On lattices acting on boundaries of semi-simple groups

R. J. SPATZIER

Department of Mathematics, University of Maryland, College Park, MD 20742, USA

(Revised version received 4 January 1982)

Abstract. It is shown that for a lattice Γ in a semi-simple group of real rank 1 the action on the boundary always admits an equivariant topological Γ -factor. We also show that there are no such factors for SL (n, \mathbb{Z}) acting on \mathbb{P}^{n-1} , $n \ge 3$.

Introduction

In his proof of the finiteness theorem in [3] and [4] Margulis classifies all measurable Γ -quotients of the maximal boundary G/P for an irreducible lattice Γ in a semisimple Lie group G (finite centre, no compact factors) of real rank at least two. In fact, he shows that they are all of the form G/P' for some parabolic subgroup P'. At the same time his method allows one to 'construct' non-trivial SL $(2, \mathbb{Z})$ -quotients of S^1 in the measurable sense. In fact, his method generalizes to some other rank 1 lattices.

At the end of his paper Margulis asks whether one could have topological (Hausdorff) quotients for SL (n, \mathbb{Z}) acting on \mathbb{P}^{n-1} , $n \ge 2$. R. Zimmer proved in [7] that, for n > 2, any such quotient is trivial. Here we first propose a geometrical method to construct factors of the boundary for any lattice in a rank 1 group. Measure-theoretically though, these quotients will be trivial. Then we present another argument for the triviality for $n \ge 2$. For general Γ and G the question is still open. Our argument might essentially carry over to the case of split lattices.

I. The rank 1 case

To fix notation, let G be a connected simple Lie group without compact factors of real rank 1. Let Γ be a lattice in G. H will denote the globally symmetric space G/K for K a maximal compact subgroup of G. B will be the boundary of H. We shall use the geometric interpretation of [2] for B, i.e. B is the set of equivalence classes of asymptotic geodesics. Finally, M will be the locally symmetric space $\Gamma \setminus G/K$.

We start with a closed geodesic $\bar{\alpha}$ in M. Pick a covering geodesic α in H and an axial isometry γ for α , i.e. γ translates α into itself (cf. [2, § 6]). We identify a geodesic with its pair of endpoints in B. Let (x, y) be the endpoints of α . Suppose that $\gamma_n(x, y)$ converges to a pair of distinct points (s, t) for some γ_n in Γ (in the cone topology) (cf. [2, § 2]) and let β be the geodesic joining s to t. Then any point on β is a limit point of points on the $\gamma_n \alpha$'s. Since $\bar{\alpha}$ is closed, its pre-image in H is closed and hence $\beta \in \Gamma \alpha$. Since Γ is countable, there are at least two points on β that lie on the same $\delta \alpha$ for some δ in Γ . By uniqueness of geodesics in negative curvature,

$$\beta = \delta \alpha$$
.

We summarize our discussion in:

LEMMA 1. The orbit $\Gamma(x, y)$ is closed in $B \times B$ -diagonal.

Consider the equivalence relation \sim generated by $A = \Gamma(x, y)$: i.e. if (s, t) is in A then so is (t, s), and so on. Let Γ_t denote the isotropy subgroup of t in Γ .

LEMMA 2. If $y \notin \Gamma x$ and $\Gamma_x = \Gamma_y$ then $a \sim b$ iff either a = b or $(a, b) \in A$ or $(b, a) \in A$. *Proof.* If $a \neq b$ and $a \sim b$ then a and b lie in the Γ -orbit of either x or y. Hence we assume that a = x. Now $x \sim b$ iff there exists a chain z_1, \ldots, z_n such that

$$(x, z_1) \in A$$
 or $(z_1, x) \in A$ and $z_i \sim z_{i+1}$.

If $(z_1, x) \in A$ then $x \in \Gamma y$, in contradiction to the assumptions. If $(x, z_1) \in A$ then there is a $\delta \in \Gamma$ s.t.

$$\delta(x, y) = (x, z_1).$$

By the assumption on the isotropy groups

$$y = z_1$$

The same reasoning applies to y, and the lemma is clear.

Suppose for the moment that α satisfies the assumptions of lemma 2. Then the quotient space of B under \sim is Hausdorff by the two lemmas, and clearly the action of Γ on B factors through \sim .

We have to see that the new action is not equivalent to the old one. The axial isometry γ fixes two points on B which are identified under \sim . Moreover, there are no new fixed points for γ , since otherwise there is an $s \in B$ such that

$$(s, \gamma s) = \delta(x, y)$$
 or $(\gamma s, s) = \delta(x, y)$

for some $\delta \in \Gamma$. In either case this implies that $y \in \Gamma x$.

To verify the assumptions in lemma 2 first assume that Γ does not have torsion. [2, prop. 6.8] shows the equality of the isotropy groups (even if there is torsion). If $y = \delta x$ then $\delta \gamma \delta^{-1}$ has the geodesic through $(y, \delta y)$ as axis. On the other hand, γ fixes y and hence δy , by [2, prop. 6.8]. Since every non-elliptic isometry of H has at most two fixed points in B [2, prop. 6.5], δ permutes x and y. If δ is non-elliptic, it has fixed points on the boundary, by the Brouwer fixed point theorem. So δ^2 has at least three fixed points in B. In any case, δ^2 is elliptic and hence is a torsion element, since an elliptic isometry in a lattice has finite order.

If Γ has torsion not every axis α will satisfy the first assumption of lemma 2. But most α will do.

Consider a fundamental region F for Γ in H. The previous argument shows that, if $\delta x = y$, then δ^2 is elliptic. Hence δ is a torsion element. In particular, δ^2 will fix α pointwise. Since δ is orientation preserving, δ fixes α pointwise. By a conjugation

490

we may assume that α goes through F^- . Since F is a fundamental domain, α cannot pass through the interior of F. Therefore, an axis α that passes through the interior of F satisfies the assumptions of lemma 2. Since the axes are dense in the geodesics [6, lemma 8.3'], such an axis will always exist. We obtain the following:

PROPOSITION 1. Any lattice Γ in a non-compact real rank 1 connected semi-simple Lie group G with finite centre has a non-trivial (Hausdorff) quotient of the action on the boundary.

Proof. Consider the projection $p: G \rightarrow G'$, where G' does not have compact factors. Then $p(\Gamma)$ is a lattice in G'. So we can apply the construction above.

PROPOSITION 1'. Let M be a manifold of non-positive curvature whose universal cover H satisfies: any two boundary points are joined by a unique geodesic. Then there always exists a non-trivial (Hausdorff) quotient of the action of $\pi_1(M)$ on the boundary.

Proof. In the construction above we only used [2, props. 6.5, 6.8] which hold for $\pi_1(M)$ for M satisfying our conditions (cf. [2]). Since $\pi_1(M)$ does not have torsion (cf. [5, cor. 19.3]), any closed geodesic gives rise to a quotient.

II. SL (n, \mathbb{Z}) acting on \mathbb{P}^{n-1} Let $\Gamma = SL(n, \mathbb{Z})$ for short.

PROPOSITION 2. All (Hausdorff) quotients of Γ acting on \mathbb{P}^{n-1} , n > 2, are trivial.

We first observe:

LEMMA 3. Let a group Γ act on a compact Hausdorff space M. If the diagonal action of Γ on $M \times M$ -diagonal is minimal, then all equivariant Γ -quotients of M are trivial. (Recall that an action of a group is called minimal if every orbit is dense.)

Proof. Let Y be such a quotient and let $C \subset C(M) =$ continuous functions on M be the pullback of C(Y) to M. Then C is Γ -invariant. If $C \neq$ constants, pick $f \in C$ such that

 $f(x_0) \neq f(y_0)$

for some x_0 , y_0 in M. Pick neighbourhoods U, V of x_0 , y_0 such that f(U) is disjoint from f(V). If $x_1 \neq y_1$ is any other pair of points in M, there exists a $\gamma \in \Gamma$ such that

$$\gamma x_1 \in U$$
 and $\gamma y_1 \in V$.

Hence

 $f(x_1) \neq f(y_1)$

and C separates points. By Stone-Weierstrass

$$C = C(M).$$

Gelfand duality yields

$$Y = M.$$

Proposition 2 follows from the stronger:

PROPOSITION 3. Γ acts minimally on $\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$ -diagonal.

Proof. First, on the level of \mathbb{P}^{n-1} itself, we have:

LEMMA 4. Γ acts minimally on \mathbb{P}^{n-1} , n > 1.

Note. This is completely general: i.e. any lattice Γ in a semi-simple Lie group G without compact factors acts minimally on G/P, P any parabolic (cf. [6, lemma 8.5]). Of course, the case at hand is standard and follows from elementary arguments.

Now the proof of proposition 3 develops in two stages. For notation let \bar{x} be the line through x for any $x \in \mathbb{R}^n$.

(1) Let e_i be the standard basis of \mathbb{R}^n . Let $x \in \mathbb{R}^n$, $\bar{x} \neq \bar{e}_1$. We claim that $\Gamma(\bar{e}_1, \bar{x})$ is dense in $\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$ -diagonal. The stabilizer subgroup Γ_0 of Γ at \bar{e}_1 looks like

In particular, embed SL $(n-1, \mathbb{Z})$ into Γ_0 in the obvious way. Clearly, it suffices to prove that $\Gamma(\bar{e}_1, \bar{y})$ is dense in $\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$ -diagonal for any \bar{y} in the closure of $\Gamma_0(\bar{x})$. By lemma 4 and the above, we may assume that the coordinates x_2, \ldots, x_n of x are linearly independent over Q. Let $\bar{y} \neq \bar{z}$ be two lines and V, W neighbourhoods of them. By lemma 4 there is a $\gamma \in \Gamma$ such that $\gamma(\bar{e}_1)$ is in W. Hence it suffices to find γ_0 such that $\gamma_0(\bar{x}) \in \gamma^{-1}(V)$. Let $\bar{t} = \gamma^{-1}(\bar{y})$. We can find $\gamma_1 \in SL (n-1, \mathbb{Z})$ such that

$$\gamma_1(0, x_2, \ldots, x_n)$$

is close to

$$(0, t_2, \ldots, t_n)$$

by lemma 4. Let x'_2, \ldots, x'_n be coordinates of

 $\gamma_1(\overline{0, x_2, \ldots, x_n})$

and pick coordinates t_i for \overline{t} such that t_i is close to x'_i for i > 1. The x'_2, \ldots, x'_n are clearly linearly independent over \mathbb{Q} . The group generated by them is dense in \mathbb{R} and we can find

	$ 1m_2 $	• • •	m_n	
$\gamma_2 =$	0	id		D
	÷			$\in \Gamma_0$
	0/			

such that $x'_1 + m_2 x'_2 + \cdots + m_n x'_n$ is close to t_1 . Since γ_2 leaves the other coordinates alone we have finished.

(2) Consider any two lines $\bar{y} \neq \bar{z}$. We claim that the closure of their Γ -orbit contains (\bar{x}, \bar{e}_1) or (\bar{e}_1, \bar{x}) . We consider two cases:

(a) \bar{z} is rational. Then we have the well-known result:

LEMMA 5. $\Gamma \bar{e}_1 = rational \ lines \ (i.e. \ all \ coprime \ n-tuples \ of \ integers \ lie \ in \ \Gamma(1, 0, ...)).$ *Proof.* For n = 2 this is clear. For n > 2 let (m_1, \ldots, m_n) be a point on a given line l with integer entries. Then l lies in the plane spanned by

$$(m_1, \ldots, m_{n-1}, 0)$$
 and \bar{e}_n

By induction, pick $\gamma \in SL(n-1, \mathbb{Z})$ such that

$$\gamma \bar{e}_1 = (m_1, \ldots, m_{n-1}, 0).$$

Then $\gamma^{-1}(l)$ lies in the plane spanned by \bar{e}_1 and \bar{e}_n and we can use the case n=2.

(b) \overline{z} is irrational. Then there are *i*, *j* such that z_i and z_j are rationally independent, say i = 2, j = 3. In particular, $\mathbb{Z}z_2 + \mathbb{Z}z_3$ is dense in \mathbb{R} . Hence there are matrices

$$\gamma_n = \begin{pmatrix} 1m_2^n m_3^n 0 & \cdots & 0\\ 0 & & \\ \vdots & & \\ 0 & & & \end{pmatrix} \in \Gamma$$

such that

$$\gamma_n z \rightarrow (0, z_2, \ldots, z_n)$$

as $n \to \infty$ while

$$y_n y = (1 + m_2^n y_2 + m_3^n y_3, y_2, y_3, \ldots)$$

If $(\overline{z_2, z_3}) \neq (\overline{y_2, y_3})$, then

$$\frac{m_2^n y_2 + m_3^n y_3}{m_2^n z_2 + m_3^n z_3} = \frac{y_2}{z_2} + m_3^n \frac{y_3 - z_3 y_2 z_2^{-1}}{m_2^n z_2 + m_3^n z_3} \to \pm \infty,$$

since the denominator stays bounded and w.l.o.g.

$$|m_3^n| \rightarrow +\infty$$
,

unless the slopes and so the lines are the same. We find that

$$\gamma_n \bar{y} \rightarrow (\overline{1, 0, \ldots})$$

and we have finished.

If $(z_2, z_3) = (y_2, y_3)$, we can still pick γ_n as above. Let

$$a(z_2, z_3) = (y_2, y_3).$$

Then

$$\gamma_n y \rightarrow (y_1 - az_1, y_2, \ldots)$$

If

$$(z_1, z_2, z_3) \neq (y_1, y_2, y_3)$$

then

$$y_1' \stackrel{\text{def}}{=} y_1 - az_1 \neq 0.$$

Notice that y_2 and y_3 are rationally independent, so one of (y'_1, y_2) or (y'_3, y_3) is rationally independent, say the first. Since

$$(\overline{y_1', y_2}) \neq (\overline{0, z_2})$$

we can apply the previous argument to (y'_1, y_2) . Instead of z_1 we could have used any z_i , i > 3. We are left with the case

$$(z_2, z_3, z_i) = (y_2, y_3, y_i)$$

for all *i*, i.e.

 $\bar{z}=\bar{y}.$

This is the final contradiction.

REFERENCES

- S. G. Dani & S. Raghavan. Orbits of Euclidean frames under discrete linear groups. Israel J. Math. 36 (1980), 300-320.
- [2] P. Eberlein & B. O'Neil. Visibility manifolds. Pacific J. Math. 46 (1973), 45-109.
- [3] G. A. Margulis. Quotient groups of discrete subgroups and measure theory. Func. Anal. Appl. 12 (1978), 295-305.
- [4] G. A. Margulis. Finiteness of quotient groups of discrete subgroups. Func. Anal. Appl. 13 (1979), 178-187.
- [5] J. Milnor. Morse Theory. Annals of Math. Studies no. 51. Princeton University Press: New Jersey, 1963.
- [6] G. Mostow. Strong Rigidity of Locally Symmetric Spaces. Annals of Math. Studies no. 78. Princeton University Press: New Jersey, 1973.
- [7] R. J. Zimmer. Equivariant images of projective space under the action of SL (n, Z). Ergod. Th. and Dynam. Sys. 1 (1981), 519-522.

494