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A NOTE ON EPI-CONVERGENCE 

GERALD BEER 

ABSTRACT. Let LSC(X) denote the set of extended real valued lower semicontinu-
ous functions on a metrizable space X. Iff, f\, fi, fo,... is a sequence in LSC(X), we say 
(fn) is epi-convergent t o / provided the sequence of epigraphs (epi/n) is Kuratowski-
Painlevé convergent to epi/. In this note we address the following question: what con
ditions on / and/or on X are necessary and sufficient for this mode of convergence to 
force epigraphical convergence with respect to the stronger Hausdorff metric and Vi-
etoris topologies? 

1. Introduction. Let 2X be the closed subsets of a metric space (X, d), and let CL(X) 
be the nonempty closed subsets. Classical convergence for sequences in 2X attributed 
to Painlevé by Hausdorff [Ha], is now often called Kuratowski-Painlevé convergence. 
Given a sequence A i,A2, A3, A4,... of (possibly empty) closed subsets of (X, d), we write 

LiAn = {x € X : there exists a sequence (an) convergent to x with 

an € An for all but finitely many integers n}, 

LsAn = {x 6 X : there exist positive integers n\ < «2 < ^3 < * * * 

and aie G Ank such that (a*) —•• x}. 

Clearly, the sets LiArt and LsAn are closed, and LiA„ C LsAn. The sequence (An) is 
declared Kuratowski-Painlevé convergent [Ku, AF] to a (closed) subset A of X if A = 
LiArt = LsAn, or equivalently, if both inclusions LsA„ C A and A C Li An hold. When 
this is satisfied we write A = K — lim An. 

Kuratowski-Painlevé convergence plays a fundamental role in modern one-sided anal
ysis, where the basic functional objects are extended real valued lower semicontinuous 
functions rather than continuous ones, and functions are associated with their epigraphs 
rather than their graphs [At, AF, DG, RW, DM]. Recall the epigraph of an extended real 
valued function/: X —* [—00, +00] on a metrizable space X is the set 

epi/ = {(x,a) : x EX,a eR, and a >/(*)}. 

In this context, a sequence (fn) of lower semicontinuous functions is called epi-
convergent to a lower semicontinuous function/ provided epi / = K — lim epi /„. 

It is well-known that for sequences of nonempty closed sets, A = K—lim An provided 
(An) converges to A in Hausdorff distance [CV, KT], defined on CL(X) by the formula 
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Hd(A,B) = max{supa6A d(a,B), supbeB d(b,A)}. Furthermore, the converse holds if and 
only if X is compact [Be2]. If we equip XxR with a metric compatible with the product 
uniformity, one might guess that when X is compact, then Kuratowski-Painlevé conver
gence of sequences of epigraphs forces their convergence in Hausdorff distance. In fact, 
it was observed in [Bel] that for a sequence/, / , / 2 , . . . of bounded real valued lower 
semicontinuous functions defined on a compact metric space X, Kuratowski-Painlevé 
convergence of epigraphs implies Hausdorff metric convergence. However, this fails in 
LSC(X). We characterize here those limit functions/ for which this implication is true. 

When X is compact, the Hausdorff metric topology Tud on CL(X) coincides with the 
Vietoris topology Ty, also called the finite topology, having as a subbase all sets of form 

VWt = {A E 2X : A D V ^ 0}, F™ss = {A E 2X : A HF = 0} 

where V runs over the open subsets of X and F runs over the closed subsets of X [Mi, KT]. 
Like the Hausdorff metric topology, we have A = Ty — lim An => A = K — lim An [FLL] 
and the converse holds if and only if X is compact. The class of lower semicontinuous 
functions/ for which epi/ = K — lim/n => epi/ = Ty — limepi/n differs from the class 
for which epi/ = K — lim/„ => epi/ = //</ — limepi/„. We also characterize this class. 

2. Preliminaries. Let (X, d) be a metric space. If x E X and a > 0, let Ua[x] 
denote the open ball with center x and radius a, and if A C X, write Ua[A] for the open 
enlargement Uae4 ^« M • ^ *s c^ea r m a t m e Hausdorff distance between A and B in CL(X) 
can be rewritten as 

Hd(A,B) = inf{a > 0 : Ua[A] D B and Ï/Jfl] D A}. 

Hausdorff distance so defined is an infinite valued metric on CL(X), that inherits com
pleteness and compactness of the underlying metric space [CV, KT]. The induced Haus
dorff metric topology is not changed provided we replace d by a metric that defines the 
same uniformity. Thus if replace d by d! = min{d, 1} we get a finite valued metric 
compatible with Tnd. For a metric onX x R, we find it simplest to use box metric p de
fined by p[(x\,oc\),(X2,0C2)] = max{d(x\,X2), \oc\ — c*2|}. As we have said, rnd = Ty 
on CL(X) if and only if X is compact; more precisely, Tud D Ty if and only if the gap 
inf {d(a, b) : a E A,b E B} between disjoint elements of A and B of CL(X) is positive, 
whereas THd C Ty if and only if (X, d) is totally bounded [Mi]. 

It is known (see, e.g., [FLL, Be2, DM]) that in any metric space—in fact, in any first 
countable space—Kuratowski-Painlevé convergence is compatible with a topology of 
the Vietoris type called the Fell topology TF [Fe], having as a subbase all sets of the form 

Vhit = {A E 2X : A H V ^ 0}, ^miss = {A E 2X : A HK = 0} 

where V runs over the open subsets of X and K runs over the compact subsets of X. This 
means that in 2X, A = K — lim An if and only if A = rF — lim An. The Fell topology has a 
remarkable property: it is always compact, independent of the character of the underly
ing space (for three different proofs, see [At, Fe, No]). On the other hand, assuming the 
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continuum hypothesis, the topology is sequentially compact if and only if (X, d) is sep
arable [Si]. The following are equivalent [Po]: (1) Xis locally compact; (2) (2x,T/r) is 
Hausdorff. In this case, (2x,r/r) is compact Hausdorff and (CL(X), T/r) is locally compact 
Hausdorff. 

By a lower semicontinuous function f: (X, d) —• [—oo, +oo], we mean a function with 
closed epigraph. Equivalently, / is a lower semicontinuous function if and only if for each 
a E R, its sublevel set at height a slv(f ; a) = {x E X : f(x) < a} is a closed subset of X. 
We denote the set of lower semicontinuous functions on Xby LSC(X). If/ E LSC(X), we 
write domf for {x E X : f(x) is finite}. We call/ proper provided f(x) > —oo for each 
JC, and dom/ ^ 0. LSCo(X) will denote the set of proper lower semicontinuous functions 
onX. 

Although we will not use the following formulation, epi-convergence in LSC(X) can 
be given a local characterization [At, Theorem 1.39]: at eachx E X, (1) whenever (xn) 
is convergent to x, we have/(jc) < liminf^—K^o^fe), and (2) there exists a sequence 
(xn) convergent to x such that/(x) = limn_>oo/n(x„). Epi-convergence neither implies 
nor is implied by pointwise convergence; the two modes of convergence are linked by 
the notion of equi-lower semicontinuity [SW, DSW, Ma]. 

Identifying elements of LSC(X) with their epigraphs in X x R, the Fell topology on 
the lower semicontinuous functions is usually called the topology of epi-convergence, 
but it is also the inf-vague topology by the probabilists (see, e.g., [Ve, No]). As LSC(X) 
is closed in (2XXR,TF), the function space (LSC(X),7>) is always compact, too. Compat
ibility of Kuratowski-Painlevé convergence in LSC(X) with the Fell topology means that 
whenever/, f\, /2, / 3 , . . . is a sequence in LSC(Z), then epi/ = K — \imfn if and only if 
(i) whenever V is open in X x R and epi/ f l V ^ B , then eventually, epi/n D V ^ 0, and 
(ii) whenever K is compact in X x R and epi/ Pi K = 0, then eventually, epi/n D K = 0. 

3. Epi-convergence versus Hausdorff metric convergence of epigraphs. As we 
have defined Hausdorff distance only between nonempty closed subsets, we only inves
tigate the relationship between epi-convergence and Hausdorff metric convergence of 
epigraphs when the limit function/ G LSC(X) has nonempty epigraph. Again, we are in
terested in the question: if (X, d) is a compact metric space and p is the box metric on X x 
R, under what conditions on/ does epi/ = K—lim epi/j imply lim̂ —K» Hp(cpifn, epi/) = 
0? 

Actually, there is no need to assume at the outset that X is compact, for no such 
function / with epi/ ^ 0 can exist more generally. To see this, first observe that / 
must be bounded below, for otherwise epi/ = K — lim epi(/" V — /?), but for each n, 
//p(epi(/ V — n), epi/) = +oo. For future reference, notice that for each n,fV—n E 
LSQ)(X). Now if X is noncompact, choose (xn) in X with no cluster point. Then if 
/ E LSC(X), epi/ ^ 0, and infxexf(x) = a is finite, for each n, define/„ E LSCQ(X) by 

J 1/00 otherwise 

Clearly, epi/ = K — lim epi/„ but for each n, //p(epi/n, epi/) > 1. 
We now come to our characterization theorem. 
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THEOREM 1. Let (X,d) be a metric space, and let p be the box metric on X x R. 
Suppose/ is a lower semicontinuous function on X with epi/ ^ 0. The following are 
equivalent: 

(1) X is compact, f is proper, and domf = {x G X : f(x) G R} is dense in X; 
(2) whenever (fn) is a sequence in LSC(X) with epi/ = K — limepi/„, then 

limfl^oo/ZpCepi/^epi/) = 0; 
(3) whenever (fn) is a sequence in LSCo(X) with epi/ = K — limepi/„, then 

l im„^//p(epi/„,epi/) = 0. 

PROOF. (1) => (2). Let e > 0 be arbitrary. Since X = cl(|J£i slv(f ; kj), (slv(f ; k)) is 
Kuratowski-Painlevé convergent to X. Since X is compact, convergence in the Hausdorff 
metric holds, and we can find k E Z+ with X C Ue/3[slv(f; k)]. 

By the compactness of X,f assumes a minimum value on X which we denote by a. 
Now let F be a finite e/3-dense subset of the compact set epi/ PI (X x [a, &]). By epi-
convergence, there exists an index N such that for each n > N, we have F C Ue/$ [epi/„]. 
Since epi/ recedes in the vertical direction, we obtain epi/ C U£[epifn] for each n> N. 

To show that epi/„ C U£ [epi/] eventually, let K be this nonempty compact subset of 
XxR: 

K = (Xx[a-e,k])n(U£[epif])c. 

By the convergence of (epi/„) to epi/ in the Fell topology, there exist Â i G Z+ such that 
for each n>N\,we have epi/„ C\K = ®. Since the horizontal setX x {a — e} lies in K 
and epi/n recedes in the vertical direction, we have 

epi/„ C ( l x (*, +CX3)) U t/e[epi/] C £/e/3[epi/]U I/e[epi/] = t/c[epi/]. 

Thus, for all sufficiently large indices n, both of the inclusions epi/ C ^/e[epi/n] and 
epi/„ C Ue [epi/] are satisfied, as required. 

(2) => (3). This is trivial. 
(3) => (1). We have already observed that if (3) holds, then X must be compact and 

/ must be lower bounded. Since epi/ ^ 0, / is proper. Now suppose that cl dom/ is 
a proper subset of X. Choose xo G X with d(xo, domf) > 0. For each n G Z+ define 
/„ G LSCoW by 

« if JC = XQ 
fnM \f(x) otherwise * 

Although epi/ = K—lim epi/n, for each n, we have //p(epi/„, epi/) > J(xo, dom/) > 0, 
which contradicts (3). • 

4. Epi-convergence versus Vietoris convergence of epigraphs. Although the Vi-
etoris topology and the Hausdorff metric topologies agree on the nonempty closed sub
sets of a compact metric space (X, d), this is clearly not the case in CL(X x R), even for 
epigraphs of lower semicontinuous functions. For example, for any metric space (X, d), 
we have X x R = Ty — limX x [—n,+oo). More generally, iff = —oo and epi/ = 
K — lim epi/rt, then epi/ = Ty — lim epi/n, so that for noncompactX, we can always find 
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a function/ E LSC(X) satisfying epi/ = K — limepi/n =» epi/ = Ty — limepi/„. As it 
turns out, we can find no such/ E LSCo(X) unless X is compact, and in this case,/ must 
be real valued. The precise situation is described in the next result. 

THEOREM 2. Let (X, d) be a metric space, and suppose f E LSC(X). The following 
are equivalent: 

(1) dom/ is compact and supxeXf(x) < +oo; 
(2) whenever (fn) is a sequence in LSC(X) with epi/ = K — limepi/n, then epi/ = 

ry-limepi/n ; 
(3) whenever (fn) is a sequence in LSCo(X) with epi/ = K — lim epi/n, then epi/ = 

ry - l imep i / n . 

PROOF. (1) => (2). Suppose/ E LSC(X) satisfies condition (1), (fn) is a sequence in 
LSC(X), and epi/ = K — lim epi/n, i.e., epi/ = TF — lim epi/rt. Since the "lower halves" 
[FLL] of the Fell and Vietoris topologies agree, to show that epi/ = Ty — limepi/„, it 
suffices to show that if A E CL(X) and epi/ HA = 0, then epi/n Pi A = 0 eventually. 
Choose /? E R with supxeXf(x) < f3. Since dom/ x [/?, +oo) C epi/ and (dom/)c x 
R C epi/, we have A C dom/ x (—oo, /3). Write a — minx€dom//(*)> which exists by 
compactness, and let K be the following compact subset oiXxR: 

K = (dom/ x {a - 1}) U (A H (dom/ x [a - 1, /?])). 

By the choice of a, we have epi/ H ̂  = 0, and so there exists N G Z+ such that for each 
n > N, we have epi/n D # = 0. We claim that for each such n, we have epi/„ DA = 0. 
We compute 

epi/n HA 

= epi/n Pi A Pi (dom/ x (-oo,/?)) 

C (epi/n HA H (dom/ x [a - 1,/?])) U (epi/„ DA H (dom/ x (-co, a - 1])) 

= epi/n Pi A Pi (dom/ x (-co, a - 1]) C epi/n Pi (dom/ x (-co, a - 1]) = 0, 

because epi/„ Pi (dom/ x (-co, a — 1]) ^ 0 implies epi/n Pi (dom/ x {a — 1}) ^ 0, 
which would contradict epi/n E Arnuss. 

(2) => (3). This is trivial. 
(3) =^ (1). Assuming (3), we first show that supxeXf(x) < +oo. If this fails, we can 

find for each n E Z+ a point ;cn E X with/(*„) > n (note that the xn need not be distinct). 
Let A = {(JC„, n ) : n 6 ? } , a closed subset of X x R disjoint from epi/. For each n EZ+ 

define/„ E LSCo(X) by the formula 

f(x)=ln ifx = xn 
J \ max{/(x), — n} otherwise 

Although, epi/ = K — limepi/n, each epi/n hits the closed set A, and so (epi/n) fails to 
converge to epi/ in the Vietoris topology, contradicting (3). This shows that/ is bounded 
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above. To finish the proof, we must show that dom/ is a compact subset of X. If this 
fails, then there exists a sequence (xn) with distinct terms in domf that has no cluster 
point in dom/, although it might have a cluster point/? for which f(p) = —oo. Then 
A = {{xn, —\f(xn)\ —n) : « € Z+} is a closed subset of X x R disjoint from epi/. For 
each n 6 Z+ define/n 6 LSCo(X) by the formula 

f(x)=l ~tf(x")\ ~n ifx = Xn 
J \ max{f(x), — n} otherwise 

Again, epi/ = K — lim epi/n, but each epi/rt hits the closed set A. • 

COROLLARY. Let (X, d) be a compact metric space. Then the Fell topology, the 
Hausdorff metric topology, and Vietoris topology all agree on the family of bounded 
real valued lower s emicontinuous functions defined on X, where functions are identified 
with their epigraphs. 
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