Effects of omega 3 fatty acids supplementation in behavior and non-neurodegenerative neuropsychiatric disorders

R. M. Ortega1,2*, E. Rodríguez-Rodríguez2,3 and A. M. López-Sobaler1,2
1Departamento de Nutrición, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
2Research group UCM-920030, Departamento de Nutrición, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
3Sección Departamental de Química Analítica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain

Abstract
This work provides a systematic review of all published randomised, controlled clinical trials (RCT) investigating the effects of n-3 PUFA intake on the prevention and treatment of non-neurodegenerative neuropsychiatric disorders. Five databases (PubMed, EMBASE, LILACS, CINAHL and The Cochrane Database) were searched for RCT in this area published up to April 2011. The selected studies all involved human participants and included a comparison group. Thirty eight studies were identified, which examined the influence of n-3 PUFA supplementation on the prevention/treatment of depression (non-perinatal) (n 23), perinatal depression (n 6) and attention deficit hyperactivity disorder (ADHD) (n 9). Great heterogeneity was noticed in terms of study design, the doses of n-3 PUFA administered, and study duration. Some benefit was noted with respect to the treatment of hyperactivity and depression in over half the examined studies, although the evidence was not conclusive. For any firm conclusions to be drawn, further studies will be needed that take into account the initial n-3 PUFA status of the subjects. Excessive n-3 PUFA intakes might be associated with a greater risk of peroxidation events and therefore neuropsychiatric deterioration. Indeed, some studies only recorded benefits when lower doses were administered. It is therefore important that the dose required to achieve any potential benefit be determined.

Key words: Omega 3: Behaviour: Neuropsychiatric disorders: Systematic review

There is biochemical evidence that n-3 polyunsaturated fatty acids (n-3 PUFA) play an important role in neural structure and function. The brain and central nervous system contain high concentrations of n-3 PUFA and several studies suggest a role for them in nervous system activity, the neuroplasticity of nerve membranes, synaptogenesis, synaptic transmission and neurotransmitter uptake(1). In fact, reduced blood levels of n-3 PUFA have been associated with a number of neuropsychiatric conditions, including attention deficit hyperactivity disorder (ADHD), Alzheimer’s disease, schizophrenia and depression(2,3).

n-3 PUFA are available from dietary sources only; an insufficient intake may therefore be associated with psychiatric effects(4). Some evidence exists that suggests supplementation with individual n-3 PUFA or their combinations can reduced the intensity of the symptoms associated with certain neuropsychiatric conditions(5).

Nevertheless, although some studies find positive effects associated with supplementation, others do not find this benefit(6–8). It is worth mentioning that messages which recommend the use of n-3 PUFA supplements to prevent and reduce the risk of various diseases such as depression have spread rapidly among the population based on studies that find positive results(9). However, some aspects must be taken into account before releasing a general recommendation: if the effects are valid for both healthy and sick subjects and what doses and time of treatment are required to achieve the effects.

The aim of the present systematic review was to examine all published RCT investigating the effects of dietary supplementation with n-3 PUFA on the prevention and treatment of non-neurodegenerative neuropsychiatric conditions.

Experimental method
A computerized search was conducted for clinical trials in the Medlars Online International Literature (MEDLINE, via PubMed), the EMBASE®, the Latin American and Caribbean Heath Sciences Literature (LILACS), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), and the Cochrane databases. The search terms and equations used for the PubMed search were: “Fatty Acids, Omega-3”[Mesh] AND (“Depression”[Mesh] OR “Mood disorders” [Mesh] OR “Attention Deficit Disorder with Hyperactivity”[Mesh]), limited to ‘clinical trials’ and ‘humans’ (Fig. 1). Similar equations were used in the other databases.

* Corresponding author: R. M. Ortega, fax +34 91 394 18 10, email rortega@farm.ucm.es
used with the other databases. The references in these returned articles were checked manually for further studies.

Report inclusion and data extraction

The titles and abstracts of the articles detected (n 182 detected by the 1st April 2011) were inspected independently by two researchers (AMLS and ERR) to select those relevant to the present work. Initial discrepancies between these researchers’ decisions were either resolved or a third reviewer (RMO) was called to make a judgement. Duplicates, review articles and non-relevant articles were excluded (n 122). Twenty two of the remaining 60 articles were rejected for the reasons shown in Fig. 1, which summarizes the inclusion/exclusion criteria of the work. The data of the 38 remaining articles were tabulated by all three of the above researchers. When data were incomplete, the corresponding authors were contacted and asked to provide the missing information. Tables 1–3 summarise the design of and the results provided by the 38 articles finally selected.

Because pregnancy is a specific physiological situation, data from studies about perinatal depression are presented separately from studies examining the effect of n-3 PUFA supplementation in depression at other stages of life (Table 2).

Results

Twenty three RCT (published since May 1999) examined the effect of n-3 PUFA supplementation on the prevention and treatment of non-perinatal depression (Table 1). The studies were heterogeneous in terms of sample size (which ranged from 1410 to 302 subjects11). Two studies involved only women12,13, and two only children14,15. The diagnosis of the study subjects also varied, from major depressive disorder (MDD)13,15–25, to bipolar disorder (BD)10,14,24–26, depression but not MDD12,27, depression with other pathologies28–31 and healthy volunteers31,32. The type and quantity of n-3 PUFA administered varied too, from 0·4 g/d11 to 9·6 g/d25. Six studies involved the administration of EPA (20 : 5n-3) only, employing doses of 1 g/d16,19,21,24,28 to 6·6 g/d14. Two studies involved the administration of DHA (22 : 6n-3) only17,18. The remaining studies involved the administration of both EPA and DHA in varying quantities, with the EPA/DHA ratio ranging from 0·2522 to 712,32. In some studies the subjects received no pharmacological treatment as part of the study11–14,16,18,19,27,32, while in others10,29 some drug was administered. In the majority of studies15,20–28,30,31, however, the subjects continued with their normal treatment.

Six RCT (published since May 2003) examined the effect of n-3 PUFA supplementation on the prevention and treatment of perinatal depression (Table 2). Again, these were heterogeneous in terms of sample size, which ranged from 2633 to 2399 subjects34. Three studies were performed on pregnant women with MDD4,5,5,5, analysing the effect of n-3 PUFA supplementation on the course of disease. The remaining trials all examined healthy women to determine the preventive effects of supplementation when given post-partum60, pre-partum5,5 and over both periods5,5,7. The type and quantity of n-3 PUFA administered also differed widely. In one study only DHA56 was given, in three studies different quantities of DHA + EPA5,5,5,5 were given, in one5,5,5 DHA + EPA and an n-6 PUFA were given, and in one5,5,5,5 DHA + AA (20 : 4n-6) or DHA alone was given. The doses of n-3 PUFA given ranged from 0·2 g/d56 to 3·4 g/d55.

Nine RCT (published since August 2001) examined the effect of n-3 PUFA supplementation on the prevention and treatment of ADHD (Table 3). Again, the sample size was heterogeneous, with a range of 3759 to 12940 subjects. Five studies involved supplementation with n-3 and n-6 PUFA. Generally, supplementation with EPA and/or DHA was provided, except in one study41 that involved supplementation with LA (18 : 2n-6) and ALA (18 : 3n-3). The dose of n-3 PUFA administered ranged from 0·345 g/d52 to 1·4 g/d59.
Table 1. Randomised controlled clinical trials of supplementation with n-3 PUFA in subjects with depression and related disorders

<table>
<thead>
<tr>
<th>Reference</th>
<th>Diagnosis</th>
<th>n (age, years)</th>
<th>Daily dose of n-3</th>
<th>Placebo</th>
<th>Drug Treatment</th>
<th>Length of trial (weeks)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antypa et al., 2009(32)</td>
<td>Healthy</td>
<td>56 (22-4 ± 3.8)</td>
<td>1740 mg EPA + 250 mg DHA</td>
<td>olive oil</td>
<td>None</td>
<td>4</td>
<td>Few effects on cognitive reactivity, risky decision-making or control/perfectionism score</td>
</tr>
<tr>
<td>Bot et al., 2010(28)</td>
<td>MDD in diabetic patients</td>
<td>25 (18-75)</td>
<td>1000 mg EPA</td>
<td>rapeseed oil + medium chain triglycerides</td>
<td>Adjunct</td>
<td>12</td>
<td>No effect</td>
</tr>
<tr>
<td>Carney et al., 2009(29)</td>
<td>MDD in coronary heart disease</td>
<td>122 (58.3 ± 8.9)</td>
<td>930 mg DHA + 750 mg EPA</td>
<td>corn oil</td>
<td>50 mg sertraline</td>
<td>10</td>
<td>No effect</td>
</tr>
<tr>
<td>Chiu et al., 2005(10)</td>
<td>BD (acute manic phase)</td>
<td>14 (NR)</td>
<td>2200 mg EPA</td>
<td>olive oil</td>
<td>20 mg/kg/d valproate</td>
<td>4</td>
<td>No effect</td>
</tr>
<tr>
<td>da Silva et al., 2008(30)</td>
<td>MDD in Parkinson’s disease</td>
<td>29 (49-78)</td>
<td>720 mg EPA + 480 mg DHA</td>
<td>mineral oil</td>
<td>Adjunct in Parkinson’s disease, none in healthy</td>
<td>12</td>
<td>Improvement in depression symptoms</td>
</tr>
<tr>
<td>Frangou et al., 2006(24)</td>
<td>BD I and II</td>
<td>75 (18-70)</td>
<td>1000 mg EPA / 2000 mg EPA</td>
<td>olive oil</td>
<td>Adjunct</td>
<td>12</td>
<td>Significant improvement with EPA. No difference between 1 g and 2 g of EPA</td>
</tr>
<tr>
<td>Freund-Levi et al., 2009(11)</td>
<td>Depression in Alzheimer disease</td>
<td>204 (74 ± 9)</td>
<td>600 mg EPA + 1700 mg DHA</td>
<td>corn oil</td>
<td>ongoing usual treatment</td>
<td>26</td>
<td>No effect</td>
</tr>
<tr>
<td>Gracious et al., 2010(14)</td>
<td>BD I and II</td>
<td>51 (6-17)</td>
<td>6600 mg ALA</td>
<td>olive oil</td>
<td>None</td>
<td>16</td>
<td>No effect on sample as a whole, but a significant effect in the subgroup in which EPA blood levels improved Significant effect of EPA, similar to fluoxetine. EPA + fluoxetine combination was superior to either of the above alone.</td>
</tr>
<tr>
<td>Jazayeri et al., 2008(18)</td>
<td>MDD</td>
<td>60 (20-59)</td>
<td>1000 mg EPA + 1000 mg EPA</td>
<td>rapeseed oil</td>
<td>None</td>
<td>8</td>
<td>Improvement in women with PD but without MDD at baseline</td>
</tr>
<tr>
<td>Keck et al., 2006(25)</td>
<td>BD</td>
<td>116 (20-73)</td>
<td>6000 mg EPA</td>
<td>paraffin oil</td>
<td>Adjunct</td>
<td>16</td>
<td>No effect</td>
</tr>
<tr>
<td>Lucas et al., 2009(12)</td>
<td>PD and depression in menopause</td>
<td>120 women (40-55)</td>
<td>1050 mg EPA + 150 mg DHA</td>
<td>sunflower oil</td>
<td>None</td>
<td>8</td>
<td>Improvement in women with PD but without MDD at baseline</td>
</tr>
<tr>
<td>Marangell et al., 2003(17)</td>
<td>MDD</td>
<td>36 (18-65)</td>
<td>2000 mg DHA</td>
<td>NR</td>
<td>None</td>
<td>6</td>
<td>No effect</td>
</tr>
<tr>
<td>Mischoulon et al., 2008(18)</td>
<td>MDD</td>
<td>35 (18-80)</td>
<td>1000 mg DHA / 2000 mg DHA</td>
<td>corn and soy oil</td>
<td>None</td>
<td>12</td>
<td>Positive effect at lower doses</td>
</tr>
<tr>
<td>Mischoulon et al., 2009(19)</td>
<td>MDD</td>
<td>57 (18-80)</td>
<td>1000 mg EPA</td>
<td>paraffin oil</td>
<td>None</td>
<td>8</td>
<td>No effect</td>
</tr>
<tr>
<td>Nemets et al., 2002(20)</td>
<td>MDD</td>
<td>20 (18-75)</td>
<td>2000 mg EPA</td>
<td>not specified</td>
<td>Adjunct</td>
<td>4</td>
<td>Significant effects after 3 week of treatment</td>
</tr>
<tr>
<td>Nemets et al., 2006(15)</td>
<td>MDD</td>
<td>28 (6-12)</td>
<td>380-400 mg EPA + 180-200 mg DHA</td>
<td>olive oil or safflower oil</td>
<td>Adjunct in 5 children, none in the rest</td>
<td>16</td>
<td>Highly significant effects of omega-3</td>
</tr>
<tr>
<td>Peet and Horrobin, 2002(21)</td>
<td>MDD</td>
<td>70 (18-70)</td>
<td>1000 mg EPA / 2000 mg EPA</td>
<td>paraffin oil</td>
<td>Adjunct</td>
<td>12</td>
<td>Clear effect with 1000 mg EPA</td>
</tr>
<tr>
<td>Rogers et al., 2008(27)</td>
<td>Mild to moderate depression</td>
<td>218 (18-70)</td>
<td>630 mg EPA + 850 mg DHA</td>
<td>olive oil</td>
<td>None</td>
<td>12</td>
<td>No effect</td>
</tr>
</tbody>
</table>
In five studies (39–41,43,44) the subjects received no pharmacological treatment, in one a stimulant medication (42) was provided, and in two (45,46) the subjects continued with their normal medication.

Discussion

n-3 PUFA and depression disorders

Depression is very common — one in five people become depressed at some point in their lives (47). A significant proportion (10–20%) of patients do not respond at all or respond poorly to therapy (48); useful prevention and treatment strategies are therefore a priority.

Although observational studies have indicated that depression is associated with lower levels of total n-3 PUFA and those of both EPA and DHA (49), only two studies were found that analysed the role of n-3 PUFA supplements in healthy persons, the results of which were not conclusive.

Van de Rest et al. (11) reported no effect on mental well-being for either of two doses of n-3 PUFA administered (0.4 g/d and 2.0 g/d) compared to a placebo. In contrast, Antipa et al. (32) reported a positive effect of supplementation on cognitive reactivity, risky decision-making and control/perfectionism score. The dose of n-3 PUFA used in the latter work was also 2 g/d, although the EPA/DHA ratio was higher (7:0 compared to 1:3).

The majority of studies, which employed doses of up to 2.5 g/d, performed on patients with depression, MDD or BD who received no pharmacological treatment, recorded a positive effect for EPA supplementation (10,12), DHA supplementation (18), and their combination (12,13). Gracious et al. (14) also reported a positive effect, but for a dose of 6.6 g/d EPA. Those studies that found no difference in effect between the administration of n-3 PUFA and placebo also employed low/moderate doses of n-3 PUFA (17,19,27) (up to 2 g/d). However, the EPA/DHA ratio was much higher in those that found positive effects (EPA/DHA = 2.0 (13)-7.0 (12)) compared to those that found no effect (EPA/DHA = 0.70) (27).

More trials report a positive effect for n-3 PUFA supplementation as an adjunct therapy (15,20,21,25,24,26) than those that found no effect (22,25). As in those studies that involved n-3 PUFA supplementation only, those that found this positive effect involved lower doses of EPA (<2.0 g/d) or a higher EPA/DHA ratio (2.0 vs. 0.25 (22) in positive and negative trials respectively). Carney et al. (29) (who administered sertraline) and Chiu et al. (10) (who used valproate) found no evidence that n-3 PUFA increased the effect of medication on depression or manic phase BD symptoms.

The trials that involved n-3 PUFA administration with and without pharmacological treatment found EPA to produce more promising results with respect to the improvement of depression symptoms than DHA monotherapy (50,51). A specific ratio of EPA/DHA might be the most effective (28). However, whereas increased n-3 PUFA intake might alleviate depressive symptoms, there is little evidence it is of any benefit in the treatment of mania (10,52).

Table 1. Continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Diagnosis</th>
<th>n (age, years)</th>
<th>Daily dose of n-3</th>
<th>Length of trial (weeks)</th>
<th>Drug Treatment</th>
<th>Placebo</th>
<th>Outcome</th>
<th>n-3 Placebo Drug Treatment</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rondanelli et al., 2010 (13)</td>
<td>MDD or dysthymia</td>
<td>46 women (65-90)</td>
<td>1670 mg EPA + 830 mg DHA</td>
<td>8</td>
<td>Significant improvement with supplementation</td>
<td>None</td>
<td>Adjunct</td>
<td>Placebo</td>
<td>None</td>
<td>8</td>
</tr>
<tr>
<td>Silvers et al., 2005 (22)</td>
<td>MDD</td>
<td>77 (18-65)</td>
<td>600 mg EPA + 2400 mg DHA</td>
<td>12</td>
<td>No effect</td>
<td>None</td>
<td>Adjunct</td>
<td>Adjunct</td>
<td>adjunct</td>
<td>12</td>
</tr>
<tr>
<td>Stoll et al., 1999 (26)</td>
<td>BD I and II</td>
<td>30 (18-65)</td>
<td>6200 mg EPA + 3400 mg DHA</td>
<td>16</td>
<td>Significant symptom reduction and better outcome</td>
<td>None</td>
<td>Adjunct</td>
<td>Adjunct</td>
<td>None</td>
<td>26</td>
</tr>
<tr>
<td>Su et al., 2003 (23)</td>
<td>MDD</td>
<td>28 (18-60)</td>
<td>4400 mg EPA + 2200 mg DHA</td>
<td>8</td>
<td>Significant improvement with supplementation</td>
<td>None</td>
<td>Adjunct</td>
<td>Adjunct</td>
<td>None</td>
<td>8</td>
</tr>
<tr>
<td>van de Rest et al., 2008 (11)</td>
<td>Healthy</td>
<td>302 (65)</td>
<td>1800 mg EPA + DHA/400 mg EPA + DHA</td>
<td>26</td>
<td>No effect</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>26</td>
</tr>
</tbody>
</table>

MDD = major depression disorder; BD = bipolar disorder; PD = psychological distress; NR = not reported.
Depression is a common co-morbid disorder in both type 1 and type 2 diabetes mellitus, but a considerable percentage of diabetic subjects receiving antidepressant drugs does not achieve full remission. Depression is also frequent in patients with Parkinson Disease, but antidepressant treatment given in addition to Parkinson’s medication can often result in collateral effects and adverse reactions. Depression may also occur in the early stages of Alzheimer disease. However, very few studies have been performed in such patients. Bot et al. found no evidence of a therapeutic effect of 1 g/d ethyl-EPA as an add-on to antidepressant medication compared to placebo in diabetic patients with depression, and Freund-Levi et al. observed no positive effect on depression symptoms in patients with Alzheimer disease. However, in these trials, patients continued with their usual treatment for depression, and this may have masked small effects of treatment with n-3 PUFA. Certainly, da Silva et al. found that an EPA/DHA ratio of 1:5 improved depressive symptoms in patients with Parkinson disease, even in those who had already been taking antidepressant medication for over a year but still suffered major depression diagnosis.

n-3 PUFA supplementation and perinatal depression

Pregnancy leads to several changes in n-3 PUFA status, including a depletion of maternal plasma DHA under normal dietary conditions, that persist after delivery. Mothers may be at higher risk of post-partum depression when they become depleted in n-3 PUFA, especially DHA, and certainly, depression is quite common in the post-partum period. The studies described in Table 2 all investigate the possible effects of n-3 PUFA supplementation on the prevention and treatment of perinatal depression.

In studies involving healthy women, supplementation was found not to be associated with any effect on the prevention of depression during or after pregnancy. Llorente et al. used supplements of DHA at a dose of 200 mg/d with no other treatment, and observed no effect on the incidence of postpartum depression, while Doornbos et al. overcame some of the limitations of these studies, such as the low dose of DHA given, the absence of EPA in supplements, and small sample size. Makrides et al. overcame some of the limitations of these studies, such as the low dose of DHA given, the absence of EPA in supplements, and small sample size. However, even when 800 mg/d DHA were provided, along with 100 mg/d EPA, no reduction in the prevention of postpartum depression was seen.

In pregnant women diagnosed with perinatal depression, supplementation was associated with no improvement in symptoms in some studies. For example, Freeman et al. reported no improvements with a dose of EPA + DHA of 1.9 g/d, and Rees et al. observed none after providing 6 g/d of fish oil (414 mg EPA + 1638 mg DHA). The only study to report some improvement in symptoms was that of Su et al. The main difference between

<table>
<thead>
<tr>
<th>Drug</th>
<th>Treatment Length of trial (weeks)</th>
<th>Outcome</th>
<th>Diagnosis</th>
<th>n (age, years)</th>
<th>Drug</th>
<th>Treatment</th>
<th>Length of trial (weeks)</th>
<th>Outcome</th>
<th>Diagnosis</th>
<th>n (age, years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Soybean oil</td>
<td></td>
<td>From enrolment (14-20 w of pregnancy) until 3 months after delivery</td>
<td></td>
<td>Improvement of depression symptoms by week 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corn oil</td>
<td></td>
<td>From enrolment to birth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Palm oil</td>
<td></td>
<td>From enrolment to delivery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Olive oil</td>
<td></td>
<td>From enrolment to delivery</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Randomized controlled clinical trials of supplementation with n-3 PUFA in patients with perinatal depression.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Diagnosis</th>
<th>n (age, years)</th>
<th>Daily dose of PUFA</th>
<th>Placebo</th>
<th>Drug Treatment</th>
<th>Length of trial (weeks)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bélanger et al., 2009(39)</td>
<td>DSM-IV ADHD</td>
<td>37 (6-12)</td>
<td>500-1000 mg EPA + 200-400 mg DHA (according to body weight)</td>
<td>sunflower oil</td>
<td>none</td>
<td>8 + 8</td>
<td>No effect of treatment</td>
</tr>
<tr>
<td>Gustafsson et al., 2010(43)</td>
<td>DSM-IV ADHD</td>
<td>92 (7-12)</td>
<td>500 mg EPA + 2.7 mg DHA</td>
<td>rapeseed oil + medium-chain triglycerides</td>
<td>none</td>
<td>15</td>
<td>No significant effect on sample as a whole, but improvement in subgroup of children with oppositional behaviour and less impulsiveness/hyperactivity</td>
</tr>
<tr>
<td>Hirayama et al., 2004(45)</td>
<td>DSM-IV ADHD</td>
<td>40 (6-12)</td>
<td>500 mg DHA + 100 mg EPA (added to foods)</td>
<td>Non-enriched foods</td>
<td>Ongoing usual treatment</td>
<td>8.5</td>
<td>No effect of treatment</td>
</tr>
<tr>
<td>Johnson et al., 2009 (phase 1)(44)</td>
<td>DSM-IV ADHD + ADHD-suspected</td>
<td>82 (6-18)</td>
<td>558 mg EPA + 174 mg DHA + 60 mg GLA</td>
<td>olive oil</td>
<td>none</td>
<td>12</td>
<td>No significant effect on sample as a whole, but improvement in subgroup of children with ADHD inattentive subtype and comorbid neurodevelopmental disorders</td>
</tr>
<tr>
<td>Raz y col., 2009(41)</td>
<td>AFA and DSM-IV ADHD</td>
<td>73 (7-13)</td>
<td>480 mg of LA + 120 mg of ALA</td>
<td>1000 mg Vit C</td>
<td>none</td>
<td>7</td>
<td>No effect of treatment</td>
</tr>
<tr>
<td>Richardson and Puri., 2002(46)</td>
<td>ADHD-like symptoms + learning disabilities</td>
<td>41 (6-12)</td>
<td>186 mg EPA + 480 mg DHA + 96 mg GLA + 864 mg LA + 42 mg AA</td>
<td>olive oil</td>
<td>none</td>
<td>12</td>
<td>Significant effect on symptoms</td>
</tr>
<tr>
<td>Sinn and Bryan., 2007 (phase 1)(40)</td>
<td>Score ≥ 2 SD above average ADHD Index.</td>
<td>129 (7-12)</td>
<td>LC-PUFA (558 mg EPA + 174 mg DHA + 60 mg GLA)</td>
<td>Palm oil</td>
<td>none</td>
<td>15</td>
<td>Improvement in parent ratings of ADHD-related symptoms; no improvements in teacher reports</td>
</tr>
<tr>
<td>Stevens et al., 2003(42)</td>
<td>ADHD-like symptoms + EFA deficiency</td>
<td>47 (6-13)</td>
<td>480 mg DHA + 80 mg EPA + 40 mg AA + 96 mg GLA</td>
<td>olive oil</td>
<td>ongoing usual treatment</td>
<td>17.5</td>
<td>Significant improvements only in 2 of 16 outcome measures</td>
</tr>
<tr>
<td>Voigt et al., 2001(42)</td>
<td>DSM-IV ADHD</td>
<td>63 (6-12)</td>
<td>345 mg DHA</td>
<td>Not specified</td>
<td>Adjunctive</td>
<td>17.5</td>
<td>No effect</td>
</tr>
</tbody>
</table>

GLA: gamma linolenic acid
this and the previous two studies was that the dose of n-3 PUFA administered and the EPA/DHA ratio (1:8) were higher, and that the Hawthorn effect (a high response in the control group)\(^{(60)}\) was avoided by not including those individuals in the randomisation procedure who, after a single-blind placebo run-in of 1 week, showed a strong placebo response.

Although the use of n-3 PUFA supplements in depressed pregnant women at the above doses does not appear to improve symptoms, there is insufficient evidence to confirm this at present. New trials should be undertaken in which the consumption of fish is controlled since this has the potential to confound the results. In such trials, depressed pregnant women should be provided with an n-3 PUFA supplement with an adequate EPA/DHA ratio, and an adequate control group should be present. The involvement of depressed pregnant women with an inadequate n-3 PUFA status might also be useful. Certainly, future studies should examine the improvement in gestational diabetes since, in the general population, diabetes is associated with a greater risk of depression\(^{(28)}\).

n-3 PUFA supplementation and ADHD

The link between ADHD and n-3 PUFA deficiency was first proposed by Colquhoun & Bunday\(^{(61)}\). Since then, a number of researchers have reported lower n-3 PUFA levels in children with ADHD than in healthy controls\(^{(62–66)}\), and different studies have been carried out to determine whether n-3 PUFA supplementation can improve symptoms.

Some authors have reported improvements with n-3 PUFA supplements\(^{(40,43,44,46,62)}\), although even the best have been modest. Further, the applicability of these studies to children with ADHD is questionable since some of studies focused on children not properly diagnosed with ADHD (DSM-IV)\(^{(40,46,62)}\), others were unable to demonstrate clinical improvements in more than one setting\(^{(40,46,62)}\), and some found positive results only when comparing certain subgroups of children\(^{(43,44,46)}\).

A number of studies report no effect of supplementation on ADHD\(^{(39,41,42,45)}\), in all these studies the children had been properly diagnosed with ADHD (DSM-IV).

A number of limitations could have conditioned the results obtained in these studies on children with ADHD. The majority had a small sample size as a result of a high dropout rate. Although some studies found that children with ADHD had a less adequate n-3 PUFA status than the controls\(^{(39,43,62)}\), virtually none tried to determine whether the baseline status was adequate and none indicated, when effects of supplementation on ADHD were seen, whether the children involved had any starting deficiency. This poor design quality might explain the results obtained in many of these studies: while the initial status of a subject might be improved by supplementation, if a deficiency remains uncorrected no improvement in symptoms might occur.

The lack of positive results observed in the examined studies might also be due to their short-term nature (none lasted longer than four months) and the low n-3 PUFA doses employed. Although the fatty acid composition of the plasma and erythrocytes could change over such short periods, the turnover of fatty acids in the brain is likely to be quite low in children. Longer periods of supplementation and/or larger supplements might be required for any change in the fatty acid content of the central nervous system to be seen.

The link between ADHD and n-3 PUFA deficiency was first proposed by Colquhoun & Bunday\(^{(61)}\). Since then, a number of researchers have reported lower n-3 PUFA levels in children with ADHD than in healthy controls\(^{(62–66)}\), and different studies have been carried out to determine whether n-3 PUFA supplementation can improve symptoms.

Some authors have reported improvements with n-3 PUFA supplements\(^{(40,43,44,46,62)}\), although even the best have been modest. Further, the applicability of these studies to children with ADHD is questionable since some of studies focused on children not properly diagnosed with ADHD (DSM-IV)\(^{(40,46,62)}\), others were unable to demonstrate clinical improvements in more than one setting\(^{(40,46,62)}\), and some found positive results only when comparing certain subgroups of children\(^{(43,44,46)}\).

A number of studies report no effect of supplementation on ADHD\(^{(39,41,42,45)}\), in all these studies the children had been properly diagnosed with ADHD (DSM-IV).

A number of limitations could have conditioned the results obtained in these studies on children with ADHD. The majority had a small sample size as a result of a high dropout rate. Although some studies found that children with ADHD had a less adequate n-3 PUFA status than the controls\(^{(39,43,62)}\), virtually none tried to determine whether the baseline status was adequate and none indicated, when effects of supplementation on ADHD were seen, whether the children involved had any starting deficiency. This poor design quality might explain the results obtained in many of these studies: while the initial status of a subject might be improved by supplementation, if a deficiency remains uncorrected no improvement in symptoms might occur.

The lack of positive results observed in the examined studies might also be due to their short-term nature (none lasted longer than four months) and the low n-3 PUFA doses employed. Although the fatty acid composition of the plasma and erythrocytes could change over such short periods, the turnover of fatty acids in the brain is likely to be quite low in children. Longer periods of supplementation and/or larger supplements might be required for any change in the fatty acid content of the central nervous system to be seen.

Given the above, and in agreement with that stated in a recent review by Raz & Gabis\(^{(67)}\), support for the use of essential fatty acids (EPA) supplements in children with ADHD will require further studies with more rigorous methodologies, proper ADHD diagnosis, known baseline fatty acid status, behavioural assessment in more than one setting, to be blinded (unfortunately problematic with fish oil supplements), and to involve adequate sample sizes and supplementation periods.

Omega 3 and other neuropsychiatric and behavioral disorders

Although initially 3 papers were excluded because they did not fit the inclusion criteria, we find interesting the topics addressed and deserve to be mentioned. The first study is a research conducted in 30 women with borderline personality disorder\(^{(68)}\). The main finding is that those women who received 1 g of ethyl-EPA (E-EPA) daily for 8 weeks experienced a greater decrease in depressive and aggressive symptoms than those receiving placebo (mineral oil). In other study, the effect of n-3 PUFA was analyzed in eleven patients with current obsessive-compulsive disorder, who were randomly allocated to 6 weeks of placebo (2 g/day of liquid paraffin) followed by 6 weeks of 2 g/day of EPA, or to EPA followed by placebo\(^{(69)}\). The authors didn’t find significant effect of the supplement. According with the author’s conclusion, one of the reasons for its ineffectiveness could be a low EPA dose. The last work studied the effect of n-3 on the Developmental Coordination Disorder\(^{(70)}\). In this study, 117 children aged 5 to 12 years were given a supplement with an omega 3:6 ratio of 4:1 or a placebo for 3 months, followed by a period for 3 months in which all participants received the supplement. Although there were not improvements on motor skills, improvements for active treatment versus placebo were found in reading, spelling, and behaviour over the 3 months of treatment. After the crossover, similar changes were seen in the placebo-active group, whereas children continuing with active treatment maintained or improved their progress. In view of these results is interesting to note the possible use of n-3 in the treatment of some neuropsychiatric and behavioural disorders, yet little studied.

Conclusions

In conclusion, the results of the articles examined in the present work regarding the effect of n-3 PUFA supplementation on the prevention and treatment of non-neurodegenerative neuropsychiatric disorders are inconclusive, although it would seem plausible that such supplementation could provide some benefit.
Having in mind the data of the present review, most of the existing studies do not meet important requirements to elucidate the effect of n-3 PUFA on the prevention and treatment of non-neurodegenerative neuropsychiatric disorders. Future studies should include: a sample size justified by an adequate sample size predetermination (specific to the group under study); the assessment of basal situation in n-3 PUFA in order to include only those patients with a status that could be improved; an appropriate selection criteria (healthy or sick subjects, with or without drug treatment...); control of dietary intake during the intervention, since changes in other nutrients may modify the results of the intervention; and the study of changes in erythrocytes n-3 PUFA levels in order to determine whether dietary intervention corresponds with changes in biochemical parameters. In addition, according with the studies included in the present review, the ratio EPA/DHA should be higher than 1:5-2 and future studies should be long enough to ensure that biochemical changes lead to a functional change (in both behavior or neuropsychiatric disorders). Thus, improving the design of future studies is essential to reach conclusive results.

Acknowledgements

R. M. O. and A. M. L. S. contributed to the planning of the search of this review, A. M. L. S. and E. R. R. decided the analysis and presentation of the results and created the quality assessment tool of the articles. All authors were involved in the analyses of the articles. A. M. L. S. and E. R. R. wrote the introduction and methodology of the first manuscript. All authors wrote the results section and revised and discussed all drafts and approved the final manuscript. There are no conflicts of interest to report. This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

References

