G. Strazzulla¹, V. Pirronello¹, ², G. Foti³

¹Osservatorio Astrofisico, V.le A. Doria, 6, I-95125 Catania, Italy

²Istituto di Fisica, Facoltà di Ingegneria, Catania

³Istituto di Struttura della Materia, Catania

Narrow-band spectrophotometric observations (Cohen, 1975) showed that the extremely young star HL Tau has an absorption feature at 3.1 µm well matched by extinction from pure ice solid grains (radius a $^{20.3}$ µm, m_{ice} $^{210^{-1}}$ 4 gr cm⁻²). This feature, not present in others (more evolved) T Tau stars, suggests that ice may be only found around the very youngest T Tau stars and progressively disappears as stars become increasingly visible through their circumstellar shells (Cohen, 1975).

Here we suggest that the mechanism responsable for ice grains destruction in these stars is erosion by energetic protons (\approx 1 MeV) copiously produced by stellar flare activity. During erosion the production of a large quantity of H_2 molecules occurs. The proposed mechanism is based on the huge experimentally measured erosion yields of frozen gas bombarded by energetic particles (Brown et al. 1978, Pirronello et al. 1981 and references therein) and on the molecular character (mainly H_2 , O_2 and H_2O) of the products eroded from frozen H_2O and observed by mass spectrometry (Ciavola et al. 1982, Brown et al. 1982, Pirronello et al. 1983).

Worden et al. (1981) on the basis of Johnson U band observations derived LTau Flares/LT Tau and assumed a similar flare spectrum to UV Ceti flares. They also assumed that the Lproton/LFlare ratios for the Sun and T Tau star were the same and found a flux of protons J (\gtrsim 10 MeV) \approx 10 8 cm $^{-2}$ sec $^{-1}$ at 1 AU. Assuming a law of type dJ/dFvF $^{-\gamma}$ with mean γ = 3 we find J (\gtrsim 1 MeV) \approx 10 10 cm $^{-2}$ sec $^{-1}$ at 1 AU. The lifetime against erosion by protons of a typical grain ranges then from tg \approx 2x10 14 yr at a distance from the star R \approx 2x10 15 cm, to tg \approx 3x10 6 yr, at R \approx 2x10 16 cm that according to Scwartz (1974) is the radius of the T Tau nebula. Thus lifetime always result shorter than 3x10 6 yr, the typical age of a T Tau star. For Tg <100 K (R>4x10 15 cm) these lifetimes are orders of magnitude lower than those expected against sublimation that

524 G. STRAZZULLA ET AL.

can not explain the observed lack of ice grains in evolved ${\mathbb T}$ Tauri stars.

A consequence of ice erosion is the restore of molecules in the gas phase. In particular as experimentally shown (Ciavola et al. 1982, Brown et al.1982), the H₂ production increases with the temperature (i.e.decreases with the distance from the star) of the ice. Thus we find an integral H₂ production ranging between $n(H_2)\approx 100$ (T_g $\lesssim 100$ K) and $n(H_2)\approx 100$ (T_g $\gtrsim 100$ K). This should be only a marginal contribution to the total in the region where T_g \lesssim T_{cr} (100 K or 40 or 30 or?) is the maximum temperature for which H-H recombination on grains effectively works to produce H₂ molecules (Hollenbach and Mc Kee 1979, Lequeux 1981). In the regions with T_g>T_{cr} (if grains do not sublime too quickly) the present mechanism should be the only one that produces a noticeable amount of H₂.

REFERENCES

Brown, W.L., Lanzerotti, L.J., Poate, J.M. and Augustyniak, W.M.: 1978, Phys. Rev. Lett., 40, 1027.

Brown, W.L., Augustyniak, W.M., Simmons, E., Marcantonio, K.J., Lanzerotti, L.J., Johnson, R.E., Boring, J.W., Reimann, C.T., Foti, G. and Pirronello, V.: 1982, Nucl. Instr. Meth. (in press).

Ciavola, G., Foti, G., Torrisi, L., Pirronello, V. and Strazzulla, G.: 1982, Radiation Effects (in press).

Cohen, M.: 1975, MNRAS, 173, 279.

Hollenbach, D. and Mc Kee, C.F.: 1979, Astrophys. J., 41, 555.

Lequeux, J.: 1981, Comments on Astrophys., 9, 117.

Pirronello, V., Strazzulla, G., Foti, G. and Rimini, E.: 1981, Astr. Astrophys., 96, 267.

Pirronello, V., Strazzulla, G. and Foti, G.: 1983, (This volume) Scwartz, R.D.: 1974, Astrophys.J., 191, 419.

Worden, S.P., Schneeberger, T.J., Kuhn, J.R. and Africano, J.L.: 1981, Astrophys. J., 244, 520.