On lattices acting on boundaries of semi-simple groups

R. J. SPATZIER
Department of Mathematics, University of Maryland, College Park, MD 20742, USA

(Revised version received 4 January 1982)

Abstract

It is shown that for a lattice Γ in a semi-simple group of real rank 1 the action on the boundary always admits an equivariant topological Γ-factor. We also show that there are no such factors for $\operatorname{SL}(n, \mathbb{Z})$ acting on $\mathbb{P}^{n-1}, n \geq 3$.

Introduction

In his proof of the finiteness theorem in [3] and [4] Margulis classifies all measurable Γ-quotients of the maximal boundary G / P for an irreducible lattice Γ in a semisimple Lie group G (finite centre, no compact factors) of real rank at least two. In fact, he shows that they are all of the form G / P^{\prime} for some parabolic subgroup P^{\prime}. At the same time his method allows one to 'construct' non-trivial SL $(2, \mathbb{Z})$-quotients of S^{1} in the measurable sense. In fact, his method generalizes to some other rank 1 lattices.

At the end of his paper Margulis asks whether one could have topological (Hausdorff) quotients for $\operatorname{SL}(n, \mathbb{Z})$ acting on $\mathbb{P}^{n-1}, n \geq 2$. R. Zimmer proved in [7] that, for $n>2$, any such quotient is trivial. Here we first propose a geometrical method to construct factors of the boundary for any lattice in a rank 1 group. Measure-theoretically though, these quotients will be trivial. Then we present another argument for the triviality for $n \geq 2$. For general Γ and G the question is still open. Our argument might essentially carry over to the case of split lattices.

I. The rank 1 case

To fix notation, let G be a connected simple Lie group without compact factors of real rank 1 . Let Γ be a lattice in G. H will denote the globally symmetric space G / K for K a maximal compact subgroup of G. B will be the boundary of H. We shall use the geometric interpretation of [2] for B, i.e. B is the set of equivalence classes of asymptotic geodesics. Finally, M will be the locally symmetric space $\Gamma \backslash G / K$.

We start with a closed geodesic $\bar{\alpha}$ in M. Pick a covering geodesic α in H and an axial isometry γ for α, i.e. γ translates α into itself (cf. [2, § 6]). We identify a geodesic with its pair of endpoints in B. Let (x, y) be the endpoints of α. Suppose that $\gamma_{n}(x, y)$ converges to a pair of distinct points (s, t) for some γ_{n} in Γ (in the cone topology) (cf. [2, §2]) and let β be the geodesic joining s to t. Then any point on β is a limit point of points on the $\gamma_{n} \alpha$'s. Since $\bar{\alpha}$ is closed, its pre-image in H
is closed and hence $\beta \in \Gamma \alpha$. Since Γ is countable, there are at least two points on β that lie on the same $\delta \alpha$ for some δ in Γ. By uniqueness of geodesics in negative curvature,

$$
\beta=\delta \alpha
$$

We summarize our discussion in:
Lemma 1. The orbit $\Gamma(x, y)$ is closed in $B \times B$-diagonal.
Consider the equivalence relation \sim generated by $A=\Gamma(x, y)$: i.e. if (s, t) is in A then so is (t, s), and so on. Let Γ_{t} denote the isotropy subgroup of t in Γ.

Lemma 2. If $y \notin \Gamma x$ and $\Gamma_{x}=\Gamma_{y}$ then $a \sim b$ iff either $a=b$ or $(a, b) \in A$ or $(b, a) \in A$.
Proof. If $a \neq b$ and $a \sim b$ then a and b lie in the Γ-orbit of either x or y. Hence we assume that $a=x$. Now $x \sim b$ iff there exists a chain z_{1}, \ldots, z_{n} such that

$$
\left(x, z_{1}\right) \in A \quad \text { or } \quad\left(z_{1}, x\right) \in A \quad \text { and } \quad z_{i} \sim z_{i+1} .
$$

If $\left(z_{1}, x\right) \in A$ then $x \in \Gamma y$, in contradiction to the assumptions. If $\left(x, z_{1}\right) \in A$ then there is a $\delta \in \Gamma$ s.t.

$$
\delta(x, y)=\left(x, z_{1}\right)
$$

By the assumption on the isotropy groups

$$
y=z_{1}
$$

The same reasoning applies to y, and the lemma is clear.
Suppose for the moment that α satisfies the assumptions of lemma 2. Then the quotient space of B under \sim is Hausdorff by the two lemmas, and clearly the action of Γ on B factors through \sim.

We have to see that the new action is not equivalent to the old one. The axial isometry γ fixes two points on B which are identified under \sim. Moreover, there are no new fixed points for γ, since otherwise there is an $s \in B$ such that

$$
(s, \gamma s)=\delta(x, y) \quad \text { or } \quad(\gamma s, s)=\delta(x, y)
$$

for some $\delta \in \Gamma$. In either case this implies that $y \in \Gamma x$.
To verify the assumptions in lemma 2 first assume that Γ does not have torsion. [2, prop.6.8] shows the equality of the isotropy groups (even if there is torsion). If $y=\delta x$ then $\delta \gamma \delta^{-1}$ has the geodesic through $(y, \delta y)$ as axis. On the other hand, γ fixes y and hence δy, by [2, prop.6.8]. Since every non-elliptic isometry of H has at most two fixed points in B [2, prop.6.5], δ permutes x and y. If δ is non-elliptic, it has fixed points on the boundary, by the Brouwer fixed point theorem. So δ^{2} has at least three fixed points in B. In any case, δ^{2} is elliptic and hence is a torsion element, since an elliptic isometry in a lattice has finite order.

If Γ has torsion not every axis α will satisfy the first assumption of lemma 2. But most α will do.

Consider a fundamental region F for Γ in H. The previous argument shows that, if $\delta x=y$, then δ^{2} is elliptic. Hence δ is a torsion element. In particular, δ^{2} will fix α pointwise. Since δ is orientation preserving, δ fixes α pointwise. By a conjugation
we may ássume that α goes through F^{-}. Since F is a fundamental domain, α cannot pass through the interior of F. Therefore, an axis α that passes through the interior of F satisfies the assumptions of lemma 2. Since the axes are dense in the geodesics [6, lemma 8.3'], such an axis will always exist. We obtain the following:

Proposition 1. Any lattice Γ in a non-compact real rank 1 connected semi-simple Lie group G with finite centre has a non-trivial (Hausdorff) quotient of the action on the boundary.
Proof. Consider the projection $p: G \rightarrow G^{\prime}$, where G^{\prime} does not have compact factors. Then $p(\Gamma)$ is a lattice in G^{\prime}. So we can apply the construction above.

Proposition 1'. Let M be a manifold of non-positive curvature whose universal cover H satisfies: any two boundary points are joined by a unique geodesic. Then there always exists a non-trivial (Hausdorff) quotient of the action of $\pi_{1}(M)$ on the boundary.

Proof. In the construction above we only used [2, props. 6.5, 6.8] which hold for $\pi_{1}(M)$ for M satisfying our conditions (cf. [2]). Since $\pi_{1}(M)$ does not have torsion (cf. [5, cor. 19.3]), any closed geodesic gives rise to a quotient.
II. $\operatorname{SL}(n, \mathbb{Z})$ acting on \mathbb{P}^{n-1}

Let $\Gamma=\operatorname{SL}(n, \mathbb{Z})$ for short.
Proposition 2. All (Hausdorff) quotients of Γ acting on $\mathbb{P}^{n-1}, n>2$, are trivial.
We first observe:
Lemma 3. Let a group Γ act on a compact Hausdorff space M. If the diagonal action of Γ on $M \times M$-diagonal is minimal, then all equivariant Γ-quotients of M are trivial. (Recall that an action of a group is called minimal if every orbit is dense.)
Proof. Let Y be such a quotient and let $C \subset C(M)=$ continuous functions on M be the pullback of $C(Y)$ to M. Then C is Γ-invariant. If $C \neq$ constants, pick $f \in C$ such that

$$
f\left(x_{0}\right) \neq f\left(y_{0}\right)
$$

for some x_{0}, y_{0} in M. Pick neighbourhoods U, V of x_{0}, y_{0} such that $f(U)$ is disjoint from $f(V)$. If $x_{1} \neq y_{1}$ is any other pair of points in M, there exists a $\gamma \in \Gamma$ such that

$$
\gamma x_{1} \in U \quad \text { and } \quad \gamma y_{1} \in V
$$

Hence

$$
f\left(x_{1}\right) \neq f\left(y_{1}\right)
$$

and C separates points. By Stone-Weierstrass

$$
C=C(M)
$$

Gelfand duality yields

$$
\boldsymbol{Y}=\boldsymbol{M}
$$

Proposition 2 follows from the stronger:
Proposition 3. Γ acts minimally on $\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$-diagonal.
Proof. First, on the level of \mathbb{P}^{n-1} itself, we have:
Lemma 4. Γ acts minimally on $\mathbb{P}^{n-1}, n>1$.
Note. This is completely general: i.e. any lattice Γ in a semi-simple Lie group G without compact factors acts minimally on $G / P, P$ any parabolic (cf. [6, lemma 8.5]). Of course, the case at hand is standard and follows from elementary arguments.

Now the proof of proposition 3 develops in two stages. For notation let \bar{x} be the line through x for any $x \in \mathbb{R}^{n}$.
(1) Let e_{i} be the standard basis of \mathbb{R}^{n}. Let $x \in \mathbb{R}^{n}, \bar{x} \neq \bar{e}_{1}$. We claim that $\Gamma\left(\bar{e}_{1}, \bar{x}\right)$ is dense in $\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$-diagonal. The stabilizer subgroup Γ_{0} of Γ at \bar{e}_{1} looks like

$$
\left(\begin{array}{ccc}
* & * & \cdots \\
0 & * & \cdots \\
\cdot & \cdots & * \\
0 & \cdots & \cdots
\end{array}\right) .
$$

In particular, embed $\operatorname{SL}(n-1, \mathbb{Z})$ into Γ_{0} in the obvious way. Clearly, it suffices to prove that $\Gamma\left(\bar{e}_{1}, \bar{y}\right)$ is dense in $\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$-diagonal for any \bar{y} in the closure of $\Gamma_{0}(\bar{x})$. By lemma 4 and the above, we may assume that the coordinates x_{2}, \ldots, x_{n} of x are linearly independent over \mathbb{Q}. Let $\bar{y} \neq \bar{z}$ be two lines and V, W neighbourhoods of them. By lemma 4 there is a $\gamma \in \Gamma$ such that $\gamma\left(\bar{e}_{1}\right)$ is in W. Hence it suffices to find γ_{0} such that $\gamma_{0}(\bar{x}) \in \gamma^{-1}(V)$. Let $\bar{t}=\gamma^{-1}(\bar{y})$. We can find $\gamma_{1} \in \operatorname{SL}(n-1, \mathbb{Z})$ such that

$$
\gamma_{1}\left(\overline{0, x_{2}, \ldots, x_{n}}\right)
$$

is close to

$$
\left(\overline{0, t_{2}, \ldots, t_{n}}\right)
$$

by lemma 4. Let $x_{2}^{\prime}, \ldots, x_{n}^{\prime}$ be coordinates of

$$
\gamma_{1}\left(\overline{0, x_{2}, \ldots, x_{n}}\right)
$$

and pick coordinates t_{i} for \bar{t} such that t_{i} is close to x_{i}^{\prime} for $i>1$. The $x_{2}^{\prime}, \ldots, x_{n}^{\prime}$ are clearly linearly independent over \mathbb{Q}. The group generated by them is dense in \mathbb{R} and we can find

$$
\gamma_{2}=\left(\begin{array}{lll}
1 m_{2} & \cdots & m_{n} \\
0 & & \\
\vdots & \text { id } & \\
0 & &
\end{array}\right) \in \Gamma_{0}
$$

such that $x_{1}^{\prime}+m_{2} x_{2}^{\prime}+\cdots m_{n} x_{n}^{\prime}$ is close to t_{1}. Since γ_{2} leaves the other coordinates alone we have finished.
(2) Consider any two lines $\bar{y} \neq \bar{z}$. We claim that the closure of their Γ-orbit contains (\bar{x}, \bar{e}_{1}) or (\bar{e}_{1}, \bar{x}). We consider two cases:
(a) \bar{z} is rational. Then we have the well-known result:

Lemma $5 . \Gamma \bar{e}_{1}=$ rational lines (i.e. all coprime n-tuples of integers lie in $\Gamma(1,0, \ldots)$). Proof. For $n=2$ this is clear. For $n>2$ let $\left(m_{1}, \ldots, m_{n}\right)$ be a point on a given line l with integer entries. Then l lies in the plane spanned by

$$
\left(m_{1}, \ldots, m_{n-1}, 0\right) \quad \text { and } \quad \bar{e}_{n} .
$$

By induction, pick $\gamma \in \operatorname{SL}(n-1, \mathbb{Z})$ such that

$$
\gamma \bar{e}_{1}=\left(m_{1}, \ldots, m_{n-1}, 0\right)
$$

Then $\gamma^{-1}(l)$ lies in the plane spanned by \bar{e}_{1} and \bar{e}_{n} and we can use the case $n=2$.
(b) \bar{z} is irrational. Then there are i, j such that z_{i} and z_{j} are rationally independent, say $i=2, j=3$. In particular, $\mathbb{Z} z_{2}+\mathbb{Z} z_{3}$ is dense in \mathbb{R}. Hence there are matrices

$$
\gamma_{n}=\left(\begin{array}{lll}
1 m_{2}^{n} m_{3}^{n} 0 & \cdots & 0 \\
0 & & \\
\vdots & \text { id } & \\
0 & &
\end{array}\right) \in \Gamma
$$

such that

$$
\gamma_{n} z \rightarrow\left(0, z_{2}, \ldots, z_{n}\right)
$$

as $n \rightarrow \infty$ while

$$
\gamma_{n} y=\left(1+m_{2}^{n} y_{2}+m_{3}^{n} y_{3}, y_{2}, y_{3}, \ldots\right) .
$$

If $\left(\overline{z_{2}, z_{3}}\right) \neq\left(\overline{y_{2}, y_{3}}\right)$, then

$$
\frac{m_{2}^{n} y_{2}+m_{3}^{n} y_{3}}{m_{2}^{n} z_{2}+m_{3}^{n} z_{3}}=\frac{y_{2}}{z_{2}}+m_{3}^{n} \frac{y_{3}-z_{3} y_{2} z_{2}^{-1}}{m_{2}^{n} z_{2}+m_{3}^{n} z_{3}} \rightarrow \pm \infty,
$$

since the denominator stays bounded and w.l.o.g.

$$
\left|m_{3}^{n}\right| \rightarrow+\infty,
$$

unless the slopes and so the lines are the same. We find that

$$
\gamma_{n} \bar{y} \rightarrow(\overline{1,0, \ldots)}
$$

and we have finished.
If $\left(\overline{z_{2}, z_{3}}\right)=\left(\overline{y_{2}, y_{3}}\right)$, we can still pick γ_{n} as above. Let

$$
a\left(z_{2}, z_{3}\right)=\left(y_{2}, y_{3}\right)
$$

Then

$$
\gamma_{n} y \rightarrow\left(y_{1}-a z_{1}, y_{2}, \ldots\right) .
$$

If

$$
\left(\overline{z_{1}, z_{2}, z_{3}}\right) \neq\left(\overline{y_{1}, y_{2}, y_{3}}\right)
$$

then

$$
y_{1}^{\prime} \stackrel{\text { def }}{=} y_{1}-a z_{1} \neq 0 .
$$

Notice that y_{2} and y_{3} are rationally independent, so one of $\left(y_{1}^{\prime}, y_{2}\right)$ or $\left(y_{3}^{\prime}, y_{3}\right)$ is rationally independent, say the first. Since

$$
\left(\overline{y_{1}^{\prime}, y_{2}}\right) \neq\left(\overline{0, z_{2}}\right)
$$

we can apply the previous argument to (y_{1}^{\prime}, y_{2}). Instead of z_{1} we could have used any $z_{i}, i>3$. We are left with the case

$$
\left(\overline{z_{2}, z_{3}, z_{i}}\right)=\left(\overline{y_{2}, y_{3}, y_{i}}\right)
$$

for all i, i.e.

$$
\bar{z}=\bar{y} .
$$

This is the final contradiction.

REFERENCES

[1] S. G. Dani \& S. Raghavan. Orbits of Euclidean frames under discrete linear groups. Israel J. Math. 36 (1980), 300-320.
[2] P. Eberlein \& B. O'Neil. Visibility manifolds. Pacific J. Math. 46 (1973), 45-109.
[3] G. A. Margulis. Quotient groups of discrete subgroups and measure theory. Func. Anal. Appl. 12 (1978), 295-305.
[4] G. A. Margulis. Finiteness of quotient groups of discrete subgroups. Func. Anal. Appl. 13 (1979), 178-187.
[5] J. Milnor. Morse Theory. Annals of Math. Studies no. 51. Princeton University Press: New Jersey, 1963.
[6] G. Mostow. Strong Rigidity of Locally Symmetric Spaces. Annals of Math. Studies no. 78. Princeton University Press: New Jersey, 1973.
[7] R. J. Zimmer. Equivariant images of projective space under the action of $\operatorname{SL}(n, \mathbb{Z})$. Ergod. Th. and Dynam. Sys. 1 (1981), 519-522.

