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Summary

Epistasis plays important roles in evolution, for example in the evolution of recombination, but each of the
current methods to study epistasis has limitations. Here, we propose a new strategy. If a quantitative trait locus
(QTL) affecting a quantitative character has been identified, individuals who have the same genotype at that
QTL can be regarded as comprising a subpopulation whose response to selection depends in part on interactions
with other loci affecting the character. We define the marginal differences to be the differences in the average
phenotypes of individuals with different genotypes of that QTL. We show that the response of the marginal
differences to directional selection on the quantitative character depends on epistatic gene interactions. For a
model with no interactions, the marginal differences do not differ on average from their starting values once
linkage equilibrium has been re-established. If there is directional epistasis, meaning that interactions between
the QTL and other loci tend to increase or decrease the character more than under an additive model, then the
marginal differences will tend to increase or decrease accordingly when larger values of the character are selected
for. We develop a likelihood ratio test for significant changes in the marginal differences and show that it has
some power to detect directional epistasis for realistic sample sizes. We also show that epistatic interactions
which affect the evolution of the marginal differences do not necessarily result in a substantial epistatic
component of the genetic variance.

Gene interactions are commonly found in genetic
experiments but their overall importance for quanti-
tative genetics is not well understood (Phillips, 2008;
Flint & Mackay, 2009). In this paper, we introduce a
new way of testing for epistatic interactions when
one or more QTLs affecting a quantitative character
have been identified. For a specific QTL, the marginal
averages, defined to be the character averages in in-
dividuals with each of the QTL genotypes, depend on
other loci affecting the character. After the marginal
averages are estimated in the initial population, selec-
tion can be applied. Changes in the marginal averages
in the selected population reflect interactions with
other loci affecting the character. In particular, the
differences in the marginal averages, which we call the
marginal differences, increase or decrease if inter-
actions tend to increase or decrease the character from
the expectation under additivity. Such interactions are

called directional epistatic interactions by Hansen &
Wagner (2001). They can affect the evolutionary dy-
namics of a trait even when they do not result in a
substantial epistatic component of genetic variance.

Directional epistatic interactions have been dis-
cussed extensively in the context of loci affecting fit-
ness. If alleles that increase fitness have negative
interactions (i.e. overall fitness is less than would be
predicted by the individual effects), then negative
linkage disequilibrium results. Under some condi-
tions, this situation can favour the evolution of in-
creased recombination and sexual reproduction
(reviewed in Otto, 2009). This theoretical prediction
has motivated a substantial number of experiments
searching for consistent patterns in the sign of epis-
tasis. No clear trend has emerged (de Visser & Elena,
2007; Kouyos et al., 2007). Those results, however,
largely rest on two experimental paradigms: con-
structing genotypes with known combinations of
mutations, and following changes in time and differ-
ences between mutation accumulation lines. These
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and other approaches used to quantify epistasis,
however, have a variety of limitations that we review
in the Discussion. It would therefore be useful to have
other experimental strategies that could be applied to
other genes, organisms and traits.

Early work on the effects of epistasis on quantitat-
ive traits was led by Cockerham (1954) and
Kempthorne (1954), who first worked out the theory
for estimating epistatic components of genetic vari-
ance from the resemblance between relatives. Since
then, many specific models of epistasis have been
developed and analysed, some based on the deviations
from additivity expressed in algebraic terms
(Lewontin & Kojima, 1960) and others based on ex-
plicit assumptions about interactions of gene products
(Kacser & Burns, 1981). In most cases, explicit models
of gene interactions do not result in much epistatic
variance (Keightley, 1989). Hansen and Wagner
(2001), Barton and Turelli (2004) and others have
explored the properties of general models of epistasis.
Pavlicev et al. (2010) implemented the Hansen and
Wagner theory and found evidence for directional
epistasis between QTLs affecting several characters in
inbred mice. Le Rouzic et al. (2010) developed a
statistical method for estimating epistatic effects by
analysing data from selection experiments. Although
they did not assume that QTL frequencies could be
monitored in the same experiment, their method
could be adapted to allow for that possibility.

In this paper, we propose a strategy to detect di-
rectional epistasis using selection experiments. Our
method differs from that used by Pavlicev et al. (2010)
because it is designed to detect directional epistasis
between a previously identified QTL and all other
QTLs affecting the same character, including both
those that have been identified and those that are still
unknown. The method used by Pavlicev et al. (2010)
tests for directional epistasis between only those
QTLs that have been identified. We begin by de-
scribing a null model of additive effects across loci
(i.e. no epistasis). We next define three simple models
of gene interactions that will allow us to illustrate our
results. The first is a completely symmetric model
of epistasis for which the theory is relatively simple.
We then consider two other models for epistasis
in which one locus, representing a known QTL, is
distinguished from the others. We then turn to de-
tecting epistasis. Using analysis and simulation of the
models, we show that with directional epistasis the
average differences between the genotypes at a QTL
changes following selection. We propose a statistical
test for detecting these changes and examine its power.

1. Model assumptions

We assume that a quantitative character, x, is deter-
mined by the genotype at L unlinked diallelic loci. At

each locus, the allele that tends to increase x is de-
noted by +. The genotype of an individual is re-
presented by a vector k={k1, …kL}, where ki=0, 1 or
2, indicates the number of+alleles at that locus. In
general,

x=f (k), (1)

where f(k) is the phenotype map that specifies the
average phenotype associated with each genotype.
In general, f depends on 3L parameters, one for each
genotype.

Our reference by which to judge the effects of epis-
tasis is the additive model. It assumes that the con-
tributions of each locus add:

f (k1, . . . , kL)=f1(k1)+ . . .+fL(kL): (2)

The first and simplest of our three models that include
epistasis is the symmetric model. It assumes that
all+alleles are equivalent in their effect on the
character, which implies that f depends only on the
total number of+alleles :

f (k1, . . . , kL)=hi, (3)

where i=gL

j=1kj. If hi is a linear function of i, then the
symmetric model is also additive. In later analysis, we
will assume quadratic functional dependence on i :
hi=bi+ci2. A generalization of the symmetric model
assumes that a random interaction term, ek is added
with probability q to each genotype:

f (k)=bi+ci2+ek: (4)

The parameter q allows us to vary the sparseness of
the additional epistatic terms. We will assume that
each ek is drawn independently from a distribution
with mean 0 and standard deviation sI.

We next consider cases in which a focal locus,
which we take to be locus 1 without loss of generality,
is distinguished from the others. Locus 1 represents a
QTL that has already been identified in a mapping
study. In our second model for epistasis, which we call
conditional additive, locus 1 interacts additively with
all other loci considered together, but the other loci
interact among themselves :

f (k1, . . . , kL)=f1(k1)+f2xL(k2, . . . , kL): (5)

In our third and final model for epistasis, which we
call conditional epistatic, locus 1 interacts with each
other locus epistatically but the other loci do not in-
teract with one another :

f (k1, . . . , kL)=f1(k1)+ . . .+fL(kL)+f12(k1, k2)

+ . . .+f1L(k1, kL):
(6)

The conditional epistatic model allows for directional
epistasis in an especially simple context.
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2. Population properties

The mean and total genetic variance of x in the
population are

x̄=g
k

Pr(k)f(k) (7)

and

VG=g
k

Pr(k) f(k)xx̄½ �2, (8)

where Pr(k) is the frequency of genotype k in the
population.

We assume there is a base population in which
the frequency of the + allele at locus j is pj and
the loci are in Hardy–Weinberg and linkage
equilibrium. Then we allow directional selection on
x to be applied. Continued random mating will
ensure Hardy–Weinberg genotype frequencies each
generation, but selection will create linkage dis-
equilibrium even between unlinked loci. We will as-
sume that selection is applied for t1 generations and
then t2 generations of random mating occur without
selection in order to allow linkage equilibrium to be
restored.

We calculated the components of genetic variance
in the standard way (Falconer & Mackay, 1996;
Lynch & Walsh, 1998). The total genetic variance
is VG (eqn 8). We compute aj=(x̄2, jxx̄0, j)=2 and
dj=x̄1, jx(x̄2, j+x̄0, j)=2, where x̄k, j are the marginal

averages for locus j. Then, VA=gL

j=12pj
(1xpj)[aj+dj(1x2pj)]

2, VD=gL

j=1[2pj(1xpj)dj]
2 and

VI=VGxVAxVD.

3. Marginal averages and marginal differences

Our test for epistasis depends on changes in the dif-
ferences between the average phenotypes produced by
genotypes at the focal QTL. The marginal averages
for that QTL (locus 1) are the expectations of x, given
the genotype at locus 1:

x̄k= g
k2...kL

Pr (k2, . . . , kLjk1=k)f(k, k2, . . . , kL): (9)

where k=0, 1, 2 corresponds to the number
of+alleles at the focal locus. At linkage
equilibrium, the conditional probabilities do not de-
pend on k.

We define the marginal differences for locus 1 to be
D1=x̄2xx̄1 and D0=x̄1xx̄0. These quantities are the
key to the test we propose for detecting directional
epistasis : as we will see in the following sections,
changes in allele frequencies cause the marginal dif-
ferences to change under some types of epistasis. If
the marginal differences for a locus do change that
will alter the additive genetic variance the locus con-
tributes to the trait. To see this, write the additive

genetic effect of locus 1 in terms of the marginal dif-
ferences:

a=
D1+D0

2
x(1x2p)

D1xD0

2
: (10)

The marginal differences are therefore of interest
for two reasons : they provide an opportunity to test
for epistasis, and changes in their values alter the
contribution of a locus to the additive genetic vari-
ance for a trait.

We now consider the properties of the marginal
differences under the conditional additive and con-
ditional epistatic model, where simple analytic results
can be obtained, and under the symmetric model,
where we rely on numerical analysis.

(i) The conditional additive model

In the conditional additive model, the effect of locus 1
is added to the net effect of the other L–1 loci, which
may interact among themselves. It is easy to see that
the expectations of the marginal averages do not de-
pend on the allele frequencies at the other loci at
linkage equilibrium. From eqn (9),

x̄k= g
k2...kL

Pr(k2, . . . , kLjk1=k) f (k, k2, . . . , kL)

= g
k2...kL

Pr(k2, . . . , kLjk1=k) f1(k)+f2,L(k2, . . . , kL)½ �

=f1(k)+ g
k2...kL

Pr(k2, . . . , kL)f2,L(k2, . . . , kL)

(11)

because, at linkage equilibrium, Pr(k2, …, kL|k1=k) is
independent of k. Therefore, D1=x̄2xx̄1=f1(2)xf1(1)
and D0=x̄1xx̄0=f1(1)xf1(0). The conclusion is that
the marginal differences at locus 1 are independent of
the allele frequencies at the other loci. In fact, all that
is required for this result is that there should be link-
age equilibrium between locus 1 and the others, even
if there is linkage disequilibrium among the other loci.

(ii) The conditional epistasis model

A different result holds under the conditional epistasis
model. If locus 1 interacts with the other loci, the
marginal differences may change. Substituting into
eqn (9), we obtain

x̄k=f1(k)+ g
k2 ... kL

Pr(k2, . . . , kLjk1=k)

f2(k2)+ . . .+fL(kL)+f12(k, k2)+ . . .+f1L(k, kL)½ �:
(12)

Subtracting and assuming linkage equilibrium yields

D1=f1(2)xf1(1)+ g
L

i=2
g
2

ki=0

Pr(ki) f1i(2, ki)xf1i(1, ki)½ �

(13)
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and

D0=f1(1)xf1(0)+ g
L

i=2
g
2

ki=0

Pr(ki) f1i(1, ki)xf1i(0, ki)½ �:

(14)

The third terms on the right-hand sides of these
expressions represent the net effects of the epistatic
interactions between locus 1 and the others. These
expressions show that the marginal differences at lo-
cus 1 are functions of the allele frequencies at the
other loci.

A special case of the conditional epistasis model is
that in which fi(ki)=ki and f1i(k1,ki)=bik1ki. Then

D1=D0=1+2 g
L

i=2
bipi: (15)

Thus, the changes in the marginal averages are pro-
portional to the changes in allele frequency at the
other loci, weighted by the bi.

The key conclusion that emerges from the con-
ditional epistasis model is that the marginal differ-
ences for the focal QTL will change if there are allele
frequency changes at other loci with which the focal
locus has directional epistatic interactions. This mo-
tivates the experimental test proposed below, in which
the allele frequencies change in response to artificial
selection.

(iii) The symmetric model

The general model is not analytically or even nu-
merically tractable for more than a few loci. This
situation motivates the symmetric model, in which the
frequency and effect of the + allele is assumed to be
the same at all loci. These assumptions lead to a
relatively simple theory that can be analysed numeri-
cally for larger numbers of loci.

Our analysis is based on that of Barton (1992). We
assume an infinitely large population and ignore the
effects of genetic drift. The population is character-
ized by the frequencies of gametes carrying i+alleles.
A generation consists of the random union of ga-
metes, then selection based on the number of+alleles
in zygotes, and finally free recombination to create the
next generation of gametes. After one generation

gj(t+1)= g
L

i, ik=0

gi(t)gik(t)
w(i+i0)

w̄
P(i, ik; j), (16)

where gi(t) is the frequency of gametes carrying
i+alleles in generation t, w(i+ik) is the relative
fitness of an individual with i+ik+alleles, w̄ is the av-
erage fitness in the population and P(i,ik ;j) is the
probability that an individual with gametes carrying i
and ik+alleles will produce a gamete with j+alleles.

Barton (1992) derived the expression for P by as-
suming all configurations of+alleles are equally
probable in a gamete carrying i+alleles :

P(i, ik;j)= g
min (ik, j, i+ikxj)

m=0

i

m

� �
Lxi

ikxm

� �
L

ik

� � i+ikx2m

jxm

� �

r
1

2

� �i+ikx2m

(17)

if ikfi and max(i+ikxL)fjfmin(i+ikxL).
By symmetry P(i,ik ; j)=P(ik,i ; j). Because the ratio
of binomial coefficients in the sum is the same as
the ratio in the hypergeometric probability distri-
bution, this model is sometimes called the hypergeo-
metric model. We compute the marginal differences
and the variance components for the symmetric
model as described in Appendix A. A Mathematica
program that carries out these calculations is avail-
able on request.

There is no closed form solution for this model,
but it is easy to iterate numerically for an arbitrary
fitness function, w. Here we will assume truncation
selection for larger x and let ax be the fraction of
zygotes that survive to breed. Our interest is with the
dependence on the marginal differences on the
phenotype map, hi.

We assumed a quadratic phenotype map,
hi=bi+ci2, in order to contrast the results for the
additive model (c=0) with models that assume syn-
ergistic (c>0) and antagonistic (c<0) interactions
of+alleles. Figure 1 shows typical results for experi-
ments in which five generations of truncation selec-
tion with ax=0.5 are followed by 10 generations with
no selection. In the additive model, the marginal dif-
ferences initially decrease because of the accumu-
lation of linkage disequilibrium, but then return to
their original values after 10 generations of random
mating. In contrast, if c>0, the marginal differences
are larger than their initial values after linkage equi-
librium has been re-established (Fig. 1b), and if c<0,
the marginal differences are smaller than their initial
values (Fig. 1c).

This trend in the results does not require much
synergistic or antagonistic interaction and these in-
teractions do not create much interaction variance
once linkage equilibrium is re-established. The final
values of VI/VG are 0.002 for c=0.05 and 0.015 for
c=x0.01.

We conclude from these numerical results that the
marginal differences are sensitive to relatively weak
gene interactions and that they are sensitive to gene
interactions that do not create significant interaction
components of the genetic variance.
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4. Statistical test for changes in marginal differences

The symmetric model shows that the marginal differ-
ences depend on directional epistatic interactions be-
tween a QTL and other loci. To detect a significant
change in the marginal differences, either in real or
simulated data, a statistical test is needed. We devel-
oped a likelihood ratio test that is described in
Appendix B. The test compares the genotype-specific
distributions of the character in the initial and final
populations. The data are in six vectors, {xki} for the
starting population and {yki} for the final population,
where k=0, 1, 2 is the number of copies of the+allele
at the QTL. We assume that the elements of each
vector are drawn from a normal distribution with
means mkx or mky and variances Vkx or Vky. Our test is
of whether m2xxm1x=m2yxm1y and m1xxm0x=m1yxm0y

under the assumption that the variances can take any
values. Our test assumes that twice ratio of like-
lihoods computed under the assumption of no con-
straints on the means and under the assumption of
these two constraints has a x2 distribution with two
degrees of freedom. The P-value reported is the tail
probability of this distribution.

Like any statistical test, the power of this test in-
creases with sample size. The power can be increased
by accumulating data from several generations before
and after selection is performed. In this way, larger
total sample sizes can be obtained without having to
increase the total size of the populations studied.

5. Simulations

The numerical analysis of the symmetric model as-
sumes that selection is performed in infinitely large
populations and that allele frequencies at all loci are
the same in each generation. We wrote a simulation
program for finite populations to test whether the

trends seen in those analyses can be detected in selec-
tion experiments and to analyse other models for
epistasis.

The simulation program assumes that a population
of 2N gametes is formed intoN zygotes. A phenotype x
is assigned to each zygote according the specified
phenotype map. Then the Ns=axN individuals with
the largest x are chosen to breed. Meiosis was mod-
elled by randomly choosing individuals with replace-
ment 2N times from the breeding pool and generating
a random gamete from each, assuming no linkage.
Because the gametes are paired randomly into zygotes,
this method is equivalent to allowing self-fertilization.

In each generation, we recorded the marginal dif-
ferences and the genetic, additive, dominance and
epistatic components of the genetic variance. After
t1+t2 generations, we tested for significant changes in
the marginal differences at locus 1 to obtain a P-value
of the test that there was no change in the marginal
differences.

(i) Simulation results for the symmetric model

Figure 2 shows the simulation results for the marginal
differences in the symmetric model for the same par-
ameter values used in Fig. 1. The numerical results
from Fig. 1 are included for comparison. In Fig. 2, the
marginal differences for all 10 loci are plotted for each
generation. In the symmetric model, all loci are
equivalent, and hence variation among loci represents
the variation among replicates for a single locus. The
simulation results are consistent on average with the
results for an infinitely large population and they il-
lustrate that there is substantial stochastic variation
even with N=1000. It is worth noting that the stoch-
astic variation seen is not the result of the instability
of allele frequencies caused by selection. Although the
equality of allele frequencies in a symmetric model

A B

Fig. 1. Time dependence of the marginal differences, D1 and D0, after five generations of truncation selection with ax=1/2.
The phenotype map in each case is hi=bi+ci2. In all cases, b=0.5. Generation 0 is the initial population assumed to be in
Hardy–Weinberg and linkage equilibrium with p=0.3 at all 10 loci. Selection was applied in generations 0–4 followed by
10 generations of random mating without selection.
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may be unstable to some kinds of selection (Barton &
Shpak, 2000), that is not the case with the selection
model we used. In these and other simulation results
for the symmetric model, allele frequencies at different
loci do not vary more than would be expected under
genetic drift alone acting for the same number of
generations. Instead, the variation in the marginal
differences results from stochastic variation in linkage
disequilibrium among the loci.

To determine whether significant changes in the
marginal differences can be detected with the test de-
scribed above, we ran 100 replicates each with the
same parameter values used in the three cases shown
in Fig. 2 but with s2

e chosen so that the heritability in
each case is roughly 1/2: s2

e=1.1 for c=0, 3.0 for
c=0.5 and 0.9 for c=x0.1. For 3A (linear model),
5% had a significant change in the marginal differ-
ences at the 5% level. For 3B (synergistic), 31% were
significant at the 5% level and for 3C (antagonistic)
14% were significant.

These simulation results confirm that the average
behaviour predicted by the analytic theory is seen in

populations of finite size and that there is some power
to detect significant changes in the marginal differ-
ences. The symmetric model we analysed is not a re-
alistic model for interactions affecting quantitative
character, however, because all interactions are in the
same direction. As a consequence, VG is predicted to
change systematically in a way not seen in selection
experiments. With c=0.05, VG almost doubles and if
c=x0.01, it decreases by almost a half.

(ii) Simulation results for other models

The results from the symmetric model indicate that
deviations from the additive model of the same sign
(either synergistic or antagonistic) tend to have con-
sistent effects on the marginal differences. To deter-
mine whether those results are sensitive to additional
random epistatic effects, we simulated the model with
the randomly generated interaction term, eqn (4).
Figure 3(a) shows that if c=0, selection on x does not
tend to change the marginal differences, even though
the additional interaction terms create a substantial

A B C

Fig. 2. Time dependence of D1 and D0 for all 10 loci in a population of N=1000 individuals. The parameter values are the
same as in Fig. 1. The predictions of the analytic theory from Fig. 1 are plotted with solid lines for comparison with the
simulations.

A B C

Fig. 3. Time dependence of D1 and D0 in the model with random epistatic terms added to the quadratic dependence on
i (cf. eqn (4)). The parameter values are the same as in Figs 1 and 2. The additional epistatic term for each genotype was
drawn with probability q=0.5 from a normal distribution with mean 0 and standard deviation sI=1. The predictions of
the analytic theory from Fig. 1 are plotted with solid lines for comparison.
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interaction component of the variance. After linkage
equilibrium is re-established, VI/VGB0.25. With both
synergistic (c>0) and antagonistic (c<0), the trends
in the marginal differences persist (Fig. 3b and c). In
sets of 100 replicate simulations for each set of par-
ameter values, we tested whether the marginal differ-
ences changed significantly at the 5% level. In 100
replicates, we found 10% significant changes in the
marginal differences for the parameters in 3A (with
s2
e=1�4), 56% for 3B (with s2

e=9) and 5% for 3C
(with s2

e=0�9)
We determined the power of the likelihood ratio

test for the conditional epistasis model with f1i(k1,
ki)=bi1ki. Table 1 shows some results for L=10,
pi=0.2 initially, and the same b used for i=2, …, 10.
With the parameter values used, the average pi was
approximately 0.8 in the final population. Therefore,
from eqn (15) the expected change in the marginal
differences is 2b(Lx1)(pfinali xpinitiali ) or approximately
10.6b. We can see there is some power to detect sig-
nificant changes in marginal differences, particularly
if N=1000.

As mentioned above, the power of our test can be
increased if information is accumulated over several
generations before and after selection. To illustrate,
we ran additional simulations for the middle cell in
Table 1 (N=250 and b=0.02). With data taken in one
generation before and after selection was performed,
22% of the replicates had a significant change in the
marginal differences at the 5% level. With data ac-
cumulated over three generations before and after,
47% of the replicates were significant and over five
generations before and after 62% were significant.

6. Discussion and conclusions

Four research strategies are currently used to study
epistasis among genes affecting quantitative traits,

each with its strengths and weaknesses. The total
genetic variance can be decomposed to determine
the contribution from epistasis (Cockerham, 1954;
Kempthorne, 1954). Limitations of this approach
are that it does not give information about the form
of epistasis, or how epistasis will affect evolutionary
dynamics. A second approach is to construct known
genotypes to study interactions between loci (Flint
& Mackay, 2009). This strategy has the virtues that
it can directly identify loci that interact, and allows
the interactions to be quantified in detail and stud-
ied experimentally. It is limited to organisms in
which appropriate mutations have been character-
ized and by the number of mutant combinations
that can be constructed and analysed. A third
strategy is to analyse replicated mutation accumu-
lation lines (Elena & Lenski, 1997). The dynamics
of trait values (such as fitness) within lines and
differences between lines can be used to estimate
parameters of epistasis. The strength of this method
is that it can in principle detect the effects of epis-
tasis at loci throughout the genome, and these loci
do not need to be identified a priori. A major
limitation is that it quantifies only the epistatic ef-
fects of spontaneous mutations, which may not be
typical of genes segregating in natural populations.
A fourth method used to study epistasis is QTL
mapping (Manichaikul et al., 2010). This approach
identifies the QTLs involved, but is constrained by
statistical power to detecting only strong epistatic
interactions.

This paper proposes a new strategy for studying
epistasis that complements these other methods. Its
strengths are that it can detect contributions to epis-
tasis from naturally segregating variation at loci
throughout the genome. Its limitations are that it re-
quires a large replicated selection experiment and is
sensitive to only certain types of epistasis. The prin-
ciple of our method depends on the fact that the
marginal effects of a known QTL depend on the epi-
static interactions of that locus with other loci affect-
ing the same character. Changes in allele frequencies
at those loci change the genetic environment for the
QTL (Phillips, 2008). This generalization implies that
changes in the marginal effects of a known QTL can
provide evidence of interactions that tend to be in one
direction, either synergistic or antagonistic. Further-
more, interactions that affect the marginal differences
do not necessarily lead to a substantial interaction
component of the genetic variance and therefore
might not be detected by studies that focus on vari-
ance components.

Our method is not able to detect all types of
epistatic interactions, only those that result in a net
directional component. As shown in Fig. 3(a), inter-
actions can be present and can generate a substantial
interaction component of the variance and yet will not

Table 1. Power to detect significant changes in the
marginal differences (D1 and D0) for the conditional
epistasis model. In all cases, 100 replicate simulations
were run, ax=0.5, L=10, f1(k1)=k1, the frequency of
the+allele was initially 0.2 at every locus, and the
same value of bi was assumed for loci i=2, …, 10. If
the+allele became fixed after selection, the test could
not be performed. The numbers shown are the
fractions of replicates for which the likelihood ratio
test was performed and Pf0.05. The numbers in
parentheses are the numbers of tests performed

N

b 100 250 1000
0.01 0.10 (87) 0.10 (99) 0.25 (100)
0.02 0.22 (83) 0.22 (100) 0.56 (100)
0.03 0.25 (73) 0.23 (99) 0.75 (100)
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result in a net change in the marginal differences be-
cause their effects tend to cancel.

Our numerical and simulation results show that
synergistic and antagonistic interactions result in pre-
dictable changes in the marginal differences, on aver-
age. At first sight, it may seem unlikely that epistatic
interactions would show a bias towards synergistic
or antagonistic interactions. It is, however, well es-
tablished that dominance interactions often display
directionality. Deleterious mutations are typically
partly recessive (Eyre-Walker & Keightley, 2007),
and consistent dominance patterns have been seen
for other kinds of traits, a phenomenon called ‘direc-
tional dominance’ (Falconer &Mackay, 1996, p. 250).
If dominance (i.e. interactions between alleles at a
single locus) can show consistent patterns, it is plaus-
ible that epistasis (which is interactions between alleles
at different loci) will also. Metabolic control theory
gives support to that view (Keightley, 1989).

In our analysis, we have assumed that QTLs are
unlinked. In that case a few generations of random
mating with no selection will restore linkage equilib-
rium. Our conclusions are still true if there is very
close linkage between the focal QTL and others. In
the time scale of the experiment, very closely linked
QTLs would behave as a single QTL because recom-
bination between them would be unlikely.
Complications arise if there is weaker linkage between
the focal QTL and one or more unseen QTLs. Even if
they are in linkage equilibrium in the initial popu-
lation, directional selection would create LD between
them that would not decay in a few generations of
random mating. The remaining LD could create a
false signal of directional epistasis that would decline
if more generations of random mating were allowed.
If a signal of significant directional epistasis were
found in an experiment, it would be necessary to test
for the presence of a linked QTL by doing controlled
crosses.

Our method tests for directional epistasis between a
specific QTL and others. If there were directional
epistasis between all QTLs in the same direction, as in
our symmetric model, then the directionality of the
interactions would also be indicated by the response
of the character mean to selection (an outcome that
can also result from dominance). The mean would
increase more than linearly in response to selection. In
that case, the directionality could be removed by
changing the scale of measurement so that the selec-
tion response is linear. The situation is different if the
focal QTL interacts with others but they do not in-
teract among themselves, as in our conditional epis-
tasis model. Even when there are significant changes
in the marginal differences, we found that the average
response to selection is not distinguishable from lin-
ear. In a model in which there are positive directional
interactions with one QTL and negative interactions

with another, the effect of the directional interactions
would cancel on average while directionality for each
QTL could in principle be detected with our method.

It may be difficult to detect epistatic interactions by
the approach explored in this paper because of the
large stochastic fluctuations in the marginal differ-
ences. These stochastic fluctuations reflect the fact
that the marginal differences are the difference in the
averages of two distributions that are quite similar
unless the QTL accounts for a substantial fraction of
the genetic variance. Nevertheless, changes in mar-
ginal differences after selection reflect kinds of epi-
static interactions that cannot be detected by other
means.

Although relatively large sample sizes are required
to detect significant directional epistasis between a
known QTL and other QTLs that affect the same
character, that is a problem for classical tests of epi-
static interactions as well. Large sample sizes are
needed to estimate additive by additive and other
components of genetic variance from breeding ex-
periments (Hill et al., 2008). Estimates for the genetic
variance resulting from epistasis, however, cannot
predict evolutionary consequences, for example how
the selection response will change as allele frequencies
evolve.

Our method will not be effective in detecting direc-
tional epistasis caused by interactions with low fre-
quency alleles. Changes in the marginal differences
result from changes in the frequency of unseen QTLs
because of directional selection, and low frequency
alleles will respond very slowly to directional selec-
tion. However, low frequency alleles would be ex-
pected to contribute little to directional epistasis (cf.
eqn 15), just as they contribute little to the interaction
variance (Hill et al., 2008). Epistatic interactions with
more common QTLs may not contribute much to the
interaction component of the genetic variance, even if
they can be detected from changes in the marginal
differences.

Our results also suggest a way to detect loci
strongly affected by epistatic interactions. The idea is
to perform a genome-wide association study (GWAS)
for a quantitative character in an initial population
and again after several generations of directional
selection on the character. An experiment of this type
was carried out by Burke et al. (2010). They selected
for accelerated development in Drosophila melanoga-
ster and tested for significant differences in single
nucleotide polymorphism (SNP) frequencies between
selected and unselected (control) populations in order
to identify SNPs associated with development time.
In such an experiment, SNPs for which the marginal
differences change substantially would likely be
closely linked to loci that are affected by epistatic in-
teractions. Although the statistical problems arising
in the analysis of such data are formidable and
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complications would arise because linkage dis-
equilibrium between the SNPs surveyed and causative
genes could change, data from independent replicates
would give increasing power to detecting interacting
loci if they are present. Decreasing costs of genotyping
on a genome wide scale will make such experiments
increasingly feasible.
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Appendix A. Formulae for symmetric model

We show here the formulae for calculating the mar-
ginal averages and components of genetic variance for
the symmetric model with equal allele frequencies.
From the distribution of the number of+alleles in
gametes, gi. the distribution in zygotes is the convol-
ution of gi with itself :

wi= g
min(i,L)

j=max(0, ixL)

gjgixj:

Therefore,

x̄= g
2L

i=0
hiwi

and

VG= g
2L

i=0
hixx̄ð Þ2wi:

The distribution of i in gametes, given that one of the
loci has k=0 or 1+alleles, is

g(k)i =gi

Lx1
ixk

� �
L
i

� � = g
L

i=0
gi

Lx1
ixk

� �
L
i

� �

(i=0, …, L), where the binomial coefficients are as-
sumed to be 0 if either of the arguments is negative.
The marginal averages are then

x̄0= g
L

i, j=0
g(0)i g(0)j hi+j,

x̄1= g
L

i, j=0
g(1)i g(0)j hi+j

and

x̄2= g
L

j, k=0

g(1)i g(1)j hi+j:

The marginal differences, D1 and D0, are obtained
by subtraction. For each locus, a=(D1+D0)=2
and d=(D0xD1)=2. Substituting these into the ex-
pressions given in the text, VA, VD and VI are ob-
tained.

Appendix B. Likelihood ratio test for a change in

the marginal differences

In the initial population, there are mk individuals
with k+alleles at locus 1 and nk in the final popu-
lation. In the initial population, the phenotypes
of individuals with each of the three genotypes are
vectors with elements xki (k=0, 1, 2 and i=1, …, mk)
and in the final population they are yki (k=0, 1, 2
and i=1, …, nk). We assume the x’s and y’s are
normally distributed with arbitrary means and var-
iances.

In the unconstrained model, the parameters of the
normal distributions for xki are mkx and Vkx and for
yki the parameters are mky and Vky.

The likelihood expressed as a function of these
means and variances is

L=
Y2
k=0

1

2pVkx

� �mk=2 Ymk

i=1

exp
x(xkixmkx)

2

2Vkx

� �
1

2pVky

� �nk=2

r
Ynk
i=1

exp
x(ykixmky)

2

2Vky

" #
:

For the unconstrained model, the maximum likeli-
hood estimates of the means and variances are the
same as for three independent normal distributions :

m̂kx=
1

mk

g
mk

i=1
xki

with similar expressions for mky, and

V̂kx=
1

mk

g
mk

i=1
(xki � m̂kx)

2:

(k=0, 1, 2) with similar expressions for the Vky.
The marginal differences at the beginning of the

experiment are D1=m2xxm1x and D0=m1xxm0x and at
the end of the experiment they are Dk1=m2yxm1y and
Dk0=m1yxm0y. We want to test the hypothesis that
D1=Dk1 and D0=Dk0. To do so, we find the maximum
likelihood estimates for a model in which the var-
iances can take any value but the means are con-
strained to satisfy D1=Dk1 and D0=Dk0.

For the constrained model, the six equations for
the variances, given the means, are the same as for the
unconstrained model. We parameterize the con-
strained model by setting m2x=m1x+D1, m0x=m1xxD0,
m2y=m1y+D1 and m0y=m1yxD0. We find that the
maximum likelihood estimates of m1x, m1y, D1 and D0
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have to satisfy the following four equations:

m2

V2x
+

m1

V1x
+

m0

V0x

� �
m1x+

m2

V2x
D1x

m0

V0x
D0

=
1

V2x
g
m2

i=1
x2i+

1

V1x
g
m1

i=1
x1i+

1

V0x
g
m0

i=1
x0i,

n2

V2y
+

n1

V1y
+

n0

V0y

� �
m1y+

n2

V2y
D1x

n0

V0y
D0

=
1

V2y
g
n2

i=1
y2i+

1

V1y
g
n1

i=1
y1i+

1

V0y
g
n0

i=1
y0i,

m2

V2x
m1x+

n2

V2y
m1y+

m2

V2x
+

n2

V2y

� �
D1

=
1

V2x
g
n2

i=1
x2i+

1

V2y
g
m2

i=1
y2i,

m0

V0x
m1x+

n0

V0y
m1yx

m0

V0x
+

n0

V0y

� �
D0

=
1

V0x
g
m0

i=1
x0i+

1

V0y
g
n0

i=1
y0i,

where the carats have been omitted for notational
convenience.

In the constrained model, the estimates of the var-
iances depend on the means and the estimates of the
ms and Ds depend on the variances. To solve all 10
equations, we used an EM algorithm that starts with
the means and variances from the unconstrained
model, estimates the means by solving the above four
equations, re-estimates the variances from the new
means, and continues until the maximum change in
any of the estimates in one cycle is less than a specified
small value (10x8). This procedure converged in a
few iterations in all cases ran. We then computed the
logarithm of the ratio of likelihoods under the un-
constrained and constrained models and computed
a P-value from a x2 distribution with two degrees
of freedom. We found in a simulation test of a null
model that this test rejected the null hypothesis at the
5% level roughly 5% of the time.
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