Comparative Effectiveness of an FDA-Authenticated Digital Therapeutic to Medications and Cognitive Behavioral Therapy Treating Chronic Insomnia in Adults

Felicia Forma, PhD, Ramya Pratiwadi, PhD, Fadoua El-Moustaid, PhD, Nathaniel Smith, PhD and Fulton Velez, MD, MS, MBA

Abstract

Introduction. Chronic insomnia affects the physical and mental health, quality of life, and productivity of 6 to 10% of the adult population (15-25 million U.S. adults). Available treatments include guideline-recommended first-line cognitive behavioral therapy for insomnia (CBT-I) and medications. However, limitations such as patient access to CBT-I and limited efficacy, the presence of significant side effects, as well as safety concerns about medications limit favorable outcomes. Somryst is an FDA-authenticated digital therapeutic for the treatment of chronic insomnia in adults. The purpose of this analysis is to compare the effectiveness of the digital therapeutic vs CBT-I and medications for primary insomnia.

Methods. Chronic insomnia trials focused on digital therapeutic, CBT-I, or medication were identified in a systematic literature review. Studies using a comparator arm that cannot be considered clinically equivalent to other treatments in the network were excluded (eg, meaningfully different definition of placebo arm). A Bayesian network meta-analysis was performed in R on the mean change from baseline and the proportion of remitters using the insomnia severity index (ISI) endpoint with follow-up time points between 6 and 12 weeks. Mean change in ISI score from baseline was analyzed as a continuous endpoint while comparisons of the proportion of remitters were performed using odds ratios. The analysis used a random-effects model for the base case analysis. A surface under the cumulative ranking curve (SUCRA) analysis was performed to rank the treatments on each endpoint.

Results. In total, 13 studies reported ISI mean change from baseline data. Only the digital therapeutic and CBT-I were significantly different than placebo. The digital therapeutic had the greatest mean change from baseline in ISI from placebo (~5.77 points, 95% Credible Interval (CrI) [−8.53, −3.07]), followed by CBT-I (~4.3 points, 95% CrI [−6.32, −2.39]). In the SUCRA analysis, the digital therapeutic had the highest probability (56%) of being the most effective treatment based on ISI mean change from baseline. Only 8 studies reported the proportion of ISI remitters. Only the digital therapeutic showed a statistically significant difference in remission vs placebo and had the highest odds ratio for remission vs placebo (12.33 95% CrI [2.28, 155.91]). The odds ratio for remission vs placebo in CBT-I was not statistically significant (4.08 95% CrI [0.45, 45.58]). The digital therapeutic had the highest probability (64%) of being the most efficacious for inducing remission per ISI.

Conclusions. Somryst was projected to be the most effective therapy on both mean change in ISI and ISI remission within 6 to 12 weeks of treatment start vs either CBT-I or medications. Further investigation should be performed to demonstrate the long-term effectiveness of all chronic insomnia treatments.

Funding. Pear Therapeutics

Outcomes from Engagement and Use of a Prescription Digital Therapeutic to Treat Opioid Use Disorder: A Real-World Pilot Study

Steven C. Rozycki, LMSW, CASAC, Xiaorui Xiong, PhD, Paul Walter, PA-C, Jessica Wright, CSAC, LMHC, Hilary F. Luderer, PhD, Stephen Braun, BA, Yuri A. Maricich, MD and James Purvis, MSSW

Abstract

Introduction. The opioid epidemic in the United States is getting worse: in 2020 opioid overdose deaths hit an all-time high of 92,183. This underscored the need for more effective and readily available treatments for patients with opioid use disorder (OUD).
A Model-Informed Drug Development Approach Supporting the Approval of a New Valbenazine Dose for Tardive Dyskinesia

Hoa Q. Nguyen, PhD1, H. Steve Kuan, PhD1, Ryan L. Crass, PharmD2, Lauren Quinlan, BS2, Sunny Chapel, PhD2, Kate Kastsetskaya, PharmD1, Kristine Kim, MS1, Satjit Brar, PharmD, PhD1 and Gordon Loewen, PhD1

1Neurocrine Biosciences, San Diego, CA, USA, and 2Ann Arbor Pharmacometrics Group, Ann Arbor, MI, USA

Abstract

Introduction. Tardive dyskinesia (TD) is a persistent and potentially disabling movement disorder associated with dopamine receptor blocking agents (eg, antipsychotics). Valbenazine is a highly selective vesicular monoamine transporter 2 inhibitor with several safe and effective dosing options now approved for once-daily (QD) treatment of TD in adults. Valbenazine 80 mg QD is the recommended dose for TD; however, 40 or 60 mg QD (newly approved dose) may be considered depending on response and tolerability. The recent approval of valbenazine 60 mg was based on results from an analysis that used the FDA’s model-informed drug development (MIDD) approach and leveraged existing data from the 6-week, phase 3 registration trial of valbenazine (KINETIC 3).

Methods. A population pharmacokinetic (popPK) model was developed to describe plasma concentration-time profiles for valbenazine and its primary active metabolite, [+]α-dihydrotetrabenazine ([+]α-HTBZ). An exposure-response (E-R) model was developed using the area under the concentration-time curve (AUC) of [+]α-HTBZ (exposure) and change from baseline in the Abnormal Involuntary Movement Scale total score (AIMS-CFB) (response). Stepwise E-R model development evaluated various linear and nonlinear models to describe AIMS-CFB vs [+]α-HTBZ AUC and time. E-R relationships established with the 40 and 80 mg data were used to predict AIMS-CFB for a 60 mg dose up to week 6, accounting for study-to-study, inter-individual, and residual variabilities.

Results. Steady-state valbenazine and [+]α-HTBZ concentrations were well described by a joint parent-metabolite popPK model. An Emax model with asymptotic exponential delay in the maximal valbenazine effect adequately characterized the E-R relationship between AIMS-CFB and [+]α-HTBZ AUC. The simulated confidence intervals of response were consistent with the observed KINETIC 3 results, demonstrating the utility of the model to predict efficacy results. The established E-R model was subsequently used to predict AIMS-CFB for valbenazine 60 mg QD at week 6. Mean AIMS scores decreased (improved) in a dose-dependent manner, with 60 mg QD predicted to result in least-squares mean (SEM) AIMS-CFB of −2.7 ± 0.4, which is between the reported AIMS-CFB for 40 mg (−1.9 ± 0.4) and 80 mg (−3.2 ± 0.4). All simulated trials demonstrated valbenazine 60 mg to be significantly superior to placebo in AIMS-CFB after 6 weeks of treatment.

Conclusions. This analysis integrated and leveraged data from two previously approved valbenazine doses (40 and 80 mg QD) using an MIDD approach. The results provided key evidence that an intermediate dose (newly approved 60 mg QD) could be considered therapeutically beneficial without the need for an additional clinical trial. The availability of a valbenazine 60 mg dose to complement the previously approved doses fills an existing medical need for patients with TD who could benefit from this third effective dose.

Funding. Neurocrine Biosciences, Inc.