REPRESENTATION AND EXTENSION OF SEMI-PRIME RINGS

G. DAVIS

(Received 9 December 1971, revised 16 February 1972)
Communicated by G. E. Wall

Introduction

In many respects the theory of semi-prime rings (i.e. rings without proper nilpotents) is similar to that for lattice-ordered groups. In this paper semi-prime rings are faithfully represented as subrings of continuous global sections of sheaves of integral domains with Boolean base spaces. This representation allows a simple description of a particular extension of a semi-prime ring as the corresponding ring of all continuous global sections. The ideals in a semi-prime ring R that give rise to the stalks in the sheaf representation are then characterized when R is projectable. Finally equivalent conditions are given for a semi-prime ring R to satisfy a condition, that in the case of lattice-groups, was termed "weak projectability" by Spirason and Strzelecki [8]. Some of the results that are common to semi-prime rings and lattice-groups (and semi-prime semigroups) have been extended to certain universal algebras by Davey [3].

1. Sheaf Representation

Let R be a semi-prime ring. That is, $x^{2}=0$ is possible only for $x=0$ in R; this is equivalent to the fact that R has no non-zero nilpotents. For $A \subseteq R$ define

$$
A^{0}=\{x \in R: a x=0 \text { for all } a \in A\},
$$

and $A^{00}=\left(A^{0}\right)^{0}$. If $A=\{x\}$ is a singleton set then A^{0}, A^{00} are denoted by x^{0}, x^{00} respectively.

The class of all subsets of R of the form A^{0} is denoted by $\mathscr{B}(R)$ and, ordered by inclusion, $\mathscr{B}(R)$ is a complete Boolean algebra with
(i) $\wedge_{\alpha} A_{\alpha}^{0}=\cap_{\alpha} A_{\alpha}^{0}=\left(\cup_{\alpha} A_{\alpha}\right)^{0}$
(ii) $\bigvee_{\alpha} A_{\alpha}^{0}=\cap\left\{B^{0}: B^{0} \supseteq \cup_{\alpha} A_{\alpha}^{0}\right\}$
and
(iii) A^{00} as the complement of A^{0}.

The Stone space of $\mathscr{B}(R)$ is denoted by \mathscr{Q} : thus \mathscr{Q} is the set of prime ideals of $\mathscr{B}(R)$ and is furnished with the hull-kernel topology, for which the closed-open sets

$$
\mathscr{Q}_{A^{0}}=\left\{t \in \mathscr{Q}: A^{0} \in t\right\}
$$

form a base for the open sets. For each $t \in \mathscr{Q}$ a subset R_{t} of R is defined by

$$
R_{t}=\left\{x \in R: x^{00} \in t\right\} .
$$

It is readily seen that each R_{t} is a two-sided ideal of R. Furthermore $\cap_{t \in g} R_{t}=(0)$ for if $x^{00} \in t$ for all $t \in \mathscr{Q}$ then $x^{00}=0$ so $x=0$.

A sheaf of rings $(\mathscr{R}, p, \mathscr{Q})$ is now defined as follows: \mathscr{R} is the disjoint union of the rings $R / R_{t}, t \in \mathscr{Q} ; p$ is the map from \mathscr{R} into \mathscr{Q} defined by $p(r)=t$ if $r \in R / R_{t}$; a topology is placed on \mathscr{R} by taking the sets

$$
\left\{x+R_{t}: t \in \mathscr{Q}_{A 0}\right\},
$$

with $x \in R, A^{0} \in \mathscr{B}(R)$, as basic open sets. It follows, as for instance in Dauns and Hofmann [2], that ($\mathscr{R}, p \mathscr{Q}$) is a sheaf of rings. The ring of continuous global sections of this sheaf is denoted by $\Gamma(\mathscr{R})$. If $x \in R$ and $A^{0} \in \mathscr{B}(R)$ then the pair $\left(x, A^{0}\right)$ defines an element $I\left(Q_{A^{0}} ; x\right)$ of $\Gamma(R)$ by

$$
I\left(\mathscr{Q}_{A^{0}} ; x\right)(t)=\left\{\begin{array}{l}
x+R_{t} \text { if } t \in \mathscr{Q}_{A^{0}} \\
0+R_{t} \text { if } t \notin \mathscr{Q}_{A^{0}}
\end{array}\right.
$$

When $\mathscr{Q}_{A^{0}}=\mathscr{Q}, I\left(\mathscr{Q}_{A^{0}} ; x\right)$ is denoted by \hat{x}, and if R has an identity 1 then $I\left(\mathscr{Q}_{A^{0}} ; 1\right)$ is denoted by $I\left(\mathscr{Q}_{A^{0}}\right)$.

Proposition 1.1. Let R be a semi-prime ring. Then,
(1) $(\mathscr{R}, p, \mathscr{2})$ is a sheaf of integral domains.
(2) the map $x \mapsto \hat{x}$ from R into $\Gamma(\mathscr{R})$ is a ring isomorphism
(3) if $\sigma \in \Gamma(\mathscr{R})$ then there is a finite closed-open partition $\left\{\mathscr{Q}_{A_{1}}, \cdots, \mathscr{Q}_{A_{r}}\right\}$ of 2 and $x_{1}, \cdots, x_{r} \in R$ such that $\sigma=\Sigma I\left(\mathscr{Q}_{A_{i}^{0}} ; x_{i}\right)$
(4) if R has an identity 1 then for every non-empty subset $A \subseteq \Gamma(\mathscr{R})$ there is a central idempotent $e \in \Gamma(\mathscr{R})$ such that $A^{0}=e \Gamma(\mathscr{R})$.

Proof. The homomorphism $x \rightarrow \hat{x}$ is an isomorphism since $\cap_{t \in \mathcal{Q}} R_{t}=(0)$. If $\sigma \in \Gamma(\mathscr{R})$ then for each $t \in \mathscr{Q}$ there is an $x_{t} \in R$ such that $\sigma(t)=\hat{x}_{t}(t)$. Since $(\mathscr{R}, p, \mathscr{Q})$ is a sheaf there is a basic closed-open neighbourhood $\mathscr{Q}_{A_{t}^{0}}$ of t such that $\sigma=\hat{x}_{t}$ on $\mathscr{Q}_{A_{t}^{0}}$. Then $\left\{\mathscr{Q}_{A^{0}}: t \in \mathscr{Q}\right\}$ is an open cover for \mathscr{Q} and since \mathscr{Q} is compact there is a finite subcover $\left\{\mathscr{Q}_{\boldsymbol{A}_{t_{1}}}, \cdots, \mathscr{Q}_{A_{i_{r}}}\right\}$. Put

$$
\mathscr{Q}_{A_{i}^{0}}=\mathscr{Q}_{A_{i_{i}^{0}}}, \mathscr{Q}_{A_{i}^{0}}=\mathscr{Q}_{A_{i_{i}^{0}}}=\mathscr{Q}_{A_{i}^{0}} / \bigcup_{1 \leqq j \leqq i} \mathscr{Q}_{A_{i_{j}^{0}}}
$$

for $i>1$. Then $\left\{\mathscr{Q}_{A^{0}}, \cdots, \mathscr{Q}_{A^{0}}\right\}$ is a closed-open partition of \mathscr{Q}, and if $x_{i}=x_{i_{i}}$ then $\Sigma_{i} I\left(\mathscr{Q}_{A_{0}} ; x_{i}\right)$ is just σ, for if $t \in \mathscr{Q}_{A^{\circ}}$ then

$$
\sum_{i} I\left(\mathscr{Q}_{A_{i}^{0}} ; x_{i}\right)(t)=\hat{x}_{j}(t)=\sigma(t) .
$$

The sheaf $(\mathscr{R}, p, \mathscr{Q})$ is a sheaf of integral domains since the ideals R_{t} are prime (i.e. $x y \in R_{t}$ is possible only if $x \in R_{t}$ or $y \in R_{t}$). This follows from the fact that $(x y)^{00}=x^{00} \cap y^{00}$ in a semi-prime ring.

For $\sigma=\Sigma_{i} I\left(\mathscr{Q}_{A_{i}^{0}} ; x_{i}\right) \in \Gamma(\mathscr{R})$, with $\left\{\mathscr{Q}_{A_{1}^{0}}, \cdots, \mathscr{Q}_{A_{r}^{0}}\right\}$ a partition of $\mathscr{2}$, the set $S(\sigma)=\left\{t \in \mathscr{Q}: \sigma(t) \neq 0^{i}\right\}$ is just $\cup_{i} \mathscr{Q}_{A_{i}^{0}} \cap \mathscr{Q}_{x t}^{100}$ which is closed-open, so that, assuming R has an identity $1, I(S(\sigma)) \in \Gamma(\mathscr{R})$. For an arbitrary subset $\left\{\sigma_{\alpha}\right\} \subseteq \Gamma(\mathscr{R})$ the closure S of $\cup_{\alpha} S\left(\sigma_{\alpha}\right)$ is closed-open since $\mathscr{2}$ is extremally-disconneced so that $I(S) \in \Gamma(\mathscr{R})$. Since the R / R_{t} are integral domains, $\sigma_{\alpha} \cdot \sigma=0$ for all α is equivalent to $I(S) I(S(\sigma))=0$ so that $\left\{\sigma_{\alpha}\right\}^{0}=[\hat{1}-I(S)](\mathscr{R})$ and $\hat{1}-I(S)$ is a central idempotent.

The above argument is essentially that given by Kist [5]. Notice also that an entirely similar argument gives the following:

Proposition 1.2. Let Γ be the ring of all continuous global sections of a sheaf of integral domains with identities over a Boolean base space X. Then for every $x \in R$ there is a unique central idempotent e such that $x^{0}=\{y \in \Gamma$: $x y=0\}=e \Gamma$. If X is extremely-disconnected then for every subset $A \subset R$ there is a unique central idempotent e such that $A^{0}=\{y \in \Gamma: x y=0$ for all $x \in A\}=e \Gamma$.

Koh [6] has extended Grothendieck and Dieudonné's sheaf representation of a commutative ring with identity to semi-prime rings. In his representation a semi-prime ring is isomorphic to the ring of all continuous global sections of a sheaf of semi-prime rings over a compact base-space: however the semi-prime rings that comprise the stalks are not necessarily integral domains and the base space of the sheaf is not necessarily Boolean.

2. Extensions

Definitions 2.1. A ring S with identity 1 is said to be completely-projectable if for every non-empty subset $A \subseteq S$ there is a central idempotent e such that $A^{0}=e S$. Let R be a semi-prime ring: a completely-projectable cover for R is a triple $(S, \Psi, \bar{\Psi})$ where
(1) S is a completely-projectable ring
(2) $\Psi: R \rightarrow S$ is a ring isomorphism into S
(3) $\Psi: \mathscr{B}(R) \rightarrow \mathscr{B}(S)$ is a Boolean bijection
(4) $\Psi\left(x^{0}\right)=\Psi(x)^{0}$, for $x \in R$.

By an abuse of language, S is sometimes said to be a completely-projectable cover for R if (S, Ψ, Ψ) has this property. When R has an identity $\Gamma(\mathscr{R})$ is a completely-projectable ring. The Boolean algebra $\mathscr{B}(R)$ is isomorphic, $A^{0} \mapsto \mathscr{Q}_{A^{0}}$, to the Boolean algebra of closed-open subsets of \mathscr{Q}, and this latter algebra is isomorphic to $\mathscr{B}(\Gamma(\mathscr{R}))$, for if $\mathscr{Q}^{\prime} \subseteq \mathscr{Q}$ is closed-open then

$$
\left\{\sigma \in \Gamma(\mathscr{R}): S(\sigma) \subseteq \mathscr{Q}^{\prime}\right\}=\left\{\sigma \in \Gamma(\mathscr{R}): S(\sigma) \subseteq \mathscr{Q} \mid \mathscr{Q}^{\prime}\right\}^{0},
$$

and conversely if $\left\{\sigma_{\alpha}\right\} \subseteq \Gamma(\mathscr{R})$ then

$$
\left\{\sigma_{\alpha}\right\}^{0}=\left\{\sigma \in \Gamma(\mathscr{R}): S(\sigma) \subseteq \mathscr{Q} \mid \text { closure } \bigcup_{\alpha} S\left(\sigma_{\alpha}\right)\right\}
$$

Denote this isomorphism between $\mathscr{B}(R)$ and $\mathscr{B}(\Gamma(\mathscr{R}))$ by Ψ. Then for $x \in R$,

$$
\Psi\left(x^{0}\right)=\left\{\sigma \in \Gamma(\mathscr{R}): S(\sigma) \subseteq \mathscr{Q}_{x^{\circ 00}}\right\}^{0}
$$

$$
\text { whilst } \hat{x}^{0}=\{\sigma \in \Gamma(\mathscr{R}): S(\sigma) \subseteq \mathscr{Q} \mid S(x)\} \text { so } \Psi\left(x^{\mathrm{c}}\right)=x^{0} . \text { Thus, }
$$

Proposition 2.2. If R is semi-prime with identity then $\Gamma(\mathscr{R})$ is a completelyprojectable cover for R.

DEfinition 2.3. A completely-projectable extension for a semi-prime ring R is a triple $(\bar{R}, \phi, \bar{\phi})$ where
(1) $(\bar{R}, \phi, \bar{\phi})$ is a completely-projectable cover for R
(2) If $(S, \Psi, \bar{\Psi})$ is a completely-projectable cover for R there is an isomorphism $j: \bar{R} \rightarrow S$ such that the diagram

is commutative.
Lemma 2.4. If R is a completely-projectable ring then R is semi-prime and $x \mapsto \hat{x}$ is an isomorphism onto $\Gamma(\mathscr{R})$.

Proof. It is well-known that completely-projectable rings (otherwise known as Baer rings) are semi-prime.

For $A^{0} \in \mathscr{B}(\mathscr{R}), I\left(\mathscr{Q}_{A^{0}}\right)$ agrees on \mathscr{Q} with the map \hat{x} where x is the unique element of $A^{0} \subseteq R$ for which $1-x \in A^{00}$, so that all continuous global sections are of the form \hat{x} for some $x \in R$.

Theorem 2.5. If R is a semi-prime ring with identity then $\Gamma(\mathscr{R})$ is a completely-projectable extension of R.

Proof. For a semi-prime ring S the sheaf of integral domains obtained from S, as in 1.1 will be denoted by $\left(\mathscr{R}_{s}, p_{s}, \mathscr{Q}^{s}\right)$.

If (S, Ψ, Ψ) is a completely-projectable cover for R then by the previous lemma S can be replaced, without restriction, by $\Gamma\left(\mathscr{R}_{s}\right)$. Since $\bar{\Psi}: \mathscr{B}(R) \rightarrow \mathscr{R}(S)$ is an isomorphism satisfying $\bar{\Psi}\left(x^{0}\right)=\bar{\Psi}(x)^{0}$ for $x \in R$ then a map from $\Gamma\left(\mathscr{R}_{R}\right)$ into $\Gamma\left(\mathscr{R}_{s}\right)$ can be defined by

$$
\sum_{i} I\left(\mathscr{Q}_{A_{i}}^{R_{0}}\right) \hat{x}_{i} \leftrightarrow \sum_{i} I\left(\mathscr{Q}^{s} \underset{\left(A_{i}\right)}{0}\right) \Psi\left(x_{i}\right) .
$$

This map is an isomorphism for which the appropriate diagram commutes, with S replaced by $\Gamma\left(\mathscr{R}_{s}\right)$.

Proposition 2.6. If $M \subseteq R$ is a minimal prime ring ideal then $M=R_{t}$ for some prime ideal $t \subseteq \mathscr{B}_{0}(R)$.

Proof. Take $x_{1}, \cdots, x_{m} \in M$ and suppose that for some $y \in x_{1}^{00} \vee \cdots \vee x_{m}^{00}$, $y^{00} \nsubseteq M$. Then, $(0)=y^{00} \cap y^{0}$ so $y^{0} \subseteq M$. Then

$$
x_{1}^{0} \cap \cdots \cap x_{m}^{0} \subseteq y^{0} \subseteq M
$$

so $x_{i}^{0} \subseteq M$ for some i. Since M is minimal prime, R is commutative and semi-prime, and $x_{i} \in M$, there is an $a \notin M$ such that $a x_{i}=0$. Thus $a \in x_{i} \subseteq M$ which is a contradiction. Hence

$$
x_{1}^{00} \vee \cdots \vee x_{m}^{00} \subseteq M
$$

Now let t_{0} be the ideal in $\mathscr{B}_{0}(R)$ generated by the set $\left\{x^{00} \vee y^{0}: x \in M, y \notin M\right\}$. that is,

$$
t_{0}=\left[\begin{array}{l}
A^{0} \in \mathscr{B}_{0}(R): A^{0} \subseteq x_{1}^{00} \vee \cdots \vee x_{m}^{00} \vee y_{1}^{00} \vee \cdots \vee y_{n}^{00} \\
\text { for some } x_{i} \in M, y_{j} \notin M .
\end{array}\right]
$$

If $t_{0}=\mathscr{B}_{0}(R)$ then

$$
R=(0)^{0}=x_{1}^{00} \vee \cdots \vee x_{m}^{00} \vee y_{1} \vee \cdots \vee y_{n}^{0}
$$

for some $x_{i} \in M, y_{j} \notin M$. Then

$$
\begin{aligned}
& y_{1}^{00} \cap \cdots \cap y_{n}^{00}=y_{1}^{00} \cap \cdots \cap y_{n}^{00} \cap R \\
&=\left(y_{1}^{00} \cap \cdots \cap y_{n}^{00}\right) \cap\left(x_{1}^{00} \vee \cdots \vee x_{m}^{00}\right)
\end{aligned}
$$

so that

$$
y_{1}^{00} \cap \cdots \cap y_{n}^{00} \subseteq x_{1}^{00} \vee \cdots \vee x_{m}^{00} \subseteq M
$$

and therefore $y_{i} \in M$ for some i, contrary to the choice of the y_{i} : Thus t_{0} is contained in a prime ideal $t \subseteq \mathscr{B}_{0}(R)$ and it is readily seen that $M=R_{t}$. (c.f. Spirason and Strzelecki [7]).

Keimel [4] has considered the problem of Stone and Baer extensions for commutative semi-prime semigroups and rings respectively. It is to be noted that
in [4] a Baer envelope of a commutative semi-prime ring R with identity is a commutative Baer ring Γ (i.e. a ring in which for every $A \subseteq \Gamma, A^{0}=e \Gamma$ for some idempotent $e \in \Gamma$; since Γ is commutative it is also completely projectable) minimally containing an isomorphic copy of R. In the following section it is seen that Keimel's Γ is the $\Gamma(R)$ of this section and hence a more functorial statement can be made about the ring Γ. In the case of semigroups, however, no such statement is apparent. Keimel has also remarked that every commutative semi-prime ring R with identity has a weak Baer envelope Γ (i.e. a commutative ring Γ minimally containing an isomorphic copy of R and in which for every $x \in \Gamma$ there is an idempotent e satisfying $x_{0}=e \Gamma$). In fact any such Γ is a Baer extension in the sense of Kist [5] and also has functorial properties similar to those of the completely-projectable extension of R. In the remainder of the section this point is considered in some detail: let R be a commutative semi-prime ring with identity 1 , and denote by $\mathscr{B}_{0}(R)$ the Boolean subalgebra of $\mathscr{B}(R)$ generated by polar sets of the form $x^{0}, x \in R$. Thus, $A^{0} \in \mathscr{B}_{0}(R)$ if and only if $A=\wedge_{i} \vee_{j} A i j$ where $\{A i j\}$ is a finite set of polars with, for each i, j either $A_{i j}^{i j}=x_{i j}^{i j}$ or $A_{i j}^{i j}=x_{i j}^{i 0}$ for elements $x i j \in R$.

Lemma 2.7. If \mathscr{Q}_{0} is the Stone space of $\mathscr{B}_{0}(R)$ and $\mathscr{Q}_{0}^{1} \subseteq \mathscr{Q}_{0}$ is closed-open then there is an $x \in R$ such $\mathscr{Q}_{0}^{1}=\mathscr{Q}_{0}(x)=\left\{t \in \mathscr{Q}: x^{00} \notin t\right\}$.

Proof. If $\mathscr{2}_{0}^{1} \subseteq \mathscr{Q}_{0}$ is closed-open then

$$
\mathscr{Q}_{0}^{1}=\mathscr{Q}_{A^{0}}=\left\{t \in \mathscr{Q}_{0} ; A^{0} \notin t\right\}
$$

for some $A^{0} \in \mathscr{B}_{0}(R)$. Suppose that $A^{0}=\wedge_{i} \vee_{j} A_{i j}^{0}$, where for each $i, j, A_{i j}^{0}=x i j$ or $A_{i j}^{i}=x_{i j}^{0}$, for some $x i j \in R$. Then $\vee_{j} A_{i j \notin t}^{0}$ for each i, so that for each i there is a $j(i)$ such that $A_{i j}^{0}(i) \notin t$. Conversely, if for each i there is a $j(i)$ such that $A_{i j}^{i} j(i) \notin t$ then $\wedge_{i} \vee_{j} A_{i j}^{0} \notin t$.

Thus, there is a finite set $x_{1}, \cdots, x_{m}, y, \cdots, y_{n} \subseteq R$ such that

$$
\mathscr{Q}_{0}^{1}=\mathscr{Q}_{A^{0}}=\left\{t \in \mathscr{Q}: x_{i}^{00} \notin t, y_{j}^{0} \notin t, \text { for all } i, j\right\}
$$

Now if $y^{0} \notin t$ then $(1-y)^{0} \in t$ for if $a \in y^{0} \cap(1-y)^{0}$ then $y a=a-(1-y) a$ so $a=0$. Hence there is a finite set $\left\{x_{1}, \cdots, x_{p}\right\} \subseteq R$ such that

$$
\mathscr{Q}_{0}^{1}=\mathscr{Q}_{A^{0}}=\left\{t \in \mathscr{Q}_{0}:\left(x_{1} \cdot \cdots \cdot x_{p}\right)^{00} \in t\right\} .
$$

Then $\left(x_{1} \cdot \cdots \cdot x_{p}\right)^{00}=x_{1}^{00} \cap \cdots \cap x_{p}^{00}$ so that

$$
\bigcap_{i}\left\{t \in \mathscr{Q}_{0}: x_{i}^{00} \notin t\right\}=\mathscr{Q}_{0}^{1}
$$

and thus $x=x_{1} \cdot \cdots \cdot x_{p}$ is the required element of R.
Kist [5] calls a commutative ring B a Baer ring if for each $x \in B$ there is an idempotent $e \in B$ satisfying $x^{0}=e B$. Kist's definition of a Baer extension of a commutative ring R is as follows:
a Baer ring B is a Baer extension of a commutative ring R if
(1) R is isomorphic to a subring of B containing the identity of B,
(2) the subring of B generated by the image of R and the idempotents of B is B,
(3) the semilattice $\mu_{R}=\{\mathscr{M}(x): x \in R\}$, where $\mathscr{M}(x)$ is the class of minimal prime ideals of R not containing $x \in R$ is isomorphic to a dense subsemilattice of $\mu_{B}=\{\mathscr{M}(x): x \in B\}$ and the Boolean subalgebra of μ_{B} generated by μ_{R} is μ_{B}.

As before a sheaf of integral domains $\left(\mathscr{R}_{0}, p, \mathscr{Q}_{0}\right)$ is constructed with the stalks being the integral domains $R / R_{t}, t \in \mathscr{Q}_{0}$.

Proposition 2.8. $\Gamma\left(\mathscr{R}_{0}\right)$ is a Baer ring.
This is just the commutative case of 1.2 . As in the remarks before 1.2 it can also be seen that if R is a Baer ring then $R \simeq \Gamma\left(\mathscr{R}_{0}\right)$.

Proposition 2.9. μ_{R} is \wedge-isomorphic to the \wedge-subsemilattice of the Boolean algebra $B\left(\Gamma \mathscr{R}_{0}\right)$) of idempotents of $\Gamma\left(\mathscr{R}_{0}\right)$.

Proof. As in Kist [5] the idempotents of $\Gamma\left(\mathscr{R}_{0}\right)$ are seen to be the sections $I\left(\mathscr{Q}_{0}(x)\right), x \in R$. Consider the assignment $\mathscr{M}(x) \rightarrow I\left(\mathscr{Q}_{0}(x)\right)$: this is a map from μ_{R} into the idempotents of $\Gamma\left(\mathscr{R}_{0}\right)$ for if $\mathscr{M}(x)=\mathscr{M}(y)$ then the continuous sections $I\left(\mathscr{Q}_{0}(x)\right), I\left(\mathscr{Q}_{0}(y)\right)$ are equal on the dense subset of those $t \in \mathscr{Q}_{0}$ for which R_{t} is minimal prime. Since $(x y)^{00}=x^{00} \cap y^{00}$ for $x, y \in R$ it follows that

$$
\mathscr{M}(x y)=\mathscr{M}(x) \cap \mathscr{M}(y) \text { and } I\left(\mathscr{Q}_{0}(x y)\right)=I\left(\mathscr{Q}_{0}(x)\right) \cdot I\left(\mathscr{Q}_{0}(y)\right) .
$$

Finally, if $I\left(\mathscr{Q}_{0}(x)\right)=I\left(\mathscr{Q}_{0}(y)\right)$ then $x \in R_{t}$ iff $y \in R_{t}$ so $\mathscr{M}(x)=\mathscr{M}(y)$.
Corollary 2.10. $\Gamma\left(R_{0}\right)$ is a Baer extension of R.
A projectable extension of a not necessarily commutative semi-prime ring R with identity can be defined as follows: a ring R is projectable if for every $x \in R$ there is a central idempotent $e^{2}=e$ satisfying $x_{0}=e R$. A projectable extension of R is then defined as in 2.1 and 2.3 with "completely-projectable" replaced by 'projectable", and " $\mathscr{B}(R)$ " replaced by " $\mathscr{B}_{0}(R)$ ". The following theorem then holds:

Theorem 2.11. $\Gamma\left(\mathscr{R}_{0}\right)$ is a projectable extension of R.
Note. In all cases the ring R has been assumed to have an identity. If R is semi-prime but without an identity then R can be embedded in the ring \bar{R} cf all generalized left translations on R : a group endomorphism $\Phi: R \rightarrow R$ is a generalized left translation if $\Phi(x y)=\Phi(x) y$. The ring \bar{R} is minimal with respect to the properties
(1) \bar{R} is semi-prime with an identity
(2) \bar{R} contains an isomorphic copy of R
(3) \vec{R} is isomorphic to R if R has an identity.

3. The ideals $\boldsymbol{R}_{\boldsymbol{t}}$

The following result gives an internal description of the ideals R_{t} for a class of semi-prime rings R.

Definitions 3.1. A ring R with identity is said to be projectable if for each $x \in R$ there is a central idempotent e such that $x_{0}=e R$. Since the above idempoteni e is central it is uniquely determined by $x_{0}=e R$, and e is denoted by $\mathrm{id}(x)$. A ring ideal $I \subseteq R$ is a projection ideal if $x \in I$ is equivalent to $1-\mathrm{id}(x) \in I$.

Theorem 3.2. Let R be a projectable ring. If $B(R)$ is the Boolen algebra of central idempotents of R then the ideals $R_{t}=\left\{x \in R: x^{00} \in t\right\}$, for $t \in \mathscr{Q}$, are the projection ideals $I \subseteq R$ such that $I \cap B(R)$ is a prime ideal in $B(R)$.

Proof. Firstly see that the ideals R_{t} are characterized as those ideals $I \subseteq R$ satisfying
(1) $x \in I$ implies $x^{0} \neq(0)$
(2) $x \in I$ implies $x^{00} \subseteq I$
(3) $x y=0$ implies $x \in I$ or $y \in I$;
let $I \subseteq R$ be an ideal satisfying (1)-(3).
The ideal $t_{0} \subseteq \mathscr{B}(R)$ generated by the set $\left\{x^{00} \vee y^{0}: x \in I, y \notin I\right\}$ is then a proper ideal: if $x_{1}, x_{2} \in I$ then

$$
x_{1}^{00} \vee x_{2}^{00}=\left(1-\mathrm{id}\left(x_{1}\right)^{00} \vee\left(1-\operatorname{id}\left(x_{2}\right)\right)^{00}=\left[\left(1-\operatorname{id}\left(x_{1}\right)\right) \vee\left(1-\operatorname{id}\left(x_{2}\right)\right)\right]^{00}\right.
$$

which is contained in I, since

$$
1-\mathrm{id}\left(x_{i}\right) \in\left(1-\mathrm{id}\left(x_{i}\right)\right)^{00}=x_{i}^{00} \subseteq I(i=1,2)
$$

gives $\left(1-\mathrm{id}\left(x_{1}\right)\right) \vee\left(1-\operatorname{id}\left(x_{2}\right)\right) \in I$.
Induction shows that if $x_{1}, \cdots, x_{m} \in I$ then $x^{00} \vee \cdots \vee x_{m}^{00} \subseteq I$. If t_{0} is not a proper ideal then there exist $x_{1}, \cdots, x_{m} \notin I$ and $y_{1}, \cdots, y_{n} \in I$ such that

$$
R=\bigvee_{i=1}^{m} x_{i}^{00} \vee \bigvee_{i=1}^{n} y_{i}^{0}
$$

Then

$$
\bigcap_{i=1}^{n} y_{i}^{00}=\bigcap_{i=1}^{n} y_{i}^{00} \bigcap R=\bigvee_{i=1}^{m} x_{i}^{00} \cap \bigcap_{i=1}^{n} y_{i}^{00}
$$

so that

$$
\bigcap_{i=1}^{n} y_{i}^{00} \subseteq \bigvee_{i=1}^{m} x_{i}^{00} \subseteq I
$$

and thus $\bigwedge_{i=1}^{n} 1-\operatorname{id}\left(y_{i}\right) \in I$.
If e, f are central idempotents and $e f \in I$ then

$$
(e f-e)(e f-f)=0
$$

shows that $e f-e \in I$ or $e f-f \in I$ so $e \in I$ or $f \in I$.
Induction gives that if $\wedge_{i=1}^{n} e_{i} \in I$ then $e_{i} \in I$ for some i. Consequently, $1-\operatorname{id}\left(y_{i}\right) \in I$ for some i, so that $y_{i} \in I$, contrary to the choice of y_{i}. Hence t_{0} is proper ideal in $\mathscr{B}(R)$ and is therefore contained in a maximal ideal t. It is readily seen that $R_{t}=I$. Conversely it is easily seen that every $R_{t} \subseteq R$ satisfies (1)-(3). Now let I be a projection ideal such that $I \cap B(R)$ is a prime ideal in $B(R)$. Then $1 \notin I$, and if $x \in I, x^{0}=(0)$ then $(1-\mathrm{id}(x))=(0)$ so $\mathrm{id}(x)=0$ and thus $1=1-\operatorname{id}(x) \in I$. That is, I satisfies (1). Suppose $x \in I, y \in x^{00}$. Then $\operatorname{id}(x) \leqq \operatorname{id}(y)$ so

$$
1-\operatorname{id}(y) \leqq 1-\mathrm{id}(x) \in I
$$

which gives $1-\operatorname{id}(y) \in I$ and hence $y \in I$. Finally, suppose that $x y=0$. Then

$$
[1-\operatorname{id}(x)] \wedge[1-i d(y)]=0
$$

so $1-\operatorname{id}(x \in I$ or $1-\operatorname{id}(y) \in I$, and therefore $x \in I$ or $y \in I$. Hence I satisfies (1)-(3).
Conversely, any ideal satisfying (1)-(3) is a projection ideal whose intersection with $B(R)$ is a prime ideal.

For a semi-prime ring R the class of proper ideals $R_{t} \subseteq R$ can be given a topology that is compact if R has an identity, and a Boolean space if R is projectable. Denote by $\mathscr{V}(R)$ the class of ideals $R_{t} \neq R, t \in \mathscr{Q}$. For $x \in R$, put $\mathscr{V}(x)$ $=\left\{R_{t}: x \notin R_{t}\right\}$.

Proposition 3.3. The class $v_{R}=\{\mathscr{V}(x): x \in R\}$ is an intersection semilattice and so forms a base for the open sets for a topology on $\mathscr{V}(R)$. If R has an identity then $\mathscr{V}(R)$ is compact. If R is projectable then $v_{R}=\{\mathscr{V}(x): e \in B(R)\}$ is a lattice for union and intersection and $\mathscr{V}(R)$ is a Boolean space.

Proof. $\mathscr{V}(x) \cap \mathscr{V}(y)$

$$
\begin{aligned}
& =\left\{R_{t} \neq R: x^{00} \notin t, y^{00} \notin t\right\} \\
& =\left\{R_{t} \neq R: x^{00} \cap y^{00} \notin t\right\} \\
& =\left\{R_{t} \neq R:(x y)^{00} \notin t\right\} \\
& =\mathscr{V}(x y) .
\end{aligned}
$$

If R has an identity then the map $\phi: t \mapsto R$, maps 2 onto $\mathscr{V}(R)$. For $x \in R$,

$$
\phi^{-1}(\mathscr{V}(x))=\{t \in \mathscr{Q}: R t \in \mathscr{V}(x)\}=\mathscr{Q}_{x^{00}}
$$

so ϕ is continuous. Since \mathscr{Q} is compact so is $\mathscr{V}(R)$. Now assume R is projectable. Then every $\mathscr{V}(x)$ is of the form $\mathscr{V}(e)$ for some central idempotent e : in fact $\mathscr{V}(x)=\mathscr{V}(1-\mathrm{id}(x))$. Also, $\mathscr{V}(R)$ is a union semi-lattice since

$$
\begin{aligned}
\mathscr{V}(x) \cup \mathscr{V}(y) & =\left\{R_{t} \neq R: x^{00} \notin t \text { or } y^{00} \notin t\right\} \\
& =\left\{R_{t} \neq R: x^{00} \vee y^{00} \notin t\right\} \\
& =\left\{R_{t} \neq R:[(1-\operatorname{id}(x)) \vee(1-\operatorname{id}(y))]^{00} \notin t\right\} \\
& =\mathscr{V}(1-\operatorname{id}(x) \wedge \operatorname{id}(y))
\end{aligned}
$$

If $R_{t_{1}} \neq R_{t_{2}}$ then there is an $x \in R_{t_{1}}, x \notin R_{t_{2}}$. Then $1=x_{1}+x_{2}$ with $x_{1} \in x^{00}$, $x_{2} \in x^{0}$, so that $x_{1} \in R_{t_{1}}$ but $x_{2} \notin R_{t_{1}}$, for otherwise $1 \in R_{t_{1}}$. Thus $R_{t_{1}} \in \mathscr{V}\left(x_{2}\right)$, $R_{t_{2}} \in \mathscr{V}(x)$ and $\mathscr{V}\left(x_{2}\right) \cap \mathscr{V}(x)$ is void. That is, $\mathscr{V}(R)$ is a Hausdorff space. Finally, let e be a central idempotent. Then for $t \in \mathscr{2}$ either $e \in R_{t}$ or $1-e \in R_{t}$ but not both since $1 \notin R_{t}$, and therefore

$$
\begin{aligned}
\mathscr{V}(R)(e) & =\left\{R_{t}: e \in R_{t}\right\} \\
& =\left\{R_{t}: 1-e \notin R_{t}\right\} \\
& =\mathscr{V}(1-e)
\end{aligned}
$$

so the basic open sets $\mathscr{V}(e)$ are closed-open.
Note that the ideals R_{t} in a semi-prime ring R are just those used by Keimel [4] and Adams [1]. These ideals were also used by Veksler [8] in a more general setting. In a commutative semi-prime ring R every minimal prime ideal is an R_{t}, and in the next section the converse of this is considered. The minimal prime ideals in a non-commutative semi-prime ring R are characterized as those prime ideals P satisfying

$$
P=0_{p}=\{x \in R: x a=0 \text { for some } a \notin P\}
$$

Koh [6], and it then follows as in 2.6 that every minimal prime ideal of R is an R..

4. Commutative semi-prime rings

For a commutative semi-prime ring R there are several conditions that imply that $\mathscr{V}(R)$ is a Hausdorff topological space, and if the annihilators $x^{00}, x \in R$, form a sublattice of $\mathscr{B}(R)$ then these conditions are equivalent to the Hausdorff property of $\mathscr{V}(R)$. Throughout this section R will be assumed commutative and semi-prime.

The class of minimal prime ideals of R is denoted by $\mathscr{M}(R)$, and the sets $\mathscr{M}(x)=\{\mathscr{M} \in \mathscr{M}(R): x \notin \mathscr{M}\}$, for $x \in R$, form a closed-open base for the open sets for a Hausdorff topology on $\mathscr{M}(R)$.

Theorem 4.2. Consider the following statements:
(1) For every $x \in R$ there is an $x^{\prime} \in R$ such that $x^{00}=\left(x^{\prime}\right)^{0}$
(2) For all $x, y \in R$ there is an $a \in x^{00} \oplus x^{0}$ such that $y^{0}=a^{0}$
(3) $\mathscr{V}(R)=\mathscr{M}(R)$
(4) Each $\mathscr{V}(x)$ is closed in $\mathscr{V}(R)$
(5) $\mathscr{V}(R)$ is Hausdorff
(6) v_{R} is relatively complemented.

Then

[a] (1) implies (2)
[b] If R has an identity then (2) implies (1)
[c] (2) implies (3)
[d] (3), (4), (5) are equivalent
[e] (2) implies (6)
If the intersection semi-lattice $\left\{x^{00}: x \in R\right\}$ is a sub-lattice of $\mathscr{B}(R)$ then (2)-(6) are equivalent.

Proof. (1) implies (2): for $x, y \in R$ suppose that $\left(x^{\prime}\right)^{0}=x^{00}$. Then $x y \in x^{00}$, $x^{\prime} y \in x^{0}$ and

$$
\begin{gathered}
\left(x y+x^{\prime} y\right)^{00}=\left(\left(x+x^{\prime}\right) y\right)^{00}=\left(x+x^{\prime}\right)^{00} \cap y^{00}=\left[x^{00} \vee\left(x^{\prime}\right)^{00}\right] \cap y^{00} \\
=R \cap y^{00}=y^{00}
\end{gathered}
$$

If R has an identity 1 then (2) implies (1): for $x \in R, 1=a+b$ with $a \in x^{00}$, $b \in x^{0}$ and

$$
(0)=1^{0}=(a+b)^{0}=a^{0} \cap b^{0}
$$

so that $a^{00}=b^{0}$. Then $x^{00} \subseteq b^{0}$ and $b^{0}=a^{00} \subseteq x^{00}$, so $b^{0}=x^{00}$.
(2) implies (3): suppose $x \in R_{t} \in \mathscr{V}(R)$. Then there is a $y \notin R_{t}$ and $y_{1} \in x^{00}$, $y_{2} \in x^{0}$ such that

$$
y^{0}=\left(y_{1}+y_{2}\right)^{0}=y_{1}^{0} \cap y_{2}^{0} .
$$

If $y_{2} \in R_{t}$ then $y^{0}=y_{1}^{0} \cap y_{2}^{0} \notin t$ so $y \in R_{t}$. Thus $y_{2} \notin R_{t}$ and $y_{2} x=0$ so R_{t} is minimal prime. The preceding lemma says that every minimal prime is an R_{t}, so that $\mathscr{V}(R)=\mathscr{M}(R)$.
(3) implies (4): if each $R_{t} \in \mathscr{V}(R)$ is minimal prime then for $x \in R, \mathscr{V}(x)$ $=\mathscr{M}(x)$ is closed in $\mathscr{V}(R)=\mathscr{M}(R)$.
(4) implies (3): suppose $x \in R_{t} \in \mathscr{V}(R)$. Then $t \notin \mathscr{V}(x)$ so there is a basic open set $\mathscr{V}(y)$ such that

$$
t \in \mathscr{V}(y) \subseteq \mathscr{V}(R) \mid \mathscr{V}(x)
$$

and $\mathscr{V}(y) \cap \mathscr{V}(x)$ is void. That is, $y \notin R_{t}$ and $x y=0$ so R_{t} is minimal prime.
(3) is equivalent to (5): if $\mathscr{V}(R)=\mathscr{M}(R)$ then $\mathscr{V}(R)$ is Hausdorff. Conversely, if $\mathscr{V}(R) \neq \mathscr{M}(R)$ then there is a proper R_{t} that properly contains a minimal prime ideal M. Then R_{t} and M cannot be Hausdorff separated.
(2) implies (6): suppose $\mathscr{V} l(x) \in v_{R}$ and $\mathscr{V}(y) \subseteq \mathscr{V}(x)$. Then $y^{00} \subseteq x^{00}$, and there exist $a \in y^{0}, b \in y^{00}$ such that

$$
x_{00}=(a+b)^{00}=a^{00} \vee b^{00}
$$

so that $x a \in y_{0} \cap x^{00}$ and

$$
\begin{aligned}
(x a)^{00} \vee y^{00} & =\left(x^{00} \cap a^{00}\right) \vee y^{00} \\
& =x^{00} \cap\left(a^{00} \vee y^{00}\right) \\
& =a^{00} \vee y^{00}=x^{00}
\end{aligned}
$$

since $x^{00} \supseteq a^{00} \vee y^{00} \supseteq a^{00} \vee b^{00}=x^{00}$. Thus, $\mathscr{V}(x a) \cap \mathscr{V}(y)$ is void and $\mathscr{V}(x a) \cup \mathscr{V}(y)=\mathscr{V}(x)$, so that v_{R} is relatively complemented.

Now suppose that $\left\{x^{00}: x \in R\right\}$ is a sub-lattice of $\mathscr{B}(R)$. That is, for all $x, y \in R$ there is an $a \in R$ such that $x^{00} \vee y^{00}=a^{00}$.
(3) implies (2): suppose that R does not have property (2). Then there exist $x, y \in R$ such that for all $a \in x^{0}, y \notin(x+a)^{00}$. The subset

$$
t_{0}=\left\{A^{0} \in \mathscr{B}(R): A^{0} \subseteq(x+a)^{00} \vee y^{0}, \text { for some } a \in x^{0}\right\}
$$

is then an ideal of $\mathscr{B}(R)$, since for $a, b \in x^{0}$,

$$
(x+a)^{00} \vee y^{0} \vee(x+b)^{00} \vee y^{0}=x^{00} \vee a^{00} \vee b^{00} \vee y^{0}=x^{00} \vee c^{00} \vee y^{0}
$$

for some $c \in R$ and $c \in a^{00} \vee b^{00} \subseteq x^{0}$. If t_{0} is not a proper ideal then

$$
R=(x+a)^{00} \vee y^{0}=x^{00} \vee a^{00} \vee y^{0}
$$

for some $a \in R$, so $y^{0}=y^{00} \cap R=\left(x^{00} \vee a^{00}\right) \cap y^{00}$ and therefore $y \in y^{00}$ $\subseteq x^{00} \vee a^{00}$, contrary to assumption. Then t_{0} is contained in a prime ideal t and $R_{t} \neq R$ since $y^{00} \notin t$. If $a \in x^{0}$ then

$$
a^{00} \subseteq x^{00} \vee a^{00} \vee y^{0}=(x+a)^{00} \vee y^{0} \in t
$$

so $a \in R_{t}$. That is, $x \in R_{t}$ and $x^{0} \subseteq R_{t}$ so R_{t} is not minimal prime.
(6) implies (2): if v_{R} is relatively complemented and $x, y \in R$ then $\mathscr{V}(x) \subseteq \mathscr{V}(a)$, where $a^{00}=x^{00} \vee y^{00}$, so there is an $x^{\prime} \in R$ such that $x^{\prime} x=0$ and $\left(x^{\prime}\right)^{00} \vee x^{00}=x^{00} \vee y^{00}$. Then

$$
\left(x^{\prime} y+x y\right)^{00}=\left(x^{\prime}+x\right)^{00} \cap y^{00}=\left(x^{00} \vee y^{00}\right) \cap y^{00}
$$

and $x^{\prime} y \in x^{0}, x y \in x^{00}$.

References

[1] D. H. Adams, 'Semigroups with no non-zero nilpotents', Math Z. 123 (1971), 168-176.
[2] J. Dauns and K. H. Hofmann, 'The representation of biregular rings by sheaves', Math. Z. 91 (1966), 103-123.
[3] B. Davey, Sheaves of universal algebros. (M. Sc. Thesis, Monash University, 1972).
[4] K. Keimel, 'Baer extensions of rings and Stone extensions of semigroups', Semigroup Forum Vol. 2 (1971), 55-63.
[5] J. Kist, 'Compact spaces of minimal prime ideals', Math. Z. 111 (1969), 151-158.
[6] K. Koh, 'On functional representations of a ring without nilpotent elements', Canad. Math. Bull. 14 (3) (1971), 349-352.
[7] G. T. Spirason and E. Strzelecki, 'A note on Pt -ideals', J. of Aust. Math. Soc. 14 (1972), 304-310.
[8] A. I. Veksler, 'Linear spaces with disjoint elements and their conversion into vector lattices', Leningrad Gas. Ped. Inst. Ucen. Zap. 328 (1967), 19-43.

Department of Mathematics
La Trobe University
Bundoora, Vic. 3083
Australia

