""1, then one
has a natural extension of Jtf by CiS2"'1)

(2.1) o • X • si —*—+ C(S2n~l) • 0.

Now take 7] in 0~'(Zi) for / = 1, 2 , . . . , n. It is easily checked that the family
{7i, T2,... , Tn} is a set of generators of s/, and

T : M^ - • S2n~l- T(IB) = (flCm),... , fn(m))

is a homeomorphism. Since

2rank(.aO > 2n - 1,

this implies rank(jz^) = n. •

From Lemma 2.1, each s&jn Sn yields an extension (2.1) of X by C(S2"~l) and
hence yields the following exact sequence

(2.2) o • X®Mk • s/®Mk -?^> dS2"-1) ® Mk • 0

for the algebra Mk of k x k complex matrices. For A e sf <g> Mk, A, the image of A
in C(S2n~l) ® Mk, is called the symbol of A. It is easily seen that A is Fredholm if
and only if A has non-vanishing determinant.

LEMMA 2.2. Let n > 1 and k < n. Then for any Fredholm operator A in si % Mk,
we have index (A) = 0.
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PROOF. Let GL(n, C) denote the complex linear group. Consider a continuous
map

F : S2"-1 -> GL(n, C).

The first column Fi of the matrix F defines a map

Fl : S
2"-1 - • C" - {0}

so that/ = Fj/IFil is a map from S2""1 to 52""1. This map has a degree, deg(/), up
to a sign, the number of points in h~'(/?), where ft is a differentiable approximation
to / and p is a general point (see [Ati] or [Hir]). For,/', we then define the degree
of Fby

Defining index(A) by index(A), then index(A) = index(A, /„_*), where /„_* is the
(n — k) x (n — k) identity matrix, and (A, /„_*) denotes the matrix

\0 ln.k)
(A, /„_*)

Let F, be the first column of the matrix (A, /„_*)• It is obvious that the image of
/ = F{/\Fi\ : S2n~l -*• 52""1 is a proper closed subset of S2"'1. One thus concludes
deg(/) = 0 by [BT] or [Hir]. Let continuous maps A and /„ from 52""1 to GL(n, C)
be given respectively by (A, /„_*) and the n x n identity matrix /„. Since

deg(A) = deg(/B) = 0,

the theorem of Bott implies that A can be continuously deformed to /„ (see [Ati]).
Combining the above discussion with Douglas [Dou], we see that

index(A) = index(A) = index(A, /„_*) = index(/n) = index(/) = 0. O

In [Guol], we introduced an invariant called the characteristic number to study
essentially normal operators. Lemma 2.2 motivates us to introduce characteristic
numbers for C*-algebras. For any essentially commutative C*-algebra s/, since the
image of all Fredholm operators in s/ is a multiplicative group in the Calkin algebra,
it follows that the indices of all Fredholm operators in s/ form a subgroup T of the
integer group Z, that is, there exists a unique non-negative integer m such that T = ml..
The characteristic number y(s/) of s/, by definition, is the above m. We also define
the n-th characteristic number yn(s/) of s/ by y(s/ <g> Mn). By the inclusion of
s/ <g> Mn in s/ (g) Mn+i which sends A to (A, / ) , this forces that yn+l (s/) is a factor
of yn(s/) for any natural number n.
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LEMMA 2.3. Let st/ be in the class £„. Then

Ydtf) = ttCeO = • • • = ft-iCaO = 0
and

PROOF. From Lemma 2.2, we only need to show that

Let F : S2""1 -> GL(N, C) be a continuous map, here N > n. Then by Atiyah [Ati],
there is a continuous map

G : [0, 1] x S2"'1 -> GL(N, C)

such that G(0, z) = F(z) and

where /#_„ is the (N — n) x (N — n) identity matrix. The argument used in the proof
of Lemma 2.2 can then be exploited to show that YN ($4) = Yn (*?)• •

To understand the importance of characteristic numbers a little better we shall see
in Section 3 that yn is a complete invariant of C*-algebras in £„ in C*-isomorphism
sense.

3. The equivalence classes of Ext(52"~')

Let us begin with facts from the BDF-theory [BDF1, BDF2]. Let X be a compact
metrizable space. An extension of J(f by C(X) is a pair {£, </>), where S is a C*-
subalgebra of operators on some separable Hilbert space which contains JT and the
identity operator / , and <j> is aV*-homomorphism of S1 onto C(X) with kernel Jf. In
the language of homology, an extension {S, 4>) is a short exact sequence

C(X) • 0.

Extensions {&x, <j>\) and (S2, &) are called equivalents there exists a C* -isomorphism
ijr : S2 -> gx such that <f>2 = (j>\f. The set of equivalence classes of extensions of
X by C(X) is denoted Ext(X). In [BDF2], they proved that Ext(Z) is a group, and
the correspondence X \-> Ext(X) yields a homotopy invariant covariant functor. It is
well known that one of the applications of the BDF-theory is to classify essentially
normal operators modulo the compacts under unitary equivalence (see [BDF1]).
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Below, we shall concentrate on working out explicitly a complete system of rep-
resentatives for the equivalence classes of extensions of J(f by C(S2""'). In the case
n = 1, a complete system of representatives of Ext(S') is worked out explicitly by
Toeplitz extension on the unit circle Sl in [BDF1]. In the case n > 1, the periodicity
theorem [BDF2] implies Ext(52"-') = 1. Let L2

a(Bn) be the Bergman space on the
unit ball Bn in C , and let C*(Bn) be the C*-algebra generated by all Toeplitz operators
on L2

a(Bn) with symbols in C(Bn). The Coburn exact sequence [Cob]

0 • X —!-»• C*(Bn) -^—• C(S2"-1) • 0

is a natural extension of J0T by C(52n-1)- From Venug^palkrishna [Ven], we see that
this extension is a generator of Ext(S2"~') (see also [BDF2]). By the theorem of Bott
in [Ati], there is a natural isomorphism

7r2n_, (GL(n, O ) = Kl (S2"-1) S Z,

where n2n-i (GL(n, C)) is the group of homotopy classes of continuous maps from
52""1 to GL{n, C). Applying the BDF-theory [BDF2], the homomorphism

Yoo : Ext(52"-1) -> Hom(^2--i(GL(n, C)), 1) (= Z)

is surjective, and hence is an isomorphism. For an extension (S', <p), Yoo(<?) is defined
by

Yoo(<?)ifij] = index [0-1 (fu)]-

Let L2(52"~1) denote the Hilbert space of square-integrable functions on 52""1. For
/ e CiS2"'1), we denote by Mf multiplication operator on L2(52n"'). It is well
known that (<?0> ^o) is the zero element in Ext(52""'), where

4 = C*{MZ , MJ = {Mf + K | / € C(S2"-1) ,K € JT} ,

and no(Mf + K) = f. Now let a : S2n~l -> 52""1 be a continuous map with the
mapping degree deg(cx) ^ 0, o is then surjective. We use Sa to denote the C*-algebra
{Tfoa + K\f € C(S2n~l), K e X\, where Tfoa is Toeplitz operator with symbol/ OCT
on the Bergman space L2(Bn), and/ o a is the standard Poisson extension of / o a
onto Bn. This gives an extension (£a, na), where na(Tfoa + K) = f. In fact, it is
easily seen that (<?„, na) = <jt(C*(Bn),jr), and hence if ax and a2 are homotopic, the
homotopy invariance of Ext then implies that (<?CT,, nai) and (̂ CT2, na2) are equivalent.

For i = ±1 , ± 2 , . . . , take a{ to be a continuous map from S2""1 to S2"~l with
mapping degree deg(cr,) = i. We have thus the following.

LEMMA 3.1. The extensions {4>ai,TTaj) (i = ±1 , ± 2 , . . . ) together with the trivial
extension (<̂ 0, n0)form a complete system of representatives of Ext(52n"').
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PROOF. Let m be a non-zero integer. By [BDF2], one has

YMJlfij] = index [T/toam] = deg(am) index [Tfi.] = m index [Tflj]

and

yeo(mC¥(Bl,))[fi,] = m index [Tf.\

It follows that {Sam,nam) and (mC*(Bn), n
(m)) are equivalent. Note that the Toeplitz

extension (C*(Bn), n) is a generator of ExtCS2""1), we thus conclude that the exten-
sions (<£,,, nai) (i = ±1 , ± 2 , . . . ) together with the extension (S'Q, n0) form a complete
system of representatives of Ext(52"~'). •

LEMMA 3.2. Let a : S2n~l -*• 52""1 be a continuous map. Then we have

/ „ ( £ ) = I deg(a)|.

PROOF. Apply Venugopalkrishna [Ven, Theorem 1.5] and the multiplication for-
mula of mapping degree [Hir]. •

LEMMA 3.3. Let a', a" : S2n~l -> 52""1 be continuous maps. Then &„• and £a« are
C*-isomorphic if and only if

|deg(a')| = |deg(a")|.

PROOF. If Sa, and Sa» are C*-isomorphic, then the isomorphism is implemented by
a unitary operator. This implies thus that

and hence by Lemma 3.2,

|deg(<7,)| = |deg(a2)|.

Ifdeg(<r') = deg(cr"),thenHopflemma([Hir])impliesthatthemapsa',a" : 52""1 ->
52""1 are homotopic, and hence the homotopy invariance of Ext shows that ga, and &„,•
are isomorphic as C*-algebras, If deg(cr') = — deg(cr"), write a" = (<f>u <j>2,... , </>„)
and define a'" by (0,, <f>2,... , 0n), then

deg(a') = deg(or'")

and hence §„• and <?„»' are C*-isomorphic. Since &a» = £„»*, it follows that &„' and
ga» are C*-isomorphic. •

THEOREM 3.4. Let & and & be in En. Then S and & are C*-isomorphic if and
only if

https://doi.org/10.1017/S1446788700002603 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002603


206 Kunyu Guo [8]

PROOF. Assume first that £ and & are C*-isomorphic. Then the equality yn{£) —
yn(&) is immediate. Conversely, since <? and & are respectively C*-isomorphic to
one of 4 , Sai, Sai,..., Lemmas 3.1-3.3 imply that if yn (S) = yn (&), then S and &
are isomorphic as C*-algebras. D

From Theorem 3.4, we see that n-th characteristic number is a complete invariant
for C* -algebras in En in C* -isomorphism sense. In next section we will give examples
to show applications of the classification Theorem 3.4.

Now we consider Toeplitz algebras on pseudoregular domains (C C") with smooth
boundary. As pointed out in [Sal, SSU], pseudoregular domains include the strongly
pseudoconvex domains, pseudoconvex domains with reaJ*analytic boundary, and more
generally, domains of finite type. Let ft be pseudoregular domain with smooth
boundary. Following [Sal, SSU], on the Bergman space L2(ft), the C*-algebra C*(ft)
generated by Toeplitz operators with symbols in C(ft) is essentially commutative, and
its essential spectrum is 3ft. In [SSU], they proved that for each k e ft, Toeplitz tuple
Tz-X = {TZt -klt... , rs,-X11}isFredholm,andindex(rz-A.) = (- l )" . By [Cur]
and Lemma 2.3, one sees that if 3ft is homeomorphic to S2""1, then yn(C*(ft)) = 1.
Since yn(C*(Bn)) = 1, Theorem 3.4 immediately yields the following.

EXAMPLE 1. Let ft be a pseudoregular domain with smooth boundary. Then 3ft
and S2n~l are homeomorphic if and only if C(ft) is isomorphic to C*(Bn) as C*-
algebras.

For a pseudoregular domain ft in C , we say that ft is a Poincare domain if
its boundary 9ft is homotopy equivalent to the unit sphere S2n~\ that is, 3ft is a
homotopy (2rc — l)-sphere. The generalized Poincare conjecture says if every closed
n-manifold M which is a homotopy n-sphere is homeomorphic to the n-sphere (see
[Smal, Sma2]). Smale [Sma2] showed that the generalized Poincare conjecture is
true in the case n > 4. Freedman [Fre] proved the case n = 4. For n = 1, 2, it is
well known that the generalized conjecture is true (see [Hir]). Therefore the famous
Poincare conjecture says that every closed 3- manifold which is a homotopy 3-sphere
is homeomorphic to the 3-sphere. This has never been answered. Therefore, for each
Poincare domain ft in C (n ^ 2), its boundary 3ft is actually homeomorphic to the
(2n — l)-sphere. Example 1 shows thus the following.

EXAMPLE 2. Let ft be a Poincare domain in C" (n ^ 2 ) . Then

C*(ft) = C*(Bn).

Example 2 is proved by different method in [Guo2]. Example 2 suggests that for
the Poincare conjecture in the case of 3ft, an operator algebraic proof is perhaps
possible. Of course, the validity of the Poincare conjecture for 3ft remains unknown.
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EXAMPLE3. Let 0 < p, q < oo and Qp,q = jz e C2 | \zi\p + \z2\
q < 1}. &V,

is pseudoconvex (because log(Qpq)+ is convex); when p, q > 2, fip,9 is Levi pseu-
doconvex; and £2p,, is strongly pseudoconvex if and only if p = q = 2. From [CS],
on the Bergman space L2

a(Slp,q), one sees that Toeplitz algebra C*(Qp,q) (generated
by Toeplitz operators with symbols in C(Qp,q)) is essentially commutative, and its
essential spectrum is dQPiq, also for each X e Qpq, index(Tz — k) = 1. Then by the
radial projection, dQp,q and S3 are homeomorphic, and hence C(£2Pi(?) and C*(B2)
are isomorphic as C*-algebras. However, for p or q ^ 2, it is easy to prove that there
does not exist any proper holomorphic mapping that maps the unit ball B2 onto £2P q.
In this example, we restricted ourselves to n = 2, but it is clear that all results hold
for n > 2.

EXAMPLE4. Considering the domain Q = {z e C2 | \zi\2 + |z2|2 + U1Z2I2 < 1},
it is easy to check that £2 is a strongly pseudoconvex domain with smooth boundary.
Then by the radial projection, dQ and S3 are homeomorphic, and hence C*(S2) and
C*(B2) are isomorphic as C*-algebras. However, by the Cartan Theorem, the unit ball
B2 and £2 are never holomorphically equivalent.

4. The construction of representatives of the class £„

In this section, we shall construct explicitly a complete system of representatives
of the class !!„. Let m be a positive integer. Define the map am : S2""1 —• S2"~' by

Om(Z\,... ,Zn)=\Zu... ,Zn-\, kn\r-J1

\ \Zn\

and the map <x_m : S2"'1 -> 52""1 by

/ I* \
\, ... ,Zn) = \Zl, ... , Zn-\, k n l p 2 ^ I •

\ \Zn\ /
We claim

deg(«^) = m; deg(a_m) = - m .

Write Q.m for pseudoconvex domain

The domain above is pseudoconvex because log(£2m)+ is convex. Denote by 9£2m the
boundary of S2m, that is,

dSlm = {(Z,, • • • , Zn) I |Z!|2 + • • • + |Zn-,|2 + \Zn\Vm = 1} •

Since £2m has the standard orientation, its boundary dQm inherits an orientation (except
some special points), also called 'standard'. This means that (eu ... , «2n-i) is an
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orienting basis for d£lm if (elt... , eln-\, e2n) is an orienting basis for Qm and e2n

points into Qm at z e 3fim- Define a map Sm from 52""1 onto 3fim by

5 m ( Z l , • • • , Zn) = (Zl, . . . , Z n - l , Z ™ ) .

A straightforward calculation of the Jacobi matrix yields that the mapping degree
deg(5m) = m. Furthermore, we establish an orientation-preserving homeomorphism
r,m : dQm - • 52""1 by

1m(Zu... ,Zn-uZn) = lz\,... , Zn-U I Z n l ' ^ p T j .

It is easily checked that \

and hence

deg(<Tm) = deg(?7m)deg(<5m) = \m = m.

Similarly, define an anti-orientation homeomorphism rj_m : 3S2m -*• S2"'1 by

J 7 _ m ( Z l , . . . , Z n - l , Z n ) = ( Z l , . . . , Z n - l , I Z n l 1 ' " ^ ) •

It is easily seen that o_m = 7j_m o 8m, and deg(a_m) = — m follows. The claim is
proved.

Let C*(TZl,... ,TU_X, Tz:) be the C*-algebra generated by TZi,... , T^, 7 C , the
identity operator and all compact operators on the Bergman space L2

a{Bn). We define
extensions

(C*(7Z 1, . . . , 7^.,, 7z ;), 7rm) and (C*(TZl,... , 7 ^ , , r z ? ) , ;r_m)

of X by dS2"-1) respectively by

and

o

h e r e / € C(fim), ^ € X.
We are now in a position to give a main result in this section.

THEOREM4.1. (1) SOm = <&_„ = C*(TZl,... , 7^.,, Tz™).

(2) The extensions

(C*(TZl,... , T^, , 7 C ) , 7rm) a«rf (C*(r z , , . . . , 7 ^ , , Tz:), 7T_m)

m = 1 ,2 , . . . ) and the trivial extension {£0, TTO) form a complete system of
representatives of Ext(S2"~').
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PROOF. (1). It is obvious that the relation SOm = Sa_m is true. Then an operator
A € Sam if and only if A has form A = TfoOm + compact, / e C(52"- ') , and
B € C*(TZl,... , 7^.,, T c ) if and only if B has form B = Tf(Zl ^ l C ) + compact,
/ 6 C(£2m). The orientation-preserving homeomorphism rjm and the relation am =
r)m o Sm imply then

(2). Apply Lemma 3.1 and the above (1). •

From Lemma 3.2, Theorem 3.4, and Theorem 4.1, we immediately obtain the
following:

COROLLARY 4.2. Leti e En. Then

(1) ifyn(£) = 0, then £ and <§o are C*-isomorphic;
(2) ifyn(£) = m > 0, then £ and C*(TZl,... , 7^, , Tz.) are C*-isomorphic.

Acknowledgements

The author wishes to express his thanks to Professors S. H. Sun and X. M. Chen
for their useful discussions. The author would like to thank the referee for many
suggestions which made this paper more readable.

References

[Ati] M. F. Atiyah, 'Algebra topology and elliptic operators', Comm. Pure Appl. Math. 20 (1967),
237-249.

[Bla] B. Blackadar, K-Theory for operator algebras (Springer, New York, 1986).
[BT] R. Bott and L. W. Tu, Differential forms in algebraic topology (Springer, New York, 1982).
[BDF1] L. G. Brown, R. G. Douglas and P. A. Fillmore, Unitary equivalence modulo the compact

operators and extensions of C* -algebras, Lecture Notes in Math. 345 (Springer, Berlin, 1973).
[BDF2] , 'Extensions of C* -algebras and AT-homology', Ann. of Math. (2) 105 (1977), 265-324.
[Cob] L. A. Coburn, 'Singular integral operators and Toeplitz operators on odd sphere', Indiana

Univ. Math. J. 23 (1973), 433^139.
[Cur] R. E. Curto, 'Fredholm and invertible n-tuples of operators. The deformation problem', Trans.

Amer. Math. Soc. 266 (1981), 129-159.
[CS] R. E. Curto and N. Salinas, 'Spectral properties of cyclic subnormal m-tuples', Amer. J. Math.

107(1985X113-138.
[Dou] R. G. Douglas, Banach algebra techniques in operator theory (Academic Press, New York,

1972).
[Fre] M. Freedman, "The topology of 4-manifold', / Differential Geom. 17 (1982), 357-454.

https://doi.org/10.1017/S1446788700002603 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002603


210 KunyuGuo [12]

[Guol] K. Y. Guo, 'Indices, characteristic numbers and essential commutants of Toeplitz operators',
Ark. Mat. 38 (2000), 97-110.

[Guo2] , 'Indices of Toeplitz tuples on pseudoregular domains', Science in China 43 (2000),
1258-1268.

[Hir] M. W. Hirsch, Differential topology (Springer, New York, 1976).
[Sal] N. Salinas, 'The 9-formalism and the C*-algebras of the Bergman n-tuple', / Operator Theory

22 (1989), 325-343.
[SSU] N. Salinas, A. Sheu and H. Upmeier, 'Toeplitz operators on pseudoconvex domains and

foliation C* -algebras', Ann. of Math. (2) 130 (1989), 531-565.
[Smal] S. Smale, 'A survey of some recent developments in differential topology', Bull. Amer. Math.

Soc. 69(1963), 131-146.
[Sma2] , 'Generalized Poincare conjecture in dimensional greater than four', Ann. of Math. (2)

74(1961), 391^06. v

[Ven] U. Venugopalkrishna, 'Fredholm operators associated with strongly pseudoconvex domains
in C"\ J. Funct. Anal. 9 (1972), 349-372.

Department of Mathematics
Fudan University
Shanghai, 200433
P. R. China
e-mail: kyguo@fudan.edu.cn

https://doi.org/10.1017/S1446788700002603 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002603

