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Abstract

It is proved that the Neumnann boundary value problem, which Mays and Norbury have
recently connected with a certain fluid dynamics equation, has a positive solution for any
positive value of a particular parameter. Uniform bounds for the solutions and symmetry
on a given range of the parameter are also introduced. The proofs include Krasnoselskii’s
classical fixed-point theorem on cones of a Banach space and basic comparison techniques.

1. Introduction

In a recent paper by Mays and Norbury [3], the Neumann boundary value problem
Lu=—u"+ q*u = u*(1 + sinx),
W(0) =0 =u'(m),

was studied using analytical and numerical methods. This problem was considered
as a simplified version of a fluid dynamics equation introduced by Benjamin [1]. The
results in [3] are mostly of a numerical nature and show the existence of a solution if
q* € (0, 10). It is important to obtain analytical results which could confirm and/or
complement the numerical understanding of this problem [3]. This is the aim of
this note. In Section 2 the existence of a solution for any value of the parameter
g > 0is rigorously proved. The proof relies on a fixed-point theorem for completely
continuous Krasnoselskii operators and the positivity of the Green’s function of the
linear part of the problem, as has already been observed in [3]. In Section 3 uniform
bounds for the solutions are deduced as well as symmetry for a certain range of values
of g, by using basic comparison arguments. All these results confirm the numerical
evidence from [3], although the range where symmetry appears is more conservative
and uniqueness remains an open problem.

(1.1)
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2. Existence of solutions

The main result is the following.

THEOREM 2.1. Problem (1.1) has a positive solution for any positive q.

The proof is based on the following fixed-point theorem for cones in a Banach
space [2, p. 148] and some arguments recently developed in [4).

THEOREM 2.2. Let 9 be a Banach space and let 2 C 9B be a cone in %B. Assume
Q1, §, are open subsets of B with0 € ,, Q, C Qs andletA : PN (/) —> P
be a completely continuous operator such that one of the following conditions is
satisfied:

(D [Aull = llull, v € P NIR, and |Aull = flull, u € P NIQ;
) Aull = lull, ue PNIQ and ||Au|l < ull, u € P NIN,.

Then A has at least one fixed point in @ N (/).

As was observed in [3], the Green’s function k(x, y) of the operator L with Neu-
mann conditions is a positive and continuous function on [0, ] x [0, 7]. Thus
problem (1.1) can be written as the fixed-point problem

u(x) = /” k(x, y)u*(y»)(1 +siny)dy = Au. .1
0

PROOF OF THEOREM 2.1. We follow along the lines of [4, Section 3]. If we denote
m=mink(x,y), M =maxk(x,y), x,ye€][0, ],

then evidently M > m > 0. In order to apply Theorem 2.2, let us consider the Banach
space & = C([0, w]) with the L*-norm || - ||, and define the following cone in %:

. m
Py = {u €Z: ,2?52;“(” > ﬁ"u”oo}-
Let us prove that A &, C $?,. For a given u € &, we have
min Au(x) > [ mu*(y)(1 +siny) dy
xel0,r] 0

m " 2 : _m
> M[o l{(x,y)u (A +siny)dy = MAu(x),

for all x € [0, ], so in particular min, ¢ »j Au(x) = (m/M)||Aulw.
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Now let us define the open balls

1 M2
Ql={u€gillullw<m} and szlue‘@:”u|lw<”—'ns},
Clearly,_O € £2,. On the other hand, observe that the radius of 2, is less than that of

2,50 Q) C Q,.
Now, if u € 22, N3,

2
lAullo < 27 Mljulls, = llulico.

whereas if u € 92, NI,
T ) E: 4 m3
lAulle > m/ ()L +siny)dy = mf 20)dy 2 Tl = .
0 0

Therefore (2.1), and in consequence problem (1.1), has a solution u € Py N (/ R)).

3. Uniform bounds and symmetry of the solutions

Note that from the proof of Theorem 2.1 the following bounds of the solution are
deduced:

2
Tt S U = —3.
However, these bounds are valid only for this particular solution; in principle there
may exist other solutions outside these limits. Our following goal is to get uniform
bounds for every solution of problem (1.1).

THEOREM 3.1. There exist constants €, C (only depending on q) such that any
solution of problem (1.1) verifies

e<ux)<C, xe€l[0,n]

PROOF. First, it is important to consider that, as was observed in [3], every solution
of (1.1) is positive. An integration of the equation gives

Pl = [ 1201+ sinx)x 2 pul,
0
and by the Cauchy-Schwartz inequality, {jull, < g%/m. Moreover,
u(x) = / u'(s)ds = / (qzu(s) — u*(s)(1 + sin s)) ds < ¢*|lull, < ¢*m,
) 0

—u(x) = f” u'(s)ds = /” (q%u(s) — u*(s)(1 +sins))ds < g°llull, < g°n,
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so in consequence ||¢/[|o < g*r.

On the other hand, any non-constant solution of (1.1) must have an inflexion point,
that is, there exists xo € ]O, 7r[ such that ¥”(xo) = 0. From this equation, it is easy to
deduce that

q*/2 < u(xo) < ¢

We can now deduce the upper bound C as follows:

u(x) = u(xp) +f W(s)ds < ¢+ n’q* =: C. 3.1
X0

We still need to obtain the lower bound €. It will be done by comparison of u with

solution & of the autonomous initial value problem

—i" + q¢*n = i?,

u(0)=e€ u'0)=0.

By continuous dependence of the solution on the initial conditions it is easy to realise
that if € is small enough, i is positive, increasing, convex and & < ¢*/4, x € [0, ).

Evidently € depends on g. By contradiction, let us assume that u(x,,)= min u(x) <e.
Without loss of generality, it can be assumed that x,, < 7 (if x,, = 7, we can continue
the argument with w(x) = u(;r — x), which is also a solution of (1.1)). Let us define
z(x) = u(x) — u(x). Note that

u(xy) < € <ulxp), u(xy) =0<i'(xy,),

s0 z(xn) < 0, Z'(x,) < 0. Evidently, z cannot be identically zero. We are going to
prove that z(x) < O for all x > x,. If this is not true, there exists x; > x,, such
that z(x;) < 0, z’(x;) = 0 and z"(x,) > 0 (z(x,) would be a local minimum of z).
Subtracting the equations,

—2"(x1) = z(xp)(u(xy) + @(x;) — %) + sin(x)u?(x;) > 0,

because u(x,) < u(x,) < g?/4. This is a contradiction and hence it is proved that
z(x) < Oforallx > x,,.

As a consequence, u(x) < g%/4 for all x > x,. Now, in order to finish the
reasoning we only have to point out that there must be an inflexion point u(xp)
with x,, < xo < m, and as was observed before, g%/2 < u(xy) < q%, leading to a
contradiction. The consequence is that u(x,,) > €, and the proof is finished.

Note that constant C is explicitly defined in (3.1). This information can be used to
prove the symmetry of the solutions (that is, u(x) = u(;r — x)) on a certain range of
values of q.
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THEOREM 3.2. Let us suppose that q is a positive constant such that
3¢*+4n%g* < 1. (3.2)
Then any solution of problem (1.1) is symmetric.

PROOF. Let u; be a solution, then it is easy to verify that u; = u, (7w — x) is also
a solution. Our purpose is to prove that u; = u, under condition (3.2). Let us define
Z = u; — u. Then z is a solution of the problem

"+akx)z=0,

7(0) = 0 = Z'(m), (3-3)
where a(x) = (1 + sinx)(u; + u;) — g*. Observe that by Theorem 3.1,
u(x) < C=g4* +7!2q4, xe[0,n],i=1,2.
Therefore, using condition (3.2),
alx) <1, xe€l[0,n] (34

Let us prove that z is identically zero. Let us suppose that z is not the trivial solution
of (3.3). Let us change to polar coordinates, z = rcos @, z’ = —rsinf. By deriving
z and 7' we get respectively

r'cos® — rsin(0)9’ = —rsiné,

—r'sin@ — rcos(0)8’ = —a(x)rcosé.

Multiplying the first equation by sin 8, the second one by cos 8 and adding, we obtain
the equation

0’ = a(x) cos®6 + sin? 4. (3.5)

Now, an integration in the interval [0, x] and (3.4) give
0(x) —0(0) =/ (a(s) cos® 8 + sin*0)ds < / (cos?0 +sin8)ds =x, (3.6)
0 0

forall x € (0, 7].

On the other hand, note that z(x) = —z(m — x), and therefore z(7/2) = 0. By the
Sturm comparison theorem (compare with z” + z = 0), this is the unique zero of z in
the interval {0, m]. Besides, z(0)z(r) < 0 because z is not the trivial solution. We
can assume without loss of generality that z(0) > 0 (if z(0) < 0 we work with —z).
Then 68(0) = 0 since z'(0) = 0. Moreover, z(7/2) = 0 and z'(7/2) < O (remember
that z is not the trivial solution and z(rr/2) is the unique zero), so 8(;r/2) = /2. But
by (3.6), m/2 = 8(;r/2) — 8(0) < m/2. This is a contradiction. The conclusion is
that z = 0 and therefore the proof is finished.
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A numerical computation of condition (3.2) provides ¢ € ]0,0.354446]. As a
final remark, the uniqueness of a positive solution on a given range of values of the

parameter q is strongly suggested by numerical calculations. The analytical proof
remains an open problem.
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