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AMS DATING MAMMOTH BONES: COMPARISON WITH CONVENTIONAL DATING

Yurij K Vasil’chuk1,2 � Alla C Vasil’chuk1 � Austin Long3 � A J T Jull4 � D J Donahue4

ABSTRACT. Fossilized Siberian mammoth remains are important indicators of environmental change in the Late Pleisto-
cene. The NSF-Arizona AMS Laboratory radiocarbon results on amino acid separations compare well with mammoth bone
collagen from the same specimens treated by HCl and dated by beta counting (the Russian Academy Geological Institute
Radiocarbon Laboratory). Neither laboratory was aware of the other’s dates for these comparisons. The results coincide very
closely (a difference of 50–800 yr), and demonstrate that AMS dating provides a very good perspective for applications of
past mammoth population studies.

INTRODUCTION

The Late Pleistocene (40–10 ka BP) syncryogenic deposits (i.e. accumulated simultaneously with
freezing) of Siberia and the Arctic coastal plain of North America contain thick syngenetic ice
wedges and well-preserved extinct mammoth remains. These include bones, partially articulated
skeletons, and some whole carcasses. Mammoth extinction can only be understood in the context of
their temporal and spatial distribution, as well as their diet and the temporal and spatial distribution
of available food. Thus, answers to questions surrounding the cause or causes of mammoth faunal
extinction require knowledge of a cluster of intricately interrelated palaeogeographical and palaeo-
botanical conditions. The historically earliest mammoth findings (Pfizenmayer 1926) were by Ides
(Yenisey River, 1707), Sarychev (Alazeya River, 1787), and Adams (Lena River, 1799). More than
40 whole carcasses and skeletons have been discovered (Sokolov 1982; Shilo et al. 1983). During the
last decade, convincing answers to some of these questions have emerged. Radiocarbon dates of
mammoth remains (Vasil’chuk 1992; Vasil’chuk et al. 1997) and a stable isotope study of the perma-
frost hosting them (Vasil’chuk 1992) are among the data contributing to a systematic history of Late
Pleistocene mammoth distribution in vast areas of Siberia and some regions of Europe.

Dating Mammoth Bones 

We have summarized about 300 14C dates of mammoth remains in Siberian permafrost areas
(Vasil’chuk 1992; Sulerzhitsky 1995; Vasil’chuk et al. 1997), and about 200 dates from regions of
Europe that were permafrost during the Late Pleistocene but not at present (Vasil’chuk 1992; Sul-
erzhitsky 1995; Stuart 1991). It is known that mammoths inhabited the entire permafrost area from
the Arctic coast southward to at least 40°N. Mammoth carcasses have been studied intensely in the
regions of present-day permafrost (Sokolov 1982; Shilo et al. 1983). Even in cases of discovery in
permafrost, there is no guarantee that the remains had been frozen continuously since death. As
redeposition of bones into younger sediments must be considered a possibility, special cleaning pro-
cedures are required before 14C dating. The currently acceptable pretreatment technique for beta-
counting laboratories, separation of bone collagen with HCl, results in coincident 14C ages on bone
specimens from the same skeleton but with different degrees of preservation (Sulerzhitsky 1997;
Vasil’chuk and Vasil’chuk 1998). Interlaboratory comparisons employing this pretreatment also
show comparable results (Arslanov and Svezhentsev 1993; Long et al. 1994; Vasil’chuk and
Vasil’chuk 1998). Accelerator mass spectrometric (AMS) 14C laboratories results on amino acid
separations compare well with bone collagen from the same specimens treated by HCl and dated by
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beta counting (Table 1). The NSF-Arizona AMS Laboratory 14C results on amino acid separations
compare well with mammoth bone collagen from the same specimens treated by HCl and dated by
beta counting (the Russian Academy Geological Institute Radiocarbon Laboratory). Neither labora-
tory was aware of the other’s dates for these four comparisons.

DISCUSSION AND CONCLUSION

The mammoth bone dates presented here fill a gap between 32,000 and 10,000 BP in the Yamal Pen-
insula and provide evidence that mammoths lived in the north of western Siberia between 32 and
10 ka. Until now, their existence in this area during Late Pleistocene was problematic. Combined
with other dates from the Siberia permafrost zone, these dates show the continuous existence of
mammoths in subarctic regions.

The southern limits of mammoths’ aerial extent coincide with the southern limits of polygonal
wedge structures (Figure 1). The latter are reconstructed on casts distribution (Vasil’chuk 1992). 14C
dates on mammoths show that they lived in permafrost areas. Their population densities are difficult
to evaluate on available data, but the dates show no significant gaps in their presence in either
Europe or Siberia, except, of course, at times and places where extensive ice sheets existed.

Table 1 AMS and conventional 14C measurements of mammoth remains

Sample locations and coordinates
(numbers as shown in Figure 1) Material Lab code

AMS date, yr BP
(conventional date)

d13CPDB 

(‰)

Middle part of Shchuch’ya River, near 
Edem’yaha mouth (South Yamal Penin-
sula, Western Siberia) 67°N, 69°E (1)

Bone AA-27371 )32,090 ± 480 -21.9

Middle part of Shchuch’ya River, near 
Edem’yaha mouth (South Yamal Penin-
sula), 67°N, 69°E (2)

Molar AA-27372 )12,535 ± 80 -21.5

Lower Yana River, northwest Yakutia, 
Mus-Khaya cross-section, 71°N, 136°E (3)

Bone AA-27373
GIN-8711

)35,400 ± 2,000
(34,600 ± 470)

-20.1

Mal’ta River, Angara River Basin, 43°N, 
104°E (4)

Bone AA-27374
GIN-8476

)14,940 ± 170 
)(14720 ± 130)

-21.7

Kostyonki Paleolithic camp, 40 km from 
Voronezh city, 43°N, 33°E (5)

Bone AA-27375
GIN-7992

)23,120 ± 460
(23,800 ± 150)

-21.3

Shokal’sky Island, Arctic Ocean, 73°N, 
74°E (6)

Bone AA-27376
GIN-8427

)13,600 ± 160
)(13650 ± 170)

-22.5

Lower Yuribey River (East Yamal Penin-
sula), 69°N, 69°E (7)

Tusk AA-27377 )10,460 ± 120 -25.0

Sabettayaha River, 30 km from Sabetto 
Settlement (Yamal Peninsula), 69°N, 
69°E (8)

Tusk 
(very large)

AA-27378 )10,420 ± 130 -25.0

Middle Yuribey River (Central Yamal 
Peninsula), 69°N, 69°E (9)

Tusk AA-27379 )13,940 ± 170 -25.0

Sohontosyo Creek, West Yamal Peninsula, 
25 km northeastern Ust’-Yuribey Settle-
ment, 69°N, 69°E (10)

Jaw of baby
mammoth

AA-27380 )29,700 ± 1,000 -25.0

Sohontosyo Lake, West Yamal Peninsula, 
25 km northern Ust’-Yuribey settlement, 
69°N, 69°E (11)

Tooth of 
bison

AA-27381 )32,600 ± 1,400 -25.0
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The fact that mammoth populations fed on grass required their biocoenoses to produce large masses
of vegetation in the summer. In winter, mammoths probably consumed grass preserved under the
snow cover. If mammoths had greater difficulty breaking the ice (refrozen melted snow), fewer of
them would have been able to forage sufficient quantities of grass. Stable oxygen isotope records
from ice-wedge ice demonstrate a dramatic shift in winter temperatures (Vasil’chuk and Vasil’chuk
1995, 1997, 1998). Changes in winter conditions, as evidently occurred at the Pleistocene-Holocene
transition, was a possible cause both of temperature and food stress for mammoth populations. Sim-
ilar to present tundra habitants, the mammoths faced a problem attaining food in winter. Even small
diminution of available food, as a result of frequent thawing and snow crust formation, could
decrease the herd population, and for population responses such as dwarfing (Lister 1993)—when
the height of mammoth was not more than 1.5 m (usually the mammoth height was 3–4 m). Warmer
temperatures may also have induced greater stress from human predators.
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