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Abstract

It is proved that the Neumann boundary value problem, which Mays and Norbury have
recently connected with a certain fluid dynamics equation, has a positive solution for any
positive value of a particular parameter. Uniform bounds for the solutions and symmetry
on a given range of the parameter are also introduced. The proofs include Krasnoselskii's
classical fixed-point theorem on cones of a Banach space and basic comparison techniques.

1. Introduction

In a recent paper by Mays and Norbury [3], the Neumann boundary value problem

Lu = -u" + q2u = «2(1 + sin*),

u'(0) = 0 = ii'Or), ( 1 1 >

was studied using analytical and numerical methods. This problem was considered
as a simplified version of a fluid dynamics equation introduced by Benjamin [1]. The
results in [3] are mostly of a numerical nature and show the existence of a solution if
q2 € (0, 10). It is important to obtain analytical results which could confirm and/or
complement the numerical understanding of this problem [3]. This is the aim of
this note. In Section 2 the existence of a solution for any value of the parameter
q > 0 is rigorously proved. The proof relies on a fixed-point theorem for completely
continuous Krasnoselskii operators and the positivity of the Green's function of the
linear part of the problem, as has already been observed in [3]. In Section 3 uniform
bounds for the solutions are deduced as well as symmetry for a certain range of values
of q, by using basic comparison arguments. All these results confirm the numerical
evidence from [3], although the range where symmetry appears is more conservative
and uniqueness remains an open problem.
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2. Existence of solutions

The main result is the following.

THEOREM 2.1. Problem (1.1) has a positive solution for any positive q.

The proof is based on the following fixed-point theorem for cones in a Banach
space [2, p. 148] and some arguments recently developed in [4].

THEOREM 2.2. Let 38 be a Banach space and let & C & be a cone in 98. Assume
fi,, n2 are open subsets of 88 with 0 € Sih fii C ^2 and let A : &> D (Q2/Ut) -> P
be a completely continuous operator such that one of the following conditions is
satisfied:

(1) \\Au\\ < ||H||, u e 9 n 3ft, and \\Au\\ > ||M||, U e & D dfi2;
(2) ||-AM|| > ||M||, U e & n 3J2, anJ ||A«|| < ||u||, u e &> n dQ2.

Then A has at least one fixed point in &> n

As was observed in [3], the Green's function k(x, y) of the operator L with Neu-
mann conditions is a positive and continuous function on [0, n] x [0, n]. Thus
problem (1.1) can be written as the fixed-point problem

= f
Jo

u(x)= f k(x, y)«2O0(l+ sin y)dy=Au. (2.1)
J

PROOF OF THEOREM 2.1. We follow along the lines of [4, Section 3]. If we denote

m = mink(x, y ) , M = ma\k(x,y), x,ye[0, n],

then evidently M > m > 0. In order to apply Theorem 2.2, let us consider the Banach
space SS = C([0, n]) with the L°°-norm || • ||oo, and define the following cone in SB:

e@: min u(x) > ^-HKHOO

Let us prove that A &0 c ^o- For a given u € &0, we have

min AM(JC) > / mu2fy)(l + siny)dy
e|O |̂ JQ

for all x € [0, n-], so in particular min^£l0,^i/4M(a:) >
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Now let us define the open balls

and Q2 = \u e ® : \\u\U < —

Clearly, 0 € Qt. On the other hand, observe that the radius of £2, is less than that of
Q2, so Qi C S22-

Now, if u e ^ o n 3 S 2 i ,

\\Au\\0O<2nM\\u\\2
00 = \\u\U

whereas if u e ^ 0 n 3f22»

IIAMIIOO > m f u2(y)a + smy)dy>m f u2(y)dy > ^-n\\u\\l = \\u\U
Jo Jo M

Therefore (2.1), and in consequence problem (1.1), has a solution u e &o(^(&2/&i)-

3. Uniform bounds and symmetry of the solutions

Note that from the proof of Theorem 2.1 the following bounds of the solution are
deduced:

m , x M2

< u(x) <

However, these bounds are valid only for this particular solution; in principle there
may exist other solutions outside these limits. Our following goal is to get uniform
bounds for every solution of problem (1.1).

THEOREM 3.1. There exist constants e, C {only depending on q) such that any
solution of problem (1.1) verifies

€ < u(x) < C, x € [0, n].

PROOF. First, it is important to consider that, as was observed in [3], every solution
of (1.1) is positive. An integration of the equation gives

<72IMI. = f «2(l + sin^)^>||«||^,
Jo

and by the Cauchy-Schwartz inequality, ||«||2 < q1^. Moreover,

u'(x)= f u"(s)ds= I (q2u(s)-u2(s)(l+sins))ds <q2\\u\U < <7V
./o Jo

-u\x) = I u"(s)ds = f (q2u(s) - u2(s){l+sins))ds < q2\\u\\l < q'n,
Jx Jx
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so in consequence ||M'||OO < q*n-
On the other hand, any non-constant solution of (1.1) must have an inflexion point,

that is, there exists x0 e ]0, n[ such that u"(x0) = 0. From this equation, it is easy to
deduce that

q2/2 < u(x0) < q2.

We can now deduce the upper bound C as follows:

u(x) = u(x0) + I u'(s)ds <q2 + n2q* =: C. (3.1)
Jxo

We still need to obtain the lower bound e. It will be done by comparison of u with
solution u of the autonomous initial value problem

-u" + q2u = u2,

H(0) = e, u(0) = 0.

By continuous dependence of the solution on the initial conditions it is easy to realise
that if e is small enough, u is positive, increasing, convex and u < q*/4, x € [0, n].

Evidently e depends on q. By contradiction, let us assume that u{xm)= min u(x) <e.
Without loss of generality, it can be assumed thatxm <n(ifxm=n,we can continue
the argument with w(x) = u(n — x), which is also a solution of (1.1)). Let us define
z(x) = u(x) - u(x). Note that

«(*«) < « < «C*»). u'(xm) = 0 < u'(xm),

so z(xm) < 0, z'(xm) < 0. Evidently, z cannot be identically zero. We are going to
prove that z(x) < 0 for all x > xm. If this is not true, there exists x\ > xm such
that z(x\) < 0, z'(xi) = 0 and z"{x\) > 0 (z(xx) would be a local minimum of z).
Subtracting the equations,

-*"(*,) = Z(JC,)(M(JCI) + «(JC,) - q2) + sin(x,)«2(jc,) > 0,

because u(x\) < u(x{) < q2/4. This is a contradiction and hence it is proved that
z(x) < 0 for all AT > xm.

As a consequence, u(x) < q2/4 for all x > xm. Now, in order to finish the
reasoning we only have to point out that there must be an inflexion point u(x0)
with xm < x0 < n, and as was observed before, q2/2 < u(x0) < q2, leading to a
contradiction. The consequence is that u(xm) > e, and the proof is finished.

Note that constant C is explicitly defined in (3.1). This information can be used to
prove the symmetry of the solutions (that is, u(x) = u(n — x)) on a certain range of
values of q.
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THEOREM 3.2. Let us suppose that q is a positive constant such that

3q2 + 4n2q4 < 1. (3.2)

Then any solution of problem (1.1) is symmetric.

PROOF. Let u\ be a solution, then it is easy to verify that M2 = u\{n — x) is also
a solution. Our purpose is to prove that M, = «2 under condition (3.2). Let us define
z = ui — u2. Then z is a solution of the problem

0,

z'(0) = 0 = z'(n),

where a(x) = (1 + s i n x ) ^ + u2) — q2. Observe that by Theorem 3.1,

u,(x) <C = q2+ n2q\ x e [0, n], i = 1, 2.

Therefore, using condition (3.2),

a(x) < 1, xe[0,n]. (3.4)

Let us prove that z is identically zero. Let us suppose that z is not the trivial solution
of (3.3). Let us change to polar coordinates, z = rcos#, z' = — r sin 6. By deriving
z and z' we get respectively

r'cosfl - rsin(9)9' = -rs inf l ,

-r'sin9 - rcos(0)0' = -a(x)rcos6.

Multiplying the first equation by sin 0, the second one by cos 6 and adding, we obtain
the equation

G1 = a (x) cos2 9 + sin2 9. (3.5)

Now, an integration in the interval [0, x] and (3.4) give

9(x)-9(0)= I (a(s)cos29 +sin29)ds < I (cos29 + sin29)ds = x, (3.6)
Jo Jo

for all x e (0, TT].

On the other hand, note that z(x) = —z(7r — x), and therefore z(n/2) = 0. By the
Sturm comparison theorem (compare with z" + z = 0), this is the unique zero of z in
the interval [0, n]. Besides, z(0)z(7r) < 0 because z is not the trivial solution. We
can assume without loss of generality that z(0) > 0 (if z(0) < 0 we work with - z ) .
Then 9(0) = 0 since z'(0) = 0. Moreover, z(7r/2) = 0 and z'(n/2) < 0 (remember
that z is not the trivial solution and z(n/2) is the unique zero), so9(n/2) = n/2. But
by (3.6), 7r/2 = 9(n/2) — 9(0) < n/2. This is a contradiction. The conclusion is
that z = 0 and therefore the proof is finished.
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A numerical computation of condition (3.2) provides q 6 ]0, 0.354446]. As a
final remark, the uniqueness of a positive solution on a given range of values of the
parameter q is strongly suggested by numerical calculations. The analytical proof
remains an open problem.
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