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1. Introduction. The Dedekind TJ-function is defined by

where T lies in the upper half plane $?= {T | Im(r) > 0}, and x = e2mr. It is a modular form
of weight \ with a multiplier system. We define an 7j-product to be a function / ( T ) of the
form

where rs e Z. This is a modular form of weight k - \ I r 8 with a multiplier system. The
S N

Fourier coefficients of 17-products are related to many well-known number-theoretic
functions, including partition functions and quadratic form representation numbers. They
also arise from representations of the "monster" group [3] and the Mathieu group M24

[13]. The multiplicative structure of these Fourier coefficients has been extensively
studied. Recent papers include [1], [4], [5] and [6]. Here we study the connections
between the density of the non-zero Fourier coefficients of / ( T ) and the representability
of / ( T ) as a linear combination of Hecke character forms (defined in Section 4 below). We
first make the following definition.

DEFINITION. A power series is called lacunary if the arithmetic density of its non-zero
oc

coefficients is zero. More precisely, the series xv 2 c(n)x" is lacunary if

cardie \n ^t and c(n)^0} „
hm —' — i = 0.

Serre [17] has determined all the even integers r for which ij(r)r is lacunary. The
result is as follows.

THEOREM 1. (Serre). Suppose r > 0 is even. Then Tj(T)r is lacunary if and only if
r = 2, 4, 6, 8, 10, 14 or 26.

We will extend Theorem 1 to the rj-products Tj(T)ri7(2r)J (r,s e Z), a reasonable next
case in view of the fact that powers of the classical theta-function

6(-x) = 03(2r + 1) = i (-xf = ft (1" *")2(1 - x2")'1 = r,(rfv(2r)-1

and many partition functions are of this type. Our main result is the following.
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2 BASIL GORDON AND SINAI ROBINS

THEOREM 2. Suppose that r + s is even and rs ¥=Q. Then i7(r)rT7(2r)v is lacunary if and
only if (r,s) is one of the following 45 pairs:

/c = l: (1,1) (3,-1) (-1,3) (4,-2) (-2,4)

k = 2: (2,2) (3,1) (1,3) (5,-1) (-1,5) (6,-2) (-2,6)
(7,-3) (-3,7)

k = 3: (3,3) (4,2) (2,4) (5,1) (1,5) (7,-1) (-1,7) (8,-2)
(-2,8) (9,-3) (-3,9) (10,-4) (-4,10) (11,-5) (-5,11)

k = 5: (5,5) (7,3) (3,7) (14,-4) (-4,14) (15,-5) (-5,15)
(16,-6) (-6,16) (17,-7) (-7,17) (18,-8) (-8,18) (19,-9) (-9,19)

k = 9: (9,9).

If (r,s) is in this list, so is (s,r). This fact emerges upon applying the canonical
involution r-* -l/(7Vr) to the Riemann surface X0(N) of T0(N).

In a later paper we will obtain the analogue of Theorem 3 for the forms r)(x)rT){qTy
with q an odd prime ^23, and also for the forms T}(T)r7j(2T)Ji7(4r)'. In principle the same
methods can be used to determine all lacunary 7j-products (1) for any given N.

2. Reduction of the problem. We begin by recalling some results from [6].
Suppose that the weight k = \ 2 rs is an integer. Put

n^=A, (2)

hZ8rs = ~, (3)
24 S\N e
1 V N c° ,AS

24 S|N 5 e0

where the fractions c/e and co/eo are in lowest terms. Put M = Nee0 and let e be the
/(-1)*A\

Dirichlet character (mod M) denned by e(p) = I I for primes p not dividing M. It
V p )

is known ([6,p. 174]) that if/(r) is the 17-product (1), then F(x)=f(ex) is in the vector
space M(T0(M), k, e) of modular forms on F0(M) with weight k and Nebentypus e,
holomorphic in %C and meromorphic at the cusps of X0(M). These cusps can be

represented by rational numbers K = —, where fi>0, fi\ M and (A, fi) = 1. The order of

F(T) at the cusp K is

( 5 )

Therefore F{x) belongs to the subspace 5^(ro(A/), k, e) of cusp forms in Jt(ro(M), k, e) if
and only if the sums in (5) are all positive.
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In this paper we are concerned with the case N = 2, r^ = r and r2 = s. We then have
k = \{r + s), so our assumption that r + s is even amounts to requiring that if
frAr)= yitYvfaY, the corresponding form FrtS(r) =fr^(eT) o n ro(M) has integral
weight. Since e and e0 are divisors of 24, M = 2ee0 is of the form 2°3/3. Moreover A = 2s

/(-l)k2s\
and e(p) = -—-— for p \ M. Using (5), we find that FrJ(T) e ^(ro(M), Jk, e) if and

\ p J
only if

2r + s > 0, r + 2s > 0. (6)

The proof of Theorem 2 now breaks down into three parts. In Section 3 we show that if
Frj:(r) is lacunary but not a cusp form, then (r, s) = (4, -2) or (-2,4). In Section 4 we
show that if /V,.,(T) is a lacunary cusp form, then (r,s) must be one of the remaining 43
pairs in the statement of Theorem 2. Finally, in Section 5 we show that Frs is indeed
lacunary for all these pairs (r, s).

3. Lacunary non-cusp forms. We now consider the case where one of the
inequalities (6) fails to hold. We continue to assume that r + s is even and rs ¥- 0. For
convenience, put (r, s) = r](T)rr)(2rY- It should be clear from context whether the symbol
(r, s) is being used to denote a lattice point or the corresponding TJ-product. Clearly the
lacunarity of a series / ( T ) is preserved if T is replaced by r + \, or equivalently if x is
replaced by -x. Let (r,s)* = T/(T + lYvfaY denote the image of (r,s) under this
replacement. We will make use of the classical identities

- x 2 m f = 2 x(nl+n)l2,
n=0

0(;t) = (2, -1)*=

We also require the functions

Qo(x) = xim(l,-l)* = Q(-x)-1= ft
m = \

The Fourier expansions of these functions are

n=0 n=0

where p(n) is the partition function, q(n) is the number of partitions of n into distinct
parts and qo(n) is the number of partitions of n into distinct odd parts. Clearly p(n), q(n)
and qo(n) tend to infinity with n. Therefore every non-constant function

(0, -a)(-b,b)(c, -cr=x^-b
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where a, b, c sO, is non lacunary. Moreover (-d,2d) and (2d, -d)* are lacunary for
d = 2 [11], but not for d > 2, since every positive integer n is the sum of three triangular
numbers, and is also the sum of three squares unless n = 4a(8/3 + 7).

To show that (r,s) is nonlacunary when (6) does not hold, we suppose first that
r + s < 0. If r < 0, the equation

(r,s) = (r,-r)(0,r

shows that (r,s) is nonlacunary, while if r >0, the equation

(r,s)* = (r,-r)*(0,r + s)

implies the nonlacunarity of (r, s)*, hence that of (r, s).
We may therefore suppose henceforth that r + s > 0. If 2r + s < 0, we write

(r, s) = (2r + 5, -2r - s)(-r - s, 2r + 2s).

By the above remarks, this is lacunary if and only if 2r + s = 0 and r + s = 2, i.e.
(r, 5) = (-2, 4). If r + 2s < 0, we write

(r, 5)* = ( - r - 2s, r + 2s)*(2r + 2s, -r - s)*.

This is lacunary if and only if r + 2s = 0 and r + s = 2, i.e. (r, s) = (4, -2).

4. Lacunary cusp forms. In this section we consider the case where the inequalities
(6) hold, i.e. F^(T) e Sf(To, k, e). It is known [17] that all forms in <f(TQ, l,e) are
lacunary, so we assume henceforth that k>\. To obtain a useful criterion for lacunarity
when k > 1, we introduce the class of Hecke character forms, defined as follows. Let K be
a number field, OK its ring of integers and f an ideal of OK. A Hecke character
(=Grossencharacter) (mod f) of exponent k - 1 is a homomorphism of the group /(f) of
fractional ideals prime to f into C such that c(a) = ak~] for principal ideals a = (a) with a
totally positive and or = 1 (modx f). As with Dirichlet characters, two Hecke characters
c^a) (modm,) and c2(a) (mod m2) can be regarded as equal if they agree on 7(m1m2).
From this point of view, nt! and m2 are just two different "definition moduli" for the same
Hecke character c^(a) = c2(o) (mod m1m2). Every Hecke character c(a) has a (multiplica-
tively) smallest definition modulus f = f(c), called its conductor.

Now suppose that K is a quadratic imaginary field of discriminant d, m an ideal of
OK, c(a) a Hecke character (mod m) and 5 a positive integer. Put

(Q,m)=l

where the sum is over all integral ideals a prime to m, and N(a) is the norm of a. Hecke
and Shimura have shown that if M is any multiple of 8 \d\ N(m), then cf)K,c,s(r) 1S m

y(T0(M),k,ec), where

for all primes p \ M.
For a given k > 2, M and Dirichlet character £ (mod M), the forms ()}K,C,S(T)
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S \d\ N(m) | M and ec = e span a subspace S£m(r0(M), k, e) of 5^(ro(M), k, e). The
elements of ycm(T0(M), k, s) are called CM-forms. For convenience we recall the
following theorem of Serre [16].

THEOREM 3. Suppose F(r) = 2 c(n)x" e S?(ro(M), A:, e), wM A: > 2, and pur
l

:= card{n | 0 < n < t and c(n) ¥> 0}.

(i) IfF(r) * ^cm(r0(M), k, s), then M,(t) ^t for *-»«,.
((ii) / / F ( T ) G ^c m(r0(M), k, e) and F(r) ¥= 0, then Mf(t) X tftlog t)m for r-> « , where

<t>(t) n «A(0 weans that <j>(t) = O(ij/(t)) and if/(t) = O(<j>(t)).

Thus F(T) is lacunary if and only if it is a CM-form. We will also make use of the
following theorem of Ribet [14, p. 35].

THEOREM 4. If p is inert in the imaginary quadratic field K, then <f>K,c,s(T) I >̂ = 0-

Hence the CM-form F ( T ) = 2 ctv<f>KvCySy is annihilated by Tp if p is inert in all the
fields Kv.

We now require some further notation. Define the Fourier coefficients ar<s(n) by:

_ v(r+2s)/24 FT n _ v n y n _ r2ny

= x
f[ (1 - *T(1 - )

n=0

Let

in lowest terms. Recall the notation / ^ ( T ) = ri(T)rr)(2Ty and FrJ(r) =/(er>JT). Then

^ ( T ) = i «r»*c+e" = S 6,»xB, (8)
n=0 n=0

say. We write a,b,c, e,f and F instead of ar<s, br>s, crJ, er<s, /r-J and FrtS if the subscripts are
clear from context.

If F ( T ) is lacunary, then by Theorem 3 it is a CM-form:

F ( T ) = 2 av<f)KnCvjv.
V

As remarked in Section 2, M = 2ee0 is of the form 2a3/3. Since the discriminant dv of Kv

divides M, the only possibilities for dv are - 3 , - 4 , - 8 or -24, giving Kv = Q>(V--3),
Q(V-I) , Q(V^2) or Q(V-6) respectively. Every prime p=23 (mod24) is inert in all
four of these fields. This proves the following result.

LEMMA 1. / / FrtS(x) is a cusp form of integral weight A;>2 and is lacunary, then
Fr<s(x) \Tp = 0 for all p = 23 (mod 24).
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LEMMA 2. Suppose f{x) \ T23 = 0.
(i) Ifr + 2s > 3, then arj(m) = ar.s(m + 23) = 0, where 1 < m < 20 and m = -(;• + 2s)

(mod 23).
(ii) Ifr + 2s = 2, then arj(21) = 0.

(iii) / / r + 2s = 1, then ar/45) = 0.

/Voo/ (i) Let G ( T ) = F(24r). Then G(r) is on T0(24M) and is lacunary if and only if
/ ( r ) is lacunary. We apply the Hecke operator 723 = U23 + V23 to G(r):

/^/-X nr ^ n (»\v(r+2^ + 24rt)/23 _i >>/oi\T2^~l \ ^ ^ /'MAv23(r + 2j + 24«)

G ( T ) / 2 3 - 2J arA
n)x +e{Z3)Z3 ZJ ar.An)x

r+2j+24n=0(mod23) n=0

The lowest term in G(r) | U23 is flrJ(/n)x(r+2s+24'")/23, where m is the least non-negative
integer such that r + 2s + 24m = 0 (mod 23). We have m = - ( r + 2s) (mod 23) and
0 < m < 22. Since r + 2s > 3, we have m < 20, and

/• + 2s + 24(w + 23) _ r + 2s + 1032

Thus the first two terms in G(r) \ U23 appear before the first term in G(r) \ V23, proving
(i).

(ii) If r + 2s = 2, then e = 12 and m = -2 (mod 23), giving m = 21. Therefore

which proves (ii).
(iii) If r + 2s = 1, then e = 24 and m = - 1 (mod 23), giving /n = 22. Therefore

G(r) | T23 = (arj(22) + e(23)23*-V3 + arJ(45)x47 + ...,

which proves (iii). •

Define

„.,. \arAm) ifm ls e v e n

rJ \ars(m)/r if mis odd.

Using Maple, it can be shown that the coefficients a?s(m), 0<m^45 are irreducible
polynomials in r and s. Hence the algebraic curves ^m, 0 s m s 4 5 defined by

are also irreducible. The first few polynomials ariS(m) are as follows.

2! arj(2) = r2 - 3r - 2s.

3!aM(3) = 9 r 2 - 8 r - r 3 + 6r5.

4! flr^(4) = 36rs - 12r2s - 36* + 12s2 - 18r3 + 59r2 - 42r + r\

5! arj$) = 340« - 60rs2 + 30r4 - 215r3 + 450r2 - 144r - r5 - 180r2s + 20r3s.

The remaining polynomials artS(m), 6 ^ m ^ 4 5 , are quite cumbersome to write down and
we omit them.
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We can now combine Lemmas 1 and 2 to obtain the following result.

LEMMA 3. Suppose r]{x)rT]{2x)s is lacunary.
(i) Ifr + 2s^3, then (r, s) is in the intersection of the curves <£„, and ^m+23 for some

m with 0 < m < 20.
(ii) Ifr + 2s = 2, then (r, s) is on the curve af_2j>,(21) = 0.
(iii) / / r + 2s = 1, then (r,s) is on the curve fl*_ 2^(45) = 0. D

Since the curves c€m, 2 s m ^ 4 5 , are irreducible and distinct, Bezout's theorem [7]
can be applied to show that there are only finitely many points satisfying Lemma 3. In fact
we can explicitly find these points using resultants. This reduces the possible pairs (r,s) to
the list given in Theorem 2. To prove that for these pairs the forms Tj(r)ri7(2r)v are
indeed lacunary, we exhibit them as linear combinations of Hecke character forms in the
next section.

5. Hecke character forms. In this section we show that Frj(z) is indeed lacunary for
the 45 pairs (r, s) listed in Theorem 2. For notational convenience, put

For example, [1,1] = Tj(8r)Tj(16r). We extend this notation by putting

where e = 24/gcd(r + 2s + At, 24).
Let K be an imaginary quadratic field with ring of integers OK, and m an ideal of OK.

Let R(m) be the group of reduced residue classes (mod m). For simplicity of notation we
let a denote the residue class a + m when working in R(m). Let G(m) be the
multiplicative group of all a e K* prime to m and /(m) the group of fractional ideals
prime to m. A general way to construct a Hecke character c(a) (mod m) with exponent
k - 1 is to start with an ordinary character x(a) °f ^(f)> u'ft it to a character s(a) of G(f)
and then define c(a) = s(a)ak~1 for principal ideals a = (a). For this definition to be
independent of the particular generator a of a, it is necessary and sufficient that
s(e)ek~^ = 1 for the units e of OK. The extension of c(a) to non-principal ideals is carried
out using the structure of the ideal class group of K. In the present situation, Q(i),
Q(V-2) and Q(V-3) have class number 1. However <Q(\^-6) has class number 2, so
once a Hecke character c(a) has been defined for its principal ideals n, there are two
extensions to the non-principal ideals.

If %(a) is a primitive character of i?(f), the associated Hecke characters c(a) of
exponent k - 1 have conductor f. Most of the examples in this section are of this type.

[1,1]: Take K = Q(i) and f = ((l + /)5). The group /?(f) is the direct product
(/) X (1 + 2/) X <1 + 4/), where the generators i, 1 + 2i", 1 + 4/ have orders 4, 2, 2
respectively. Define two characters %± of R(i) by putting

*±(i) = l, * ± ( l + 2/) = ±l , Z ± ( l + 4i) = l. (13)

Starting with these characters of i?(f), construct Hecke characters c±(a) of exponent 0 as
explained above. It turns out that
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(Verification of this and all similar equations below is carried out by comparing enough
coefficients to exceed the dimension of the relevant vector space of forms.)

[2,2]: Take K = Q(/) and f = ((1 + if). Then #(f) = (i), a cyclic group of order 4.
Define the character % of R(a) by putting %(i) = -i. Let c(a) be the corresponding Hecke
character of exponent 1. Then

[3,3]: Take K = Q(V-2) and f = (4). The group of reduced residues mod 4 is the
direct product ( - l ) x ( l + /Vz); the generators have orders 2 and 4 respectively. Define
two characters %±(a) of R(\) by putting

±i. (14)

Let c±(a) be the corresponding Hecke characters of exponent 2. Then

4>K,C±(T) = [9, -3] + 32[1, -3,8] =F 4V^[3,3].

[5,5]: Take K = Q(/) and f = ((1 + if). Let x±(<*) b e the characters (13), and c±(a)
the corresponding Hecke characters of exponent 4; thus c±(a) = s±(a)a4, where a = (a).
Then

4>K,CS*) = [17, -7] - 64[-7,17] T 48i[5,5].

[9,9]: This is a linear combination of four Hecke forms, arising in pairs from the
fields K = Q(i) and L = © ( V ^ ) . Put

B(r) = [17, -9,8] + 28[17, -15,16] + 212[-15,33],

D(T) = [27, -9] + 3 • 25[19, -9,8] + 3 • 210[ll, -9,16] + 2I5[3, -9,24].

It turns out that F±(t) = -6544,4(r) + B(T) ± 672C(T) and G ± (T) = 18544,4(r) + B(r) ±
112V5/)(T) are Hecke forms. Hence ^ ( T ) = (50n6)-y{G+(r) + G_(T) - F+(T) - F_(T)} is
lacunary.

To express F±(r) as Hecke forms, take K = Q(/) and f = ((1 + t)s). Let x±(a) be the
characters (13), and c±(a) the corresponding Hecke characters of exponent 8. Then

To express G ± (T) as Hecke forms, take L = Q(V-2) and f = (4). Let x'±ia) be the
characters of R(\) defined by (14), and c'±(a) the corresponding Hecke characters of
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[3,1], [1,3], [7 , -3] , and [-3,7]: Take K = © ( V ^ ) and f = (4)p, where P2 = (3).
(K has class number 2 and p is non-principal.) The group R(f) is the direct product
<5) X (7) X (1 + iV6); the generators 5, 7, 1 + /V6 have orders 2, 2, 4 respectively. Define
two characters x±(a) of ^?(f) by:

As explained above, x+(a) gives rise to two Hecke characters c+,±{a) of exponent 1 and
conductor f. Similarly, X-(a) gives rise to two Hecke characters c_,±(o). It turns out that

4>K,C^(T) = [7, -3] - 2V6[1,3] ± 2/V3[3,1] T 4/V2[-3,7],

* K * . , ( T ) = [7, -3] + 2V6[1,3] ± 2iV3[3,1] ± 4/V5[-3,7].

[S, 1] and [1,5]: As in the previous case, take K = Q(V^6) and f = (4)p, where
p2 = (3). Define characters %±(a) °f ^(f) by putting

These give rise to Hecke characters c+i±(a) and c-,±(a) with conductor f and exponent 2.
Then

4>K^Ji't) = [11, -5] + 32[3, -5,8] ± 2i{[7, -1] + 32[-l, -1,8]}

+ 4/V6[5,l]±8V6[l,5],

4>K<C-JT) = [11, -5] + 32[3, - 5 , 8] ± 2i{[7, -1] + 32[-l, - 1 , 8]}

-4*V6[5,1]T8V6[1,5].

[3, - 1 ] and [-1,3]: Take K = Q(i) and f = (3(1 + i)5). If (o, f) = 1, then

a = i"(l + 2i)*(l + 4J)C (mod (1 + i)5)

a • (1 - /)d (mod 3),

where a is mod 4, b and c are mod 2 and d is mod 8. Define characters %+,±(a) and
^_i±(a) of i?(f) by putting

These give rise to Hecke characters c+i±(a) and c-t±(a) with conductor f and exponent 0.
We have

4>K^JLX) = <t>K,c.,S^) = [3, - 1 ] ± 2 / [ - l , 3].

[7,3] and [3,7]: Take K = Q(i) and f = (3(1 + i)5). Let x+Aa) a n d X-.±(<*) be the
characters defined in the previous case, and let c+>±(a) and c__±(o) be the corresponding
Hecke characters of exponent 3. Then

4>K*.J.*) = [19, -9] + 448[-5,15] ± 2/{7[15, -5] + 64[-9,19]}

-240/[7,3]±480[3,7],

* ^ . , ( T ) = [19, -9] + 448[-5,15] T 2i{7[l5, -5] + 64[-9,19]}

+ 240i[7,31=F480[3,7].
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[7,-1], [-1,7], [11,-5] and [-5,11]: Take K = Q(i) and f = (3(l+i)5). Let
X+,±{a) and X-.±(a) be the characters of R{\) used in the previous two cases, and let
c+^{a) and c-,±(a) be the corresponding Hecke characters of exponent 2. Then

</>*,c_,±(r) = [11, -5] ± 6i[7, -1] + 24i[-l, 7] ± [-5,11],

*K^JLT) = [11, -5] T 6i[7, -1] - 24/[-l, 7] =F [-5,11].

[5, -1 ] and [-1,5]: Take K = Q(V=2) and f = (4). Then /?(f) = <-l> X (1 + /V2>,
where the generators have orders 2 and 4 respectively. Define characters .£±(a) of R(i) by
putting £ ± ( - l ) = - l , £±(1 + /V2) = ±1, and let c±(a) be the corresponding Hecke
characters of exponent 1. Then

[4,2] and [-4,10]: Take K = Q(i) and f = (3). Then R(\) = <1 - i) is cyclic of order
8. Define two characters x±(a) °f ^(f) W putting £±(1 - i) = ±i, and let c±(a) be the
corresponding Hecke characters of exponent 2. Then

[2,4] and [10,-4]: Take K = Q(i), and m = (3(l + i)). Let c±(a) be the Hecke
characters of the previous case restricted to ideals prime to (3(1 + /)). Then

[8, -2 ] and [-2,8]: Take K = Q(V=3) and f = (4VZ3). If (a, f) = 1, then

Here [ = (1 +/V3)/2 is a primitive 6th root of unity, a is mod 6, and 6, c are mod 2.
Define characters x±(a) o n ^(f) by

and let c±(a) be the corresponding Hecke characters of exponent 2. Then

4>Jr) = [10, -4] + 32[2, -4,8] ± 8iV5[-2,8].

This shows that [-2,8] and [10, -4] + 32[2, -4,8] are lacunary. Since

[8, -2] = [10, -4] + 32[2, -4,8] - 8[-2,8],

the same holds for [8, -2] .

[9,-3] and [-3,9]: Take K = Q(i) and f = ((l + /)5). Define characters x±(<*) on
the group /?(f) = (/) X (1+ 2i) X (1 + 4/) by putting

Let c±(a) be the corresponding Hecke characters of exponent 2. Then

<fc,(T) = [9 , -3]±[-3 ,9] .
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[6, -2 ] and [-2,6]: Here K = Q(i) and f = (3(1 + if). For a = (a) with (a, 6) = 1,
define

where
a = i" (mod(l + if),

a = (1 - /)ft(mod3).

Then c±(a) depends only on a, not on the particular generator a. We have

2 c±(a)xN(a) = T,(12T)6T?(24T)-2 ± 4r?(12r)-2T?(24r)6.
(a,f) = l

[14, —4]: Take K = Q(i) and m = (1 + /). Let Xo(&) be the principal character of
R(m) and c(a) the corresponding Hecke character of exponent 4. Then

4>K,C{X) = [14, ~4].

[-4,14]: Take K = Q(i) and f = (1). Let Xo(a) be the principal character of /?(f) and
c(a) the corresponding Hecke character of exponent 4. Then

<^.C(2T) + [14, -4] = [-4,14]

[17, —7] and [—7,17]: These are linear combinations of four Hecke forms, arising in
pairs from the fields K = © ( V ^ ) and L = Q(i). First take K = Q(V^2) and f = (4). Let
X±(<*) be the characters (14) of /?(f), and c±(a) the corresponding Hecke characters of
exponent 4. Then

</>K.c(r) = [17, -7] + 64[-7,17] ± 8{[11, -1] + 32[3, -1,8]}.

Next take L = Q(i) and f = ((1 + /)5). Let x'±(a) be the characters (13) of 7?(f), and c'±(a)
the corresponding Hecke characters of exponent 4. Then

4>L,C±(T) = [17, -7] - 64[-7,17] =F 48i[5,5].

(This was already noted in the case [5,5].) Thus both [17, -7] + 64[-7,17] and
[17, -7] - 64[-7,17] are lacunary, which implies that [17, -7] and [-7,17] are lacunary.

[18, —8] and [—6,16]: These are linear combinations of four Hecke forms arising in
pairs from the fields K = Q(i) and L = © ( V ^ ) . First take K = Q(i) and f = (3(1 + /)3).
Let X\&± be the characters of R(\) defined by

a = i" (mod(l + if)

a = (l- if (mod 3),

and c±(a) the corresponding Hecke characters of exponent 4. Then

4>/C.JT) = [18, -8] + 256[-6,16] ± 48[10,0],
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(This case is in Serre's paper.) Next, let L = Q p / ^ ) , and f = (4Vr3). Let *;9± be the
characters of /?(f) defined by

x'+(a) = r a ( - i ) c , x'-{«) = rfl(-i)fc+c,
where

a = T( l + Ut (mod 4)

a = (-l)c(mod3).

Let c'±{a) be the corresponding Hecke characters of exponent 4. Then

4>L^(T) = [18, -8] - 128[-6,16] ± 48V3{[6,4] + 32[-2,4,8]}.

Thus both [18, -8] + 256[-6,16] and [18, -8] - 128[-6,16] are lacunary, which implies
that [18, -8] and [-6,16] are also lacunary.

[-8,18] and [16,6]: These are lacunary by the previous case, since

[-8,18] = [6, 4] + 32[-2,4,8] + 8[-6,16],

[16, -6] = [18, -8] + 128[-6,16] - 16[-8,18].

[19, - 9 ] , [-9,19], [15, -5 ] and [-5, 15]: These also require four forms. First take
K = © ( V ^ ) , f = (4)p, where p2 = (3). Let x±(a) be the characters (15) of rt(f), and for
principal ideals a, let c±(a) be the corresponding Hecke characters of exponent 4. Since K
has class number 2, each of these characters has 2 extensions to the set of all integral
ideals prime to f. This gives four Hecke characters c ± ± of a. The Hecke forms <j>K,c±Sr)
comprise the four consistent sign combinations of

[19, -9] - 1472[-5,15] ± 46/{23[15, -5] + 64[-9,19]}

±40/V6{[13, -3] + 32[5, -3,8]} ± 80V6{[9,1] + 32[1,1,8]}.

Hence [19, -9] - 1472[-5,15] and 23[15,-5]+ 64[-9,19] are lacunary. By the case
[7,3], [19,-9] + 448[-5,15] and 7[15,-5]+ 64[-9,19] are lacunary. Hence [19,-9],
[-9,19], [15, -5] and [-5,15] are all lacunary.

[4, -2 ] and [-2,4]: Although we have already proved the lacunarity of these forms
in Section 3, we include them here for completeness. While they are of weight 1 and
therefore do not fall under the general theory of Hecke and Shimura, they can
nevertheless be expressed in terms of sums resembling Hecke character forms.

We have

[4,-2] = 0(-x)2=i (-l)nr2(n)x",
n=0

where r2(n) is the number of representations of n as the sum of 2 squares. Removing the
constant term and dividing by - 4 we get

hi- T,(T)4T,(2T)-2) = f (-l)"+] r-~xn

4 4

where K = Q(i), c(a) is the trivial character mod(l) and c'(o) is the trivial character mod
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(1 + 0- Next, we have [-2,4] = G(x4)2 = f t2(n)x2n+\ where t2(n) is the number of
n=0

representations of n as the sum of two triangular numbers. Since n = \(a2 + a) + \(b2 + b)
if and only if 8/i + 2 = (2a + I)2 + (2b + I)2, we easily find that t2(n) = \r2(%n + 2). This
implies that

6. A combinatorial application. The lacunarity of the "diagonal cases" (s,s) for
5 = 1,2,3,5 and 9 gives the following:

COROLLARY. For q > 0, let T(q) = I ) be the qth triangular number. Let SP be the set

of all partitions of the form n:n = na + nA, where nn = p2 + p\ + • • • + p2, nA= T(q^) +
TXto) + • • • + T(qs), with ph q} e Z and qt > 0. Let as(n) be the number of such partitions
with na even and &(«) the number of them with nD odd. Then

as(n) = ps(n) for almost all n

if and only if s = 1,2,3,5 or 9.

Proof. As noted in Section 3, we have

p=-

q=0

Hence

n=0
(a(n) - P(n))xn =

= V (_2y?+-+P?A;/'?+-+P«2 V

P\.-J>,

By Theorem 2, this is lacunary if and only if s = 1,2,3,5 or 9. •

The diagonal form (2,2) is also of particular interest because it is the inverse Mellin
transform of the Hasse-Weill L-function of the curve y2 = JC3 - x. It is the image under the
Shimura map of the forms of weight 3/2 which arise in Tunnel's work on the congruent
number problem (see [10] and [18]).
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