
Bull. Austral. Math. Soc. 78 (2008), 147–156
doi:10.1017/S0004972708000579
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Abstract

Using Ahlfors’ theory of covering surfaces, we prove the existence theorem for the T direction for
algebroid functions dealing with multiple values which extends the results proved by Guo, Zheng and
Ng and answers a question by Wang, Giao and the present authors.
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1. Introduction and main results

Let w(z) be a ν-valued algebroid function in |z| < +∞, defined by an irreducible
equation (see [2, 6])

Aν(z)w
ν

+ Aν−1(z)w
ν−1

+ · · · + A0(z) = 0, (1.1)

where Aν(z), Aν−1(z), . . . , A0(z) are entire functions with no common zero.
The value distribution of meromorphic functions due to Nevanlinna (see [11]) was

extended to the corresponding theory of algebroid functions by Selberg, Ullrich, and
Valiron in the 1930s. The study of the singular direction for algebroid functions was
raised by Valiron in 1938. Valiron [7] conjectured that there exists a Borel direction
for any ν-valued algebroid function of finite and positive order growth. It was proved
by Rauch that there exists a direction such that the corresponding Borel exceptional
set is a set of linear measure zeros. In 1969, Toda [5] proved that there is a direction
such that the corresponding Borel exceptional values are countable. Later, Lü and
Gu [3] proved a more precise result than Valiron [6] and Toda [5] – that there is a
Borel direction and its corresponding Borel exceptional values are 2ν. We recall Lü
and Gu’s result for convenience.
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THEOREM 1.1 [3]. Suppose that w(z) is a ν-valued algebroid function of order λ

which is a finite and positive number. Then there exists a ray arg z = θ which is called
a Borel direction of order λ of w(z), such that

lim sup
r→∞

log n(r, θ, ε, a)

log r
= λ

holds for any 0 < ε < π and all a in C∞ := C ∪ {∞} with at most 2ν exceptions.

Recalling the definition of the Borel direction for algebroid functions, this
characterization is only effective for the finite and positive order functions. When
the order λ = 0 or ∞, it is not better to use the order to characterize the growth of
w. In this case, Zheng [13] considered the T -direction which gives another singular
direction for the meromorphic function. We recall his definition as follows.

DEFINITION 1.2. Let f (z) be a meromorphic function in the complex plane. A radial
arg z = θ is called a T direction of f (z), provided that given any b ∈ C∞, possibly
with the exception of at most two values of b, for arbitrary small ε > 0,

lim sup
r→∞

N (r, θ, ε, b)

T (r, f )
> 0.

A radial arg z = θ is called a precise T direction of f (z) if, in the above expression,
N (r, θ, ε, b) is replaced by N (r, θ, ε, b).

The existence theorem for the T direction for a meromorphic function f (z)
satisfying lim supr→∞ T (r, f )/(log r)2

= ∞ was recently obtained by Guo et al. [1].
For a ν-valued algebroid function, its T direction is defined in the same way as
Definition 1.2 with the corresponding characteristic and counting functions introduced
by Selberg for algebroid functions, provided that the maximum number of exceptional
values permitted here is 2ν instead of 2. Most recently, Wu [9] proved the existence of
the T direction for algebroid functions and obtained the following theorem.

THEOREM 1.3. Suppose that w(z) is a ν-valued algebroid function defined by (1.1)
and satisfying

lim sup
r→∞

T (r, w)/(log r)2
= +∞. (1.2)

TShen there exists a ray arg z = θ which is called a T direction of w(z), such that

lim sup
r→∞

N (r, θ, ε, a)

T (r, w)
> 0

holds for any 0 < ε < π and all a in C∞ with at most 2ν exceptions.

When multiple values are considered, Wang and Gao [8] prove the following
theorem.

https://doi.org/10.1017/S0004972708000579 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000579


[3] On T direction of algebroid function 149

THEOREM 1.4. Suppose that w(z) is a ν-valued algebroid function satisfying
lim supr→∞ T (r, w)/(log r)2

= +∞, but that it does not grow so rapidly that the
lower order is finite. Then there exists a ray arg z = θ which is called a T direction
dealing with multiple values of w(z), such that

lim sup
r→∞

N
l)
(r, θ, ε, a)

T (r, w)
> 0

holds for any 0 < ε < π and all a in C∞ := C ∪ {∞} with at most 2ν exceptions. Here
l ≥ 2ν + 1.

In Wang and Gao [8, Remark 2], the authors ask whether Theorem 1.4 also holds
when the lower order is infinite. In this paper, we shall address this problem and prove
the following theorem.

THEOREM 1.5. Let w(z) be a ν-valued algebroid function defined on the whole
complex plane and satisfying (1.2). Then there exists a ray L : arg z = θ such that,
for arbitrary small ε > 0,

lim sup
r→∞

N
l)
(r, θ, ε, a)

T (r, w)
> 0

holds for any given a ∈ C∞, provided the maximum number p of exceptional values
satisfying the following relation:

p =



4ν if l = 1,

3ν if l = 2,[
2

l + 1
l

ν

]
if 3 ≤ l ≤ 2ν,

2ν if l ≥ 2ν + 1.

(1.3)

Theorem 1.5 was posed by the present authors in [10]. There, they proved that
Theorem 1.5 is valid for 3 ≤ l. At present, Zuxing [14] has independently proved
that Theorem 1.5 is also valid for l ≥ 2v + 1. The following example implies that no
smaller number can replace the maximum number q = 4ν of exceptional values when
l = 1.

EXAMPLE 1.6. Let

z(ζ ) =

∫ ζ

0

dt√
(1 − t2)(1 − ρ2t2)

;

here ρ ∈ R and 0 < ρ < 1. Then the inverse function of z(ζ ) (denoted by ζ(z)) is a
meromorphic function of finite and positive order growth, and 1, −1, 1/ρ, −1/ρ are
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also multiple values of ζ(z) (see [11, p. 151]). Let w(z) be an algebroid function
defined by the irreducible equation

ζ(z)wν
− 1 = 0.

By Theorem 1.5, w(z) has at least one T direction dealing with multiple values with
respect to l = 1, which has q = 4ν dealing with multiple values ν

√
1,

ν
√

−1, ν
√

ρ, ν
√

−ρ.

2. Some notation and lemmas for algebroid function

For the sake of convenience, we introduce some basic notation for algebroid
functions (see [2]). Suppose that w(z) is a ν-valued algebroid function defined by
expression (1.1) on |z| < ∞. The single-valued domain of definition of w(z) is a
ν-sheeted covering of z-plane, a Riemann surface, denoted by R̃z . It is denoted by z̃
since the point in R̃z whose projection in the z-plane is z. The part of R̃z which covers
a disk |z| < r is denoted by |̃z| < r . For any a ∈ C∞, put

N (r, a) =
1
ν

∫ r

0

n(t, a) − n(0, a)

t
dt +

n(0, a)

ν
log r,

m(r, w) =
1

2πν

∫
|̃z|=r

log+
|w(reiθ )| dθ, z = reiθ ,

where n(r, a) is the number of zeros, counted according to their multiplicities, of
w(z) − a in |̃z| ≤ r . Suppose that a = ∞. Let

T (r, w) = m(r, w) + N (r, w).

The Ahlfors–Shimizu characteristic may be written as

1
ν

∫ r

0

S(t, w)

t
dt := T0(r, w) = T (r, w) + O(1),

where

S(r, w) =
1
π

∫ ∫
|̃z|≤r

(
|w′(z)|

1 + |w(z)|2

)2

dw.

In this paper we use the Ahlfors–Shimizu characteristic in the same as the T (r, w)

without any conflict with the following discussion. In general, suppose that Ẽ is a
subset of R̃z ; we denote

S(r, E, w) =
1
π

∫ ∫
Ẽ

(
|w′(z)|

1 + |w(z)|2

)2

dw

and

T (r, E, w) =
1
ν

∫ r

0

S(t, E, w)

t
dt.
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The order and lower order of an algebroid function w(z) are denoted by

λ = lim sup
r→∞

log T (r, w)

log r
, µ = lim inf

r→∞

log T (r, w)

log r
.

We define the angular domain

4(θ0, δ) = {z|arg z − θ0| < δ}, 0 ≤ θ0 < 2π, 0 < δ <
π

2
.

The part of R̃z which lies over 4(θ0, δ) is denoted by 4̃(θ0, δ). Let n(r, θ0, δ, a) (or
n(r, θ0, δ, a)) be the number of zeros of w(z) − a in 4̃(θ0, δ) ∩ {|̃z| ≤ r}, counting
multiplicities (or ignoring multiplicities). Put

N (r, θ0, δ, a) =
1
ν

∫ r

0

n(t, θ0, δ, a) − n(0, θ0, δ, a)

t
dt + n(0, θ0, δ, a) log r.

Let nl)(r, θ0, δ, a) be the number distinct zeros with multiplicity no greater than
l of w(z) − a in 4̃(θ0, δ) ∩ {|̃z| ≤ r}. Similarly, we can define N (r, θ0, δ, a) and

N
l)
(r, θ0, δ, a). Denote nχ (r, w), (nχ (r, 4(θ0, δ), w) by the number of the branch

points of R̃z on |z| < r (on the region 4(θ0, δ)), counting the order of branch points.
Denote

Nχ (r, w) =
1
ν

∫ r

0

nχ (t, w) − nχ (0, w)

t
dt +

nχ (0, w)

ν
log r.

Similarly, we can define Nχ (r, 4(θ0, δ), w). We present some properties of T (r, w)

and Nχ (r, w).

LEMMA 2.1 [2].
Nχ (r, w) ≤ 2(ν − 1)T (r, w) + O(1). (2.1)

The following lemmas are useful in the proof of Theorem 1.5.

LEMMA 2.2. Suppose that w(z) is a ν-valued algebroid function in an angular
domain 40 = {z : |arg z − θ | < δ0}. Let 4 = {z : |arg z − θ | ≤ δ} be an angular
domain, contained in 40, where θ ∈ [0, 2π) and 0 < δ < δ0. The part of R̃z which

lies over 4 is denoted by 4̃. Then for arbitrarily constant λ > 1, positive integer α

and any q(q > 2) distinct points a1, a2, . . . , aq ∈ C,(
q − 2 −

2
l

)
S(r, 4, w) ≤ 2

q∑
j=1

nl)(λ2αr, 40, a j ) +
l + 1

l

(
1 +

1
α

)
nχ (λ2αr, 40, w)

+

(
q − 2 −

2
l

)
S(λ2α, 4, w) + O(log+r).

Using Lemma 3.1 and the similar method in [12], we can prove that Lemma 2.2 is
valid. We omit the details.
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LEMMA 2.3 [4]. Let B(r) be a positive and continuous function in [0, +∞)

which satisfies lim supr→∞((log B(r))/(log r)) = ∞. Then there exist continuously
differentiable functions ρ(r) and U (r) which satisfy the following conditions.

(1) ρ(r) ↓ 0 and ρ′(r) are monotone increasing.
(2) limr→∞ rρ′(r) log r log log r = 0.
(3) For sufficient large r , we have

B(r) � U (r) = rexp(1/(ρ(r))),

where ‘�’ denotes that B(r) ≤ U (r) and there is a sequence {rn} → ∞, such
that B(rn) = U (rn).

(4) U (R) < (1 + o(1))U (r), where R = r + ((r log r)/(log U (r) log2 log U (r))).

3. Proof of Theorem 1.5

PROOF. Assume that w(z) is a ν-valued algebroid function defined by (1.1) and
satisfying (1.2). Let m(m ≥ 4) be a positive integer such that

θ0 = 0, θ1 =
2π

m
, . . . , θm−1 =

(m − 1)2π

m
, θm = θ0,

and

4(θi ) =

{
z : |arg z − θi | <

2π

m

}
, i = 0, 1, . . . , m − 1; 4(θm) = 4(θ0).

Then among these m angular domains {4(θi )}, there is at least one angular domain
4(θi ) such that the relative expression

lim sup
r→∞

N
l)
(r, 4(θi ), a)

T (r, w)
> 0 (3.1)

holds for all a ∈ C∞ with at most p exceptions; here p and l satisfy (1.3).
In the following, we need to consider two different cases.
(I) lim infr→∞((log T (r, w))/(log r)) = µ < +∞. In this case, we shall prove

that (3.1) is valid by using a similar method to that in [8]. If it is not valid,
then for any angular domain 4(θi )(1 ≤ i ≤ m), we have q = p + 1 distinct points
a j

i ( j = 1, 2, . . . , q) in C∞ such that

m−1∑
i=0

q∑
j=1

N
l)
(r, 4(θi+1), a j

i+1) = o(T (r, w)). (3.2)

Let α be an arbitrary positive integer. Put

θi,k =
2π i

m
+

2πk

αm
, 0 ≤ i ≤ m − 1, 0 ≤ k ≤ α − 1, θi,0 = θi .
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For sufficiently large r , let

4i,k = {z : |z| < r, θi,k ≤ arg z < θi,k+1}.

Then

{|z| < r} =

α−1∑
k=0

m−1∑
i=0

4i,k .

Hence, there must be one k0 (0 ≤ k0 ≤ α − 1), such that

m−1∑
i=0

n(4i,k0, R̃z) ≤
1
α

n(r, R̃z).

Define the angular domains

4i =

{
z

∣∣∣∣ θi,k0 + θi,k0+1

2
≤ arg z ≤

θi+1,k0 + θi+1,k0+1

2

}
,

4
0
i = {z | θi,k0 < arg z < θi+1,k0+1} ⊂ 4(θi+1).

Since 4
0
i only covers 4i,k0 twice,

m−1∑
i=0

nχ (r, 4
0
i , w) ≤

(
1 +

1
α

)
nχ (r, w). (3.3)

Hence,
m−1∑
i=0

Nχ (r, 4
0
i , w) ≤

(
1 +

1
α

)
Nχ (r, w). (3.4)

Applying Lemma 2.2 to 4
0
i , 4i ,(

q − 2 −
2
l

)
T (r, 4i , w) ≤ 2

q∑
j=1

N
l)
(λ2αr, 4

0
i , a j

i+1)

+
l + 1

l

(
1 +

1
α

)
Nχ (λ2αr, 4

0
i , w) + O(log2r). (∗)

By T (r, w) =
∑m−1

i=0 T (r, 4i , w), sum to i = 0, 1, . . . , m − 1 in two sides of the
above expression (∗) and substituting (3.4), we obtain(

q − 2 −
2
l

)
T (r, w) ≤ 2

m−1∑
i=0

q∑
j=1

N
l)
(λ2αr, 4

0
i , a j

i+1)

+

(
1 +

1
α

)2 l + 1
l

Nχ (λ2αr, w) + O(log2r). (3.5)
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Applying (3.2) to (3.5) and then combining Lemma 2.1 shows that(
q − 2 −

2
l

)
T (r, w) ≤

(
1 +

1
α

)2 l + 1
l

Nχ (λ2αr, w) + O(log2r)

≤ 2(ν − 1)

(
1 +

1
α

)2 l + 1
l

T (λ2αr, w) + O(log2r). (3.6)

By the hypothesis and applying [8, Lemma 1] to T (r, w),

lim
n→∞

T (rn, w)

log2 rn
= +∞, T (λ2α Rn, w) ≤ λ2αµT (Rn, w),

where R1−o(1)
n ≤ rn ≤ Rn(n → ∞). From this,

lim
n→∞

T (Rn, w)

log2 Rn
= +∞.

In (3.6), we let r = Rn and obtain(
q − 2 −

2
l

)
T (Rn, w) ≤ 2(ν − 1)

(
1 +

1
α

)2 l + 1
l

λ2αµT (Rn, w) + O(log2 Rn).

Hence, (
q − 2 −

2
l

)
≤ 2(ν − 1)

(
1 +

1
α

)2 l + 1
l

λ2αµ.

Letting α → ∞, λ → 1, we get(
q − 2 −

2
l

)
≤ 2

l + 1
l

(ν − 1).

Hence, 
q ≤ 4ν if l = 1,

q ≤ 3ν if l = 2,

q ≤ 2
l + 1

l
ν if 3 ≤ l ≤ 2ν,

q < 2ν + 1 if l ≥ 2ν + 1.

This contradicts q = p + 1 and (3.1) follows.
(II) lim infr→∞((log T (r, w))/(log r)) = +∞, that is to say w(z) is an infinite

order function. By Lemma 2.3, there exists U (r) satisfying conditions (1)–(4) of
Lemma 2.3. By using the same method as that in [9], we can assert that there is at
least an angular domain 4(θi ) such that the relative expression

lim sup
r→∞

N
l)
(r, 4(θi ), a)

U (r)
> 0

holds for all a ∈ C with at most p exceptions. We omit the details.
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Furthermore,

lim sup
r→∞

N
l)
(r, 4(θi ), a)

T (r, w)
= lim sup

r→∞

N
l)
(r, 4(θi ), a)

U (r)

U (r)

T (r, w)

≥ lim sup
r→∞

N
l)
(r, 4(θi ), a)

U (r)
lim inf
r→∞

U (r)

T (r, w)
> 0.

Hence, (3.1) follows in this case.
By (3.1), we can see that for arbitrary positive integer m there exists an angular

domain

4(θm) =

{
z : |arg z − θm | <

2π

m

}
such that for any a,

lim sup
r→∞

N
l)
(r, 4(θm), a)

T (r, w)
> 0, (3.7)

except for p exceptions at most. Choosing a subsequence of {θm}, and continuing to
denote it by {θm}, we assume that θm → θ . Put L : arg z = θ . Then L is the T direction
of Theorem 1.5.

In fact, for any ε(0 < ε < π/2), when m is sufficiently large, we have 4(θm) ⊂

4(θ, ε). By (3.7), we obtain

lim sup
r→∞

N
l)
(r, θ, ε, a)

T (r, w)
≥ lim sup

r→∞

N
l)
(r, 4(θm), a)

T (r, w)
> 0

with at most p exceptions for a. Hence, Theorem 1.5 holds in this case. 2
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