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Abstract

In the dual object of an infinite compact, connected group, every infinite Sidon set contains an infinite
subset on which full interpolation can be performed using very small classes of measures (discrete
measures on arbitrarily small sets or nonnegative discrete measures). In particular, the Figà-Talamanca–
Rider subset of an infinite product of compact, connected, simple Lie groups has these kinds of
interpolation. This substantially improves previous interpolation results.
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1. Introduction

1.1. Definitions and background Throughout this paper, G denotes a compact
group with dual object Ĝ consisting of a full set of inequivalent irreducible
representations. If U ⊂ G, then M(U ) denotes the finite, regular, Borel measures
concentrated on U ; Md(U ) denotes the discrete measures on U and M+

d (U ) the
nonnegative, discrete measures on U . We write µ̂ for the Fourier–Stieltjes transform
of the measure µ.

Given σ ∈ Ĝ we write Hσ for any (fixed) space Cd on which σ(G) is an irreducible
group of operators, with (finite) dimension d = dσ .

We investigate subsets of Ĝ where every possible function can be interpolated
by the Fourier–Stieltjes transform µ̂ of a nonnegative, discrete measure µ. We say
‘possible’ because ‘nonnegative’ restricts what can be interpolated. Indeed, if µ
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is nonnegative (or even, real), then µ̂(σ )= µ̂(σ ). Furthermore, if σ ∼ σ with say,
σ = P−1σ P (we write σ ∼P σ ), then we also have

µ̂(σ )= P
∫
σ dµP−1

= Pµ̂(σ )P−1,

which leads to the following definitions, in which σ ∈ E ⊂ Ĝ and U ⊂ G is open, and
the norm of a matrix Aσ ∈ B(Hσ ) is its usual norm ‖Aσ‖ as an operator on Hσ and
l∞(E)= {(Aσ )σ∈E : supσ ‖Aσ‖<∞}. These definitions are generalizations from the
abelian case [2, 4, 5, 9].

DEFINITION 1. We say that ϕ ∈ l∞(E) is Hermitian if ϕ(σ)= ϕ(σ) whenever σ and
σ ∈ E, and ϕ(σ)= Pϕ(σ)P−1 whenever σ ∼P σ . We write l∞h (E) for the Hermitian
elements in l∞(E).

We say that E ⊂ 0 is symmetric if the identity 1 /∈ E and whenever σ ∈ E , then
σ ∈ E .

We say that E is antisymmetic if 1 /∈ E and if σ ∈ E , then σ /∈ E unless σ ∼ σ .
We say that E is a Sidon(U ) set if, whenever (Aσ )σ∈E ∈ l∞(E), there is a measure

µ supported on U satisfying µ̂(σ )= Aσ for all σ ∈ E . If U = G, E is Sidon.
We say that E is I0(U ) if E is Sidon(U ) and the interpolating measures

concentrated on U can be chosen discrete. If U = G, E is I0.
We say that E is Fatou–Zygmund I0(U ) (FZI0(U ), for short) if each Hermitian

ϕ ∈ `∞(E) can be interpolated by a discrete, nonnegative measure concentrated on U .
If U = G, E is FZI0.

We say that E is cofinitely FZI0(U ) if there is a finite subset F of E such that E \ F
is FZI0(U ).

Clearly, Sidon(U ) (I0(U ), FZI0(U )) implies Sidon (I0, FZI0 respectively). Also, if
E is FZI0(U ) so is E ∪ E . As µ̂(1)≥ 0 for µ nonnegative, an FZI0(U ) never contains
1. Clearly I0(U ) implies Sidon(U ). Less trivially, if E is FZI0(U ), then E is I0(U )
(Proposition 2.5). Finite sets in duals of compact, connected groups are I0(U ) for all
open sets U and FZI0(U ) (Corollary 2.9 and Proposition 2.10). Sidon sets in the duals
of compact connected abelian groups are Sidon(U ) for all open U (see [2, 9]).

1.2. Statement of results We adapt the methods of [1, 7] to prove that there are as
many FZI0 sets as one could hope for.

THEOREM 1.1. Let G be a compact connected group and E ⊂ Ĝ. If E is an infinite
Sidon set, then there exists an infinite F ⊂ E such that F is FZI0 and cofinitely
FZI0(U ) for all open U.

The sets I0(U ) and FZI0(U ) are related as follows.

THEOREM 1.2. Let G be a connected, compact group and E ⊂ Ĝ. Let F ⊂ Ĝ be
finite. If E is cofinitely FZI0(U ) for all open U then E ∪ F ∪ E ∪ F is I0(U ) for all
open U. If 1 6∈ F then E ∪ F is also FZI0.
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COROLLARY 1.3. If E ⊂ Ĝ is cofinitely FZI0(U ) for all open U, then E is I0(U ) for
all open U.

REMARKS.

(i) Readers familiar with the union theorem for Sidon sets1 may wonder why we
need to prove that a union of a finite (!) set with an I0 set is I0. That is
because the class of I0 sets is not closed under unions (see [3, Example 5.1]
for the standard example), and the same holds for the classes of I0(U ), FZI0,
and FZI0(U ) sets [4, 5].

(ii) ‘Connected’ is an essential hypothesis, even in the abelian case, for our
conclusions. See [4, 5, 9].

In the course of the proof of Theorem 1.1 we prove a result about the FTR set of G
(defined below). This is important because FTR sets are the basic examples of Sidon
and I0 sets of unbounded degree.

THEOREM 1.4. Suppose that G =
∏

j∈J G j is a product of simple, simply connected,
connected, compact Lie groups. Then FTR(G) \ {1} is FZI0 and cofinitely FZI0(U )
for all open U.

REMARKS.

(i) We do not know whether all I0 sets are I0(U ), even for abelian groups. See [4, 5]
for related results in the abelian case.

(ii) We also do not know whether one of the groups of Theorem 1.4 has a Sidon set
that is not I0.

1.3. Organization of this paper We give further background in the next subsection.
Preliminary results are given in Section 2. Theorem 1.2 is proved in Section 2.5,
Theorem 1.4 in Section 3.1, and Theorem 1.1 in Section 5.2.

1.4. Some further background In Z there are: Sidon sets not I0 (see [3]) and I0
sets not FZI0 (see [5]). Hadamard sets in Z are FZI0 (see [5]), as well as being I0(U )
(see [4]) and cofinitely FZI0(U ) for all open U (see [5]). Every infinite subset E of the
dual of a compact abelian group contains an FZI0 set of the same cardinality, and, if the
compact abelian group is connected, E will contain an infinite subset that is cofinitely
FZI0(U ) for all open U (see [5]). We do not know whether ‘of the same cardinality’
correctly may be added in the nonabelian case: our combinatorial arguments do not
permit us to select a large enough subset to which the technical Lemma 4.1 can be
applied. On the other hand, if E is uncountable, then E does contain an uncountable
set that is cofinitely FZI0(U ) for all open U .

‘Cofinitely’ is forced upon us by the fact that no set, not even a singleton, is
FZI0(U ) for all open sets U : consider any {λ} ⊂ Ĝ and suppose U is a neighbourhood
of e with the property that ‖λ(x)− λ(e)‖< 1/2 for all x ∈ U . As λ(e)= I , the

1 See, for example, [12] and the references therein.
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diagonal elements of λ(x) are at least 1/2 for all x ∈ U . Thus, if µ=
∑

akδ(xk)

∈ M+

d (U ), then the diagonal elements of µ̂(λ) are strictly positive and so arbitrary
interpolation with positive, discrete measures supported on U is impossible.

In the nonabelian setting there are infinite, compact, connected groups whose
duals do not admit any infinite Sidon sets. Cartwright and McMullen [1] effectively
characterized those groups admitting infinite Sidon sets and described their Sidon sets
in terms of FTR sets (defined below). This was used in [7] to prove that every infinite
Sidon set contained an infinite I0 set.

The Figà-Talamanca and Rider set (FTR set) of a group G that is a (product of)
classical, simple, simply connected, compact Lie group(s) is denoted FTR(G) and
found as follows.

DEFINITION 2. If G is one of the matrix groups SU(n), O(n), SO(n) or Sp(n) let
σ : G → U(n) be the self-representation. For G = Spin(n) let q : G → SO(n) be the
canonical covering map and let σ denote the composition with the self representation
of SO(n). Then FTR(G)= {σ, σ , 1}. (Note that σ is equivalent to σ except if
G = SU(n).)

If G =
∏

j∈J G j where the groups G j are classical, simple, simply connected,
connected, compact Lie groups (that is, the matrix groups above), then

FTR(G)≡

⋃
j

{σ ◦ Pj : σ ∈ FTR(G j )},

where Pj : G → G j are the projection maps.

2. Preliminaries

2.1. Some properties of FZI0(U) sets Suppose that σ ∼P σ and A is any matrix
of size dσ × dσ . Put µ= dσ (TrAσ + TrAσ). Then µ is a real measure (a real-valued
polynomial even) and µ̂(σ )= A + P AP−1. Taking conjugates and noting that we

must have µ̂(σ )= Pµ̂(σ )P−1, it follows that P−1 AP = P AP
−1

for all A. Thus, if
we set ϕ(σ)= A + P AP−1, then ϕ(σ)= Pϕ(σ)P−1. Conversely, if B = P B P−1,
then B = A + P AP−1 for A = B/2.

These observations show that for an antisymmetric set E, ϕ ∈ l∞(E) is
Hermitian if and only if whenever σ ∼P σ , ϕ(σ) has the form Aσ + P Aσ P−1 for
(Aσ )σ∈E ∈ l∞(E). This can be used to give a characterization of FZI0 sets, as follows,
the proof of which is immediate.

PROPOSITION 2.1. Let G be a connected compact group and U ⊂ G. An
antisymmetric set E is FZI0 if and only if whenever (Aσ ) ∈ l∞(E) and ϕ = (Bσ )
satisfies Bσ = Aσ if σ � σ and Bσ = Aσ + P Aσ P−1 if σ ∼P σ , there is µ ∈ M+

d (U )
such that µ̂(σ )= ϕ(σ) for all σ ∈ E.

As with Sidon and I0 sets it is enough to perform ‘almost’ interpolation. We make
this precise in the next proposition, which requires some notation to be stated. Let
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D(N ,U )=

{ N∑
k=1

akδ(xk) : 0 ≤ ak ≤ 1, xk ∈ U

}
and

D+(N ,U )=

{ N∑
k=1

akδ(xk) : 0 ≤ ak ≤ 1, xk ∈ U

}
.

We also set

B(`∞(E))= {ϕ ∈ `∞(E) : ‖φ(σ‖ ≤ 1} and

Bh(`
∞(E))= {ϕ ∈ `∞h (E) : ‖φ(σ‖ ≤ 1}.

PROPOSITION 2.2. Let E ⊂ Ĝ be an antisymmetric set and let U be a σ -compact
subset of G. The following properties are equivalent:

(1) E is I0(U ) (respectively FZI0(U ));
(2) there is some 0< ε < 1 (equivalently, for all 0< ε < 1) such that whenever

ϕ ∈ l∞(E) (respectively ϕ ∈ l∞h (E)), then there is µ ∈ Md(U ) (respectively
µ ∈ M+

d (U )) satisfying

‖µ̂(σ )− ϕ(σ)‖< ε for all σ ∈ E;

(3) for every 0< ε < 1 there is N such that for all ϕ in the unit ball of l∞(E)
(respectively ϕ in the unit ball of l∞h (E)) there is µ ∈ D(N ,U ) (respectively
µ ∈ D+(N ,U )) with ‖µ̂(γ )− ϕ(γ )‖< ε for all γ ∈ E;

(4) there is N such that for all ϕ in the unit ball of l∞(E) (respectively ϕ in the
unit ball of l∞h (E)) there exists µ ∈ D(N ,U ) (respectively µ ∈ D+(N ,U )) with
µ̂(γ )= ϕ(γ ) for all γ ∈ E and ‖µ‖ ≤ N.

PROOF. We prove that (2) implies (3) for the FZI0(U ) case and leave the remainder
to the reader. (That M+

d (G) is not a vector space slightly complicates the proof.)
See [5, 7] for a similar characterization of FZI0(U ) sets in abelian groups and I0 sets
in nonabelian groups, respectively.

One may view B(`∞h (E)) as the product space
∏
σ∈E Bσ where Bσ is the set of

the norm at most one dσ × dσ matrices, of the form A = P AP−1 if σ ∼P σ . Let
U =

⋃
∞

1 Un , where the Un are compact and U1 ⊂ U2 ⊂ · · · . For 1 ≤ N let

WN =

{
ϕ ∈

∏
σ∈E

Bσ : ∃µ ∈ D+(N ,UN ) s.t. ‖µ̂(σ )− ϕ(σ)‖ ≤ ε for all σ ∈ E

}
.

By assumption
⋃

∞

N=1 WN =
∏
σ∈E Bσ . The compactness of the Un ensures that

each WN is closed. Since
∏
σ∈E Bσ is compact (with the product topology), the Baire

category theorem implies that some WN has nonempty interior. Consequently, there is
a finite set F ⊆ E and a ψ ∈

∏
σ∈F Bσ such that ψ ×

∏
σ∈E\F Bσ ⊆ WN .

Consider the subset S of l∞h (E) consisting of the elements which vanish off F .
Note that S is a finite-dimensional, real subspace. Take a basis, say e1, . . . , e`,
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where e j ∈ Bh(l∞(E)). Since all norms are comparable on a finite-dimensional space,
there is some C > 0 such that ‖

∑
b j e j‖l∞ ≥ C

∑
|b j |. Since each ±e j is Hermitian,

we can obtain µ j , ν j ∈ M+

d (U ) such that for all σ ∈ E ,

‖µ̂ j (σ )− e j (σ )‖< Cε/2N and ‖ν̂ j (σ )+ e j (σ )‖< Cε/2N .

By taking suitably large partial sums we can assume there exists some N ′ such that
each µ j , ν j ∈ D+(N ′,U ).

Let ϕ ∈ Bh(l∞(E)). Since ϕ coincides on E \ F with an element of WN , we
can find µ ∈ D+(N ,U ) such that ‖µ̂(σ )− ϕ(σ)‖ ≤ ε for all σ ∈ E \ F . As µ is a
positive measure, (ϕ − µ̂)|F (extended by 0 on E \ F) belongs to S and therefore
equals

∑
b j e j for some b j real. Write b j = b+

j − b−

j where b±

j ≥ 0. Note

C
∑ ∣∣b j

∣∣ ≤ ‖ϕ − µ̂|F‖l∞ ≤ 1 + ‖µ‖M(U ) ≤ 2N .

For σ ∈ E ,∥∥∥∥ϕ(σ)− µ̂(σ )−

( ∑
b+

j µ̂ j + b−

j ν̂ j

)
(σ )

∥∥∥∥
=

∥∥∥∥(ϕ(σ )− µ̂(σ ))|E\F +

( ∑
b+

j (e j − µ̂ j )+ b−

j (−e j − ν̂ j )

)
(σ )

∥∥∥∥
≤ sup
σ∈E\F

‖(ϕ − µ̂) (σ )‖ + sup
σ∈E

∥∥∥∥( ∑
b+

j (e j − µ̂ j )+ b−

j (−e j − ν̂ j )

)
(σ )

∥∥∥∥
≤ ε +

∑
|b j |Cε/(2N )≤ 2ε.

Finally, we note that µ+
∑

b+

j µ j +
∑

b−

j ν j ∈ D+(N + 2N ′,U ) and, as N ′ is
independent of the choice of ϕ, this proves that (2) implies (3). 2

DEFINITION 3. The set E is an I0(N , ε) (respectively, FZI(N , ε)) set if (3) holds.

LEMMA 2.3. The set E ⊆ Ĝ is I0(U ) (respectively FZI0(U )) if and only if E is
I0(U x) (respectively FZI0(U x)) for each x ∈ G.

PROOF. Indeed, µ=
∑

akδxk satisfies µ̂(σ )= ϕ(σ)σ (x)−1 if and only if∑̂
akδxk x (σ )=

∑
akσ(xk)σ (x)= ϕ(σ). 2

PROPOSITION 2.4. Suppose that q : G −→ H is a continuous, surjective homo-
morphism. Then E ⊂ Ĥ is FZI0(q(U )) if and only if Ẽ = {σ ◦ q : σ ∈ E} is an
FZI0(U ) subset of Ĝ.

PROOF. This follows easily since the surjectivity of q ensures that σ ◦ q ∼P σ ◦ q if
and only if σ ∼P σ . 2
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2.2. Antisymmetric FZI0(U) sets are I0(U)

PROPOSITION 2.5. Let G be a compact connected group and E ⊂ Ĝ be an anti-
symmetric FZI0(U ) set. Then E ∪ E is I0(U ).

PROOF. Write E = E0 ∪ E1 where E0 = {σ ∈ E : σ ∼ σ } and E1 = {σ ∈ E : σ � σ }

and suppose that ϕ ∈ l∞(E ∪ E). Find µ1, ν1, µ2, ν2, ∈ M+

d (U ), such that

µ̂1(σ ) =

{
ϕ(σ)+ Pσϕ(σ)P−1

σ if σ ∈ E0, σ ∼Pσ σ ,

ϕ(σ) if σ ∈ E1,

ν̂1(σ ) =

{
i
(
ϕ(σ)− Pσϕ(σ)P−1

σ

)
if σ ∈ E0, σ ∼Pσ σ ,

iϕ(σ) if σ ∈ E1,

µ̂2(σ ) =

{
0 if σ ∈ E0

ϕ(σ) if σ ∈ E1
and ν̂2(σ )=

{
0 if σ ∈ E0,

iϕ(σ) if σ ∈ E1.

It is routine to verify that the discrete measure (µ1 − iν1 + µ2 − iν2)/2 does the
desired interpolation. 2

2.3. Finite sets are I0(U)

LEMMA 2.6. Let G be a compact, connected Lie group and U be an open subset of
G. Let H be a finite-dimensional Hilbert space and suppose σ : G → B(H) (where
B(H) is the bounded operators on H) is an analytic map. Then σ(U ) spans B(H) if
and only if σ(G) spans B(H).

PROOF. If σ(U ) does not span B(H), then σ(U ) is contained in a hyperplane
L ⊆ B(H) of (complex) co-dimension at least one. Choose a nonzero vector
ζ ∈ Cdim B(H) orthogonal to L with respect to a fixed inner product (·, ·) on B(H).

Since the map x 7→ σ(x) is an analytic mapping of G into B(H) [11, p. 102], the
map x 7→ (ζ, σ (x))≡ f (x) is also analytic on G. Because f vanishes on the open
set U and G is a connected Lie group, f vanishes identically. However, then ζ is
orthogonal to σ(G) and hence σ(U ) cannot span B(H).

The converse is trivial. 2

COROLLARY 2.7. Suppose that G is a compact, connected Lie group, E is a finite
subset of Ĝ, and U is an open subset of G. Then E is I0(U ).

PROOF. All finite sets are I0 [7, Proposition 2.2] thus the set Md(G )̂ spans B(H)
where H =

⊕
σ∈E Hσ . Since the mapping x 7→

⊕
σ∈E σ(x) is an analytic mapping

of G into B(H). By Lemma 2.6, Md(U )̂ spans B(H) for all open U ⊆ G. 2

PROPOSITION 2.8. Let G = A ×
∏

i∈I Gi where A is a compact, connected, abelian
group and the subgroups Gi are compact, connected Lie groups. Then each finite set
E ⊆ Ĝ is I0(U ) for all open sets U ⊆ G.
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PROOF. First, suppose that E1 ⊆ Â and E2 ⊆
∏̂

Gi are finite sets. A dimension
argument shows that l∞(E1 × E2)= l∞(E1)⊗ l∞(E2).

As each representation, σ , in E has finite degree, there is a finite index set I such
that E ⊂ (A ×

∏
i∈I Gi )̂ (in the sense that σ restricted to

∏
i 6∈I Gi is trivial). If we

put E1 = E |A and E2 = E |
∏

i∈I Gi , then certainly E ⊆ E1 × E2 and thus l∞(E) is
contained in l∞(E1)⊗ l∞(E2). As E1 is a finite set of representations on a compact,
connected abelian group it is I0(U ) for all open sets U ⊆ A (see [4, Corollary 2.8]).
A finite product of compact, connected Lie groups is again a compact, connected Lie
group and thus E2 is also I0(U ) for all open sets U ⊆

∏
i∈I Gi .

Let U ⊂ G be open. We may assume that U is a neighbourhood of the identity by
Lemma 2.3. Therefore, U contains a set of the form U1 × U2 ×

∏
i /∈I Gi , where U1

is open in A and U2 is open in
∏

i∈I Gi . Since Md(U j )ˆ spans l∞(E j ) for j = 1, 2,
and each σ ∈ E is trivial off E1 × E2, Md(U )ˆ spans l∞(E). 2

COROLLARY 2.9. If G is a compact, connected group, then any finite set E ⊆ Ĝ is
I0(U ) for all open sets U

PROOF. By the structure theorem for compact, connected groups [10, Theorem 6.5.6],
G is isomorphic to a quotient of A ×

∏
i∈I Gi where Gi are compact, connected Lie

groups, and A is a compact, connected, abelian group. If E is a finite subset of Ĝ,
then E lifts to a finite set of irreducible representations of A ×

∏
Gi . As the quotient

map is open, it suffices to assume G = A ×
∏

Gi and thus the previous proposition
applies. 2

2.4. Finite sets are FZI0

PROPOSITION 2.10. If G is a compact group, then any finite set E ⊆ Ĝ not
containing 1 is FZI0.

PROOF. Without loss of generality we may assume that E is antisymmetric. Given any
Hermitian ϕ in the unit ball of l∞(E), put ψ(σ)= ϕ(σ) if σ � σ and ψ(σ)= ϕ(σ)/2
otherwise. Set

ρ = A +

∑
σ∈E

dσ (Trψ(σ)σ + Trψ(σ)σ),

where A ≥ 0 is sufficiently large to ensure that ρ ≥ 0. If σ ∼P σ , then as ϕ is
Hermitian, Trψ(σ)σ = TrPψ(σ)P−1 Pσ P−1

= Trψ(σ)σ . Moreover, if σ ∈ E , then
ρ̂(σ )= ϕ(σ)= ϕ(σ), thus ρ̂(σ )= ϕ(σ) for all σ ∈ E .

For each x ∈ G choose a neighbourhood Ux of x such that

‖σ(x)− σ(y)‖< ε/‖ρ‖,

for all y ∈ Ux and σ ∈ E . Choose a finite subcover Ux1, . . . ,Uxn of G. For each
j let V j = Ux j \

⋃ j−1
k=1 Uxk . The V j form a finite (but not open) covering of G by

disjoint sets. Put µ=
∑n

j=1 ρ(V j )δ(x j ), where by ρ(V j )we mean
∫

V j
ρ and note that

‖µ̂(σ )− ϕ(σ)‖< ε for all σ ∈ E . Now an application of Proposition 2.2 (3) proves
E is FZI0. 2
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2.5. Proof of Theorem 1.2 We may assume E ∩ F = ∅ and that both E and F are
symmetric. It does not matter whether F is empty. Let U be an open neighbourhood of
the identity of G. Let U ′, W ′ be open neighbourhoods of the identity with W ′U ′

⊂ U .
Let F1 ⊂ E be a finite set such that E \ F1 is FZI0(U ′).

Let W be an open neighbourhood of the identity of G such that W 3
⊂ W ′ and x ∈ W

implies ‖1σ − σ(x)‖B(Hσ ) ≤ 1/2 for σ ∈ F ∪ F1. Since E is cofinitely FZI0(W ), we
may choose a finite set F2 ⊂ E \ F1 such that E \ (F1 ∪ F2) is FZI0(W ). Choose
any τ ∈ E \ (F1 ∪ F2). Then there exist µ−, µ+ ∈ M+

d (W ) such that µ̂±(τ )= µ̂±(τ )

= ±1τ and µ̂± = 0 elsewhere on E \ (F1 ∪ F2).
Let µ= µ+ + µ−. Then µ≥ 0 is supported on W , µ̂= 0 on E \ (F1 ∪ F2), and

a = ‖µ‖ ≥ 2 (this is where the nonnegativity is used). Furthermore, ‖µ̂(σ )− a1σ‖

≤ a/2, by integration, for each σ ∈ F ∪ F1, so µ̂(σ ) is invertible for each σ ∈ F ∪ F1.
Since F ∪ F1 ∪ F2 is finite, Corollary 2.9 implies there exists a discrete measure1 ω

supported in W such that ω̂ = µ̂−1 on F ∪ F1 and 0 on F2. Then µ ∗ ω has transform
the identity on F ∪ F1 and zero on E \ F1.

Now let ϕ ∈ `∞(E ∪ F). Let ω1 ∈ Md(W ) have ω̂1 = ϕ on F ∪ F1 and ω2
∈ Md(U ′) have ω̂2 = ϕ on E \ F1. Then ω3 = µ ∗ ω ∗ ω1 + (δe − µ ∗ ω) ∗ ω2 has
ω̂3 = ϕ on E ∪ F , and ω3 is a discrete measure concentrated on W 3

∪ WU ′
⊂ U .

It now follows that E ∪ F is I0(U ). Since E, F are symmetric, E ∪ F ∪ E ∪ F is
I0(U ). That proves the I0(U ) assertion.

The proof of the FZI0 assertion follows similarly, with a call to Proposition 2.10 in
place of Corollary 2.9. We observe that µ̂−1 can be interpolated on F by a nonnegative
measure supported on W since the nonnegativity of µ implies µ̂−1 is Hermitian. 2

2.6. Orthogonal representations and the padding property

DEFINITION 4. The nontrivial representations {σ j } ⊆ Ĝ are mutually orthogonal if

G =
∏

j∈J G j , the index set J is the disjoint union of sets Jk and σk ∈ ̂∏
j∈Jk

G j .

We say that E ⊆ Ĝ has the padding property if for every ε > 0 there is m = m(ε)
and x0, . . . , xm−1 ∈ G satisfying (1/m)‖

∑m−1
j=0 σ(x j )‖< ε for all σ ∈ E .

Padding was a key idea used in [7] to ‘piece together’ I0 sets in a product group
setting. It is shown in [7] that FTR(G) \ {1} and finite sets not including 1 are sets
which have the padding property. Of course, if 1 ∈ E , then E does not have the
padding property.

LEMMA 2.11. Let G =
∏

i∈J Gi and Ei ⊂ Ĝi . Suppose there is some ε < 1 and N
such that all Ei are FZI(N , ε) sets and that E =

⋃
Ei has the padding property. Then

E is FZI0.

PROOF. Let {Aσ }σ∈E be a Hermitian function in the unit ball of l∞(E) and for
each i let µi =

∑N
k=1 akiδ(gki ) be a positive measure on Gi with 0 ≤ aki ≤ 1 and

‖µ̂i (σ )− Aσ‖< ε for all σ ∈ Ei . We can ‘combine’ these measures to produce a

1 At this point we do not need nonnegativity.
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single positive discrete measure on G which will simultaneously interpolate all Aσ
by imitating the proof of [7, Theorem 3.3] with one change: rather than choosing
s1, . . . , sr an ε-net in the complex unit ball, we choose si = iε for i = 0, . . . , [1/ε].
Given any 0 ≤ aki ≤ 1 there is some s j such that |s j − aki | ≤ ε. Hence the measure ν
constructed in [7, Theorem 3.3] does the appropriate interpolation and is positive as
needed. 2

3. Proof of the FTR Theorem 1.4

We use two lemmas, from which the theorem will follow easily. The first,
Lemma 2.11 above, allows us to piece together the FTR sets of the factors; the second,
which follows, shows that those FTR sets satisfy the conditions necessary for that
piecing.

LEMMA 3.1. If G is any one of the classical, compact, simple, simply connected Lie
groups, then FTR(G) \ {1} is FZI0(N , ε) for some N and 0< ε < 1 independent of G
(and so FZI0).

REMARKS.

(i) The choice of N and ε will be clear in the proof.
(ii) Since the FTR set (less 1) has at most two elements in the classical case, this

would follow from Proposition 2.10, if we did not need N , ε independent of G.

PROOF. Denote the FTR set of G (excluding 1) by {σ } or {σ, σ }, as appropriate. We
consider the classical matrix groups separately.
(i) For SU(2), SU(3) we appeal to the finite sets result.
(ii) For SU(n), n ≥ 4 and O(n), n ≥ 1, we essentially use the argument in

[7, Proposition 3.2].
(iii) For SO(n), n ≥ 3, it suffices to show each matrix in O(n) is a positive linear

combination of a bounded number of matrices in SO(n), with the number
independent of n. We need only consider orthogonal matrices with determinant
−1 and these can be written as P−1 N P with P special orthogonal and N block
diagonal of the form −I j 0 0

0 Ik 0
0 0 T

 ,

with j odd and T block diagonal with 2 × 2 blocks of the form

Tϕ =

(
cos ϕ sin ϕ

− sin ϕ cos ϕ

)
.
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Thus, N is one of the block diagonal matrices

(
−I3 0

0 R

)
,


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 R

 , or

−1 0 0
0 Tϕ 0
0 0 R

 ,

where R is special orthogonal. We can write
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 R

 =
1
4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 R

 +
1
4


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 R



+
1
4


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 R

 +
1
4


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 R

 ,

and thus as a positive sum of four matrices in SO(n). The positive combinations
of matrices for

(
−I3 0

0 0

)
,


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 and

−1 0 0
0 Tϕ 0
0 0 R

 ,

can be obtained in a similar manner. Here 0 denotes a zero matrix (possibly
different in each instance) of dimensions required by the nonzero matrices of its
row and column.

(iv) For Sp(n), σ ∼P σ with intertwining operator

P =

(
0 −In
In 0

)
.

Thus, we need only interpolate matrices of the form(
A B

−B A

)
.

Any matrix of the form (
U 0
0 U

)
or

(
0 V

−V 0

)
with U, V unitary belongs to Sp(n). Since any matrix can be written as the
positive linear combination of four unitaries it is straightforward to perform the
required interpolation.

(v) The Spin(n) case follows from SO(n) since the property of being FZI0(U ) is
preserved under quotients (Proposition 2.4). 2
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3.1. Proof of Theorem 1.4 Because FTR(G) \ {1} is known [7] to have the padding
property, we can apply Lemma 3.1 and Lemma 2.11 to conclude that FTR(G) \ {1} is
FZI0.

We now show that FTR(G) \ {1} is cofinitely FZI0(U ) for all open U ⊂ G. If J
is finite, then #FTR(G)≤ 1 + 2#J , so FTR(G) \ {1} is cofinitely FZI0(U ) for all sets
U , open or not.

We therefore assume that J is infinite. If U ⊂ G is open, then U contains a set of
the form

U1 × · · · × UN

∏
i /∈{1,...,N }

Gi ,

where U j ⊂ G j is open, 1 ≤ j ≤ N . Let G ′
=

∏
i /∈{1,...,N }

Gi and G ′′
=

∏
i∈{1,...,N }

Gi .
Suppose that E = FTR(G) \ {1} and take F = FTR(G ′′) \ {1}. Of course, we can
identity F with a subset of E , and E \ F with FTR(G ′), and we do so. With those
identifications, E \ F is FZI0 by the preceding paragraph, and F is finite.

Let ϕ ∈ B(`∞(E)). Since E \ F is FZI0, we can obtain µ ∈ M+

d (G
′) such that

µ̂= ϕ on E \ F , say µ=
∑

akδ(xk). (Here we think of E \ F as FTR(G ′).) Replace
xk by x ′

k = (yki )i∈I where yki = xki if i 6= 1, . . . , N and yki = e for i = 1, . . . , N .
Then x ′

k ∈ U , and µ′

k =
∑

akδ(x ′

k) is a discrete positive measure supported on U
whose Fourier transform coincides with that of µ on E \ F . That ends the proof of
Theorem 1.4. 2

4. A technical lemma

If A and B are infinite sets, then A ⊗ B is never Sidon [1, p. 311], even in the
abelian setting [9, Theorem 1.4]. It will be useful for us to know that certain infinite
subsets of the product of two FZI0 sets are FZI0.

LEMMA 4.1. Let E1 = {χ j } j∈J be antisymmetric and assume all χ j have the same
degree. Assume that E1 ∪ E1 is I0(U1). Let E2 =

⋃
j∈J E2, j where the sets E2, j are

disjoint. Suppose that E2 is antisymmetric and FZI0(U2). Furthermore, assume that
E1 is orthogonal to E2. Then E =

⋃
j∈J χ j ⊗ E2, j is FZI0(U1 × U2).

PROOF. Partition E as F1 ∪ F2 ∪ F3 where

F1 = {χ ⊗ σ ∈ E : σ � σ },

F2 = {χ ⊗ σ ∈ E : σ ∼Qσ σ and χ ∼Pχ χ} and

F3 = {χ ⊗ σ ∈ E : σ ∼Qσ σ and χ � χ}.

Let ϕ = (A(χ ⊗ σ)) ∈ B(l∞(E)) and put

X (χ ⊗ σ)=


A(χ ⊗ σ)+ R(χ ⊗ σ)A(χ ⊗ σ)R(χ ⊗ σ)−1

if χ ⊗ σ ∼R(χ⊗σ) χ ⊗ σ

A(χ ⊗ σ) otherwise.

Our task is to interpolate (X (χ ⊗ σ)) on E .
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We produce three positive, discrete measures µ` whose transforms agree with
X (χ ⊗ σ) when χ ⊗ σ ∈ F` and 0 otherwise on E .

Let d be the common degree of the χ j , and let Ik,` be the d × d matrix with
a 1 in the (k, `) place and 0 elsewhere. For each χ ⊗ σ ∈ E , write A(χ ⊗ σ)

=
∑d

k,`=1 Ik,` ⊗ ak,`(χ ⊗ σ).

Case I, interpolation on F1. Since E1 is I0(U1) there exists, for each 1 ≤ k,
`≤ d, µk,` =

∑
n αn,k,`δ(xn,k,`) ∈ Md(U1) such that µ̂k,`(χ)= Ik,` for each χ ∈ E1.

Observe that for each σ ∈ E2 there exists a unique χ ∈ E1 such that χ ⊗ σ ∈ E . Since
E2 is FZI0(U2), there exists νn,k,` ∈ M+

d (U2) such that for σ ∈ E2,

ν̂n,k,`(σ )=

{
αn,k,`ak,`(χ⊗ σ) if there exists χ ∈ E1 with χ ⊗ σ ∈ F1

0 otherwise.

(There is no problem doing this as σ � σ if χ ⊗ σ ∈ F1.)

For χ ⊗ σ ∈ F1 and 1 ≤ k, `≤ d, we put ωk,` =
∑

n δ(xn,k,`)⊗ νn,k,`. Then

ω̂k,`(χ ⊗ σ) =

∑
n
χ(xn,k,`)⊗ ν̂n,k,`(σ )=

∑
n
χ(xn,k,`)⊗ αn,k,`ak,`(χ ⊗ σ)

=

∑
n
αn,k,` ̂δ(xn,k,`)(χ)⊗ ak,`(χ ⊗ σ)= Ik,` ⊗ ak,`(χ ⊗ σ),

on F1, and ω̂k,` equals 0 otherwise on E . Thus µ1 =
∑d

k,`=1 ωk,` interpolates X on
F1 and is zero on F2 ∪ F3.

Case II, interpolation on F2. We write E1 = E ′

1 ∪ E ′′

1 , where E ′

1 is the set of elements
χ ∼ χ , and E ′′

1 is the rest of E1.

We use the I0(U1) property of E1 to get µk,` =
∑

n αn,k,`δ(xn,k,`) ∈ Md(U1) such
that

µ̂k,`(χ)=

{
Ik,` if χ ∈ E ′

1

0 if χ ∈ E ′′

1 .

Now we obtain νn,k,` ∈ M+

d (U2) such that

ν̂n,k,`(σ )= αn,k,`ak,`(χ ⊗ σ)+ Qσ (αn,k,`ak,`(χ ⊗ σ))Q−1
σ ,

if there exists χ with χ ⊗ σ ∈ F2.
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If we again put ωk,` =
∑

n δ(xn,k,`)⊗ νn,k,` we have for χ ⊗ σ ∈ F2,

ω̂k,`(χ ⊗ σ) =

∑
n
χ(xn,k,`)⊗ ν̂n,k,`(σ )

=

∑
n
χ(xn,k,`)⊗ [αn,k,`ak,`(χ ⊗ σ)

+ Qσ (αn,k,`ak,`(χ ⊗ σ))Q−1
σ ]

=

∑
n
αn,k,`χ(xn,k,`)⊗ ak,`(χ ⊗ σ)

+ αn,k,`Pχχ(xn,k,`)P
−1
χ ⊗ Qσ (ak,`(χ ⊗ σ))Q−1

σ

= Ik` ⊗ ak,`(χ ⊗ σ)

+ Pχ
∑

n
αn,k,`χ(xn,k,`)P

−1
χ ⊗ Qσ (ak,`(χ ⊗ σ))Q−1

σ

= Ik,` ⊗ ak,` + (Pχ ⊗ Qσ )Ik,` ⊗ ak,`(χ ⊗ σ) (Pχ ⊗ Qσ )
−1.

Consequently, µ̂2(χ ⊗ σ)=
∑d

k,`=1 ω̂k,`(χ ⊗ σ)= A + Rχ⊗σ AR−1
χ⊗σ on F2 and

equals zero otherwise on E .

Case III, interpolation on F3 (the final case). Here we need that E1 ∪ E1 is
I0(U1). That allows us to obtain1 a real µk,` =

∑
n cn,k,`δ(xn,k,`) ∈ Md(U1) such

that µ̂k,`(χ)= Ik,` for all χ ∈ E1 with χ � χ and 0 otherwise on E1. Then obtain
νn,k,` ∈ M+

d (U2) such that

ν̂n,k,`(σ ) =

cn,k,`(ak,`(χ ⊗ σ)+ Qσak,`(χ ⊗ σ)Q−1
σ )

if there exists χ with χ ⊗ σ ∈ F3
0 otherwise on E2,

since cn,k,` is real. If ω(1)k,` =
∑

n δ(xn,k,`)⊗ νn,k,` ∈ M+

d (U1 × U2), then

ω̂
(1)
k,`(χ ⊗ σ)= Ik,` ⊗ [ak,`(χ ⊗ σ)+ Qσak,`(χ ⊗ σ)Q−1

σ ],

if χ ⊗ σ ∈ F3 and 0 otherwise. Similarly, obtain

ω̂
(1)
k,`(χ ⊗ σ)= i Ik,` ⊗ [ak,`(χ ⊗ σ)/ i + Qσak,`(χ ⊗ σ)/ i Q−1

σ ],

on F3 and add together to get µ3 =
∑d

k,l=1 ω
(1)
k,` + ω

(2)
k,` noting that on F3, A(χ ⊗ σ)

equals

1
2

d∑
k,l=1

Ik,` ⊗ [ak,`(χ ⊗ σ)+ Qσak,`(χ ⊗ σ)Q−1
σ ]

+
i

2
Ik,` ⊗ [ak,`(χ ⊗ σ)/ i + Qσak`(χ ⊗ σ)/ i Q−1

σ ].

1 Just take any
∑

n bn,k,`δ(xn,k,`) ∈ Md (U1) that interpolates Ik,` at both χ and χ if they are not
equivalent, and 0 else on E1, and then take µk,` =

∑
n((bn,k,`, + bn,k,`)/2)δ(xn,k,`).
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Taking µ1 + µ2 + µ3 gives a positive, discrete measure concentrated on U1 × U2
and doing the required interpolation. 2

COROLLARY 4.2. Suppose that G = G1 × G2 is a compact, connected group,
χ ∈ Ĝ1, E2 ⊆ Ĝ2 is antisymmetric and cofinitely FZI0(U ). Then E = χ ⊗ E2 is
cofinitely FZI0(V × U ) for all open sets V .

PROOF. Since {χ} is I0(U ) for all open U , the conclusion follows from Lemma 4.1
where E1 = {χ} and the E2, j are singletons with union E2. 2

A similar argument proves the following.

COROLLARY 4.3. Suppose that G = G1 × G2 is a compact, connected group,
U j ⊂ G j are open for j = 1, 2, I is an index set, E1 = {χi : i ∈ I } ⊂ Ĝ1 is
antisymmetric, E1 ∪ E1 is I0(U1) and the elements of E1 have the same degree.
Suppose also that E2 = {σi : i ∈ I } ⊂ Ĝ2 is antisymmetric and cofinitely FZI0(U2).
Then E = {χi ⊗ σi : i ∈ I } is cofinitely FZI0(U1 × U2).

5. Sets that are cofinitely FZI0(U)

5.1. Products of Lie groups

THEOREM 5.1. Let G =
∏

i∈I Gi be a product of simple, simply connected,
connected, compact Lie groups and suppose E ⊆ Ĝ is an infinite set of representations
of bounded degree. Then E contains an infinite subset F such that F is cofinitely
FZI0(U ) for all open sets U.

PROOF. The boundedness of the degrees implies that up to isomorphism there are only
finitely many choices for σ |Gi and that E has the padding property [7].

Therefore, we may assume that, for each i , {σ |Gi : σ ∈ E} has at most one element.
A combinatorial argument shows that such a set contains an infinite subset of the form
{χ ⊗ σi }i where the representations {σi } are mutually orthogonal and orthogonal to χ
(see [6, Theorem 2.7] or [7, Lemma 4.5] for a proof). By Corollary 4.2 {χ ⊗ σi }i is
an infinite set which is cofinitely FZI0(U ) for all open U . 2

Using the preceding results in an analogous fashion to the proof of Theorem 4.9
in [7] we can obtain the following.

COROLLARY 5.2. Suppose that G =
∏

Gi is a product of simple, simply connected,
connected, compact Lie groups. Any infinite Sidon set in Ĝ contains an infinite set
which is cofinitely FZI0(U ) for all open sets U.

PROOF. By Cartwright and McMullen’s characterization of Sidon sets (see
[1, (5.1) and Proposition 5.5] or [7, Theorem 3.1] for details, including our notation),
E ⊆ E1 × E2 × E3 where E1 = {1}, E3 = FTR(G̃3), E2 is a set of representations on
G̃2 of bounded degree and E2 is orthogonal to E3. Of course, if either #(E2 ∩ E)
or #(E3 ∩ E) is infinite, then since the FTR set is cofinitely FZI0(U ) set for all open
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U , and since every infinite set of representations of bounded degree contains an infinite
set that is cofinitely FZI0(U ) for all open U, the proof is complete.

More generally, if there is some σ ∈ E2 such that {σ ⊗ χ ∈ E : χ ∈ E2} is infinite,
then this set suffices, being a translate of an FTR set. Similarly, if there is some χ ∈ E3
such that {σ ⊗ χ ∈ E : σ ∈ E2} is infinite, then this set again contains an infinite set
that is cofinitely FZI0(U ) for all open U .

Otherwise, it is possible to choose infinite asymmetric sets {σi } ⊂ E2, with all σi
of the same degree, and {χi } ⊂ E3 such that {σi ⊗ χi } ⊂ E . By passing to a further
infinite subset, if necessary, by Theorem 5.1 we can assume {σi } is cofinitely FZI0(U )
for all open U . By Theorem 1.2 {σi } ∪ {σi } is I0(U ) for all open U . As E3 is cofinitely
FZI0(U ) for all open U , Corollary 4.3 implies {σi ⊗ χi } is also cofinitely FZI0(U )
for all open U . 2

5.2. Cofinitely FZI0(U) sets, the general case Theorem 1.1 follows immediately
from the following result.

THEOREM 5.3. Suppose that G is a compact, connected group. Then every infinite
Sidon set in Ĝ contains an infinite set that is cofinitely FZI0(U ) for all open sets U.

PROOF. According to the structure theorem, G is isomorphic to a quotient of
G̃ =

∏
i∈I Gi × A, where A is compact, connected and abelian and Gi are classical,

simple, connected, compact Lie groups. Let q be the quotient map and given E ⊆ Ĝ,
put Ẽ = {σ ◦ q : σ ∈ E}. By Proposition 2.4 E is FZI0(U ) if Ẽ is FZI0(q−1(U )).
Thus, it suffices to prove that Ẽ contains an infinite set that is cofinitely FZI0(U ) for
each open U . In [5] it is shown that every infinite subset of the dual of a compact,
connected, abelian group contains a cofinite FZI0(U ) set. With these facts and the
results of this section the proof can be completed in the same manner as the proof of
Corollary 5.2. 2
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