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Abstract We establish the existence of positive solutions of the Sturm–Liouville problem

−(p(s, u)u′)′ = q̂(s)uph(s, u, u′) in (0, 1),

u(0) = 0 = u(1),

where
p(s, u) = 1/(a(s) + cg(u)).

We assume g and q̂ to be non-negative, continuous functions, a(s) is a positive continuous function,
c � 0, p > 1, and the function h is sub-quadratic with respect to u′. We combine a priori estimates with
a fixed-point result of Krasnosel’skii to obtain the existence of a positive solution.
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1. Introduction

We consider the second–order Sturm–Liouville problem

−
(

u′

a(s) + cg(u)

)′
= q̂(s)uph(s, u, u′) in (0, 1),

u(0) = 0 = u(1),

⎫⎪⎬
⎪⎭ (1.1)

where p > 1, c � 0, a : [0, 1] → (0, +∞) is a continuous function, and q̂ : [0, 1] → [0, +∞)
is a non-trivial, continuous function. We will assume that the function g : [0, +∞) →
[0, +∞) is continuous and increasing, and is such that

lim
u→+∞

g(u)
u(p−1)/(p+1) = 0. (1.2)

In addition, we will assume that the nonlinearity h is continuous, as well as bounded
from below, or in other words

ch � h(s, u, ψ) for all (s, u, ψ) ∈ [0, 1] × [0,∞) × R, (1.3)
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where ch is a positive constant. We will further assume the following sub-quadratic growth
condition on the function h with respect to the derivative: given a compact set K in
[0, 1] × R, there exist positive constants A and B such that, for all (s, u, ψ) ∈ K × R, we
have

h(s, u, ψ) � A + Bψ2. (1.4)

By solutions we will mean classical solutions, that is, u ∈ C1(0, 1) ∩ C0[0, 1] and
u′/(a(s) + cg(u)) ∈ C1(0, 1), satisfying equation (1.1).

Our main result can be stated as follows.

Theorem 1.1. The problem (1.1) has at least one positive solution.

Certain difficulties which we may encounter while proving our main result are that
the coefficient p(s, u) = 1/(a(s) + cg(u)) is nonlinear and that it may not necessarily
be bounded from below by a positive bound which is independent of u. In order to
overcome these difficulties, we introduce a truncation gn(u) of the function g(u) so that
the new coefficient pn(s, u) = 1/(a(s)+cgn(u)) becomes bounded from below by a positive
constant depending on n (see (2.1)). This allows us to use a fixed-point argument for
the truncation problem. Finally, we show the main result, proving that, for n sufficiently
large, the solutions of the truncation problem are solutions of problem (1.1). A further
difficulty in this argument is the dependence of the function h on the derivative, which
leads us to the problem of establishing a priori bounds for the derivative. Observe that
this dependence gives the problem a non-variational structure.

For further discussion on problems modelled by equations of the type −(q(s, u)u′)′ =
f(s, u, u′) see, for example, [1,2,4–7,9,10,12–17]. For a study of existence of solutions
when the coefficient q(s, u) is constant on the variable u see, for example, [1, 2, 5, 6,
9, 10, 13, 14, 16]. For Sturm–Liouville problems where the coefficient q(s, u) depends
explicitly on the variable u, see, for example, [4, 7, 15, 17]. Note that the problems
studied in the preceding papers do not have the same structure as ours. For example, the
phenomena of [7,15,17] are modelled by a negative nonlinearity f(s, u, u′), while in [4]
the nonlinearity is bounded with respect to the variables u and u′. Observe that, in this
work, f(s, u, u′) is both non-negative and unbounded. As a model example, consider the
equation

−
(

u′

a(s) + cuq

)′
= q̂(s)up(c0 + c1|u′|θ) in (0, 1),

u(0) = 0 = u(1),

where 1 < p, 0 < q < (p − 1)/(p + 1), 0 � θ � 2, c � 0, c0 > 0 and c1 � 0.
Note that the partial case was studied in [3] by considering a linear elliptic operator

and some growth assumption on the nonlinearity. This work is more in the line of [11],
dealing with existence of solutions for some semilinear Sturm–Liouville equation without
dependency on the derivative.

The paper is organized as follows. In § 2, we show the existence of positive solutions
of the truncation problem. In § 3, we show that, for n sufficiently large, the solutions
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of the truncation problem are solutions of problem (1.1), which proves our main result,
Theorem 1.1.

2. The truncation problem

Given n ∈ N, we introduce a truncation gn(u) of the function g(u) defined by

gn(u) =

{
g(u) if 0 � u � n,

g(n) if u � n.
(2.1)

Consider the truncation problem

−
(

u′

a(s) + cgn(u)

)′
= q̂(s)uph(s, u, u′) in (0, 1),

u(0) = 0 = u(1).

⎫⎪⎬
⎪⎭ (2.2)

The following is an existence result for the truncation problem.

Theorem 2.1. Suppose hypotheses (1.3) and (1.4) hold. Then problem (2.2) has at
least one positive solution.

The proof of Theorem 2.1 is based on the following well-known fixed-point result due
to Krasnosel’skii, which we state without proof (cf. [8]).

Lemma 2.2. Let C be a cone in a Banach space, and let F : C → C be a compact
operator such that F (0) = 0. Suppose there exists an r > 0 verifying the condition

(a) u �= tF (u) for all u ∈ C such that ‖u‖ = r and t ∈ [0, 1].

Suppose further that there exist a compact homotopy H : [0, 1] × C → C and an R > r

such that

(b) F (u) = H(0, u) for all u ∈ C,

(c) H(t, u) �= u for all u ∈ C such that ‖u‖ = R and t ∈ [0, 1],

(d) H(1, u) �= u for all u ∈ C such that ‖u‖ � R.

Then F has a fixed point u0 ∈ C verifying r < ‖u0‖ < R.

In order to apply the preceding lemma, we need to establish a priori bounds for the
solutions of a family of problems parametrized by λ � 0. In fact, consider the family

−
(

u′

a(s) + cgn(u)

)′
= q̂(s)uph(s, u, u′) + λ in (0, 1),

u(0) = 0 = u(1).

⎫⎪⎬
⎪⎭ (2.3)

We now present three lemmas which lead to the proof of Theorem 2.1. We begin with
a result concerned with a priori bounds for the positive solutions of problem (2.3).
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Lemma 2.3. Suppose hypothesis (1.3) holds. Then there exists a positive constant
B, which does not depend on λ, such that, for every positive solution u of problem (2.3),
we have

‖u‖∞ � B. (2.4)

Proof. It is not difficult to show that every positive solution u of problem (2.3) satisfies

u(t) =
∫ 1

0
Kn(t, s)(q̂(s)uph(s, u, u′) + λ) ds, (2.5)

where Kn(t, s) is the associated Green function

Kn(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ρ

∫ t

0
(a(τ) + cgn(u(τ))) dτ

∫ 1

s

(a(τ) + cgn(u(τ))) dτ if 0 � t � s � 1,

1
ρ

∫ s

0
(a(τ) + cgn(u(τ))) dτ

∫ 1

t

(a(τ) + cgn(u(τ))) dτ if 0 � s � t � 1.

(2.6)
Here ρ is given by

ρ =
∫ 1

0
(a(τ) + cgn(u(τ))) dτ.

Simple computations show that every solution u satisfies (cf. [2])

u(s) � q(s)‖u‖∞ for all s ∈ [0, 1], (2.7)

where

q(s) =
1
ρ

min
{ ∫ s

0
(a(τ) + cgn(u(τ))) dτ,

∫ 1

s

(a(τ) + cgn(u(τ))) dτ

}
.

Moreover, recalling that g is increasing,

q(s) � min a

‖a‖∞ + cg(n)
s(1 − s) for all s ∈ [0, 1] (2.8)

and

Kn(t, s) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(min a)2

‖a‖∞ + cg(n)
t(1 − s) if 0 � t � s � 1,

(min a)2

‖a‖∞ + cg(n)
s(1 − t) if 0 � s � t � 1.

(2.9)

Hypothesis (1.3) implies that every positive solution u of problem (2.3) satisfies

u(t) � ch(min a)p+2

(‖a‖∞ + cg(n))p+1 ‖u‖p
∞

∫ 1

0
G(t, s)q̂(s)sp(1 − s)p ds (2.10)

for all t ∈ [0, 1], where

G(t, s) =

{
t(1 − s) if 0 � t � s � 1,

s(1 − t) if 0 � s � t � 1.
(2.11)

The existence of a priori bounds B for the positive solutions u now follows. �
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The following shows the existence of a priori bounds for the derivatives of the solutions.

Lemma 2.4. Suppose hypotheses (1.3) and (1.4) hold. Then, for all λ̄ positive, there
exists a constant B′ such that, for λ ∈ [0, λ̄], every positive solution of problem (2.3)
satisfies

‖u′‖∞ � B′. (2.12)

Proof. By Lemma 2.3 and hypothesis (1.4) we know that there exist positive constants
An and Bn such that, for all s ∈ [0, 1], every positive solution u of problem (2.3) satisfies

h(s, u(s), u′(s)) � An + Bnu′(s)2. (2.13)

Therefore,

h(s, u(s), u′(s)) � An + Cn

(
u′(s)

a(s) + cgn(u)

)2

, (2.14)

where Cn = Bn(‖a‖∞ + cg(n))2.
Let u be a positive solution of problem (2.3). Note that

d
ds

ln
(

λ + Bp‖q̂‖∞An + Bp‖q̂‖∞Cn

(
u′(s)

a(s) + cgn(u)

)2 )

=
−2Bp‖q̂‖∞Cnu′(s)/(a(s) + cgn(u))(q̂(s)uph(s, u, u′) + λ)

λ + Bp‖q̂‖∞An + Bp‖q̂‖∞Cn(u′(s)/(a(s) + cgn(u)))2
.

According to inequality (2.14) and Lemma 2.3, if u′(s) < 0, then

d
ds

ln
(

λ + Bp‖q̂‖∞An + Bp‖q̂‖∞Cn

(
u′(s)

a(s) + cgn(u)

)2 )
� −2

CnBp‖q̂‖∞
min a

u′(s), (2.15)

and if u′(s) > 0, then

d
ds

ln
(

λ + Bp‖q̂‖∞An + Bp‖q̂‖∞Cn

(
u′(s)

a(s) + cgn(u)

)2 )
� −2

CnBp‖q̂‖∞
min a

u′(s). (2.16)

On the other hand, let f̂(s) = q̂(s)up(s)h(s, u(s), u′(s)) + λ, p̂(s) = a(s) + cgn(u(s))
and let t∗ be such that u′(t∗) = 0. Then identity (2.5) implies that∫ t∗

0

∫ s

0
p̂(τ)f̂(s) dτ ds =

∫ 1

t∗

∫ 1

s

p̂(τ)f̂(s) dτ ds.

Hence, t∗ is the unique number in (0, 1) such that u(t∗) = ‖u‖∞, and such that u is
increasing on [0, t∗), while decreasing on (t∗, 1]. Integration of (2.15) and (2.16) on the
intervals [t∗, s] and [s, t∗], respectively, yields

ln
(

λ + Bp‖q̂‖∞An + Bp‖q̂‖∞Cn

(
u′(s)

a(s) + cgn(u)

)2 )

� 2
CnBp‖q̂‖∞

min a
(‖u‖∞ − u(s)) + ln(λ̄ + Bp‖q̂‖∞An). (2.17)
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Therefore,

ln(λ + Bp‖q̂‖∞An + Bp‖q̂‖∞Bnu′(s)2) � 2
CnBp+1‖q̂‖∞

min a
+ ln(λ̄ + Bp‖q̂‖∞An) (2.18)

for every s ∈ [0, 1] and for every λ ∈ [0, λ̄].
The lemma clearly results from this inequality. �

We need the following result. Consider the Banach space

X = C1([0, 1], R)

endowed with the norm ‖u‖1 = ‖u‖∞ + ‖u′‖∞.
Define the cone C by

C = {u ∈ X : u � 0 and u(0) = u(1) = 0}

and the operator Fλ : X → X by

Fλ(u)(s) =
∫ 1

0
Kn(s, τ)(q̂(τ)u(τ)ph(τ, u(τ), u′(τ)) + λ) dτ.

Lemma 2.5. The operator Fλ : X → X is compact, and the cone C is invariant
under Fλ.

Outline of the proof. The compactness of Fλ follows from the well-known Arzelà–
Ascoli theorem. The invariance of the cone C is a consequence of the fact that the
nonlinearities are non-negative.

Proof of Theorem 2.1. To prove Theorem 2.1, it suffices to show that F0 has a fixed
point. For this, we will check that the four conditions of Lemma 2.2 are satisfied. Fix a
suitable positive constant λ and consider the homotopy H : [0, 1] × C → C given by

H(t, u)(s) = Fλt(u)(s).

Note that H(t, u) is a compact homotopy, and since H(0, u) = F0(u) we have that
condition (b) is satisfied.

Concerning condition (a), by continuity, there exists a M > 0 such that, if ‖u‖1 � 1,
then

|Kn(s, τ)h(τ, u(τ), u′(τ))| � M. (2.19)

Note that there exists a constant c̃ such that

‖F0(u)‖∞, ‖F0(u)′‖∞ � c̃‖u‖p−1
∞ .

Thus, if ‖u‖1 = δ, with 0 < δ � 1, then

‖F0(u)‖1 = ‖F0(u)‖∞ + ‖F0(u)′‖∞ � C0δ
p−1‖u‖1,

where C0 is a positive constant. Taking δ ∈ (0, C
−1/(p−1)
0 ), we have

‖F0(u)‖1 < ‖u‖1. (2.20)
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From Lemmas 2.3 and 2.4 we conclude that there exists an R sufficiently large that
condition (c) is satisfied.

In order to verify condition (d) we use the following subsidiary lemma.

Lemma 2.6. There exists a λ0 > 0 such that problem (2.3) has no positive solutions
for λ > λ0.

Proof. Let u be a positive solution of problem (2.3), or in other words

u(t) =
∫ 1

0
Kn(s, t)(q̂(s)u(s)ph(s, u(s), u′(s)) + λ) ds.

Then

‖u‖∞ � λ

∫ 1

0
Kn(s, 1

2 ) ds.

By Lemma 2.3 we know that ‖u‖∞ � B, and hence

λ � B∫ 1
0 Kn(s, 1

2 ) ds
.

Therefore, for

λ >
B∫ 1

0 Kn(s, 1
2 ) ds

there are no positive solutions of problem (2.3). �

So, choosing λ > λ0 in the homotopy H(t, u), we see that condition (d) is satisfied by
Lemma 2.6.

Thus, all of Krasnosel’skii’s conditions are satisfied. �

3. Proof of Theorem 1.1

The proof of Theorem 1.1 is a direct consequence of the following.

Lemma 3.1. There exists an n0 ∈ N such that every positive solution u of prob-
lem (2.2)n0 satisfies

‖u‖∞ < n0. (3.1)

Proof. By contradiction, there would exist a sequence of solutions {un}n of prob-
lem (2.2) such that ‖un‖∞ � n for all n ∈ N. Using the same argument as in Lemma 2.3
(see (2.10)), we would obtain the estimate

1 � (min a)2

‖a‖∞ + cg(n)

(
min a

‖a‖∞ + cg(n)

)p

ch‖un‖p−1
∞ max

t∈[0,1]

∫ 1

0
G(t, s)q̂(s)sp(1 − s)p ds

� (min a)p+2ch

(
n(p−1)/(p+1)

‖a‖∞ + cg(n)

)p+1

max
t∈[0,1]

∫ 1

0
G(t, s)q̂(s)sp(1 − s)p ds.
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But this is impossible, since

lim
n→+∞

n(p−1)/(p+1)

‖a‖∞ + cg(n)
= +∞

by hypothesis (1.2). �
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