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Abstract Using the H∞-functional calculus for quaternionic operators, we show how to generate the
fractional powers of some densely defined differential quaternionic operators of order m ≥ 1, acting on
the right linear quaternionic Hilbert space L2(Ω, C ⊗ H). The operators that we consider are of the type

T = im−1
(
a1(x)e1∂m

x1
+ a2(x)e2∂m

x2
+ a3(x)e3∂m

x3

)
, x = (x1, x2, x3) ∈ Ω,

where Ω is the closure of either a bounded domain Ω with C1 boundary, or an unbounded domain
Ω in R3 with a sufficiently regular boundary, which satisfy the so-called property (R) (see Definition
1.3), e1, e2, e3 ∈ H which are pairwise anticommuting imaginary units, a1, a2, a3 : Ω ⊂ R3 → R are the
coefficients of T . In particular, it will be given sufficient conditions on the coefficients of T in order to
generate the fractional powers of T , denoted by Pα(T ) for α ∈ (0, 1), when the components of T , i.e. the
operators Tl := al∂

m
xl

, do not commute among themselves. This kind of result is to be understood in the
more general setting of the fractional diffusion problems. The method used to construct the fractional
power of a quaternionic linear operator is a generalization of the method developed by Balakrishnan.
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2020 Mathematics subject classification: Primary 47A10; 47A60; 35G15

1. Introduction

Using the S-functional calculus, in the series of papers [15, 21–24], we defined the frac-
tional powers of a class of vector operators with non-constant coefficients. In this paper,
we consider the quaternionic differential operators of the form

T = im−1
(
a1(x)e1∂

m
x1

+ a2(x)e2∂
m
x2

+ a3(x)e3∂
m
x3

)
, x = (x1, x2, x3) ∈ Ω,
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Fractional powers of higher-order vector operators 913

and we prove that under suitable conditions on the coefficients, it admits well-defined
fractional powers. In order to state our results, we give some details on the quaternion
techniques based on the spectral theory on the S-spectrum. For a complete introduction
of the S-functional calculus see the books [16], [20], here we briefly introduce the main
aspects of this theory.

1.1. The S-functional calculus

An element in the quaternions H is of the form s = s0 + s1e1 + s2e2 + s3e3, where s0, s�

are real numbers (� = 1, 2, 3), Re(s) := s0 denotes the real part of s and e�, for � = 1, 2, 3,
are the imaginary units which satisfy the relations: e2

1 = e2
2 = e2

3 = e1e2e3 = −1. The
modulus of s is defined as |s| = (s2

0 + s2
1 + s2

2 + s2
3)

1/2 and the conjugate is given by
s = s0 − s1e1 − s2e2 − s3e3. In the sequel, we will denote by S the unit sphere of purely
imaginary quaternions, an element j in S is such that j2 = −1. We consider a two-sided
quaternionic Banach space V and we denote the set of closed densely defined quaternionic
right linear operators on V by K(V ). The Banach space of all bounded right linear
operators on V is indicated by the symbol B(V ) and is endowed with the natural operator
norm. For T ∈ K(V ), we define the operator associated with the S-spectrum as:

Qs(T ) := T 2 − 2Re(s)T + |s|2I, for s ∈ H (1.1)

where Qs(T ) : D(T 2) → V , where D(T 2) is the domain of T 2. We define the S-resolvent
set of T as

ρS(T ) := {s ∈ H : Qs(T ) is invertible and Qs(T )−1 ∈ B(V )}
and the S-spectrum of T as

σS(T ) := H \ ρS(T ).

The operator Qs(T )−1 is called the pseudo S-resolvent operator. For s ∈ ρS(T ), the left
S-resolvent operator is defined as

S−1
L (s, T ) := Qs(T )−1s − TQs(T )−1 (1.2)

and the right S-resolvent operator is given by

S−1
R (s, T ) := −(T − Is)Qs(T )−1. (1.3)

The fractional powers of an operator T such that jR ⊂ ρS(T ) for any j ∈ S, are denoted
by Pα(T ) and are defined as follows. For any j ∈ S, for α ∈ (0, 1) and v ∈ D(T ), we set

Pα(T )v :=
1
2π

∫
−jR

S−1
L (s, T ) dsj sα−1Tv, (1.4)

or

Pα(T )v :=
1
2π

∫
−jR

sα−1 dsj S−1
R (s, T )Tv, (1.5)

where dsj = ds/j. These formulas are a consequence of the quaternionic version of the
H∞-functional calculus based on the S-spectrum, again see [16] for details. For the gen-
eration of the fractional powers Pα(T ), a crucial assumption on the S-resolvent operators

https://doi.org/10.1017/S0013091522000396 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000396


914 Luca Baracco et al.

is that, for s ∈ H \ {0} with Re(s) = 0, the estimates

∥∥S−1
L (s, T )

∥∥
B(V )

≤ Θ
|s| and

∥∥S−1
R (s, T )

∥∥
B(V )

≤ Θ
|s| , (1.6)

hold with a constant Θ > 0 that does not depend on s. It is important to observe that
the conditions (1.6) assure that the integrals (1.4) and (1.5) are convergent and so the
fractional powers are well defined.

For the definition of the fractional powers of the operator T , we can use equivalently
the integral representation in (1.4) or the one in (1.5). Moreover, they correspond to a
modified version of Balakrishnan’s formula that takes only spectral points with positive
real part into account.

Remark 1.1. It is clear from the definition of the S-resolvent operators that to use the
S-functional calculus for the definition of the fractional powers of an operator T we have
to determine if Qs(T ) is invertible for any s ∈ H such that s �= 0 and Re(s) = 0, and,
moreover, if estimates of the type (1.6) hold, see Problem 1.4.

1.2. Operators of order one vs operators of order m > 1

In some of our previous papers, we have defined fractional powers of operators of first
order such as

T :=

⎛
⎝a1(x)∂x1

a2(x)∂x2

a3(x)∂x3 .

⎞
⎠

acting on functions u : Ω ⊂ R
3 → R belonging to H1

0 (Ω, R) ⊂ L2(Ω, R) where Ω is a (pos-
sibly) unbounded domain with C1 boundary. To use the S-functional calculus, first we
identify the gradient operator with the quaternionic gradient operator⎛

⎝a1(x)∂x1

a2(x)∂x2

a3(x)∂x3

⎞
⎠ ≡ e1a1(x)∂x1 + e2a2(x)∂x2 + e3a3(x)∂x3

and we consider the operator Qs(T ) defined in a weak sense over H1
0 (Ω, H) ⊂ L2(Ω, H). It

is important to observe that the above identification has some consequence on the bilinear
form bs(u, v) = 〈Qs(T )(u), v〉H, where 〈a, b〉H := ab for all a, b ∈ H. Indeed, performing
an integration by parts, we have (see in the following):

bs(u, u) =
3∑

l=1

‖al(x)∂xl
u‖2 + |s|2‖u‖2 + other terms

where the “other terms” are the scalar products of the first derivatives of u with u
multiplied by the derivative of the coefficients. In the formula, we indicate that bs(u, u)
contains two positive terms: the L2-norm of u and the L2-norm of the first derivative of
u multiplied by the coefficients aj ’s. This fact allows us to determine some conditions on
the coefficients aj ’s in order to guarantee the continuity and the coercivity of bs(·, ·) and,
moreover, the uniform estimates for the S-resolvent operator.
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In this paper, we consider vector operators of order m > 1 and m ∈ N of the type

T :=

⎛
⎝a1(x)∂m

x1

a2(x)∂m
x2

a3(x)∂m
x3

⎞
⎠ .

If we consider the previous identification

T := e1a1(x)∂m
x1

+ e2a2(x)∂m
x2

+ e3a3(x)∂m
x3

,

and we consider the operator Qs(T ) defined in a weak sense over Hm
0 (Ω, H) ⊂ L2(Ω, H),

we have to distinguish the cases of m odd or even. If m is odd using m-times an argument
of integration by parts we obtain

bs(u, u) =
3∑

l=1

‖al(x)∂m
xl

u‖2 + |s|2‖u‖2 + other terms

and the bilinear form still contains two positive terms: the L2-norm of u and the L2-norm
of the derivatives of order m. If we try to compute the bilinear form in the same way
when m is even, we obtain

bs(u, u) = −
3∑

l=1

‖al(x)∂m
xl

u‖2 + |s|2‖u‖2 + other terms

losing the positivity of the first term. One way to overcome this problem is to identify T
with

e1a1(x)∂m
x1

+ e2a2(x)∂m
x2

+ e3a3(x)∂m
x3

if m is odd and with

i(e1a1(x)∂m
x1

+ e2a2(x)∂m
x3

+ e3a3(x)∂m
x3

)

if m is even where i is the imaginary unit of C. In other words, we have complexified
the coefficients of the quaternionic gradient operator and the operator T is identified
with the quaternionic gradient operator with real coefficients if m is odd or with the
quaternionic gradient operator with purely imaginary coefficients if m is even. For the
precise definitions of bs(·, ·) and of the quaternionic Hilbert space C ⊗ H, see § 2. In light
of these considerations, we give the following definition.

Definition 1.2. Let Ω be a C1-domain in R
3, bounded or unbounded, and let al : Ω → R

for l = 1, 2, 3 be Cm(Ω) functions. We define in a classical way over Cm(Ω, C ⊗ H) the
operator

T := im−1
(
a1(x)e1∂

m
x1

+ a2(x)e2∂
m
x2

+ a3(x)e3∂
m
x3

)
, x = (x1, x2, x3) ∈ Ω.
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1.3. Ω bounded vs Ω unbounded

We will treat separately the cases of Ω bounded and of Ω unbounded. The unbounded
case is more complicated as explained at the end of this section and needs some more
constraints on the shape of Ω that we now introduce. For the following definition, we
shall utilize n-dimensional spherical coordinates (r, ω) where r ≥ 0 is the distance from
the origin, ω ∈ Sn−1, and Sn−1 denotes the sphere in R

n (see [26]; in our case, however,
n = 3).

Definition 1.3. An open set Ω ⊂ R
3 is said to have the property (R) if there exists

P ∈ R
3 \ Ω such that every ray through P has the intersection with Ω which is either

empty or an infinite interval. More precisely, for each ω ∈ S2 set{
f(ω) := inf{r ≥ 0 : P + rω ∈ Ω} if {P + rω : r ≥ 0} ∩ Ω �= ∅
f(ω) := ∞ if {P + rω : r ≥ 0} ∩ Ω = ∅.

We are assuming that if f(ω) �= ∞, then P + rω ∈ Ω for all r ∈ (f(ω),∞).

Examples of unbounded domains, which satisfy the property (R) are: Ω := {x ∈ R
3 :

|x − P | > M} and Ω := {x ∈ R
3 : 〈P − x, v〉 > 0} where v ∈ R

3 is a vector, P ∈ R
3 is a

point and M > 0 is a positive constant (here 〈·, ·〉 is the standard scalar product of R
3).

We are ready to formulate in the precise way the problems that we have to solve.

Problem 1.4. Let Ω ⊂ R
3 be with C1 boundary, which is either bounded or unbounded

and satisfying the property (R). Let F : Ω → C ⊗ H be a given L2-function and denote
by u : Ω → C ⊗ H the unknown function satisfying the boundary value problem:{

Qs(T )(u) = F

∂bu(x) = 0 ∀b ∈ N
3
0 such that |b| ≤ m − 1 and x ∈ ∂Ω,

(1.7)

where b = (b1, b2, b3) and ∂b = ∂b1
x1

∂b2
x2

∂b3
x3

. Determine the conditions on the coefficients
a1, a2, a3 : Ω → R such that the boundary value problem has a unique solution in a suit-
able function space and, moreover, the L2-estimates (1.6) for the S-resolvent operators
hold.

Remark 1.5. If Ω is bounded and its boundary is of class Cm, the previous boundary
value problem is equivalent to{

Qs(T )(u) = F

∂j
νu(x) = 0 for 0 ≤ j ≤ m − 1 and x ∈ ∂Ω,

(1.8)

where, ν is the normal vector field pointing outside ∂Ω (see Theorem 7.41 in [33]).

We are going to solve the previous problem by the use of the Lax–Milgram Lemma. In
particular, to solve the boundary value problem (1.7), we want to find some conditions on
the coefficients aj ’s in a such way that the continuity and the coercivity of the quadratic
form bs(u, v) associated with Qs(T ) hold (see Definition 2.3). The need of proving also
the estimates (1.6) makes the assumptions on the coefficients al’s stronger than the
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usual one that we have to require for the coercivity of bs(·, ·), since we can not rely on
the term |s|2‖u‖2 of bs(·, ·). For this reason, the other positive term in bs(u, u), that
is
∑3

l=1 ‖al∂
m
xl

u‖, has to control the L2-norm of u and the L2-norms of all the partial
derivatives of u up to order m − 1. In § 3, when Ω is a bounded domain of R

3, through
an iterated use of Poincaré’s inequality, we will show that the conditions:

• |aj | � max(Cm
Ω , CΩ);

• |aj | � |∂βaj | for any |β| < m,

are sufficient to solve the Problem 1.4. Here and in what follows, CΩ denotes the Poincaré
constant of Ω. When Ω is an unbounded domain of R

3 and m = 1, the role of the Poincaré
inequalities is replaced by the Gagliardo–Nirenberg estimates and a condition of integra-
bility on the first derivatives of the coefficients is sufficient to get the coercivity of bs(·, ·)
(see [24]).

When Ω is an unbounded domain of R
3 and the order of the operator T is greater than

1, the Gagliardo–Nirenberg estimates can not be used in an iterated way as for Poincaré’s
inequality. In § 2, we propose one way to overcome this problem by the use of a weighted
Poincaré’s inequality on some unbounded domains under an exponential decay condition
at infinity of the coefficients aj ’s (see Theorem 4.3).

In this paper, the definition of the fractional quaternionic operators is based on the
S-spectrum approach to fractional diffusion problems see [2, 13, 14]. This method is a
generalization of the Balakrishnan’s method to construct the fractional power of a real
operator, see [5]. There are also several nonlinear models that involve the fractional power
of scalar elliptic operators, see for example [11, 34].

2. The weak formulation of Problem 1.4

The boundary ∂Ω of Ω is assumed to be of class C1 even though for some lemmas in
the sequel the conditions on the open set Ω can be weakened. We consider the right
quaternionic Hilbert space C ⊗ H endowed with the scalar product

〈u, v〉 := q1w1 + q2w2 ∀u, v ∈ C ⊗ H

where i is the imaginary unit of C, u = q1 + iq2, v = w1 + iw2 and q1, q2, w1, w2 ∈ H.
As usual, we define the modulus of u ∈ C ⊗ H as

|u| :=
√

〈u, u〉.
We observe that a function u : Ω → C ⊗ H is determined by eight real functions uj,l :
Ω → R where j = 0, 1, 2, 3 and l = 1, 2. We call these functions the components of u.
We will use the following notation

u(x) = (u0,1(x) + u1,1(x)e1 + u2,1(x)e2 + u3,1(x)e3) + i(u0,2(x) + u1,2(x)e1

+ u2,2(x)e2 + u3,2(x)e3)

= u1(x) + iu2(x).

where u1(x) := u0,1(x) + u1,1(x)e1 + u2,1(x)e2 + u3,1(x)e3 and u2(x) := u0,2(x) +
u1,2(x)e1 + u2,2(x)e2 + u3,2(x)e3. We can consider the space of Lp-integrable functions
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from a domain Ω ⊂ R
3 to C ⊗ H

Lp := Lp(Ω, C ⊗ H) :=
{

u : Ω → C ⊗ H :
∫

Ω

|u(x)|p dx < +∞
}

.

The space L2 with the scalar product:

〈u, v〉L2 := 〈u, v〉L2(Ω,C⊗H) :=
∫

Ω

〈u(x), v(x)〉 dx ∀u, v ∈ L2(Ω, C ⊗ H),

is a right linear quaternionic Hilbert space. We furthermore introduce the quaternionic
Sobolev space of order m

Hm := Hm(Ω, C ⊗ H)

:=
{

u ∈ L2(Ω, C ⊗ H) : uj,l ∈ Hm(Ω, R) j = 0, 1, 2, 3 and l = 1, 2
}

,

where the space Hm(Ω, R) is the Sobolev space of order m defined as in [25] Chapter 5.
We have that Hm(Ω, C ⊗ H) endowed with the quaternionic scalar product

〈u, v〉Hm := 〈u, v〉Hm(Ω,H) := 〈u, v〉L2 +
3∑

1≤|b|≤m

〈
∂bu, ∂bv

〉
L2 ,

where b ∈ N
3, becomes a right linear quaternionic Hilbert space. As usual the space

Hm
0 (Ω, C ⊗ H) is the closure of the space C∞

0 (Ω, C ⊗ H) in Hm(Ω, C ⊗ H) with respect
to the norm ‖ · ‖Hm . This space can be characterized as the set of all functions u ∈
Hm such that Tr(∂bu) = 0 for any multiindex b ∈ N

3 with |b| ≤ m − 1 (here the trace
operator Tr(·) is defined as in [25] Chapter 5). Now we give to the problem (1.4) the weak
formulation in order to apply the Lax–Milgram lemma in the space Hm

0 (Ω, C ⊗ H).

Remark 2.1. When Ω is bounded, we can endow Hm
0 (Ω, C ⊗ H) with the scalar product

〈u, v〉Dm :=
3∑

l=1

〈∂m
xl

u, ∂m
xl

v〉L2 .

The Hm-norm is equivalent to the norm

‖u‖2
Dm := 〈u, u〉Dm =

3∑
l=1

‖∂m
xl

u‖2
L2 .

This is a consequence of the following estimates

‖u‖Dm ≤ ‖u‖Hm ≤ K(m)KΩ

∑
|b|=m

‖∂bu‖L2 ≤ K(m)KKΩ‖u‖Dm ,

where the second inequality is obtained by Poincaré’s inequality applied repeatedly to
the term ‖∂bu‖L2 for |b| < m and

KΩ := sup(CΩ, Cm
Ω ).

The constant K(m) represents the maximum number of times that ‖∂bu‖ for some
|b| = m appear on the left-hand side of the second inequality after the use of the
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Poincaré’s inequality. The last estimate follows using the Fourier transform on the terms
∂bu when |b| = m and since there exists a positive constant K > 0 such that

∑
|b|=m

|ξ2b| ≤ K

3∑
l=1

|ξl|2m

(we can use the Fourier transform since any u ∈ Hm
0 (Ω, C ⊗ H) can be extended by

0 outside Ω preserving the Hm-regularity in R
3). We define the constant K(m,Ω) :=

KK(m)KΩ (we will use several times this constant in the sequel and according to our
necessity it could be rescaled by other constants which depends on m). When Ω is
unbounded ‖ · ‖Dm is not a norm, still we will use several times the estimate

∑
|β|=m

‖∂bu‖ ≤ K‖u‖Dm .

Remark 2.2. We will use several times a classical argument of integration by parts
that we describe now. Let f1, f2 ∈ Hk

0 (Ω, R) and ∂bf3, ∂bf4 ∈ L2(Ω) ∩ L∞(Ω) for any
b ∈ N

3 with |b| ≤ k then, integrating by parts k-times and recalling that the traces at
the boundary of ∂bf2 for all |b| < k are zero, we have that for any i = 1, 2, 3

∫
Ω

∂k
xi

(f1)f2f3f4 dx = (−1)k

∫
Ω

f1∂
k
xi

(f2f3f4) dx

= (−1)k

∫
Ω

f1∂
k
xi

(f2)f3f4 dx + (−1)k
∑

|t|=k ∧ t1≤k−1

(
k
t

)∫
Ω

f1∂
t1
xi

(f2)∂t2
xi

(f3)∂t3
xi

(f4) dx

= (−1)k
∑
|t|=k

(
k
t

)∫
Ω

f1∂
t1
xi

(f2)∂t2
xi

(f3)∂t3
xi

(f4) dx,

where t = (t1, t2, t3) ∈ N
3 and

(
k
t

)
= k!

t1!t2!t3!
.

From Definition 1.2, we have

Qs(T ) = T 2 − 2s0T + |s|2I

= (−1)m

[
3∑

l=1

a2
l (x)∂2m

xl
+

3∑
l=1

m∑
k=1

(
m
k

)
al(x)∂k

xl
(al(x))∂2m−k

xl

+
∑
l<j

elej

(
m∑

k=1

(
m
k

)(
al(x)∂k

xl
(aj(x))∂m−k

xl
∂m

xj
− aj(x)∂k

xj
(al(x))∂m−k

xj
∂m

xl

))⎤⎦
− 2s0T + |s|2I,
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where
(

m
k

)
= m!

k!(m−k)! , and the scalar part of Qs(T ) is

Scal(Qs(T )) := (−1)m

(
3∑

l=1

a2
l (x)∂2m

xl
+

3∑
l=1

m∑
k=1

(
m
k

)
al(x)∂k

xl
(al(x))∂2m−k

xl

)
+ |s|2I,

while the vectorial part is

Vect(Qs(T )) :=
∑
l<j

elej

(
m∑

k=1

(
m
k

)(
al(x)∂k

xl
(aj(x))∂m−k

xl
∂m

xj

−aj(x)∂k
xj

(al(x))∂m−k
xj

∂m
xl

))
− 2s0T.

We consider the bilinear form

〈Qs(T )u, v〉L2 =
∫

Ω

〈Qs(T )u(x), v(x)〉 dx

for functions u, v ∈ C2m
0 (Ω, C ⊗ H). Note that

〈Qs(T )u, v〉L2 = 〈Scal(Qs(T ))u, v〉L2 + 〈Vect(Qs(T ))u, v〉L2 .

Using Remark 2.2, we have that

〈Scal(Qs(T ))u, v〉L2

= (−1)m

(
3∑

l=1

∫
Ω

〈a2
l (x)∂2m

xl
(u), v〉 dx

+
3∑

l=1

m∑
k=1

(
m
k

)∫
Ω

〈al(x)∂k
xl

(al(x))∂2m−k
xl

(u), v〉 dx

)

+ |s|2
∫

Ω

uv dx =
3∑

l=1

∫
Ω

〈a2
l (x)∂m

xl
(u), ∂m

xl
(v)〉 dx + |s|2

∫
Ω

〈u, v〉 dx

+
3∑

l=1

∑
|t′|=m∧ t′2≤m−1

(
m
t′

)∫
Ω

〈∂t′1
xl(a

2
l (x))∂m

xl
(u), ∂t′2

xl(v)〉 dx

+
3∑

l=1

m∑
k=1

(−1)k
∑

|t|=m−k

(
m
k

)(
m − k

t

)∫
Ω

〈∂t1
xl

(al(x))∂t2+k
xl

(al(x))∂m
xl

(u), ∂t3
xl

(v)〉 dx,
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where t′ = (t′1, t
′
2) ∈ N

2 and also

〈Vect(Qs(T ))u, v〉L2

= (−1)m
∑
l<j

m∑
k=1

(
m
k

)∫
Ω

〈elej

(
al(x)∂k

xl
(aj(x))∂m−k

xl
∂m

xj
(u)

− aj(x)∂k
xj

(al(x))∂m−k
xj

∂m
xl

(u)
)

, v〉 dx

− 2s0〈T (u), v〉L2

=
∑
l<j

m∑
k=1

(−1)k
∑

|t|=m−k

(
m
k

)(
m − k

t

)(∫
Ω

〈elej∂
t1
xl

(al(x))∂t2+k
xl

(aj(x))∂m
xj

(u), ∂t3
xl

v〉 dx

−
∫

Ω

〈elej∂
t1
xj

(aj(x))∂t2+k
xj

(al(x))∂m
xl

(u), ∂t3
xj

v〉 dx − 2s0〈T (u), v〉L2

)
.

Relying on the above considerations we can give the following two definitions.

Definition 2.3. Let Ω be a bounded domain (or an unbounded domain) in R
3 with the

boundary ∂Ω of class C1, let a1, a2, a3 ∈ Cm(Ω, R) (or in the case of the unbounded
domains a1, a2, a3 ∈ Cm(Ω, R) ∩ L∞(Ω) such that ∂baj ∈ L∞(Ω) for any j = 1, 2, 3 and
for any b ∈ N

3 such that |b| ≤ m). We define the bilinear form:

bs(u, v) : =
3∑

l=1

∫
Ω

〈a2
l (x)∂m

xl
(u), ∂m

xl
(v)〉 dx + |s|2

∫
Ω

〈u, v〉 dx

+
3∑

l=1

∑
|t′|=m∧ t2≤m−1

(
m
t′

)∫
Ω

〈∂t1
xl

(a2
l (x))∂m

xl
(u), ∂t2

xl
(v)〉 dx

+
3∑

l=1

m∑
k=1

(−1)k
∑

|t|=m−k

(
m
k

)(
m − k

t

)

×
∫

Ω

〈∂t1
xl

(al(x))∂t2+k
xl

(al(x))∂m
xl

(u), ∂t3
xl

(v)〉 dx

+
∑
l<j

m∑
k=1

(−1)k
∑

|t|=m−k

(
m
k

)(
m − k

t

)

×
(∫

Ω

〈elej∂
t1
xl

(al(x))∂t2+k
xl

(aj(x))∂m
xj

(u), ∂t3
xl

v〉 dx

−
∫

Ω

〈elej∂
t1
xj

(aj(x))∂t2+k
xj

(al(x))∂m
xl

(u), ∂t3
xj

v〉 dx − 2s0〈T (u), v〉L2

)
,

(2.1)

for all functions u, v ∈ Hm
0 (Ω, C ⊗ H).

Definition 2.4. Let Ω be a bounded domain in R
3 with C1 boundary (or an unbounded

domain which satisfy property (R)). We say that u ∈ Hm
0 is the weak solution of the
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existence problem in 1.4 for some s ∈ H and a given F ∈ L2(Ω, C ⊗ H), if we have

bs(u, v) = 〈F, v〉L2 , for all v ∈ Hm
0 ,

where bs is the bilinear form defined in Definition 2.3.

3. Weak solution of Problem 1.4 when Ω is bounded

To prove the existence and uniqueness of the weak solutions of the Problem 1.4 in the
case Ω is bounded, it will be sufficient to show that the bilinear forms bs(·, ·), in Definition
2.3, are continuous and coercive in Hm

0 (Ω, C ⊗ H).
First, we prove the continuity in § 3.1. The coercivity will be proved in § 3.2 when

s = js1 for j ∈ S and s1 ∈ R with s1 �= 0. As a direct consequence of the coercivity, we
will prove an L2 estimate for the weak solution u that belongs to Hm

0 (Ω, C ⊗ H) and also
we will prove an L2 estimate for the term T (u).

3.1. The continuity of the bilinear form bs(·, ·)
The bilinear form

bs(·, ·) : Hm
0 (Ω, C ⊗ H) × Hm

0 (Ω, C ⊗ H) → H,

for some s ∈ H, is continuous if there exists a positive constant C(s) such that

|bs(u, v)| ≤ C(s)‖u‖Dm‖v‖Dm , for all u, v ∈ Hm(Ω, C ⊗ H).

We note that the constant C(s) depends on s ∈ H but does not depend on u and v ∈
Hm(Ω, C ⊗ H).

Proposition 3.1 (Continuity of bs). Let Ω be a bounded domain in R
3 with boundary

∂Ω of class C1. Assume that a1, a2, a3 ∈ Cm(Ω, R) then we have

∣∣∣∣∣
3∑

l=1

∫
Ω

〈a2
l (x)∂m

xl
(u), ∂m

xl
(v)〉 dx

∣∣∣∣∣ ≤ C1, m, aj , Ω‖u‖Dm‖v‖Dm (3.1)

∣∣∣∣∣
3∑

l=1

∑
|t′|=m∧ t2≤m−1

(
m
t′

)∫
Ω

〈∂t′1
xl(a

2
l (x))∂m

xl
(u), ∂t′2

xl(v)〉 dx

∣∣∣∣∣ ≤ C2, m, aj , Ω‖u‖Dm‖v‖Dm

(3.2)∣∣∣∣∣
3∑

l=1

m∑
k=1

(−1)k
∑

|t|=m−k

(
m
k

)(
m − k

t

)∫
Ω

〈∂t1
xl

(al(x))∂t2+k
xl

(al(x))∂m
xl

(u), ∂t3
xl

(v)〉 dx

∣∣∣∣∣
≤ C3, m, aj , Ω‖u‖Dm‖v‖Dm (3.3)
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∣∣∣∣∣
∑
l<j

m∑
k=1

(−1)k
∑

|t|=m−k

(
m
k

)(
m − k

t

)(∫
Ω

〈elej∂
t1
xl

(al(x))∂t2+k
xl

(aj(x))∂m
xj

(u), ∂t3
xl

v〉 dx

−
∫

Ω

〈elej∂
t1
xj

(aj(x))∂t2+k
xj

(al(x))∂m
xl

(u), ∂t3
xj

v〉 dx

)
− 2s0〈T (u), v〉L2

∣∣∣∣∣
≤ C4, m, aj , Ω, s‖u‖Dm‖v‖Dm . (3.4)

The previous constants can be estimated as follows

C1, m, aj , Ω ≤ max
l=1,2,3

sup
x∈Ω

(a2
l (x)), C2, m, aj , Ω ≤ CK(m,Ω) max

l=1,2,3,
t=1,...,m

sup
x∈Ω

(|∂t
xl

(a2
l (x))|)

C3, m, aj , Ω ≤ CK(m,Ω)

⎛
⎝ max

l=1,2,3,
t=0,...,m

sup
x∈Ω

(|∂t
xl

(al(x))|)
⎞
⎠

2

C4, m, aj , Ω, s ≤ CK(m,Ω)

⎡
⎢⎣
⎛
⎝ max

l=1,2,3,
t=0,...,m

sup
x∈Ω

(|∂t
xl

(aj(x))|)
⎞
⎠

2

+ |s0| max
l=1,2,3

sup
x∈Ω

(|al(x)|)

⎤
⎥⎦ ,

where the constant C is the sum of the maximum of the integrals in the inequalities (3.2),
(3.3) and (3.4).

Moreover, for any s ∈ H there exists a positive constant C(s) such that for any (u, v) ∈
Hm

0 (Ω, C ⊗ H) × Hm
0 (Ω, C ⊗ H), the bilinear form bs(·, ·) satisfies the estimate

|bs(u, v)| ≤ C(s)‖u‖Dm‖v‖Dm , (3.5)

that is, bs(·, ·) is a continuous bilinear form.

Proof. The inequality (3.1) is a direct consequence of the boundedness of the coeffi-
cients al’s and the Hölder inequality. The estimates (3.2), (3.3) and (3.4) can be proved
in a similar way and so we briefly explain how to prove the inequality (3.2). First, to each
integral that is on the left-hand side of the equation, we repeatedly apply Hölder’s and
Poincaré’s inequalities. In this way, each integral can be estimated by a constant depend-
ing on the sup norm of ∂s

xl
at’s times ‖u‖Dm‖v‖Dm . Second, we sum up term by term.

Finally, the continuity of bs(·, ·) is a direct consequence of the previous estimates. �

3.2. Weak solution of the Problem 1.4

Theorem 3.2. Let Ω be a bounded domain in R
3 with boundary ∂Ω of class C1. Let T

be the operator defined in (1.2) with coefficients a1, a2, a3 ∈ Cm(Ω, R) and set

M := K(m,Ω)2

⎛
⎜⎜⎜⎝ sup

t=1,...,m
l=1,2,3

x∈Ω

|∂t
xl

(al(x))|

⎞
⎟⎟⎟⎠

2

.
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Suppose

CT := min
l=1,2,3

inf
x∈Ω

(a2
l (x)) > 0

CT

2
− M > 0. (3.6)

then:

(I) The boundary value Problem (1.4) has a unique weak solution u ∈ Hm
0 (Ω, H), for

s ∈ H \ {0} with Re(s) = 0, and

‖u‖2
L2 ≤ 1

|s|2 Re(bs(u, u)). (3.7)

(II) The following estimate holds

‖T (u)‖2
L2 ≤ C−1

1 Re(bs(u, u)), (3.8)

for every u ∈ H1
0 (Ω, H), and s ∈ H \ {0} with Re(s) = 0, where

C1 :=
CT − 2M

6CT
.

Observe that we assume that the minimum of each a2
l (x) for x ∈ Ω is strictly positive

and in fact greater than 2M . This fact can always be achieved by modifying T by adding
a suitable constant to each coefficients al of T , l = 1, 2, 3.

Proof. In order to use the Lax–Milgram Lemma to prove the existence and the unique-
ness of the solution for the weak formulation of the problem, it is sufficient to prove the
coercivity of the bilinear form bs(·, ·) in Definition 2.1 since the continuity is proved in
Proposition 3.1. First, we write explicitly Re bjs1(u, u), where we have set s = js1, for
s1 ∈ R and j ∈ S:

Re bjs1(u, u) = s2
1‖u‖2

L2 +
3∑

�=1

‖a�∂
m
x�

u‖2
L2

+ Re(
3∑

l=1

∑
|t′|=m∧ t2≤m−1

(
m
t′

)∫
Ω

〈∂t′1
xl(a

2
l (x))∂m

xl
(u), ∂t′2

xl(u)〉 dx

+
3∑

l=1

m∑
k=1

(−1)k
∑

|t|=m−k

(
m
k

)(
m − k

t

)

×
∫

Ω

〈∂t1
xl

(al(x))∂t2+k
xl

(al(x))∂m
xl

(u), ∂t3
xl

(u)〉 dx

+
∑
l<j

m∑
k=1

(−1)k
∑

|t|=m−k

(
m
k

)(
m − k

t

)

×
(∫

Ω

〈elej∂
t1
xl

(al(x))∂t2+k
xl

(aj(x))∂m
xj

(u), ∂t3
xl

u〉 dx

−
∫

Ω

〈elej∂
t1
xj

(aj(x))∂t2+k
xj

(al(x))∂m
xl

(u), ∂t3
xj

u〉 dx)
)

.

(3.9)
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We see that the first two terms are positive. What remain to estimate are the three
summations of the integrals in (3.9). Since they can be treated in the same way, we
explain in detail the estimate for the second. By Hölder’s inequality and the repeatedly
use of Poincaré’s inequality, we have for t1 = 0∣∣∣∣

∫
Ω

〈al(x)∂t2+k
xl

(al(x))∂m
xl

(u), ∂t3
xl

(v)〉 dx

∣∣∣∣ ≤ ε‖al∂
m
xl

u‖2 +
1
ε
‖∂t2+k

xl
(al)∂t3

xl
(u)‖2

≤ ε‖al∂
m
xl

u‖2 +
1
ε

(
sup
x∈Ω

(∂t2+k
xl

(al))
)2

‖∂t3
xl

(u)‖2

≤ ε‖al∂
m
xl

u‖2 +
1
ε

(
sup
x∈Ω

(∂t2+k
xl

(al)) (CΩ)m−t3

)2 ∑
|β|=m

‖∂β(u)‖2

≤ ε‖al∂
m
xl

u‖2 +
1
ε

(
sup
x∈Ω

(∂t2+k
xl

(al))KK(m) (CΩ)m−t3

)2

‖u‖2
Dm .

In the case t1 �= 0, since k > 0, we have∣∣∣∣
∫

Ω

〈∂t1
xl

(al(x))∂t2+k
xl

(al(x))∂m
xl

(u), ∂t3
xl

(v)〉 dx

∣∣∣∣ ≤ 1
2
‖∂t1

xl
(al)∂m

xl
u‖2 +

1
2
‖∂t2+k

xl
(al)∂t3

xl
(u)‖2

≤ 1
2

sup
x∈Ω

(∣∣∂t1
xl

al

∣∣2) ‖∂m
xl

u‖2 +
1
2

sup
x∈Ω

∣∣∂t2+k
xl

al

∣∣2 (KK(m) (CΩ)m−t3
)2

‖u‖2
Dm .

Summing up all the previous estimates of the terms in the second summation and rescaling
the constants K(m,Ω) multiplying it by a constant which depends only on m, we obtain∣∣∣∣∣∣

3∑
l=1

∑
|t′|=m∧ t2≤m−1

t1∑
k=0

(
m
t′

)(
t1
k

)∫
Ω

〈∂k
xl

(al(x))∂t1−k
xl

(al(x))∂m
xl

(u), ∂t2
xl

(u)〉 dx

∣∣∣∣∣∣
≤ ε

3∑
l=1

‖al∂
m
xl

u‖2 +

⎛
⎝K(m,Ω)2

ε
max

j, l=1,2,3
t=1,..., m

sup
x∈Ω

(∣∣∣∂t
xj

al

∣∣∣2)
⎞
⎠ ‖u‖2

Dm .

Analogous estimates also hold for the other summation of integrals. Eventually, summing
up all the estimates, choosing ε in such a way that

∑3
l=1 ‖al∂

m
xl

u‖2 − Cε
∑3

l=1 ‖al∂
m
xl

u‖2 ≥
1
2

∑3
l=1 ‖al∂

m
xl

u‖2 (where C depends only on m) and uniformazing the constants K(m,Ω),
we obtain

Re bjs1(u, u) ≥ s2
1‖u‖2

L2 +
1
2

3∑
l=1

‖al∂
m
xl

u‖ − M‖u‖2
Dm

≥ s2
1‖u‖2

L2 +
(

1
2
CT − M

)
‖u‖2

Dm .

(3.10)

and, moreover,

1
2
CT − M > 0.
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Thus, the quadratic form bjs1(·, ·) is coercive for every s1 ∈ R. In particular, we have

Re bjs1(u, u) ≥ s2
1‖u‖2

L2 and Re bjs1(u, u) ≥
(

1
2
CT − M

)
‖u‖2

Dm . (3.11)

By the Lax–Milgram Lemma, we have that for any w ∈ L2(Ω, C ⊗ H) there exists uw ∈
Hm

0 (Ω, H), for s1 ∈ R \ {0} and j ∈ S, such that

bjs1(uw, v) = 〈w, v〉L2 , for all v ∈ Hm
0 (Ω, H).

What remains to prove is the inequality (3.8). Applying the first of the inequalities in
(3.10) and observing that

3∑
�=1

‖∂m
x�

u‖2
L2 ≤ 1

CT

3∑
�=1

‖a�∂
m
x�

u‖2
L2

we have:

Re bjs1(u, u) ≥ 1
2

3∑
l=1

‖al∂
m
xl

u‖ − M‖u‖2
Dm

≥ 1
2

3∑
�=1

‖a�∂
m
x�

u‖2
L2 − M

CT

3∑
�=1

‖a�∂
m
x�

u‖2
L2

≥ CT − 2M

2CT

3∑
�=1

‖a�∂
m
x�

u‖2
L2 ≥ C1‖Tu‖2

L2 ,

where the second inequality is due to the fact that C−1
T a2

�(x) ≥ 1 for any x ∈ Ω, the fourth
inequality is due to the fact that ‖Tu‖2

L2 ≤ 3
∑3

�=1 ‖a�∂
m
x�

u‖2
L2 and we have set

C1 :=
CT − 2M

6CT
.

This concludes the proof. �

4. Weak solution of the Problem 1.4 for unbounded Ω

To prove the existence and uniqueness of the weak solutions of the Problem 1.4 in the
case of Ω unbounded, we proceed as in the previous section.

First, we prove the continuity in § 4.1. The coercivity will be proved in § 4.2 when
s = js1 for j ∈ S and s1 ∈ R with s1 �= 0. As a direct consequence of the coercivity, we
will prove an L2 estimate for the weak solution u that belongs to Hm

0 (Ω, C ⊗ H) and also
we will prove an L2 estimate for the term T (u).
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4.1. The continuity of the bilinear form bs(·, ·)
The bilinear form

bs(·, ·) : Hm
0 (Ω, C ⊗ H) × Hm

0 (Ω, C ⊗ H) → H,

for some s ∈ H, is continuous if there exists a positive constant C(s) such that

|bs(u, v)| ≤ C(s)‖u‖Hm‖v‖Hm , for all u, v ∈ Hm(Ω, C ⊗ H).

We note that the constant C(s) depends on s ∈ H but does not depend on u and v ∈
Hm(Ω, C ⊗ H).

Proposition 4.1 (Continuity of bs). Let Ω be an unbounded domain in R
3 with boundary

∂Ω of class C1. Assume that a1, a2, a3 ∈ Cm(Ω, R) ∩ L∞(Ω) and that ∂βaj ∈ L∞(Ω) for
any j = 1, 2, 3 and for any β ∈ N

3, |β| ≤ m. Then we have∣∣∣∣∣
3∑

l=1

∫
Ω

〈a2
l (x)∂m

xl
(u), ∂m

xl
(v)〉 dx

∣∣∣∣∣ ≤ C1, m, aj , Ω‖u‖Hm‖v‖Hm (4.1)

∣∣∣∣∣
3∑

l=1

∑
|t′|=m∧ t2≤m−1

(
m
t′

)∫
Ω

〈∂t′1
xl(a

2
l (x))∂m

xl
(u), ∂t′2

xl(v)〉 dx

∣∣∣∣∣ ≤ C2, m, aj , Ω‖u‖Hm‖v‖Hm

(4.2)∣∣∣∣∣
3∑

l=1

m∑
k=1

(−1)k
∑

|t|=m−k

(
m
k

)(
m − k

t

) ∫
Ω

〈∂t1
xl

(al(x))∂t2+k
xl

(al(x))∂m
xl

(u), ∂t3
xl

(v)〉 dx

∣∣∣∣∣
≤ C3, m, aj , Ω‖u‖Hm‖v‖Hm

(4.3)∣∣∣∣∣
∑
l<j

m∑
k=1

(−1)k
∑

|t|=m−k

(
m
k

)(
m − k

t

)∫
Ω

〈elej∂
t1
xl

(al(x))∂t2+k
xl

(aj(x))∂m
xj

(u), ∂t3
xl

v〉 dx

−
∫

Ω

〈elej∂
t1
xj

(aj(x))∂t2+k
xj

(al(x))∂m
xl

(u), ∂t3
xj

v〉 dx − 2s0〈T (u), v〉L2

∣∣∣∣∣
≤ C4, m, aj , Ω, s‖u‖Hm‖v‖Hm

(4.4)

where the previous constants can be estimated as follows

C1, m, aj , Ω ≤ max
l=1,2,3

sup
x∈Ω

(a2
l (x)), C2, m, aj , Ω ≤ CK(m) max

l=1,2,3
t=1,...,m

sup
x∈Ω

(|∂t
xl

(a2
l (x))|)

C3, m, aj , Ω ≤ CK(m)

⎛
⎝ max

l=1,2,3
t=0,...,m

sup
x∈Ω

(|∂t
xl

(al(x))|)
⎞
⎠

2
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C4, m, aj , Ω, s ≤ CK(m)

⎡
⎢⎣
⎛
⎝ max

l=1,2,3
t=0,...,m

sup
x∈Ω

(|∂t
xl

(aj(x))|)
⎞
⎠

2

+ |s0| max
l=1,2,3

sup
x∈Ω

(|al(x)|)

⎤
⎥⎦

where the constant C is the sum of the maximum of the integrals in the inequalities (3.2),
(3.3) and (3.4).

Moreover, for any s ∈ H there exists a positive constant C(s) such that for any (u, v) ∈
Hm

0 (Ω, C ⊗ H) × Hm
0 (Ω, C ⊗ H), the bilinear form bs(·, ·) satisfies the estimate

|bs(u, v)| ≤ C(s)‖u‖Hm‖v‖Hm , (4.5)

i.e., bs(·, ·) is a continuous bilinear form.

Proof. The inequality (4.1) is a direct consequence of the boundedness of the coeffi-
cients al’s and the Hölder inequality. The estimates (4.2), (4.3) and (4.4) can be proved
in a similar way and so we briefly explain how to prove the inequality (4.2). First we
apply the Hölder inequality to each integral that belongs to the left-hand side. Thus,
each integral can be estimated by a constant (that depends on the sup norm of ∂s

xl
at’s)

times ‖∂m
xl

u‖‖∂βv‖ for |β| ≤ m and l = 1, 2, 3. Since ‖∂m
xl

u‖‖∂βv‖ ≤ ‖u‖Hm‖v‖Hm for
any |β| ≤ m and j = 1, 2, 3, we sum up term by term to get the desired estimate.
Eventually, the continuity of bs(·, ·) is a direct consequence of the previous estimates. �

4.2. Weak solution of the Problem 1.4

For the coercivity, we need the following results (see [26]), which are the corresponding
of Poincaré’s inequality in the case of the unbounded domains.

Theorem 4.2. Let Ω be a domain in R
3 which satisfies the property (R). Let φ ∈ C1(Ω)

be a bounded positive function for which there exists a positive constant λ such that

d

dr
[r2φ(rω)] ≤ −λr2φ(rω) (4.6)

for all ω ∈ S
2. Then for each u ∈ C∞

0 (Ω, R) and any (1 ≤ p < ∞), we have∫
Ω

|u|pφ dx ≤
( p

λ

)p
∫

Ω

|∇u|pφ dx.

We call φ a weight function for Ω with a rate of exponentially decaying λ. As explained
in [26], we can observe that the graph of φ has the shape of an exponentially decaying
hill. An example of a weight function for all the domains which satisfy the property
(R) is

φ(x) =
e−λ|x−P |

|x − P |2 when P /∈ Ω

If the domain is contained in a half-space, after an affine changing of variables, we can sup-
pose that it is contained in {x ∈ R

3 : x1 > 0}. The previous theorem holds also requiring
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the weight function φ satisfies the assumption

∂x1φ(x) ≤ −λφ(x).

instead of the assumption (4.6). In this case, the graph of φ has the shape of an
exponentially decaying ridge and an example of this kind of function is

φ = e−λx1

Theorem 4.3. Let Ω be an unbounded domain in R
3 such that it satisfies the property

(R) and with its boundary ∂Ω of class C1. Let φ be a bounded weight function for Ω with
the rate of exponential decay λ. Let T be the operator defined in (1.2) with coefficients
a1, a2, a3 ∈ Cm(Ω, R) ∩ L∞(Ω) such that |∂t

xl
aj(x)|2 ≤ Cφ for some positive constant C

and for all t = 1, . . . , m and j, l = 1, 2, 3. We set

M := K(m) max
l=1,2,3

t=1,..., m

sup
x∈Ω

(∣∣∂t
xl

al

∣∣2)+ K(m,φ, λ),

where K(m) and K(m,φ, λ) are positive constants that depend on the order m of the
operator, on φ and on λ. We suppose that

CT := min
l=1,2,3

inf
x∈Ω

(a2
l (x)) > 0,

1
2
CT − M > 0. (4.7)

Then:

(I) The boundary value Problem (1.4) has a unique weak solution u ∈ Hm
0 (Ω, H ⊗ C),

for s ∈ H \ {0} with Re(s) = 0, and

‖u‖2
L2 ≤ 1

|s|2 Re(bs(u, u)). (4.8)

(II) Moreover, we have the following estimate

‖T (u)‖2
L2 ≤ C−1

1 Re(bs(u, u)), (4.9)

for every u ∈ Hm
0 (Ω, H), and s ∈ H \ {0} with Re(s) = 0, where

C1 :=
CT − 2M

6CT
.

Proof. In order to use the Lax–Milgram Lemma to prove the existence and the unique-
ness of the solution for the weak formulation of the problem, it is sufficient to prove the
coercivity of the bilinear form bs(·, ·) in Definition 2.1 since the continuity is proved in
Proposition 4.1. First, we write explicitly Re bjs1(u, u), where we have set s = js1, for
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s1 ∈ R and j ∈ S:

Re bjs1(u, u)

= s2
1‖u‖2

L2 +
3∑

�=1

‖a�∂
m
x�

u‖2
L2

+ Re

⎛
⎝ 3∑

l=1

∑
|t′|=m∧ t2≤m−1

t1∑
k=0

(
m
t′

)(
t1
k

)∫
Ω

〈∂k
xl

(al(x))∂t1−k
xl

(al(x))∂m
xl

(u), ∂t2
xl

(u)〉dx

+
3∑

l=1

m∑
k=1

(−1)k
∑

|t|=m−k

(
m
k

)(
m − k

t

)∫
Ω

〈∂t1
xl

(al(x))∂t2+k
xl

(al(x))∂m
xl

(u), ∂t3
xl

(u)〉 dx

+
∑
l<j

m∑
k=1

(−1)k
∑

|t|=m−k

(
m
k

)(
m − k

t

)

×
(∫

Ω

〈elej∂
t1
xl

(al(x))∂t2+k
xl

(aj(x))∂m
xj

(u), ∂t3
xl

u〉 dx

−
∫

Ω

〈elej∂
t1
xj

(aj(x))∂t2+k
xj

(al(x))∂m
xl

(u), ∂t3
xj

u〉 dx

))
. (4.10)

We see that the first two terms in (4.10) are positive. The other terms, that we have
collected in four summations, can be estimated all in the same way and for this reason we
explain how to estimate only the integrals in the first summation. By Hölder’s inequality
and the repeated application of Theorem 4.2, we have for k = 0 or k = t1∣∣∣∣

∫
Ω

〈al(x)∂t1
xl

(al(x))∂m
xl

(u), ∂t2
xl

(u)〉 dx

∣∣∣∣ ≤ ε‖al∂
m
xl

u‖2 +
1
ε
‖∂t1

xl
(al)∂t2

xl
(u)‖2

≤ ε‖al∂
m
xl

u‖2 + C
1
ε
‖φ 1

2 ∂t2
xl

(u)‖2

≤ ε‖al∂
m
xl

u‖2 + C ′ 1
ε

(
2
λ

)m−t2 ∑
|β|=m

‖∂β(u)‖2

≤ ε‖al∂
m
xl

u‖2 + C ′′ 1
ε

(
2
λ

)m−t2

‖u‖2
Dm

where the constants C, C ′ and C ′′ depend on φ, the derivatives of aj ’s and m. In the
case 0 < k < t1, we have∣∣∣∣

∫
Ω

〈∂k
xl

(al(x))∂t1−k
xl

(al(x))∂m
xl

(u), ∂t2
xl

(u)〉 dx

∣∣∣∣
≤ 1

2
‖∂k

xl
(al)∂m

xl
u‖2 +

1
2
‖∂t1−k

xl
(al)∂t2

xl
(u)‖2

≤ 1
2

sup
x∈Ω

(∣∣∂k
xl

al

∣∣2) ‖∂m
xl

u‖2 + C ′′ 1
2

(
2
λ

)2(m−t2)

‖u‖2
Dm .
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Summing up all the previous inequalities and choosing the constants k(m) and k(m,φ, λ)
in a suitable way, we obtain

∣∣∣∣∣∣
3∑

l=1

∑
|t′|=m∧ t2≤m−1

t1∑
k=0

(
m
t′

)(
t1
k

)∫
Ω

〈∂k
xl

(al(x))∂t1−k
xl

(al(x))∂m
xl

(u), ∂t2
xl

(u)〉 dx

∣∣∣∣∣∣
≤ ε

3∑
l=1

‖al∂
m
xl

u‖ +

⎛
⎝K(m) max

j, l=1,2,3
t=1,..., m

sup
x∈Ω

(∣∣∣∂t
xj

al

∣∣∣2)+
K(m,φ, λ)

ε

⎞
⎠ ‖u‖2

Dm .

We note that K(m,φ, λ) depends on λ through the multiplicative constant
max(( 2

λ )2m, ( 2
λ )2). Analogous estimates also holds for the other summation of integrals

(here the role of k is played by t1 and thus, we have to distinguish the cases of t1 = 0
and t1 �= 0) with possibly different constants K(m) and K(m,φ). Summing up all the
estimates and choosing in the right way ε, we obtain

Re bjs1(u, u) ≥ s2
1‖u‖2

L2 +
1
2

3∑
l=1

‖al∂
m
xl

u‖ − M‖u‖2
Dm

≥ s2
1‖u‖2

L2 +
(

1
2
CT − M

)
‖u‖2

Dm .

(4.11)

By hypothesis (4.7), we know that

1
2
CT − M > 0

thus, the quadratic form bjs1(·, ·) is coercive for every s1 ∈ R. In particular, we have

Re bjs1(u, u) ≥ s2
1‖u‖2

L2 and Re bjs1(u, u) ≥ (CT − M)‖u‖2
Dm . (4.12)

By the Lax–Milgram Lemma, we have that for any w ∈ L2(Ω, C ⊗ H), there exists uw ∈
Hm

0 (Ω, C ⊗ H), for s1 ∈ R \ {0} and j ∈ S, such that

bjs1(uw, v) = 〈w, v〉L2 , for all v ∈ Hm
0 (Ω, C ⊗ H).

What remains to prove is the inequality (4.9). Applying the first of the inequalities in
(4.11) and observing that

‖u‖Dm =
3∑

�=1

‖∂m
x�

u‖2
L2 ≤ 1

CT

3∑
�=1

‖a�∂
m
x�

u‖2
L2
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we have:

Re bjs1(u, u) ≥ 1
2

3∑
l=1

‖al∂
m
xl

u‖ − M‖u‖2
Dm

≥ 1
2

3∑
�=1

‖a�∂
m
x�

u‖2
L2 − M

CT

3∑
�=1

‖a�∂
m
x�

u‖2
L2

≥ CT − 2M

2CT

3∑
�=1

‖a�∂
m
x�

u‖2
L2 ≥ C1‖Tu‖2

L2 ,

where the second inequality is due to the fact that C−1
T a2

�(x) ≥ 1 for any x ∈ Ω, the fourth
inequality is due to the fact that ‖Tu‖2

L2 ≤ 3
∑3

�=1 ‖a�∂
m
x�

u‖2
L2 and we have set

C1 :=
CT − 2M

6CT
.

This concludes the proof. �

Remark 4.4. We provide here two examples of domains and coefficients al’s that satisfy
the hypothesis of Theorem 4.3.

• Let Ω := {x ∈ R
3 : |x − P | > M} and φ(x) := e−λ|x−P |

|x−P |2 , we define al(x) := Kl +
e−λ|x−P |sl(x) where sl ∈ S(R3) and Kl is a positive constant large enough for
l = 1, 2, 3 (S(R3) is the space of the Schwartz functions). By the properties of the
Schwartz functions we have that

sup
x∈Ω

(∣∣∣∣∂b(al(x))
φ(x)

∣∣∣∣
)

≤ Cb,sl
, ∀b ∈ N

3 and |b| > 0.

• Let Ω := {x ∈ R
3 : 〈x − P, v〉 > 0} and φ(x) := e−λ〈x−P,v〉, we define al(x) := K +

e−λ〈x−P,v〉 where K is a positive constant large enough.

5. The estimates for the S-resolvent operators and the fractional
powers of T

Using the estimates in Theorem 4.3, we can now show that the S-resolvent operator of
T decays fast enough along the set of purely imaginary quaternions.

Theorem 5.1. Under the hypotheses of Theorem 3.2 or of Theorem 4.3, the operator
Qs(T ) is invertible for any s = js1, for s1 ∈ R \ {0} and j ∈ S and the following estimate

‖Qs(T )−1‖B(L2) ≤ 1
s2
1

(5.1)

holds. Moreover, the S-resolvent operators satisfy the estimates

‖S−1
L (s, T )‖B(L2) ≤ Θ

|s| and ‖S−1
R (s, T )‖B(L2) ≤ Θ

|s| , (5.2)

for any s = js1, for s1 ∈ R \ {0} and j ∈ S, with a constant Θ that does not depend on s.
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Proof. We saw in Theorem 3.2 or in Theorem 4.3 that for all w ∈ L2(Ω, C ⊗ H) there
exists uw ∈ Hm

0 (Ω, C ⊗ H)), for s1 ∈ R \ {0} and j ∈ S, such that

bjs1(uw, v) = 〈w, v〉L2 , for all v ∈ Hm
0 (Ω, C ⊗ H).

Thus, we can define the inverse operator Qjs1(T )−1(w) := uw for any w ∈ L2(Ω, C ⊗ H)
(we note that the range of Qjs1(T )−1 is in Hm

0 (Ω, C ⊗ H)). The first inequality (3.11) (or
the first inequality in (4.12) in the case Ω unbounded), applied to u := Qjs1(T )−1(w),
implies:

s2
1‖Qjs1(T )−1(w)‖2

L2 ≤ Re bjs1(Qjs1(T )−1(w), Qjs1(T )−1(w))

≤ |bjs1(Qjs1(T )−1(w), Qjs1(T )−1(w))|
≤ |〈w,Qjs1(T )−1(w)〉L2 |
≤ ‖w‖L2‖Qjs1(T )−1(w)‖L2 ,

(5.3)

for any w ∈ L2(Ω, C ⊗ H). Thus, we have

‖Qjs1(T )−1‖B(L2) ≤ 1
s2
1

, for s1 ∈ R \ {0} and j ∈ S.

The estimates (5.2) follow from the estimate (3.8) (or the estimate (4.9) in the case of Ω
unbounded). Indeed, we have

C1‖Tuw‖2 ≤ Re(bjs1(uw, uw))

≤ |bjs1(uw, uw)|
≤ |〈w, uw〉L2 |
≤ ‖w‖L2‖uw‖L2

(5.1)

≤ 1
s2
1

‖w‖2
L2 ,

for s1 ∈ R \ {0} and j ∈ S. This estimate implies

∥∥TQjs1(T )−1w
∥∥

L2 = ‖Tuw‖L2 ≤ 1√
C1|s1|

‖w‖L2 ,

so that we obtain ∥∥TQjs1(T )−1
∥∥
B(L2)

≤ 1√
C1|s1|

. (5.4)

In conclusion, if we set

Θ := 2max
{

1,
1√
C1

}
,

estimates (5.4) and (5.1) yield∥∥S−1
R (s, T )

∥∥
B(L2)

=
∥∥(T − sI)Qs(T )−1

∥∥
B(L2)

≤ ∥∥TQs(T )−1
∥∥
B(L2)

+
∥∥sQs(T )−1

∥∥
B(L2)

≤ Θ
|s1|

(5.5)
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and

∥∥S−1
L (s, T )

∥∥
B(L2)

=
∥∥TQs(T )−1 −Qs(T )−1s

∥∥
B(L2)

≤ ∥∥TQs(T )−1
∥∥
B(L2)

+
∥∥Qs(T )−1s

∥∥
B(L2)

≤ Θ
|s1| ,

for any s = js1 ∈ H \ {0}. �

Thanks to the above results, we are now ready to establish our main statement.

Theorem 5.2. Under the hypotheses of Theorem 3.2 or of Theorem 4.3, for any α ∈ (0, 1)
and v ∈ D(T ), the integral

Pα(T )v :=
1
2π

∫
−jR

sα−1 dsj S−1
R (s, T )Tv

converges absolutely in L2.

Proof. The right S-resolvent equation implies

S−1
R (s, T )Tv = sS−1

R (s, T )v − v, ∀v ∈ D(T )

and so

1
2π

∫
−jR

∥∥sα−1 dsj S−1
R (s, T )Tv

∥∥
L2 ≤ 1

2π

∫ −1

−∞
|t|α−1

∥∥S−1
R (−jt, T )

∥∥
B(L2)

‖Tv‖L2 dt

+
1
2π

∫ 1

−1

|t|α−1
∥∥(−jt)S−1

R (−jt, T )v − v
∥∥

L2 dt

+
1
2π

∫ +∞

1

tα−1
∥∥S−1

R (jt, T )
∥∥
B(L2)

‖Tv‖L2 dt.

As α ∈ (0, 1), the estimate (5.2) now yields

1
2π

∫
−jR

∥∥sα−1 dsj S−1
R (s, T )Tv

∥∥
L2

≤ 1
2π

∫ +∞

1

tα−1 Θ
t
‖Tv‖L2 dt +

1
2π

∫ 1

−1

|t|α−1

(
|t|Θ|t| + 1

)
‖v‖L2 dt

+
1
2π

∫ +∞

1

tα−1 Θ
t
‖Tv‖L2 dt

< +∞.

�
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6. Concluding remarks

We list in the following some references associated with the spectral theory on the S-
spectrum and some research directions in order to orientate the interested reader in
this field. Moreover, we give some references for classical fractional problems for scalar
operators.

(I) In the literature, there are several nonlinear models that involve the fractional
Laplacian and even the fractional powers of more general elliptic operators, see for
example, the books [11, 34].

(II) The S-spectrum approach to fractional diffusion problems used in this paper is
a generalization of the method developed by Balakrishnan, see [5], to define the
fractional powers of a real operator A. In the paper [13], following the book of M.
Haase, see [29], has developed the theory on fractional powers of quaternionic linear
operators, see also [2, 14].

(III) The spectral theorem on the S-spectrum is also an other tool to define the fractional
powers of vector operators, see [1] and for perturbation results, see [12].

(IV) An historical note on the discovery of the S-resolvent operators and of the
S-spectrum can be found in the introduction of the book [20].
The most important results in quaternionic operators theory based on the
S-spectrum and the associated theory of slice hyperholomorphic functions are con-
tained in the books [3, 4, 16, 18–20, 27, 28], for the case on n-tuples of operators
see [17].

(V) Our future research directions will consider the development of ideas from one and
several complex variables, such as in [6–9, 30–32] to the quaternionic setting.
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