I_{0} SETS FOR COMPACT, CONNECTED GROUPS: INTERPOLATION WITH MEASURES THAT ARE NONNEGATIVE OR OF SMALL SUPPORT

COLIN C. GRAHAM ${ }^{\boxtimes}$ and KATHRYN E. HARE

(Received 18 May 2006; accepted 27 November 2006)

Communicated by G. A. Willis

Abstract

In the dual object of an infinite compact, connected group, every infinite Sidon set contains an infinite subset on which full interpolation can be performed using very small classes of measures (discrete measures on arbitrarily small sets or nonnegative discrete measures). In particular, the Figà-TalamancaRider subset of an infinite product of compact, connected, simple Lie groups has these kinds of interpolation. This substantially improves previous interpolation results.

2000 Mathematics subject classification: primary 42A55, 43A46; secondary 43A30, 43A05.
Keywords and phrases: compact nonabelian group, Fatou-Zygmund sets, FTR set, I_{\emptyset} set, Sidon set.

1. Introduction

1.1. Definitions and background Throughout this paper, G denotes a compact group with dual object \widehat{G} consisting of a full set of inequivalent irreducible representations. If $U \subset G$, then $M(U)$ denotes the finite, regular, Borel measures concentrated on $U ; M_{d}(U)$ denotes the discrete measures on U and $M_{d}^{+}(U)$ the nonnegative, discrete measures on U. We write $\widehat{\mu}$ for the Fourier-Stieltjes transform of the measure μ.

Given $\sigma \in \widehat{G}$ we write H_{σ} for any (fixed) space \mathbb{C}^{d} on which $\sigma(G)$ is an irreducible group of operators, with (finite) dimension $d=d_{\sigma}$.

We investigate subsets of \widehat{G} where every possible function can be interpolated by the Fourier-Stieltjes transform $\widehat{\mu}$ of a nonnegative, discrete measure μ. We say 'possible' because 'nonnegative' restricts what can be interpolated. Indeed, if μ

[^0]is nonnegative (or even, real), then $\widehat{\mu}(\bar{\sigma})=\overline{\widehat{\mu}(\sigma)}$. Furthermore, if $\sigma \sim \bar{\sigma}$ with say, $\bar{\sigma}=P^{-1} \sigma P$ (we write $\sigma \sim_{P} \bar{\sigma}$), then we also have
$$
\widehat{\mu}(\sigma)=P \int \bar{\sigma} d \mu P^{-1}=P \overline{\widehat{\mu}(\sigma)} P^{-1}
$$
which leads to the following definitions, in which $\sigma \in E \subset \widehat{G}$ and $U \subset G$ is open, and the norm of a matrix $A_{\sigma} \in \mathcal{B}\left(H_{\sigma}\right)$ is its usual norm $\left\|A_{\sigma}\right\|$ as an operator on H_{σ} and $l^{\infty}(E)=\left\{\left(A_{\sigma}\right)_{\sigma \in E}: \sup _{\sigma}\left\|A_{\sigma}\right\|<\infty\right\}$. These definitions are generalizations from the abelian case [2, 4, 5, 9].

Definition 1. We say that $\varphi \in l^{\infty}(E)$ is Hermitian if $\varphi(\bar{\sigma})=\overline{\varphi(\sigma)}$ whenever σ and $\bar{\sigma} \in E$, and $\varphi(\sigma)=P \overline{\varphi(\sigma)} P^{-1}$ whenever $\sigma \sim_{P} \bar{\sigma}$. We write $l_{h}^{\infty}(E)$ for the Hermitian elements in $l^{\infty}(E)$.

We say that $E \subset \Gamma$ is symmetric if the identity $\mathbf{1} \notin E$ and whenever $\sigma \in E$, then $\bar{\sigma} \in E$.

We say that E is antisymmetic if $\mathbf{1} \notin E$ and if $\sigma \in E$, then $\bar{\sigma} \notin E$ unless $\sigma \sim \bar{\sigma}$.
We say that E is a $\operatorname{Sidon}(U)$ set if, whenever $\left(A_{\sigma}\right)_{\sigma \in E} \in l^{\infty}(E)$, there is a measure μ supported on U satisfying $\widehat{\mu}(\sigma)=A_{\sigma}$ for all $\sigma \in E$. If $U=G, E$ is Sidon.

We say that E is $I_{0}(U)$ if E is $\operatorname{Sidon}(U)$ and the interpolating measures concentrated on U can be chosen discrete. If $U=G, E$ is I_{0}.

We say that E is Fatou-Zygmund $I_{0}(U)\left(F Z I_{0}(U)\right.$, for short) if each Hermitian $\varphi \in \ell^{\infty}(E)$ can be interpolated by a discrete, nonnegative measure concentrated on U. If $U=G, E$ is $F Z I_{0}$.

We say that E is cofinitely $F Z I_{0}(U)$ if there is a finite subset F of E such that $E \backslash F$ is $F Z I_{0}(U)$.

Clearly, $\operatorname{Sidon}(U)\left(I_{0}(U), F Z I_{0}(U)\right)$ implies $\operatorname{Sidon}\left(I_{0}, F Z I_{0}\right.$ respectively). Also, if E is $F Z I_{0}(U)$ so is $E \cup \bar{E}$. As $\widehat{\mu}(\mathbf{1}) \geq 0$ for μ nonnegative, an $F Z I_{0}(U)$ never contains 1. Clearly $I_{0}(U)$ implies $\operatorname{Sidon}(U)$. Less trivially, if E is $F Z I_{0}(U)$, then E is $I_{0}(U)$ (Proposition 2.5). Finite sets in duals of compact, connected groups are $I_{0}(U)$ for all open sets U and $F Z I_{0}(U)$ (Corollary 2.9 and Proposition 2.10). Sidon sets in the duals of compact connected abelian groups are $\operatorname{Sidon}(U)$ for all open U (see [2, 9]).
1.2. Statement of results We adapt the methods of $[1,7]$ to prove that there are as many $F Z I_{0}$ sets as one could hope for.
THEOREM 1.1. Let G be a compact connected group and $E \subset \widehat{G}$. If E is an infinite Sidon set, then there exists an infinite $F \subset E$ such that F is $F Z I_{0}$ and cofinitely $F Z I_{0}(U)$ for all open U.

The sets $I_{0}(U)$ and $F Z I_{0}(U)$ are related as follows.
THEOREM 1.2. Let G be a connected, compact group and $E \subset \widehat{G}$. Let $F \subset \widehat{G}$ be finite. If E is cofinitely $F Z I_{0}(U)$ for all open U then $E \cup F \cup \overline{E \cup F}$ is $I_{0}(U)$ for all open U. If $\mathbf{1} \notin F$ then $E \cup F$ is also $F Z I_{0}$.

COROLLARY 1.3. If $E \subset \widehat{G}$ is cofinitely $F Z I_{0}(U)$ for all open U, then E is $I_{0}(U)$ for all open U.

REMARKS.

(i) Readers familiar with the union theorem for Sidon sets ${ }^{1}$ may wonder why we need to prove that a union of a finite (!) set with an I_{0} set is I_{0}. That is because the class of I_{0} sets is not closed under unions (see [3, Example 5.1] for the standard example), and the same holds for the classes of $I_{0}(U), F Z I_{0}$, and $F Z I_{0}(U)$ sets $[4,5]$.
(ii) 'Connected' is an essential hypothesis, even in the abelian case, for our conclusions. See [4, 5, 9].

In the course of the proof of Theorem 1.1 we prove a result about the FTR set of G (defined below). This is important because FTR sets are the basic examples of Sidon and I_{0} sets of unbounded degree.

THEOREM 1.4. Suppose that $G=\prod_{j \in J} G_{j}$ is a product of simple, simply connected, connected, compact Lie groups. Then $F T R(G) \backslash\{\mathbf{1}\}$ is $F Z I_{0}$ and cofinitely $F Z I_{0}(U)$ for all open U.

REMARKS.
(i) We do not know whether all I_{0} sets are $I_{0}(U)$, even for abelian groups. See [4, 5] for related results in the abelian case.
(ii) We also do not know whether one of the groups of Theorem 1.4 has a Sidon set that is not I_{0}.
1.3. Organization of this paper We give further background in the next subsection. Preliminary results are given in Section 2. Theorem 1.2 is proved in Section 2.5, Theorem 1.4 in Section 3.1, and Theorem 1.1 in Section 5.2.
1.4. Some further background $\operatorname{In} \mathbb{Z}$ there are: Sidon sets not I_{0} (see [3]) and I_{0} sets not $F Z I_{0}$ (see [5]). Hadamard sets in \mathbb{Z} are $F Z I_{0}$ (see [5]), as well as being $I_{0}(U)$ (see [4]) and cofinitely $F Z I_{0}(U)$ for all open U (see [5]). Every infinite subset E of the dual of a compact abelian group contains an $F Z I_{0}$ set of the same cardinality, and, if the compact abelian group is connected, E will contain an infinite subset that is cofinitely $F Z I_{0}(U)$ for all open U (see [5]). We do not know whether 'of the same cardinality' correctly may be added in the nonabelian case: our combinatorial arguments do not permit us to select a large enough subset to which the technical Lemma 4.1 can be applied. On the other hand, if E is uncountable, then E does contain an uncountable set that is cofinitely $F Z I_{0}(U)$ for all open U.
'Cofinitely' is forced upon us by the fact that no set, not even a singleton, is $F Z I_{0}(U)$ for all open sets U : consider any $\{\lambda\} \subset \widehat{G}$ and suppose U is a neighbourhood of e with the property that $\|\lambda(x)-\lambda(e)\|<1 / 2$ for all $x \in U$. As $\lambda(e)=I$, the

[^1]diagonal elements of $\lambda(x)$ are at least $1 / 2$ for all $x \in U$. Thus, if $\mu=\sum a_{k} \delta\left(x_{k}\right)$ $\in M_{d}^{+}(U)$, then the diagonal elements of $\widehat{\mu}(\lambda)$ are strictly positive and so arbitrary interpolation with positive, discrete measures supported on U is impossible.

In the nonabelian setting there are infinite, compact, connected groups whose duals do not admit any infinite Sidon sets. Cartwright and McMullen [1] effectively characterized those groups admitting infinite Sidon sets and described their Sidon sets in terms of $F T R$ sets (defined below). This was used in [7] to prove that every infinite Sidon set contained an infinite I_{0} set.

The Figà-Talamanca and Rider set (FTR set) of a group G that is a (product of) classical, simple, simply connected, compact Lie group(s) is denoted $\operatorname{FTR}(G)$ and found as follows.

Definition 2. If G is one of the matrix groups $\mathrm{SU}(n), \mathrm{O}(n), \mathrm{SO}(n)$ or $\operatorname{Sp}(n)$ let $\sigma: G \rightarrow \mathrm{U}(n)$ be the self-representation. For $G=\operatorname{Spin}(n)$ let $q: G \rightarrow \mathrm{SO}(n)$ be the canonical covering map and let σ denote the composition with the self representation of $\operatorname{SO}(n)$. Then $\operatorname{FTR}(G)=\{\sigma, \bar{\sigma}, \mathbf{1}\}$. (Note that σ is equivalent to $\bar{\sigma}$ except if $G=\mathrm{SU}(n)$.

If $G=\prod_{j \in J} G_{j}$ where the groups G_{j} are classical, simple, simply connected, connected, compact Lie groups (that is, the matrix groups above), then

$$
\operatorname{FTR}(G) \equiv \bigcup_{j}\left\{\sigma \circ P_{j}: \sigma \in \operatorname{FTR}\left(G_{j}\right)\right\}
$$

where $P_{j}: G \rightarrow G_{j}$ are the projection maps.

2. Preliminaries

2.1. Some properties of $\boldsymbol{F Z} \mathbf{I}_{\mathbf{0}}(\boldsymbol{U})$ sets Suppose that $\sigma \sim_{P} \bar{\sigma}$ and A is any matrix of size $d_{\sigma} \times d_{\sigma}$. Put $\mu=d_{\sigma}(\operatorname{Tr} A \sigma+\operatorname{Tr} \overline{A \sigma})$. Then μ is a real measure (a real-valued polynomial even) and $\widehat{\mu}(\sigma)=A+P \bar{A} P^{-1}$. Taking conjugates and noting that we must have $\widehat{\mu}(\sigma)=P \overline{\widehat{\mu}(\sigma)} P^{-1}$, it follows that $P^{-1} A P=\bar{P} A \bar{P}^{-1}$ for all A. Thus, if we set $\varphi(\sigma)=A+P \bar{A} P^{-1}$, then $\varphi(\sigma)=P \overline{\varphi(\sigma)} P^{-1}$. Conversely, if $B=P \bar{B} P^{-1}$, then $B=A+P \bar{A} P^{-1}$ for $A=B / 2$.

These observations show that for an antisymmetric set $E, \varphi \in l^{\infty}(E)$ is Hermitian if and only if whenever $\sigma \sim_{P} \bar{\sigma}, \varphi(\sigma)$ has the form $A_{\sigma}+P \overline{A_{\sigma}} P^{-1}$ for $\left(A_{\sigma}\right)_{\sigma \in E} \in l^{\infty}(E)$. This can be used to give a characterization of $F Z I_{0}$ sets, as follows, the proof of which is immediate.
Proposition 2.1. Let G be a connected compact group and $U \subset G$. An antisymmetric set E is $F Z I_{0}$ if and only if whenever $\left(A_{\sigma}\right) \in l^{\infty}(E)$ and $\varphi=\left(B_{\sigma}\right)$ satisfies $B_{\sigma}=A_{\sigma}$ if $\sigma \nsim \bar{\sigma}$ and $B_{\sigma}=A_{\sigma}+P \overline{A_{\sigma}} P^{-1}$ if $\sigma \sim_{P} \bar{\sigma}$, there is $\mu \in M_{d}^{+}(U)$ such that $\widehat{\mu}(\sigma)=\varphi(\sigma)$ for all $\sigma \in E$.

As with Sidon and I_{0} sets it is enough to perform 'almost' interpolation. We make this precise in the next proposition, which requires some notation to be stated. Let

$$
\begin{aligned}
D(N, U) & =\left\{\sum_{k=1}^{N} a_{k} \delta\left(x_{k}\right): 0 \leq a_{k} \leq 1, x_{k} \in U\right\} \text { and } \\
D^{+}(N, U) & =\left\{\sum_{k=1}^{N} a_{k} \delta\left(x_{k}\right): 0 \leq a_{k} \leq 1, x_{k} \in U\right\}
\end{aligned}
$$

We also set

$$
\begin{gathered}
B\left(\ell^{\infty}(E)\right)=\left\{\varphi \in \ell^{\infty}(E): \| \phi(\sigma \| \leq 1\} \quad\right. \text { and } \\
B_{h}\left(\ell^{\infty}(E)\right)=\left\{\varphi \in \ell_{h}^{\infty}(E): \| \phi(\sigma \| \leq 1\} .\right.
\end{gathered}
$$

Proposition 2.2. Let $E \subset \widehat{G}$ be an antisymmetric set and let U be a σ-compact subset of G. The following properties are equivalent:
(1) E is $I_{0}(U)$ (respectively $F Z I_{0}(U)$);
(2) there is some $0<\varepsilon<1$ (equivalently, for all $0<\varepsilon<1$) such that whenever $\varphi \in l^{\infty}(E)$ (respectively $\varphi \in l_{h}^{\infty}(E)$), then there is $\mu \in M_{d}(U)$ (respectively $\left.\mu \in M_{d}^{+}(U)\right)$ satisfying

$$
\|\widehat{\mu}(\sigma)-\varphi(\sigma)\|<\varepsilon \quad \text { for all } \sigma \in E
$$

(3) for every $0<\varepsilon<1$ there is N such that for all φ in the unit ball of $l^{\infty}(E)$ (respectively φ in the unit ball of $l_{h}^{\infty}(E)$) there is $\mu \in D(N, U)$ (respectively $\left.\mu \in D^{+}(N, U)\right)$ with $\|\widehat{\mu}(\gamma)-\varphi(\gamma)\|<\varepsilon$ for all $\gamma \in E$;
(4) there is N such that for all φ in the unit ball of $l^{\infty}(E)$ (respectively φ in the unit ball of $l_{h}^{\infty}(E)$) there exists $\mu \in D(N, U)$ (respectively $\mu \in D^{+}(N, U)$) with $\widehat{\mu}(\gamma)=\varphi(\gamma)$ for all $\gamma \in E$ and $\|\mu\| \leq N$.

Proof. We prove that (2) implies (3) for the $F Z I_{0}(U)$ case and leave the remainder to the reader. (That $M_{d}^{+}(G)$ is not a vector space slightly complicates the proof.) See [5, 7] for a similar characterization of $F Z I_{0}(U)$ sets in abelian groups and I_{0} sets in nonabelian groups, respectively.

One may view $B\left(\ell_{h}^{\infty}(E)\right)$ as the product space $\prod_{\sigma \in E} B_{\sigma}$ where B_{σ} is the set of the norm at most one $d_{\sigma} \times d_{\sigma}$ matrices, of the form $A=P \bar{A} P^{-1}$ if $\sigma \sim_{P} \bar{\sigma}$. Let $U=\bigcup_{1}^{\infty} U_{n}$, where the U_{n} are compact and $U_{1} \subset U_{2} \subset \ldots$. For $1 \leq N$ let

$$
W_{N}=\left\{\varphi \in \prod_{\sigma \in E} B_{\sigma}: \exists \mu \in D^{+}\left(N, U_{N}\right) \text { s.t. }\|\widehat{\mu}(\sigma)-\varphi(\sigma)\| \leq \varepsilon \text { for all } \sigma \in E\right\}
$$

By assumption $\bigcup_{N=1}^{\infty} W_{N}=\prod_{\sigma \in E} B_{\sigma}$. The compactness of the U_{n} ensures that each W_{N} is closed. Since $\prod_{\sigma \in E} B_{\sigma}$ is compact (with the product topology), the Baire category theorem implies that some W_{N} has nonempty interior. Consequently, there is a finite set $F \subseteq E$ and a $\psi \in \prod_{\sigma \in F} B_{\sigma}$ such that $\psi \times \prod_{\sigma \in E \backslash F} B_{\sigma} \subseteq W_{N}$.

Consider the subset S of $l_{h}^{\infty}(E)$ consisting of the elements which vanish off F. Note that S is a finite-dimensional, real subspace. Take a basis, say e_{1}, \ldots, e_{ℓ},
where $e_{j} \in B_{h}\left(l^{\infty}(E)\right)$. Since all norms are comparable on a finite-dimensional space, there is some $C>0$ such that $\left\|\sum b_{j} e_{j}\right\|_{l \infty} \geq C \sum\left|b_{j}\right|$. Since each $\pm e_{j}$ is Hermitian, we can obtain $\mu_{j}, v_{j} \in M_{d}^{+}(U)$ such that for all $\sigma \in E$,

$$
\left\|\widehat{\mu_{j}}(\sigma)-e_{j}(\sigma)\right\|<C \varepsilon / 2 N \quad \text { and } \quad\left\|\widehat{v_{j}}(\sigma)+e_{j}(\sigma)\right\|<C \varepsilon / 2 N
$$

By taking suitably large partial sums we can assume there exists some N^{\prime} such that each $\mu_{j}, v_{j} \in D^{+}\left(N^{\prime}, U\right)$.

Let $\varphi \in B_{h}\left(l^{\infty}(E)\right)$. Since φ coincides on $E \backslash F$ with an element of W_{N}, we can find $\mu \in D^{+}(N, U)$ such that $\|\widehat{\mu}(\sigma)-\varphi(\sigma)\| \leq \varepsilon$ for all $\sigma \in E \backslash F$. As μ is a positive measure, $\left.(\varphi-\widehat{\mu})\right|_{F}$ (extended by 0 on $E \backslash F$) belongs to S and therefore equals $\sum b_{j} e_{j}$ for some b_{j} real. Write $b_{j}=b_{j}^{+}-b_{j}^{-}$where $b_{j}^{ \pm} \geq 0$. Note

$$
C \sum\left|b_{j}\right| \leq\left\|\varphi-\left.\widehat{\mu}\right|_{F}\right\|_{l^{\infty}} \leq 1+\|\mu\|_{M(U)} \leq 2 N
$$

For $\sigma \in E$,

$$
\begin{aligned}
& \left\|\varphi(\sigma)-\widehat{\mu}(\sigma)-\left(\sum b_{j}^{+} \widehat{\mu_{j}}+b_{j}^{-} \widehat{v_{j}}\right)(\sigma)\right\| \\
& \quad=\left\|(\varphi(\sigma)-\widehat{\mu}(\sigma)) \mid E \backslash F+\left(\sum b_{j}^{+}\left(e_{j}-\widehat{\mu_{j}}\right)+b_{j}^{-}\left(-e_{j}-\widehat{v_{j}}\right)\right)(\sigma)\right\| \\
& \quad \leq \sup _{\sigma \in E \backslash F}\|(\varphi-\widehat{\mu})(\sigma)\|+\sup _{\sigma \in E}\left\|\left(\sum b_{j}^{+}\left(e_{j}-\widehat{\mu_{j}}\right)+b_{j}^{-}\left(-e_{j}-\widehat{v_{j}}\right)\right)(\sigma)\right\| \\
& \quad \leq \varepsilon+\sum\left|b_{j}\right| C \varepsilon /(2 N) \leq 2 \varepsilon .
\end{aligned}
$$

Finally, we note that $\mu+\sum b_{j}^{+} \mu_{j}+\sum b_{j}^{-} v_{j} \in D^{+}\left(N+2 N^{\prime}, U\right)$ and, as N^{\prime} is independent of the choice of φ, this proves that (2) implies (3).

Definition 3. The set E is an $I_{0}(N, \varepsilon)$ (respectively, $\left.\operatorname{FZI}(N, \varepsilon)\right)$ set if (3) holds.
Lemma 2.3. The set $E \subseteq \widehat{G}$ is $I_{0}(U)$ (respectively $F Z I_{0}(U)$) if and only if E is $I_{0}(U x)\left(\right.$ respectively $\left.F Z I_{0}(U x)\right)$ for each $x \in G$.
PROOF. Indeed, $\mu=\sum a_{k} \delta_{x_{k}}$ satisfies $\widehat{\mu}(\sigma)=\varphi(\sigma) \sigma(x)^{-1}$ if and only if

$$
\widehat{\sum a_{k} \delta_{x_{k} x}}(\sigma)=\sum a_{k} \sigma\left(x_{k}\right) \sigma(x)=\varphi(\sigma)
$$

Proposition 2.4. Suppose that $q: G \longrightarrow H$ is a continuous, surjective homomorphism. Then $E \subset \widehat{H}$ is $\operatorname{FZI}_{0}(q(U))$ if and only if $\widetilde{E}=\{\sigma \circ q: \sigma \in E\}$ is an $F Z I_{0}(U)$ subset of \widehat{G}.

Proof. This follows easily since the surjectivity of q ensures that $\sigma \circ q \sim_{P} \overline{\sigma \circ q}$ if and only if $\sigma \sim_{P} \bar{\sigma}$.

2.2. Antisymmetric $F Z I_{0}(U)$ sets are $\boldsymbol{I}_{\mathbf{0}}(U)$

Proposition 2.5. Let G be a compact connected group and $E \subset \widehat{G}$ be an antisymmetric $F Z I_{0}(U)$ set. Then $E \cup \bar{E}$ is $I_{0}(U)$.

Proof. Write $E=E_{0} \cup E_{1}$ where $E_{0}=\{\sigma \in E: \sigma \sim \bar{\sigma}\}$ and $E_{1}=\{\sigma \in E: \sigma \nsim \bar{\sigma}\}$ and suppose that $\varphi \in l^{\infty}(E \cup \bar{E})$. Find $\mu_{1}, \nu_{1}, \mu_{2}, \nu_{2}, \in M_{d}^{+}(U)$, such that

$$
\begin{aligned}
& \widehat{\mu_{1}}(\sigma)= \begin{cases}\varphi(\sigma)+P_{\sigma} \overline{\varphi(\sigma)} P_{\sigma}^{-1} & \text { if } \sigma \in E_{0}, \sigma \sim_{P_{\sigma}} \bar{\sigma}, \\
\varphi(\sigma) & \text { if } \sigma \in E_{1},\end{cases} \\
& \widehat{v_{1}}(\sigma)=\left\{\begin{array}{ll}
i\left(\varphi(\sigma)-P_{\sigma} \overline{\varphi(\sigma)} P_{\sigma}^{-1}\right) & \text { if } \sigma \in E_{0}, \sigma \sim_{P_{\sigma}} \bar{\sigma}, \\
i \varphi(\sigma) & \text { if } \sigma \in E_{1}, \\
\widehat{\mu_{2}}(\sigma)=\left\{\begin{array}{ll}
0 & \text { if } \sigma \in E_{0} \\
\overline{\varphi(\bar{\sigma})} & \text { if } \sigma \in E_{1}
\end{array} \text { and } \quad \widehat{v_{2}}(\sigma)= \begin{cases}0 & \text { if } \sigma \in E_{0} \\
i \varphi(\bar{\sigma}) & \text { if } \sigma \in E_{1}\end{cases} \right.
\end{array} .\left\{\begin{array}{l}
\end{array}\right.\right.
\end{aligned}
$$

It is routine to verify that the discrete measure $\left(\mu_{1}-i \nu_{1}+\mu_{2}-i \nu_{2}\right) / 2$ does the desired interpolation.

2.3. Finite sets are $\boldsymbol{I}_{\mathbf{0}}(\boldsymbol{U})$

Lemma 2.6. Let G be a compact, connected Lie group and U be an open subset of G. Let H be a finite-dimensional Hilbert space and suppose $\sigma: G \rightarrow B(H)$ (where $B(H)$ is the bounded operators on $H)$ is an analytic map. Then $\sigma(U)$ spans $B(H)$ if and only if $\sigma(G)$ spans $B(H)$.
Proof. If $\sigma(U)$ does not span $B(H)$, then $\sigma(U)$ is contained in a hyperplane $L \subseteq B(H)$ of (complex) co-dimension at least one. Choose a nonzero vector $\zeta \in \mathbb{C}^{\operatorname{dim} B(H)}$ orthogonal to L with respect to a fixed inner product (\cdot, \cdot) on $B(H)$.

Since the map $x \mapsto \sigma(x)$ is an analytic mapping of G into $B(H)$ [11, p. 102], the map $x \mapsto(\zeta, \sigma(x)) \equiv f(x)$ is also analytic on G. Because f vanishes on the open set U and G is a connected Lie group, f vanishes identically. However, then ζ is orthogonal to $\sigma(G)$ and hence $\sigma(U)$ cannot span $B(H)$.

The converse is trivial.
Corollary 2.7. Suppose that G is a compact, connected Lie group, E is a finite subset of \widehat{G}, and U is an open subset of G. Then E is $I_{0}(U)$.

Proof. All finite sets are I_{0} [7, Proposition 2.2] thus the set $M_{d}(G)$ spans $B(H)$ where $H=\bigoplus_{\sigma \in E} H_{\sigma}$. Since the mapping $x \mapsto \bigoplus_{\sigma \in E} \sigma(x)$ is an analytic mapping of G into $B(H)$. By Lemma 2.6, $M_{d}(U)$ spans $B(H)$ for all open $U \subseteq G$.

Proposition 2.8. Let $G=A \times \prod_{i \in I} G_{i}$ where A is a compact, connected, abelian group and the subgroups G_{i} are compact, connected Lie groups. Then each finite set $E \subseteq \widehat{G}$ is $I_{0}(U)$ for all open sets $U \subseteq G$.

Proof. First, suppose that $E_{1} \subseteq \widehat{A}$ and $E_{2} \subseteq \widehat{\prod G_{i}}$ are finite sets. A dimension argument shows that $l^{\infty}\left(E_{1} \times E_{2}\right)=l^{\infty}\left(E_{1}\right) \otimes l^{\infty}\left(E_{2}\right)$.

As each representation, σ, in E has finite degree, there is a finite index set I such that $E \subset\left(A \times \prod_{i \in I} G_{i}\right)^{\text {(}}$ (in the sense that σ restricted to $\prod_{i \notin I} G_{i}$ is trivial). If we put $E_{1}=\left.E\right|_{A}$ and $E_{2}=\left.E\right|_{\prod_{i \in I} G_{i}}$, then certainly $E \subseteq E_{1} \times E_{2}$ and thus $l^{\infty}(E)$ is contained in $l^{\infty}\left(E_{1}\right) \otimes l^{\infty}\left(E_{2}\right)$. As E_{1} is a finite set of representations on a compact, connected abelian group it is $I_{0}(U)$ for all open sets $U \subseteq A$ (see [4, Corollary 2.8]). A finite product of compact, connected Lie groups is again a compact, connected Lie group and thus E_{2} is also $I_{0}(U)$ for all open sets $U \subseteq \prod_{i \in I} G_{i}$.

Let $U \subset G$ be open. We may assume that U is a neighbourhood of the identity by Lemma 2.3. Therefore, U contains a set of the form $U_{1} \times U_{2} \times \prod_{i \notin I} G_{i}$, where U_{1} is open in A and U_{2} is open in $\prod_{i \in I} G_{i}$. Since $M_{d}\left(U_{j}\right)^{\wedge}$ spans $l^{\infty}\left(E_{j}\right)$ for $j=1,2$, and each $\sigma \in E$ is trivial off $E_{1} \times E_{2}, M_{d}(U)^{\wedge}$ spans $l^{\infty}(E)$.

COROLLARY 2.9. If G is a compact, connected group, then any finite set $E \subseteq \widehat{G}$ is $I_{0}(U)$ for all open sets U

Proof. By the structure theorem for compact, connected groups [10, Theorem 6.5.6], G is isomorphic to a quotient of $A \times \prod_{i \in I} G_{i}$ where G_{i} are compact, connected Lie groups, and A is a compact, connected, abelian group. If E is a finite subset of \widehat{G}, then E lifts to a finite set of irreducible representations of $A \times \prod G_{i}$. As the quotient map is open, it suffices to assume $G=A \times \prod G_{i}$ and thus the previous proposition applies.

2.4. Finite sets are $F Z I_{0}$

Proposition 2.10. If G is a compact group, then any finite set $E \subseteq \widehat{G}$ not containing 1 is $F Z I_{0}$.

Proof. Without loss of generality we may assume that E is antisymmetric. Given any Hermitian φ in the unit ball of $l^{\infty}(E)$, put $\psi(\sigma)=\varphi(\sigma)$ if $\sigma \nsim \bar{\sigma}$ and $\psi(\sigma)=\varphi(\sigma) / 2$ otherwise. Set

$$
\rho=A+\sum_{\sigma \in E} d_{\sigma}(\operatorname{Tr} \psi(\sigma) \sigma+\operatorname{Tr} \overline{\psi(\sigma)} \bar{\sigma})
$$

where $A \geq 0$ is sufficiently large to ensure that $\rho \geq 0$. If $\sigma \sim_{P} \bar{\sigma}$, then as φ is Hermitian, $\operatorname{Tr} \overline{\psi(\sigma)} \bar{\sigma}=\operatorname{Tr} P \psi(\sigma) P^{-1} P \sigma P^{-1}=\operatorname{Tr} \psi(\sigma) \sigma$. Moreover, if $\sigma \in E$, then $\widehat{\rho}(\bar{\sigma})=\overline{\varphi(\sigma)}=\varphi(\bar{\sigma})$, thus $\widehat{\rho}(\sigma)=\varphi(\sigma)$ for all $\sigma \in E$.

For each $x \in G$ choose a neighbourhood U_{x} of x such that

$$
\|\sigma(x)-\sigma(y)\|<\varepsilon /\|\rho\|,
$$

for all $y \in U_{x}$ and $\sigma \in E$. Choose a finite subcover $U_{x_{1}}, \ldots, U_{x_{n}}$ of G. For each j let $V_{j}=U_{x_{j}} \backslash \bigcup_{k=1}^{j-1} U_{x_{k}}$. The V_{j} form a finite (but not open) covering of G by disjoint sets. Put $\mu=\sum_{j=1}^{n} \rho\left(V_{j}\right) \delta\left(x_{j}\right)$, where by $\rho\left(V_{j}\right)$ we mean $\int_{V_{j}} \rho$ and note that $\|\widehat{\mu}(\sigma)-\varphi(\sigma)\|<\varepsilon$ for all $\sigma \in E$. Now an application of Proposition 2.2 (3) proves E is $F Z I_{0}$.
2.5. Proof of Theorem 1.2 We may assume $E \cap F=\emptyset$ and that both E and F are symmetric. It does not matter whether F is empty. Let U be an open neighbourhood of the identity of G. Let U^{\prime}, W^{\prime} be open neighbourhoods of the identity with $W^{\prime} U^{\prime} \subset U$. Let $F_{1} \subset E$ be a finite set such that $E \backslash F_{1}$ is $F Z I_{0}\left(U^{\prime}\right)$.

Let W be an open neighbourhood of the identity of G such that $W^{3} \subset W^{\prime}$ and $x \in W$ implies $\left\|\mathbf{1}_{\sigma}-\sigma(x)\right\|_{\mathcal{B}\left(H_{\sigma}\right)} \leq 1 / 2$ for $\sigma \in F \cup F_{1}$. Since E is cofinitely $F Z I_{0}(W)$, we may choose a finite set $F_{2} \subset E \backslash F_{1}$ such that $E \backslash\left(F_{1} \cup F_{2}\right)$ is $F Z I_{0}(W)$. Choose any $\tau \in E \backslash\left(F_{1} \cup F_{2}\right)$. Then there exist $\mu_{-}, \mu_{+} \in M_{d}^{+}(W)$ such that $\widehat{\mu}_{ \pm}(\tau)=\widehat{\mu}_{ \pm}(\bar{\tau})$ $= \pm \mathbf{1}_{\tau}$ and $\widehat{\mu}_{ \pm}=0$ elsewhere on $E \backslash\left(F_{1} \cup F_{2}\right)$.

Let $\mu=\mu_{+}+\mu_{-}$. Then $\mu \geq 0$ is supported on $W, \widehat{\mu}=0$ on $E \backslash\left(F_{1} \cup F_{2}\right)$, and $a=\|\mu\| \geq 2$ (this is where the nonnegativity is used). Furthermore, $\left\|\widehat{\mu}(\sigma)-a \mathbf{1}_{\sigma}\right\|$ $\leq a / 2$, by integration, for each $\sigma \in F \cup F_{1}$, so $\widehat{\mu}(\sigma)$ is invertible for each $\sigma \in F \cup F_{1}$.

Since $F \cup F_{1} \cup F_{2}$ is finite, Corollary 2.9 implies there exists a discrete measure ${ }^{1} \omega$ supported in W such that $\widehat{\omega}=\widehat{\mu}^{-1}$ on $F \cup F_{1}$ and 0 on F_{2}. Then $\mu * \omega$ has transform the identity on $F \cup F_{1}$ and zero on $E \backslash F_{1}$.

Now let $\varphi \in \ell^{\infty}(E \cup F)$. Let $\omega_{1} \in M_{d}(W)$ have $\widehat{\omega}_{1}=\varphi$ on $F \cup F_{1}$ and ω_{2} $\in M_{d}\left(U^{\prime}\right)$ have $\widehat{\omega}_{2}=\varphi$ on $E \backslash F_{1}$. Then $\omega_{3}=\mu * \omega * \omega_{1}+\left(\delta_{e}-\mu * \omega\right) * \omega_{2}$ has $\widehat{\omega}_{3}=\varphi$ on $E \cup F$, and ω_{3} is a discrete measure concentrated on $W^{3} \cup W U^{\prime} \subset U$. It now follows that $E \cup F$ is $I_{0}(U)$. Since E, F are symmetric, $E \cup F \cup \overline{E \cup F}$ is $I_{0}(U)$. That proves the $I_{0}(U)$ assertion.

The proof of the $F Z I_{0}$ assertion follows similarly, with a call to Proposition 2.10 in place of Corollary 2.9. We observe that $\widehat{\mu}^{-1}$ can be interpolated on F by a nonnegative measure supported on W since the nonnegativity of μ implies $\widehat{\mu}^{-1}$ is Hermitian.

2.6. Orthogonal representations and the padding property

DEFINITION 4. The nontrivial representations $\left\{\sigma_{j}\right\} \subseteq \widehat{G}$ are mutually orthogonal if $G=\prod_{j \in J} G_{j}$, the index set J is the disjoint union of sets J_{k} and $\sigma_{k} \in \widehat{\prod_{j \in J_{k}} G}{ }_{j}$.

We say that $E \subseteq \widehat{G}$ has the padding property if for every $\varepsilon>0$ there is $m=m(\varepsilon)$ and $x_{0}, \ldots, x_{m-1} \in G$ satisfying $(1 / m)\left\|\sum_{j=0}^{m-1} \sigma\left(x_{j}\right)\right\|<\varepsilon$ for all $\sigma \in E$.

Padding was a key idea used in [7] to 'piece together' I_{0} sets in a product group setting. It is shown in [7] that $\operatorname{FTR}(G) \backslash\{\mathbf{1}\}$ and finite sets not including 1 are sets which have the padding property. Of course, if $\mathbf{1} \in E$, then E does not have the padding property.
Lemma 2.11. Let $G=\prod_{i \in J} G_{i}$ and $E_{i} \subset \widehat{G_{i}}$. Suppose there is some $\varepsilon<1$ and N such that all E_{i} are $\operatorname{FZI}(N, \varepsilon)$ sets and that $E=\bigcup E_{i}$ has the padding property. Then E is $F Z I_{0}$.

Proof. Let $\left\{A_{\sigma}\right\}_{\sigma \in E}$ be a Hermitian function in the unit ball of $l^{\infty}(E)$ and for each i let $\mu_{i}=\sum_{k=1}^{N} a_{k i} \delta\left(g_{k i}\right)$ be a positive measure on G_{i} with $0 \leq a_{k i} \leq 1$ and $\left\|\widehat{\mu_{i}}(\sigma)-A_{\sigma}\right\|<\varepsilon$ for all $\sigma \in E_{i}$. We can 'combine' these measures to produce a

[^2]single positive discrete measure on G which will simultaneously interpolate all A_{σ} by imitating the proof of [7, Theorem 3.3] with one change: rather than choosing s_{1}, \ldots, s_{r} an ε-net in the complex unit ball, we choose $s_{i}=i \varepsilon$ for $i=0, \ldots,[1 / \varepsilon]$. Given any $0 \leq a_{k i} \leq 1$ there is some s_{j} such that $\left|s_{j}-a_{k i}\right| \leq \varepsilon$. Hence the measure v constructed in [7, Theorem 3.3] does the appropriate interpolation and is positive as needed.

3. Proof of the FTR Theorem 1.4

We use two lemmas, from which the theorem will follow easily. The first, Lemma 2.11 above, allows us to piece together the FTR sets of the factors; the second, which follows, shows that those FTR sets satisfy the conditions necessary for that piecing.

Lemma 3.1. If G is any one of the classical, compact, simple, simply connected Lie groups, then $\operatorname{FTR}(G) \backslash\{\mathbf{1}\}$ is $F Z I_{0}(N, \varepsilon)$ for some N and $0<\varepsilon<1$ independent of G (and so $F Z I_{0}$).

REMARKS.

(i) The choice of N and ε will be clear in the proof.
(ii) Since the $F T R$ set (less 1) has at most two elements in the classical case, this would follow from Proposition 2.10, if we did not need N, ε independent of G.

Proof. Denote the $F T R$ set of G (excluding 1) by $\{\sigma\}$ or $\{\sigma, \bar{\sigma}\}$, as appropriate. We consider the classical matrix groups separately.
(i) For $\mathrm{SU}(2), \mathrm{SU}(3)$ we appeal to the finite sets result.
(ii) For $\mathrm{SU}(n), n \geq 4$ and $\mathrm{O}(n), n \geq 1$, we essentially use the argument in [7, Proposition 3.2].
(iii) For $\mathrm{SO}(n), n \geq 3$, it suffices to show each matrix in $\mathrm{O}(n)$ is a positive linear combination of a bounded number of matrices in $\mathrm{SO}(n)$, with the number independent of n. We need only consider orthogonal matrices with determinant -1 and these can be written as $P^{-1} N P$ with P special orthogonal and N block diagonal of the form

$$
\left(\begin{array}{ccc}
-I_{j} & 0 & 0 \\
0 & I_{k} & 0 \\
0 & 0 & T
\end{array}\right)
$$

with j odd and T block diagonal with 2×2 blocks of the form

$$
T_{\varphi}=\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right)
$$

Thus, N is one of the block diagonal matrices

$$
\left(\begin{array}{cc}
-I_{3} & 0 \\
0 & R
\end{array}\right), \quad\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & R
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & T_{\varphi} & 0 \\
0 & 0 & R
\end{array}\right),
$$

where R is special orthogonal. We can write

$$
\begin{aligned}
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & R
\end{array}\right)= & \frac{1}{4}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & R
\end{array}\right)+\frac{1}{4}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & R
\end{array}\right) \\
& +\frac{1}{4}\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & R
\end{array}\right)+\frac{1}{4}\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & R
\end{array}\right),
\end{aligned}
$$

and thus as a positive sum of four matrices in $\mathrm{SO}(n)$. The positive combinations of matrices for

$$
\left(\begin{array}{cc}
-I_{3} & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & T_{\varphi} & 0 \\
0 & 0 & R
\end{array}\right)
$$

can be obtained in a similar manner. Here 0 denotes a zero matrix (possibly different in each instance) of dimensions required by the nonzero matrices of its row and column.
(iv) For $\operatorname{Sp}(n), \sigma \sim_{P} \bar{\sigma}$ with intertwining operator

$$
P=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right) .
$$

Thus, we need only interpolate matrices of the form

$$
\left(\begin{array}{cc}
A & B \\
-\bar{B} & \bar{A}
\end{array}\right) .
$$

Any matrix of the form

$$
\left(\begin{array}{cc}
U & 0 \\
0 & \bar{U}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
0 & V \\
-\bar{V} & 0
\end{array}\right)
$$

with U, V unitary belongs to $\operatorname{Sp}(n)$. Since any matrix can be written as the positive linear combination of four unitaries it is straightforward to perform the required interpolation.
(v) The $\operatorname{Spin}(n)$ case follows from $\operatorname{SO}(n)$ since the property of being $F Z I_{0}(U)$ is preserved under quotients (Proposition 2.4).
3.1. Proof of Theorem 1.4 Because $F T R(G) \backslash\{1\}$ is known [7] to have the padding property, we can apply Lemma 3.1 and Lemma 2.11 to conclude that $\operatorname{FTR}(G) \backslash\{\mathbf{1}\}$ is $F Z I_{0}$.

We now show that $F \operatorname{FTR}(G) \backslash\{\mathbf{1}\}$ is cofinitely $F Z I_{0}(U)$ for all open $U \subset G$. If J is finite, then $\# F T R(G) \leq 1+2 \# J$, so $F T R(G) \backslash\{\mathbf{1}\}$ is cofinitely $F Z I_{0}(U)$ for all sets U, open or not.

We therefore assume that J is infinite. If $U \subset G$ is open, then U contains a set of the form

$$
U_{1} \times \cdots \times U_{N} \prod_{i \notin\{1, \ldots, N\}} G_{i}
$$

where $U_{j} \subset G_{j}$ is open, $1 \leq j \leq N$. Let $G^{\prime}=\prod_{i \notin\{1, \ldots, N\}} G_{i}$ and $G^{\prime \prime}=\prod_{i \in\{1, \ldots, N\}} G_{i}$. Suppose that $E=F \operatorname{TR}(G) \backslash\{\mathbf{1}\}$ and take $F=F \operatorname{TR}\left(G^{\prime \prime}\right) \backslash\{\mathbf{1}\}$. Of course, we can identity F with a subset of E, and $E \backslash F$ with $\operatorname{FTR}\left(G^{\prime}\right)$, and we do so. With those identifications, $E \backslash F$ is $F Z I_{0}$ by the preceding paragraph, and F is finite.

Let $\varphi \in B\left(\ell^{\infty}(E)\right)$. Since $E \backslash F$ is $F Z I_{0}$, we can obtain $\mu \in M_{d}^{+}\left(G^{\prime}\right)$ such that $\widehat{\mu}=\varphi$ on $E \backslash F$, say $\mu=\sum a_{k} \delta\left(x_{k}\right)$. (Here we think of $E \backslash F$ as $F T R\left(G^{\prime}\right)$.) Replace x_{k} by $x_{k}^{\prime}=\left(y_{k i}\right)_{i \in I}$ where $y_{k i}=x_{k i}$ if $i \neq 1, \ldots, N$ and $y_{k i}=e$ for $i=1, \ldots, N$. Then $x_{k}^{\prime} \in U$, and $\mu_{k}^{\prime}=\sum a_{k} \delta\left(x_{k}^{\prime}\right)$ is a discrete positive measure supported on U whose Fourier transform coincides with that of μ on $E \backslash F$. That ends the proof of Theorem 1.4.

4. A technical lemma

If A and B are infinite sets, then $A \otimes B$ is never Sidon [1, p. 311], even in the abelian setting [9, Theorem 1.4]. It will be useful for us to know that certain infinite subsets of the product of two $F Z I_{0}$ sets are $F Z I_{0}$.
Lemma 4.1. Let $E_{1}=\left\{\chi_{j}\right\}_{j \in J}$ be antisymmetric and assume all χ_{j} have the same degree. Assume that $E_{1} \cup \overline{E_{1}}$ is $I_{0}\left(U_{1}\right)$. Let $E_{2}=\bigcup_{j \in J} E_{2, j}$ where the sets $E_{2, j}$ are disjoint. Suppose that E_{2} is antisymmetric and $F Z I_{0}\left(U_{2}\right)$. Furthermore, assume that E_{1} is orthogonal to E_{2}. Then $E=\bigcup_{j \in J} \chi_{j} \otimes E_{2, j}$ is $F Z I_{0}\left(U_{1} \times U_{2}\right)$.
Proof. Partition E as $F_{1} \cup F_{2} \cup F_{3}$ where

$$
\begin{aligned}
& F_{1}=\{\chi \otimes \sigma \in E: \sigma \nsim \bar{\sigma}\} \\
& F_{2}=\left\{\chi \otimes \sigma \in E: \sigma \sim_{Q_{\sigma}} \bar{\sigma} \text { and } \chi \sim_{P_{\chi}} \bar{\chi}\right\} \quad \text { and } \\
& F_{3}=\left\{\chi \otimes \sigma \in E: \sigma \sim_{Q_{\sigma}} \bar{\sigma} \text { and } \chi \nsim \bar{\chi}\right\} .
\end{aligned}
$$

Let $\varphi=(A(\chi \otimes \sigma)) \in B\left(l^{\infty}(E)\right)$ and put

$$
X(\chi \otimes \sigma)=\left\{\begin{array}{l}
A(\chi \otimes \sigma)+R(\chi \otimes \sigma) \overline{A(\chi \otimes \sigma)} R(\chi \otimes \sigma)^{-1} \\
\quad \text { if } \chi \otimes \sigma \sim_{R(\chi \otimes \sigma)} \overline{\chi \otimes \sigma} \\
A(\chi \otimes \sigma) \quad \text { otherwise }
\end{array}\right.
$$

Our task is to interpolate $(X(\chi \otimes \sigma))$ on E.

We produce three positive, discrete measures μ_{ℓ} whose transforms agree with $X(\chi \otimes \sigma)$ when $\chi \otimes \sigma \in F_{\ell}$ and 0 otherwise on E.

Let d be the common degree of the χ_{j}, and let $I_{k, \ell}$ be the $d \times d$ matrix with a 1 in the (k, ℓ) place and 0 elsewhere. For each $\chi \otimes \sigma \in E$, write $A(\chi \otimes \sigma)$ $=\sum_{k, \ell=1}^{d} I_{k, \ell} \otimes a_{k, \ell}(\chi \otimes \sigma)$.

Case I, interpolation on F_{1}. Since E_{1} is $I_{0}\left(U_{1}\right)$ there exists, for each $1 \leq k$, $\ell \leq d, \mu_{k, \ell}=\sum_{n} \alpha_{n, k, \ell} \delta\left(x_{n, k, \ell}\right) \in M_{d}\left(U_{1}\right)$ such that $\widehat{\mu_{k, \ell}}(\chi)=I_{k, \ell}$ for each $\chi \in E_{1}$. Observe that for each $\sigma \in E_{2}$ there exists a unique $\chi \in E_{1}$ such that $\chi \otimes \sigma \in E$. Since E_{2} is $F Z I_{0}\left(U_{2}\right)$, there exists $v_{n, k, \ell} \in M_{d}^{+}\left(U_{2}\right)$ such that for $\sigma \in E_{2}$,

$$
\widehat{v_{n, k, \ell}}(\sigma)= \begin{cases}\alpha_{n, k, \ell} a_{k, \ell}(\chi \otimes \sigma) & \text { if there exists } \chi \in E_{1} \text { with } \chi \otimes \sigma \in F_{1} \\ 0 & \text { otherwise. }\end{cases}
$$

(There is no problem doing this as $\sigma \nsim \bar{\sigma}$ if $\chi \otimes \sigma \in F_{1}$.)
For $\chi \otimes \sigma \in F_{1}$ and $1 \leq k, \ell \leq d$, we put $\omega_{k, \ell}=\sum_{n} \delta\left(x_{n, k, \ell}\right) \otimes v_{n, k, \ell}$. Then

$$
\begin{aligned}
\widehat{\omega_{k, \ell}}(\chi \otimes \sigma) & =\sum_{n} \chi\left(x_{n, k, \ell}\right) \otimes \widehat{v_{n, k, \ell}}(\sigma)=\sum_{n} \chi\left(x_{n, k, \ell}\right) \otimes \alpha_{n, k, \ell} a_{k, \ell}(\chi \otimes \sigma) \\
& =\sum_{n} \alpha_{n, k, \ell} \delta \widehat{\left(x_{n, k, \ell}\right)}(\chi) \otimes a_{k, \ell}(\chi \otimes \sigma)=I_{k, \ell} \otimes a_{k, \ell}(\chi \otimes \sigma)
\end{aligned}
$$

on F_{1}, and $\widehat{\omega_{k, \ell}}$ equals 0 otherwise on E. Thus $\mu_{1}=\sum_{k, \ell=1}^{d} \omega_{k, \ell}$ interpolates X on F_{1} and is zero on $F_{2} \cup F_{3}$.

Case II, interpolation on F_{2}. We write $E_{1}=E_{1}^{\prime} \cup E_{1}^{\prime \prime}$, where E_{1}^{\prime} is the set of elements $\chi \sim \bar{\chi}$, and $E_{1}^{\prime \prime}$ is the rest of E_{1}.

We use the $I_{0}\left(U_{1}\right)$ property of E_{1} to get $\mu_{k, \ell}=\sum_{n} \alpha_{n, k, \ell} \delta\left(x_{n, k, \ell}\right) \in M_{d}\left(U_{1}\right)$ such that

$$
\widehat{\mu}_{k, \ell}(\chi)= \begin{cases}I_{k, \ell} & \text { if } \chi \in E_{1}^{\prime} \\ 0 & \text { if } \chi \in E_{1}^{\prime \prime}\end{cases}
$$

Now we obtain $v_{n, k, \ell} \in M_{d}^{+}\left(U_{2}\right)$ such that

$$
\widehat{v_{n, k, \ell}}(\sigma)=\alpha_{n, k, \ell} a_{k, \ell}(\chi \otimes \sigma)+Q_{\sigma} \overline{\left(\alpha_{n, k, \ell} a_{k, \ell}(\chi \otimes \sigma)\right)} Q_{\sigma}^{-1}
$$

if there exists χ with $\chi \otimes \sigma \in F_{2}$.

If we again put $\omega_{k, \ell}=\sum_{n} \delta\left(x_{n, k, \ell}\right) \otimes v_{n, k, \ell}$ we have for $\chi \otimes \sigma \in F_{2}$,

$$
\begin{aligned}
\widehat{\omega_{k, \ell}}(\chi \otimes \sigma)= & \sum_{n} \chi\left(x_{n, k, \ell}\right) \otimes \widehat{v_{n, k, \ell}}(\sigma) \\
= & \sum_{n} \chi\left(x_{n, k, \ell}\right) \otimes\left[\alpha_{n, k, \ell} a_{k, \ell}(\chi \otimes \sigma)\right. \\
& +Q_{\sigma}\left(\overline{\left.\alpha_{n, k, \ell} a_{k, \ell}(\chi \otimes \sigma)\right)} Q_{\sigma}^{-1}\right] \\
= & \sum_{n} \alpha_{n, k, \ell} \chi\left(x_{n, k, \ell}\right) \otimes a_{k, \ell}(\chi \otimes \sigma) \\
& +\overline{\alpha_{n, k, \ell}} P_{\chi} \overline{\chi\left(x_{n, k, \ell}\right)} P_{\chi}^{-1} \otimes Q_{\sigma}\left(\overline{\left.a_{k, \ell}(\chi \otimes \sigma)\right)} Q_{\sigma}^{-1}\right. \\
= & I_{k \ell} \otimes a_{k, \ell}(\chi \otimes \sigma) \\
& +P_{\chi} \overline{\sum_{n} \alpha_{n, k, \ell} \chi\left(x_{n, k, \ell}\right)} P_{\chi}^{-1} \otimes Q_{\sigma}\left(a_{k, \ell}(\chi \otimes \sigma)\right) Q_{\sigma}^{-1} \\
= & I_{k, \ell} \otimes a_{k, \ell}+\left(P_{\chi} \otimes Q_{\sigma}\right) \overline{I_{k, \ell} \otimes a_{k, \ell}(\chi \otimes \sigma)}\left(P_{\chi} \otimes Q_{\sigma}\right)^{-1}
\end{aligned}
$$

Consequently, $\widehat{\mu_{2}}(\chi \otimes \sigma)=\sum_{k, \ell=1}^{d} \widehat{\omega_{k, \ell}}(\chi \otimes \sigma)=A+R_{\chi \otimes \sigma} \bar{A} R_{\chi \otimes \sigma}^{-1}$ on $F_{2} \quad$ and equals zero otherwise on E.
Case III, interpolation on F_{3} (the final case). Here we need that $E_{1} \cup \overline{E_{1}}$ is $I_{0}\left(U_{1}\right)$. That allows us to obtain ${ }^{1}$ a real $\mu_{k, \ell}=\sum_{n} c_{n, k, \ell} \delta\left(x_{n, k, \ell}\right) \in M_{d}\left(U_{1}\right)$ such that $\widehat{\mu_{k, \ell}}(\chi)=I_{k, \ell}$ for all $\chi \in E_{1}$ with $\chi \nsim \bar{\chi}$ and 0 otherwise on E_{1}. Then obtain $v_{n, k, \ell} \in M_{d}^{+}\left(U_{2}\right)$ such that

$$
\widehat{v_{n, k, \ell}}(\sigma)=\left\{\begin{array}{l}
c_{n, k, \ell}\left(a_{k, \ell}(\chi \otimes \sigma)+Q_{\sigma} \overline{a_{k, \ell}(\chi \otimes \sigma)} Q_{\sigma}^{-1}\right) \\
\quad \text { if there exists } \chi \text { with } \chi \otimes \sigma \in F_{3} \\
0 \quad \text { otherwise on } E_{2},
\end{array}\right.
$$

since $c_{n, k, \ell}$ is real. If $\omega_{k, \ell}^{(1)}=\sum_{n} \delta\left(x_{n, k, \ell}\right) \otimes v_{n, k, \ell} \in M_{d}^{+}\left(U_{1} \times U_{2}\right)$, then

$$
\widehat{\omega_{k, \ell}^{(1)}}(\chi \otimes \sigma)=I_{k, \ell} \otimes\left[a_{k, \ell}(\chi \otimes \sigma)+Q_{\sigma} \overline{a_{k, \ell}(\chi \otimes \sigma)} Q_{\sigma}^{-1}\right]
$$

if $\chi \otimes \sigma \in F_{3}$ and 0 otherwise. Similarly, obtain

$$
\widehat{\omega_{k, \ell}^{(1)}}(\chi \otimes \sigma)=i I_{k, \ell} \otimes\left[a_{k, \ell}(\chi \otimes \sigma) / i+Q_{\sigma} \overline{a_{k, \ell}(\chi \otimes \sigma) / i} Q_{\sigma}^{-1}\right]
$$

on F_{3} and add together to get $\mu_{3}=\sum_{k, l=1}^{d} \omega_{k, \ell}^{(1)}+\omega_{k, \ell}^{(2)}$ noting that on $F_{3}, A(\chi \otimes \sigma)$ equals

$$
\begin{aligned}
& \frac{1}{2} \sum_{k, l=1}^{d} I_{k, \ell} \otimes\left[a_{k, \ell}(\chi \otimes \sigma)+Q_{\sigma} \overline{a_{k, \ell}(\chi \otimes \sigma)} Q_{\sigma}^{-1}\right] \\
& \quad+\frac{i}{2} I_{k, \ell} \otimes\left[a_{k, \ell}(\chi \otimes \sigma) / i+Q_{\sigma} \overline{a_{k \ell}(\chi \otimes \sigma) / i} Q_{\sigma}^{-1}\right]
\end{aligned}
$$

[^3]Taking $\mu_{1}+\mu_{2}+\mu_{3}$ gives a positive, discrete measure concentrated on $U_{1} \times U_{2}$ and doing the required interpolation.

Corollary 4.2. Suppose that $G=G_{1} \times G_{2}$ is a compact, connected group, $\chi \in \widehat{G_{1}}, E_{2} \subseteq \widehat{G_{2}}$ is antisymmetric and cofinitely $F Z I_{0}(U)$. Then $E=\chi \otimes E_{2}$ is cofinitely $F Z I_{0}(V \times U)$ for all open sets V.

Proof. Since $\{\chi\}$ is $I_{0}(U)$ for all open U, the conclusion follows from Lemma 4.1 where $E_{1}=\{\chi\}$ and the $E_{2, j}$ are singletons with union E_{2}.

A similar argument proves the following.
Corollary 4.3. Suppose that $G=G_{1} \times G_{2}$ is a compact, connected group, $U_{j} \subset G_{j}$ are open for $j=1,2, I$ is an index set, $E_{1}=\left\{\chi_{i}: i \in I\right\} \subset \widehat{G_{1}}$ is antisymmetric, $E_{1} \cup \overline{E_{1}}$ is $I_{0}\left(U_{1}\right)$ and the elements of E_{1} have the same degree. Suppose also that $E_{2}=\left\{\sigma_{i}: i \in I\right\} \subset \widehat{G_{2}}$ is antisymmetric and cofinitely $F_{Z} I_{0}\left(U_{2}\right)$. Then $E=\left\{\chi_{i} \otimes \sigma_{i}: i \in I\right\}$ is cofinitely $F Z I_{0}\left(U_{1} \times U_{2}\right)$.

5. Sets that are cofinitely $\mathrm{FZI}_{0}(U)$

5.1. Products of Lie groups

THEOREM 5.1. Let $G=\prod_{i \in I} G_{i}$ be a product of simple, simply connected, connected, compact Lie groups and suppose $E \subseteq \widehat{G}$ is an infinite set of representations of bounded degree. Then E contains an infinite subset F such that F is cofinitely $F Z I_{0}(U)$ for all open sets U.

Proof. The boundedness of the degrees implies that up to isomorphism there are only finitely many choices for $\left.\sigma\right|_{G_{i}}$ and that E has the padding property [7].

Therefore, we may assume that, for each $i,\left\{\left.\sigma\right|_{G_{i}}: \sigma \in E\right\}$ has at most one element. A combinatorial argument shows that such a set contains an infinite subset of the form $\left\{\chi \otimes \sigma_{i}\right\}_{i}$ where the representations $\left\{\sigma_{i}\right\}$ are mutually orthogonal and orthogonal to χ (see [6, Theorem 2.7] or [7, Lemma 4.5] for a proof). By Corollary $4.2\left\{\chi \otimes \sigma_{i}\right\}_{i}$ is an infinite set which is cofinitely $F Z I_{0}(U)$ for all open U.

Using the preceding results in an analogous fashion to the proof of Theorem 4.9 in [7] we can obtain the following.

COROLLARY 5.2. Suppose that $G=\prod G_{i}$ is a product of simple, simply connected, connected, compact Lie groups. Any infinite Sidon set in \widehat{G} contains an infinite set which is cofinitely $F Z I_{0}(U)$ for all open sets U.

Proof. By Cartwright and McMullen's characterization of Sidon sets (see [1, (5.1) and Proposition 5.5] or [7, Theorem 3.1] for details, including our notation), $E \subseteq E_{1} \times E_{2} \times E_{3}$ where $E_{1}=\{\mathbf{1}\}, E_{3}=\operatorname{FTR}\left(G_{3}\right), E_{2}$ is a set of representations on \widetilde{G}_{2} of bounded degree and E_{2} is orthogonal to E_{3}. Of course, if either \#($\left.E_{2} \cap E\right)$ or $\#\left(E_{3} \cap E\right)$ is infinite, then since the $F T R$ set is cofinitely $F Z I_{0}(U)$ set for all open
U, and since every infinite set of representations of bounded degree contains an infinite set that is cofinitely $F Z I_{0}(U)$ for all open U, the proof is complete.

More generally, if there is some $\sigma \in E_{2}$ such that $\left\{\sigma \otimes \chi \in E: \chi \in E_{2}\right\}$ is infinite, then this set suffices, being a translate of an $F T R$ set. Similarly, if there is some $\chi \in E_{3}$ such that $\left\{\sigma \otimes \chi \in E: \sigma \in E_{2}\right\}$ is infinite, then this set again contains an infinite set that is cofinitely $F Z I_{0}(U)$ for all open U.

Otherwise, it is possible to choose infinite asymmetric sets $\left\{\sigma_{i}\right\} \subset E_{2}$, with all σ_{i} of the same degree, and $\left\{\chi_{i}\right\} \subset E_{3}$ such that $\left\{\sigma_{i} \otimes \chi_{i}\right\} \subset E$. By passing to a further infinite subset, if necessary, by Theorem 5.1 we can assume $\left\{\sigma_{i}\right\}$ is cofinitely $F Z I_{0}(U)$ for all open U. By Theorem $1.2\left\{\sigma_{i}\right\} \cup \overline{\left\{\sigma_{i}\right\}}$ is $I_{0}(U)$ for all open U. As E_{3} is cofinitely $F Z I_{0}(U)$ for all open U, Corollary 4.3 implies $\left\{\sigma_{i} \otimes \chi_{i}\right\}$ is also cofinitely $F Z I_{0}(U)$ for all open U.
5.2. Cofinitely $\boldsymbol{F Z} \mathbf{I}_{\mathbf{0}}(\boldsymbol{U})$ sets, the general case Theorem 1.1 follows immediately from the following result.

THEOREM 5.3. Suppose that G is a compact, connected group. Then every infinite Sidon set in \widehat{G} contains an infinite set that is cofinitely $F Z I_{0}(U)$ for all open sets U.
$\underset{\sim}{\text { Proof. According to the tructure theorem, } G \text { is isomorphic to a quotient of }}$ $\widetilde{G}=\prod_{i \in I} G_{i} \times A$, where A is compact, connected and abelian and G_{i} are classical, simple, connected, compact Lie groups. Let q be the quotient map and given $E \subseteq \widehat{G}$, put $\widetilde{E}=\{\sigma \circ q: \sigma \in E\}$. By Proposition $2.4 E$ is $F Z I_{0}(U)$ if \widetilde{E} is $F Z I_{0}\left(q^{-1}(U)\right)$. Thus, it suffices to prove that \widetilde{E} contains an infinite set that is cofinitely $F Z I_{0}(U)$ for each open U. In [5] it is shown that every infinite subset of the dual of a compact, connected, abelian group contains a cofinite $F Z I_{0}(U)$ set. With these facts and the results of this section the proof can be completed in the same manner as the proof of Corollary 5.2.

Acknowledgement

The first author is grateful to the University of Waterloo (Canada) and Koç University (Turkey) for their hospitality when some of this work was performed.

References

[1] D. Cartwright and J. McMullen, 'A structural criterion for the existence of infinite Sidon sets', Pacific. J. Math. 96 (1981), 301-317.
[2] M. Déchamps-Gondim, 'Ensembles de Sidon topologiques', Ann. Inst. Fourier (Grenoble) 22 (1972), 51-79.
[3] C. C. Graham and K. E. Hare, ' ε-Kronecker and I_{0} sets in abelian groups, I: arithmetic properties of ε-Kronecker sets', Math. Proc. Cambridge Philos. Soc. 140(3) (2006), 475-489.
[4] \quad, ε-Kronecker and I_{0} sets in abelian groups, III: Interpolation by measures on small sets', Studia Math. 171(1) (2005), 15-32.
[5] \quad, ' ε-Kronecker and I_{0} sets in abelian groups, IV: Interpolation by nonnegative measures', Studia Math. 177(1) (2006), 9-24.
[6] K. E. Hare, 'Central Sidonicity for compact Lie groups', Ann. Inst. Fourier (Grenoble) 45 (1995), 547-564.
[7] K. E. Hare and L. T. Ramsey, 'I I_{0} sets in nonabelian groups', Math. Proc. Cambridge Philos. Soc. 135 (2003), 81-98.
[8] J. H. B. Kemperman, 'On products of sets in a locally compact group', Fund. Math. 56 (1964), 51-68.
[9] J. Lopez and K. Ross, Sidon Sets, Lecture Notes in Pure and Applied Math., 13 (Marcel Dekker, New York, 1975).
[10] J. Price, Lie Groups and Compact Groups, London Math. Soc. Lecture Note Series No. 25 (Cambridge University Press, Cambridge, 1977).
[11] V. S. Varadarajan, Lie Groups and Lie Algebras and their Representations (Springer, New York, 1984).
[12] D. C. Wilson, 'On the structure of Sidon sets', Monatsh. Math. 101 (1986), 67-74.

COLIN C. GRAHAM, Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
e-mail: ccgraham@alum.mit.edu
Mailing address: RR\#1-D-156, Bowen Island, BC, V0N 1G0, Canada
KATHRYN E. HARE, Department of Pure Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
e-mail: kehare@uwaterloo.ca

[^0]: The research of the authors is partially supported by NSERC.
 (C) 2008 Australian Mathematical Society 1446-7887/08 \$A2.00 +0.00

[^1]: ${ }^{1}$ See, for example, [12] and the references therein.

[^2]: ${ }^{1}$ At this point we do not need nonnegativity.

[^3]: ${ }^{1}$ Just take any $\sum_{n} b_{n, k, \ell} \delta\left(x_{n, k, \ell}\right) \in M_{d}\left(U_{1}\right)$ that interpolates $I_{k, \ell}$ at both χ and $\bar{\chi}$ if they are not equivalent, and 0 else on E_{1}, and then take $\mu_{k, \ell}=\sum_{n}\left(\left(b_{n, k, \ell,}+\overline{b_{n, k, \ell}}\right) / 2\right) \delta\left(x_{n, k, \ell}\right)$.

