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Introduction

In many respects the theory of semi-prime rings (i.e. rings without proper
nilpotents) is similar to that for lattice-ordered groups. In this paper semi-prime
rings are faithfully represented as subrings of continuous global sections of
sheaves of integral domains with Boolean base spaces. This representation allows
a simple description of a particular extension of a semi-prime ring as the corres-
ponding ring of all continuous global sections. The ideals in a semi-prime ring R
that give rise to the stalks in the sheaf representation are then characterized
when R is projectable. Finally equivalent conditions are given for a semi-prime
ring R to satisfy a condition, that in the case of lattice-groups, was termed "weak
projectability" by Spirason and Strzelecki [8]. Some of the results that are
common to semi-prime rings and lattice-groups (and semi-prime semigroups)
have been extended to certain universal algebras by Davey [3].

1. Sheaf Representation

Let R be a semi-prime ring. That is, x2 = 0 is possible only for x = 0 in R;
this is equivalent to the fact that R has no non-zero nilpotents. For A s R define

A0 = {xeR: ax = 0 for all a e A},

and A00 = 04°)°. If A = {x} is a singleton set then A0, A00 are denoted by x°,
x00 respectively.

The class of all subsets of R of the form A0 is denoted by 3B(R) and, ordered
by inclusion, 38{R) is a complete Boolean algebra with

(i) AaA°a = n.A°. = (uxAa)°

(ii) \M« = n { B ° : B ° 2 U . ^ }

and

(iii) A00 as the complement of A0.
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354 G. Davis [2]

The Stone space of 88(K) is denoted by J : thus J is the set of prime ideals
of J'(tf) and is furnished with the hull-kernel topology, for which the closed-open

SCtS <2Ao = {te<2:A°et}

form a base for the open sets. For each t e 1 a subset R, of R is defined by

Rt = {xeR:xooet}.

It is readily seen that each R, is a two-sided ideal of R. Furthermore ntiSRt = (0)
for if x00 ef for all* e J then*00 = 0 so x = 0.

A sheaf of rings (01, p, 2) is now defined as follows: 01 is the disjoint union
of the rings R\RS, te£; p is the map from ^ into 2. defined by p(r) = t if
r e R/R,; a topology is placed on 01 by taking the sets

with x e R, A0 e 38 (R), as basic open sets. It follows, as for instance in Dauns and
Hofmann [2], that (01, p 3) is a sheaf of rings. The ring of continuous global
sections of this sheaf is denoted by T(M). If x e R and A0 e SS(R) then the pair
(x,A°) defines an element I(QA0;x) of T(R) by

Cx + R, if I e i x .
1(2 A0; x)(0 = 1

10+Rt ift$£Ao

W h e n ^ o = Q,I{&Aa; x) is denoted by x, and if R has an identity 1 then/ (J^ 0 ; 1)
is denoted by

PROPOSITION 1.1. Let R be a semi-prime ring.
Then,

(1) (01, p, 2) is a sheaf of integral domains
(2) the map x v*xfrom R into T{01) is a ring isomorphism
(3) if aeT (01) then there is a finite closed-open partition {2Ao,---,£Ao}

of Q and xt,--,xreR such that a = E / ( ^ o ; x ; )

(4) ifR has an identity 1 then for every non-empty subset A £ T(0l) there
is a central idempotent eeT(@) such that A0 =

PROOF. The homomorphism x+->x is an isomorphism since n,65.R( = (0).
If cj e T(0t) then for each t e 3. there is an x, e R such that o{t) = x,(t). Since
(01, p, 2) is a sheaf there is a basic closed-open neighbourhood <&AQ of ( such that

t
a = x, on £Ao. Then {3Ao: t e 2} is an open cover for J and since J is compact
there is a finite subcover {J^o ,---,J2Ao } . Put

U
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[3] Semi-prime rings 355

for i > 1. Then {2A0,---,2A0} is a closed-open partition of 2., and if xt = xif

then E , / ( ^ o ; xt) is just a, for if te 2LAo then

The sheaf (3?, p, J ) is a sheaf of integral domains since the ideals R, are prime
(i.e. xy e R, is possible only if x e /?, or _y e Rt). This follows from the fact that
(xy)00 = x00 O >>00 in a semi-prime ring.

For a = Zf /(^o ; X;)eF(^2), with {Jxo ,---,lAo } a partition of J2, the set
S(ff) = { te^ :a(0^0} is just \JtMAo n i°° which is closed-open, so that,
assuming R has an identity 1,1(S{o)) e F(^2). For an arbitrary subset {aa} s Y{0t)
the closure S of UaS(<Ta) is closed-open since J is extremally-disconnected so
that /(S) e F(^2). Since the i?/i?f are integral domains, ax • a = 0 for all a is equi-
valent to /(S)/(S(<T)) = 0 so that {o-̂ }0 = [1 - I(S)\{0t) and 1 - 7(S) is a central
idempotent.

The above argument is essentially that given by Kist [5]. Notice also that an
entirely similar argument gives the following:

PROPOSITION 1.2. Let F be the ring of all continuous global sections of a
sheaf of integral domains with identities over a Boolean base space X. Then for
every xeR there is a unique central idempotent e such that x° = {yeF:
xy = 0}= eF. If X is extremely-disconnected then for every subset AcR there
is a unique central idempotent e such that A0 = {yeT:xy = Ofor all xeA}= eF.

Koh [6] has extended Grothendieck and Dieudonne's sheaf representation
of a commutative ring with identity to semi-prime rings. In his representation a
semi-prime ring is isomorphic to the ring of all continuous global sections of a
sheaf of semi-prime rings over a compact base-space: however the semi-prime
rings that comprise the stalks are not necessarily integral domains and the base
space of the sheaf is not necessarily Boolean.

2. Extensions

DEFINITIONS 2.1. A ring S with identity 1 is said to be completely-projectable
if for every non-empty subset As. S there is a central idempotent e such that
A0 = eS. Let R b e a semi-prime ring: a completely-projectable cover for R is a
triple (S,T, 7 ) where

(1) S is a completely-projectable ring
(2) *¥: R -y S is a ring isomorphism into S
(3) ¥: 3$(R) -> 3$(S) is a Boolean bijection
(4) ¥(x°) = ¥(x)°, for xeR.
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By an abuse of language, S is sometimes said to be a completely-projectable
cover for R if (S.T,5?) has this property. When R has an identity T{01) is a
completely-projectable ring. The Boolean algebra 38{R) is isomorphic, A0 ^2.Aa,
to the Boolean algebra of closed-open subsets of J , and this latter algebra is
isomorphic to S8(T{&)), for if 2.' £ J is closed-open then

and conversely if {ĉ } c r (^ ) then

{ffj° = {ueT(^y. S(<T) S J2 \ closure US(O}-

Denote this isomorphism between 3§{R) and &(r(&)) by ¥ . Then for xei!,

¥(x°) = {oeT(®): S(a) £ ^voo}°

whilst x° = {ffer(^):S(cr) c £\S(x)} so ^(xc) = x°. Thus,

PROPOSITION 2.2. 7/i? is semi-prime with identity then T($) is a completely-
projectable cover for R.

DEFINITION 2.3. A completely-projectable extension for a semi-prime ringR
is a triple (R, <j),<j>) where

(1) (R,<p,(p) is a completely-projectable cover for R
(2) If (S, *P, *F) is a completely-projectable cover for R there is an isomorphism

j : R-+ S such that the diagram

4>
R >R

is commutative.
LEMMA 2.4. / / R is a completely-projectable ring then R is semi-prime

and x t->x is an isomorphism onto

PROOF. It is well-known that completely-projectable rings (otherwise known
as Baer rings) are semi-prime.

For A0 e 88{M), I(£A°) agrees on J with the map x where x is the unique
element of A0 c R for which 1 — xe A00, so that all continuous global sections
are of the form x for some xeR.

THEOREM 2.5. / / R is a semi-prime ring with identity then Y{M) is a
completely-projectable extension of R.

PROOF. For a semi-prime ring S the sheaf of integral domains obtained from
S, as in 1.1 will be denoted by (3?s,ps,£

s).
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If (S,*?,*?) is a completely-projectable cover for R then by the previous
lemma S can be replaced, without restriction, by T(^s). Since *F: 3&(R) -> 08{S)
is an isomorphism satisfying 4*(x°) = *F(x)° for xe R then a map from
into r(^?s) can be defined by

This map is an isomorphism for which the appropriate diagram commutes, with
S replaced by

PROPOSITION 2.6. If M <= R is a minimal prime ring ideal then M = Rt for
some prime ideal t £ 3to(R).

PROOF. Take x1,---,xme M and suppose that for some yex°°\/ ••• V^m°>
y00 $ M. Then, (0) = y00 O y° so y° c M. Then

so x? c Af for some i. Since M is minimal prime, R is commutative and semi-prime,
and xt e Af, there is an a $ M such that axt = 0. Thus a e x; £ M which is a
contradiction. Hence

Now let t0 be the ideal in &0{R) generated by the set {x°°V>'0: xeM,
that is,

rA°e@0(R): A0 £ x?° V - V*°° V>-?° V - Vyn°°,
*o =

L. for some x; e M, yj $ M.

If t0 = SS0(R) then

for some x; e M, ^ ^ M. Then

so that

and therefore yteM for some j , contrary to the choice of the yt: Thus (0 is con-
tained in a prime ideal t^3S0 {R) and it is readily seen that M = Rt. (c.f. Spirason
and Strzelecki [7]).

Keimel [4] has considered the problem of Stone and Baer extensions for
commutative semi-prime semigroups and rings respectively. It is to be noted that

https://doi.org/10.1017/S1446788700013264 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013264


358 G. Davis [6]

in [4] a Baer envelope of a commutative semi-prime ring R with identity is a
commutative Baer ring F (i.e. a ring in which for every A £ F, A0 = eY for some
idempotent e e F ; since F is commutative it is also completely projectable)
minimally containing an isomorphic copy of R. In the following section it is
seen that Keimel's F is the T{R) of this section and hence a more functorial
statement can be made about the ring F. In the case of semigroups, however, no
such statement is apparent. Keimel has also remarked that every commutative
semi-prime ring R with identity has a weak Baer envelope F (i.e. a commutative
ring F minimally containing an isomorphic copy of R and in which for every
x e F there is an idempotent e satisfying x0 = eT). In fact any such F is a Baer
extension in the sense of Kist [5] and also has functorial properties similar to
those of the completely-projectable extension of R. In the remainder of the
section this point is considered in some detail: let R be a commutative semi-prime
ring with identity 1, and denote by SS0 {R) the Boolean subalgebra of S8 (R)
generated by polar sets of the form x°, xeR. Thus, A0 e &0(

R) if anc* only if
A = At \/j Aij where {Aij} is a finite set of polars with, for each i, j either
Aij = xjj or Aij = xjj for elements xij e R.

LEMMA 2.7. / / J o is the Stone space of&o(R) and ll £ J20 is closed-open
then there is anxeR such JQ = $o (*) = {'6&'• x°°$'}•

PROOF. If 2-1 £ J>0 is closed-open then

for some A0 e&0(R). Suppose that A0 = A,- VjAij, where for each i,j, Aij = xij
or Aij = xij°, for some xije R. Then \JjAjj$ t for each i, so that for each i there is
a 7(0 such that A°ij{i) $ t. Conversely, if for each i there is a j(i) such that Alj(i) £ t
then Ai Vj Aij^ t.

Thus, there is a finite set xu---,xm, y,—,yn s R such that

£l
o = £Ao = {te£: x?° $ t, y° $ t, for all i,j}.

Now if y° $t then (1 -y)°et for if a e y° n (1 - y)° then ya = a - (1 - y)a
so a = 0. Hence there is a finite set {xu •••,xp} £ R such that

fe.... -xpf
oet}.

Then (xt xp)
00 = x?° O ••• nx°° so that

and thus x = xt • ••• • xp is the required element of i?.
Kist [5] calls a commutative ring B a Baer nn# if for each xeB there is an

idempotent eeB satisfying x° = eB. Kist's definition of a Baer extension of a
commutative ring R is as follows:
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[7] Semi-prime rings 359

a Baer ring B is a Baer extension of a commutative ring R if
(1) R is isomorphic to a subring ofB containing the identity ofB,
(2) the subring ofB generated by the image of R and the idempotents of B

isB,
(3) the semilattice fiR = {J£{x)\ x e R}, where Jl(x) is the class of minimal

prime ideals of R not containing xeR is isomorphic to a dense subsemilattice
of fiB = {./#(x): xeB} and the Boolean subalgebra of nB generated by jiR is nB.

As before a sheaf of integral domains (@0,p, .20) is constructed with the
stalks being the integral domains R/R,, te£0.

PROPOSITION 2.8. T(@o) is a Baer ring.
This is just the commutative case of 1.2. As in the remarks before 1.2 it can

also be seen that if R is a Baer ring then R ~

PROPOSITION 2.9. nR is A - isomorphic to the A - subsemilattice of the
Boolean algebra B(T@0)) of idempotents o/

PROOF. AS in Kist [5] the idempotents of F(^20) are seen to be the sections
I(lo(x)), xeR. Consider the assignment Ji(x) -»J(J0(x)): this is a map from \iR

into the idempotents of r (^0) f°r if -^(x) = J((y) then the continuous sections
/(.20(x)), I(£to(y)) are equal on the dense subset of those t e ^ 0 f°r which R, is
minimal prime. Since (xy)00 = x00 n y00 for x, y e R it follows that

Jt(xy) = Ji{x)C\Ji{y) and I(20(xy)) = J(

Finally, if /(J0(x)) = I(20(y)) then xeRti3yeR,so Jt{x) = J({y).

COROLLARY 2.10. r(R0) is a Baer extension ofR.
A projectable extension of a not necessarily commutative semi-prime ring R

with identity can be defined as follows: a ring R is projectable if for every xeR
there is a central idempotent e2 = e satisfying x0 = eR. A projectable extension
of R is then defined as in 2.1 and 2.3 with "completely-projectable" replaced by
"projectable", and "3S{R)" replaced by "SS0{R)". The following theorem then
holds:

THEOREM 2.11. F(^o) is a projectable extension ofR.

NOTE. In all cases the ring R has been assumed to have an identity. If R is
semi-prime but without an identity then R can be embedded in the ring R cf all
generalized left translations on R: a group endomorphism 4>: R-> R is a genera-
lized left translation if <b(xy) = <b(x)y. The ring R is minimal with respect to the
properties

(1) R is semi-prime with an identity
(2) R contains an isomorphic copy of R
(3) R is isomorphic to R if R has an identity.
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3. The ideals R,

The following result gives an internal description of the ideals R, for a class
of semi-prime rings R.

DEFINITIONS 3.1. A ring R with identity is said to be projectable if for each
x e R there is a central idempotent e such that x0 = eR. Since the above idempoteni
e is central it is uniquely determined by x0 = eR, and e is denoted by id(x). A ring
ideal / s R is a projection ideal if x e / is equivalent to 1 — id(x)*e /.

THEOREM 3.2. Let R be a projectable ring. IfB(R) is the Boolen algebra of
central idempotents of R then the ideals R, = {xeR: xooet},for ( e i , are the
projection ideals I £ R such that I (~\B{R) is a prime ideal in B{R).

PROOF. Firstly see that the ideals R, are characterized as those ideals I ^ R
satisfying

(1) x e / implies x° # (0)
(2) x e / implies x00 £ /
(3) xy = 0 implies xe I or ye I;

let I s R be an ideal satisfying (l)-(3).
The ideal t0 £ 38{R) generated by the set {x00 Vy° • x e I, y$I} is then a

proper ideal: if xux2 eI then

x?° Vx2
00 = (1 - id(x1)

00V(l - id(x2))
00 = [(1 - id(x1))V(l - id(x2))]

00

which is contained in / , since

1 - id(X()6(l - id(X,.))°° = X;00 £ J (* = 1,2)

gives (1 - id(x t)) V( l - id(x2)) e / .

Induction shows that if xu •••,xmel then x°°V ••• V ^ ° £ / . If t0 is not a

proper ideal then there exist x 1 , - - - , x m ^ / and y1,---,ynel such that

R= \/x?°V\/y?

Then

n y?° = n y?° n R = v ^° n n y?°
i = l i=l i=l 1 = 1

so that

i = l > = 1

and thus / \"= 11 - idOJe/ .

If e, f are central idempotents and efe I then
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(ef-e)(ef-f) = O

shows that ef — e e I or ef — / e / so e e / or / e /.

Induction gives that if A1 = 1^1 el then etel for some i. Consequently,
1 — id(yi)el for some /, so that ytel, contrary to the choice of yr Hence t0 is
proper ideal in &(R) and is therefore contained in a maximal ideal t. It is readily
seen that R, = /. Conversely it is easily seen that every R,^ R satisfies (1) —(3).
Now let / be a projection ideal such that / n B(R) is a prime ideal in B(R).
Then 141, and if xel, x° - (0) then (1 - id(x)) = (0) so id(x) =.0 and thus
1 = 1 -id(x) e /. That is, / satisfies (1). Suppose xel, ye x00. Then id(x) <* id(y) so

1-idGO g l - id (x)eJ ,

which gives 1 — id(y) e I and hence yel. Finally, suppose that xy = 0. Then

[1 - id(x)] A [1 - MOO] = 0

so 1 — id(x e / or 1 — id(_y) e I, and therefore xel or yel. Hence / satisfies (l)-(3).
Conversely, any ideal satisfying (l)-(3) is a projection ideal whose inter-

section with B{R) is a prime ideal.
For a semi-prime ring R the class of proper ideals J! ,cR can be given a

topology that is compact if R has an identity, and a Boolean space if R is project-
able. Denote by ir{R) the class of ideals R, # R, te&. For xeR, put

PROPOSITION 3.3. The class vR = {V(x): x e R} is an intersection semi-
lattice and so forms a base for the open sets for a topology on ^{R). IfR has an
identity then ̂ (R) is compact. IfR is projectable then vR = {^(x): eeB(R)} is
a lattice for union and intersection and "f~(R) is a Boolean space.

PROOF.

= {R, * R: x00 ny 0 0 $ t)

If R has an identity then the map 4>:t\-*R, maps M onto ^(/?). For xeR,

so (j) is continuous. Since 2. is compact so is"f(R). Now assume R is projectable.
Then every V{x) is of the form ^"(e) for some central idempotent e: in fact
ir (x) = ir (1 - id(x)). Also,^(i?) is a union semi-lattice since

https://doi.org/10.1017/S1446788700013264 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013264


362 G. Davis [10]

"T(x) u -T00 = {R, * R: x00 f t or y00 $ i)

= {R, * R:xoo\/yooft}

= {R, # * : [(1 - id(x))V(l - idOO)]00* t}

If i?(1 7̂  J?,2 then there is an xeRtl, x£Ru. Then 1 = xt + x2 with Xjex00,
X2EX°, so that x^K , , but x2^Rt l , for otherwise le/?( 1 . Thus i J ( l e f (x,),
R,2e-f"(x) and ^(x2) n -̂ "(x) is void. That is, "̂ "(i?) is a Hausdorff space.
Finally, let e be a central idempotent. Then for f e J either «eR, or 1 — eeR,
but not both since 1 £ .Rt, and therefore

so the basic open sets^"(e) are closed-open.

Note that the ideals R, in a semi-prime ring R are just those used by Keimel [4]
and Adams [1]. These ideals were also used by Veksler [8] in a more general
setting. In a commutative semi-prime ring R every minimal prime ideal is an Rt,
and in the next section the converse of this is considered. The minimal prime
ideals in a non-commutative semi-prime ring R are characterized as those prime
ideals P satisfying

P = 0p = {x e R: xa = 0 for some a £ P},

Koh [6], and it then follows as in 2.6 that every minimal prime ideal of R is an R..

4. Commutative semi-prime rings

For a commutative semi-prime ring R there are several conditions that imply
that ^(7?) is a Hausdorff topological space, and if the annihilators x00, xeR,
form a sublattice of 3§(K) then these conditions are equivalent to the Hausdorff
property oi'f {K). Throughout this section R will be assumed commutative and
semi-prime.

The class of minimal prime ideals of R is denoted by Ji{K), and the sets
Jf(x) = {J?eJ?{R)\ x£J?}, for xeR, form a closed-open base for the open
sets for a Hausdorff topology on Jt(R).

THEOREM 4.2. Consider the following statements:
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(1) For every xeR there is an x' eR such that x00 = (x')°
(2) For allx,yeR there is an aex00 ©x° such that y° = a0

(3) TT(R) = JtiR)
(4) Each y (x) is closed in lT(R)
(5) rT(R) is Hausdorff
(6) vR is relatively complemented.

Then
[a] (1) implies (2)
[fc] If R has an identity then (2) implies (1)
[c] (2) implies (3)
[d] (3), (4), (5) arc equivalent
j>] (2) imp/ies (6)

If the intersection semi-lattice {xoo:xe.R} is a sub-lattice of 88(R) then
(2)-(6) are equivalent.

PROOF. (1) implies (2): for x,>>e# suppose that (x')° = x00. Then xyex00,
x'_vex° and

(xy + x'y)00 = ((x + x')y)00 = (x + x')00 ny
00 = [x°°V(x')00]

If /? has an identity 1 then (2) implies (1): for xeR, 1 = a + b with a ex00,

fcex°and (0) - 1« = (fl + fc)» =. flo n ^

so that a00 = b°. Then x00 S b° and fc° = a00 <= x00, so h° = x00.

(2) implies (3): suppose x e R, e V (R). Then there is a. y$Rt and yt e x00,
such that

If y 2
e ^ r then y° = y^f^yt^t s o J'E-Rf Thus y 2 ^^ (

 a nd y2x = 0 so JJ, is
minimal prime. The preceding lemma says that every minimal prime is an Rt,
so that-T (R) = Jf(R).

(3) implies (4): if each RteV(R) is minimal prime then for xeR, f (x)
= Ji{x) is closed in ^(R) = Jt(R).

(4) implies (3): suppose x e R, e ~t~ (R). Then t$ i^ix) so there is a basic
open set "V (y) such that

and T̂ Cv) O "^"(x) is void. That is, y $ Rt and xy = 0 so Rt is minimal prime.
(3) is equivalent to (5): if "T(R) = ~#(R) then TT(R) is Hausdorff. Con-

versely, if "V (R) ^ ^#(i?) then there is a proper .R, that properly contains a minimal
prime ideal M. Then .R, and M cannot be Hausdorff separated.
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(2) implies (6): suppose ~r\{x) e vR and V (y) <= TT(X). Then y00 c x°°, and
there exist aey°, be y00 such that

x00 = (a + b)00 = a

so that xae y0 P\ x00 and

(xa)00\'y00 = (xo onao o)Vj'0 0

= xoon(a0°Vy00)

= aoo\/y00 = x00,

since x00 2 a00 V >-00 2 a00 V b00 = x00. Thus, -T(xa) n -T(y) is void and
"T (xa) Wt" (y) = i^(x), so that vR is relatively complemented.

Now suppose that {xo0:xeK} is a sub-lattice of 8${R). That is, for all
x, y e R there is an a e R such that x00 \/y00 = a00.

(3) implies (2): suppose that R does not have property (2). Then there
exist x,ye R such that for all aex°, y$(x + a)00. The subset

f0 = {A°ea(R): A0 <= (* + a)°0V/\ for some a ex0}

is then an ideal of &(R), since for a,bex°,

(x + a)00Vy°\/(x + b)00\Jy° = xo°VaooVfcooV.y0 = x00Vc00VA

for some ceR and cea00V&00 ^ ^°- If f0 >s n o t a proper ideal then

R = (X + a f V ^ 0 = x 0 0 Va 0 0 V/

for some aeR, so y° = y00 O R = (x°°Va00) n j 0 0 and therefore y e / 0

£ x00 Va00, contrary to assumption. Then t0 is contained in a prime ideal f and
R, # i? since y00 £ f. If a e x° then

aoo£ xooV aoov >,o = (x + a)
00\/yoet

so a e Rt. That is, x e R, and x° c Rt so /?, is not minimal prime.
(6) implies (2): if vR is relatively complemented and x,yeR then

^"(x) c-T(a), where a00 = x00V^00, so there is an x'eR such that x' x = 0 and

(x')00Vx00 = x°°Vy00. Then

(x'y + xy)00 = (x' + x)00 ny 0 0 = (x00Vy00) ny 0 0

and x'y e x°, xy ex00.
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