
Bull. Aust. Math. Soc. 96 (2017), 59–68
doi:10.1017/S0004972717000077

A CHARACTERISATION FOR A GROUPOID GALOIS
EXTENSION USING PARTIAL ISOMORPHISMS

WAGNER CORTES and THAÍSA TAMUSIUNAS�
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Abstract

Let S |R be a groupoid Galois extension with Galois groupoid G such that EGr(g)
g ⊆ C1g, for all g ∈G, where

C is the centre of S , Gr(g) is the principal group associated to r(g) and {Eg}g∈G are the ideals of S . We give
a complete characterisation in terms of a partial isomorphism groupoid for such extensions, showing that
G =

⋃̇
g∈GIsomR(Eg−1 , Eg) if and only if Eg is a connected commutative algebra or Eg = EGr(g)

g ⊕ EGr(g)
g ,

where EGr(g)
g is connected, for all g ∈ G.

2010 Mathematics subject classification: primary 13B05; secondary 18B40.
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1. Introduction

Several branches of groupoid theory have aroused curiosity as objects of study
for their applications and generalisations in many areas, such as algebraic topology,
noncommutative geometry, Lie groupoids and theoretical physics (see [2–4, 6–8]).
In this paper, we make a breakthrough in groupoid Galois theory by giving a
characterisation for a groupoid Galois extension with Galois groupoid given by the
disjoint union of the partial isomorphisms between the unitary ideals of that extension.

Our starting point is the work of Chase et al. [5]. They proved that the Galois
group of a commutative Galois extension with no idempotents other than 0 and 1 is
the automorphism group of the ring. Later, Szeto and Xue [9] proved the converse
proposition, showing that given a Galois algebra S over a commutative ring R with
Galois group G, then G = AutR(S ) if and only if either S is commutative with no
idempotents other than 0 and 1, or S � R ⊕ R where R contains no idempotents other
than 0 and 1. In this work, we study such characterisations for groupoid Galois
extensions in terms of the groupoid of partial isomorphisms and the ideals of the
groupoid Galois extension.

The paper is organised as follows. In Section 2 we give some preliminary results
about groupoids, groupoid actions and groupoid Galois theory. In Section 3, we
consider S , a commutative groupoid Galois extension of R with Galois groupoid G,
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where G acts by partial isomorphisms over S . We show that each unitary ideal Eg of
S , for g ∈ G, is connected if and only if G is the disjoint union of the R-isomorphisms
between the ideals E−1

g and Eg.
In Section 4 we take S to be a not necessarily commutative groupoid Galois

extension of R with Galois groupoid G. We prove that if the fixed subalgebra of Eg
by the action of the principal group associated to r(g) is contained in the projection of
the centre of S over the ideal Eg, then G is the disjoint union of the R-isomorphisms
between the ideals E−1

g and Eg with g ∈ G if and only if each ideal Eg is a connected
commutative algebra. Moreover, we study the particular case where G is the disjoint
union of the principal groups and present some examples concerning the converse in
that case.

2. Prerequisites
The algebraic version of groupoid that we adopt in this paper is taken from [7].

Although we do not work with the categorical version of groupoids (see [4] for
more details), it should be noted that the algebraic and the categorical definitions of
groupoids are equivalent.

A groupoid is a nonempty set G, equipped with a partially defined binary operation
(which will be denoted by concatenation), such that the following axioms hold:

(i) for all g, h, l ∈ G, g(hl) exists if and only if (gh)l exists and in this case the two
are equal;

(ii) for all g, h, l ∈ G, g(hl) exists if and only if gh and hl exist;
(iii) for each g ∈ G, there exist (unique) elements d(g), r(g) ∈ G such that gd(g) and

r(g)g exist and gd(g) = g = r(g)g;
(iv) for each g ∈ G there exists g−1 ∈ G such that d(g) = g−1g and r(g) = gg−1.

For every g, h ∈ G, we say that there exists gh whenever the product gh is defined.
It follows by definition that for every g, h ∈ G, we have that there exists gh if and only
if d(g) = r(h) and, in this case, d(gh) = d(h) and r(gh) = r(g). We denote by G2 the
subset of the pairs (g, h) ∈ G ×G such that d(g) = r(h). An element e ∈ G is called
an identity of G if e = d(g) = r(g−1), for some g ∈ G. We denote by G0 the set of all
identities of G and by Ge the set of all g ∈ G such that d(g) = r(g) = e. It is easy to see
that, for all e ∈ G0, Ge is a group, called the principal group associated to e. Given G
a groupoid and H a nonempty subset of G, we say that H is a subgroupoid of G if it
satisfies the following conditions:

(i) for all g, h ∈ H, if there exists gh then gh ∈ H;
(ii) if g ∈ H then g−1 ∈ H, for every g ∈ H.

Consider S an algebra over a commutative ring K. Following [1], an action of G
over S is a pair

β = ({Eg}g∈G, {βg}g∈G),

where for each g ∈G, Eg = Er(g) is an ideal of S and βg : Eg−1 → Eg is an isomorphism
of K-algebras satisfying the following conditions:
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(i) βe is the identity map IdEe of Ee for every e ∈ G0;
(ii) βg(βh(r)) = βgh(r) for every (g, h) ∈ G2 and for every r ∈ Eh−1 = E(gh)−1 .

We say that S is a groupoid Galois extension of a ring R ⊆ S with Galois groupoid G
if:

(i) R = S G = {s ∈ S | βg(s1g−1 ) = s1g, for all g ∈ G};
(ii) there exist elements xi, yi ∈ S , 1 ≤ i ≤ m, such that

∑
1≤i≤m xiβg(yi1g−1 ) = δe,g1e

for all e ∈ G0 and g ∈ G.

The set {xi, yi}1≤i≤m is called a Galois coordinate system of S over R. A ring S is called
a groupoid Galois algebra over R if S is a Galois extension of R and R is contained in
the centre of S .

Let S be an algebra over a commutative ring R. Define

IR(S ) = { fIJ : I → J | fIJ is an R-isomorphism and I, J are ideals of S
generated by central idempotents}.

It is easy to see that IR(S ) is a groupoid. If G ⊆ IR(S ) as a subgroupoid, we say that the
groupoid G acts over S by partial isomorphisms and, in this case, βg(s1g−1 ) = g(s1g−1 ),
for all s ∈ S . This is the case that we consider in this paper.

Throughout, unless otherwise specified, rings and algebras are associative and
unital.

3. Commutative ideals
In this section we assume that S is a commutative groupoid Galois extension of

R with Galois groupoid G such that G acts over S by partial isomorphisms and
S =

⊕
e∈G0

Ee, where each Ee, e ∈G0, is a unitary commutative ideal of S with identity
element 1e.

We say that Eg is connected if it contains no idempotents other than 0 and 1g.
Let gGg = {h ∈ G | d(h) = d(g) and r(h) = r(g)}. The following proposition generalises
[5, Theorem 3.1].

Proposition 3.1. Let A be a commutative R-algebra and let ψg, ϕg : Eg → A be R-
algebra homomorphisms. Then there exists a set {eg

h | h ∈ gGg} of pairwise orthogonal
idempotents of A such that

∑
h∈gGg

eg
h = 1A and ϕg(sg) =

∑
h∈gGg

ψg(h(sg−1 1h−1 ))eg
h, for

all g ∈ G, where
∑

g∈G sg = s ∈ S .

Proof. By [1, Theorem 5.3], the map ρ : S ⊗R S →
∏

h∈G Eh given by ρ(x ⊗ y) =
(xh(y1h−1 ))h∈G is an isomorphism of left R-modules. Since Eg is commutative for all
g ∈ G, it follows that ρ is an isomorphism of R-algebras.

Let ρg := ρ|Eg⊗Eg−1 . Then

ρg(xg ⊗ yg−1 ) = (xgh(yg−1 1h−1 ))h∈G = (xgh(yg−1 1h−1 ))h∈gGg .

Thus, Eg ⊗ Eg−1 '
∏

h∈gGg
Eh as R-algebras. Let θ denote the composition of maps∏

h∈gGg

Eh
ρ−1

g
−−→ Eg ⊗R Eg−1

r(g)⊗g
−−−−→ Eg ⊗R Eg

ψg⊗ϕg
−−−−→ A ⊗R A

k
−→ A,
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where k is the contraction homomorphism defined by k(a1 ⊗ a2) = a1a2.
Consider 1h = (0, . . . , 0, 1h, 0, . . . , 0) and take eg

h = θ(1h), h ∈ gGg. Then {eg
h}h∈gGg are

pairwise orthogonal idempotents of A such that
∑

h∈gGg
eh

g = 1A.
Note that ρg(1g ⊗ sg−1 ) = (h(sg−1 1h−1 ))h∈gGg , for all sg−1 ∈ Eg−1 . Applying θ on both

sides of the equality, we get

k ◦ (ψg ⊗ ϕg) ◦ (r(g) ⊗ g) ◦ ρ−1
g (ρg(1g ⊗ sg−1 ))= θ(h((sg−1 1h−1 ))h∈gGg )

k ◦ (ψg ⊗ ϕg)(1g ⊗ sg)= θ
( ∑

h∈gGg

h(sg−1 1h−1 )1h

)
.

So

ϕg(sg)=
∑

h∈gGg

θ((h(sg−1 1h−1 )1l)l∈gGg )θ(1h)

=
∑

h∈gGg

k ◦ (ψg ⊗ ϕg) ◦ (r(g) ⊗ g) ◦ ρ−1
g ((h(sg−1 1h−1 )1l)l∈gGg )eg

h

=
∑

h∈gGg

k ◦ (ψg ⊗ ϕg) ◦ (r(g) ⊗ g)(h(sg−1 1h−1 ) ⊗ 1g−1 )eg
h

=
∑

h∈gGg

ψg(h(sg−1 1h−1 ))eg
h. �

Denote by j : S ?G→ EndR(S ) the natural map given by

j
(∑

g∈G

agug

)
(x) =

∑
g∈G

agg(x1g−1 ) for all x ∈ S .

By [1, Theorem 5.3], the map j is an isomorphism of rings and S -modules.

Corollary 3.2. Let Wg−1 = HomR(Eg−1 ,Eg) be the set of the R-algebra homomorphisms
between Eg−1 and Eg. Then j−1(Wg−1 ) consists of all elements of S ?G of the form∑

h∈gGg
eg

huh, with eg
h pairwise orthogonal idempotents of Eg such that

∑
h∈gGg

eg
h = 1g.

Proof. Consider the map h = j|⊕
h∈gGg

Eh?gGg
. Then h is an isomorphism of R-algebras

between
⊕

h∈gGg
Eh ? gGg and the set of R-algebra isomorphisms IsomR(Eg−1 , Eg),

where
j
( ∑

h∈gGg

ahuh

)
(xg−1 ) =

∑
h∈gGg

ahh(xg−1 1g−1 ) for all xg−1 ∈ Eg−1 .

Take A = Eg in Proposition 3.1 and ψg−1 : Eg−1 → Eg defined by ψg−1 (xg−1 ) = xg,
where

∑
g∈G xg = x ∈ S . By Proposition 3.1, ϕg−1 (xg−1 ) =

∑
h∈gGg

h(xg−1 1h−1 )eg
h, with eg

h
pairwise orthogonal idempotents of Eg, for all ϕg−1 ∈ Wg−1 . Consequently, we have
j−1(Wg−1 ) = {

∑
h∈gGg

eg
huh}. �

Corollary 3.3. With the same notation as in Corollary 3.2, if eg
h ∈ R1g for all h ∈ gGg,

then Wg−1 = IsomR(Eg−1 , Eg).
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Proof. We claim that for each f ∈Wg−1 , there exists f −1 ∈Wg such that f ◦ f −1 = r(g)
and f −1 ◦ f = d(g). In fact, given f ∈ Wg−1 , there exists a set of pairwise orthogonal

idempotents {eg
h}h∈gGg ⊆ Eg such that j(

∑
h∈gGg

eg
huh) = f . Let f −1 = j(

∑
l∈gGg

eg−1

l ul−1 ).
Then ( ∑

h∈gGg

eg
huh

)(∑
l∈gGg

eg−1

l ul−1

)
=

∑
h,l∈gGg

h(h−1(eg
h)eg−1

l )uhl−1

=
∑

h,l∈gGg

h(eg−1

h eg−1

l )uhl−1

=
∑

h∈gGg

h(eg−1

h eg−1

h )ur(g)

=
∑

h∈gGg

h(eg−1

h )ur(g)

= 1gur(g).

Analogously, we can show that (
∑

l∈gGg
eg−1

l ul−1 )(
∑

h∈gGg
eg

huh) = 1g−1 ud(g). This proves
that Wg−1 = IsomR(Eg−1 , Eg). �

Corollary 3.4. With the same notation as in Corollary 3.3, Eg is connected if and only
if IsomR(Eg−1 , Eg) = Wg−1 = gGg.

Proof. By Corollary 3.3, IsomR(Eg−1 , Eg) = Wg−1 and it is immediate that gGg ⊆ Wg−1 .
If Eg is connected, j−1(Wg−1 ) = {1gug}. Since j(1gug)(xg−1 ) = g(xg−1 1g−1 ), it follows that
j(1gug) ∈ gGg. Thus, Wg−1 = gGg.

Conversely, assume Wg−1 = gGg. Suppose that there exists eg
h , 1g, 0 in Eg. Then

j(eg
huh + (1g − eg

h)ul) ∈ Wg−1 , but it is not in gGg, a contradiction. �

Corollary 3.5. Let S |R be a commutative groupoid Galois extension. For each g ∈ G,
the ideal Eg is connected if and only if G =

⋃̇
g∈G IsomR(Eg−1 , Eg).

Proof. Since G =
⋃̇

g∈G gGg, the statement is immediate from Corollary 3.4. �

4. The converse problem

In this section, we assume that S is a not necessarily commutative groupoid Galois
extension of R with Galois groupoid G such that G acts over S by partial isomorphisms
and S =

⊕
e∈G0

Ee, where each Eg, g ∈ G, is a unitary ideal of S with identity
element 1g.

Lemma 4.1. Let λIJ ∈ IR(S ) such that λIJ , IdI (in the case I = J). If a , 0 is a central
idempotent in I such that λIJ(sa) = sλIJ(a) for all s ∈ S , then λIJ < G.

Proof. Since S is a groupoid Galois extension over R, there exist elements xi, yi ∈ S ,
1 ≤ i ≤ m, such that

∑m
i=1 xig(yi1g−1 ) = δe,g1e, for all e ∈ G0 and g ∈ G.
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Take λIJ as in the hypothesis for a , 0 a central idempotent in I, and assume λIJ ∈G.
Then there exists g ∈ G \G0 such that λIJ = g, which implies that Eg−1 = I and Eg = J.
Thus,

∑m
i=1 xig(yi1g−1 ) = 0, since g < G0. Hence,

0 = 0 · g(a) =
m∑

i=1

xig(yi1g−1 ) · g(a) =
m∑

i=1

xig(yia) =
m∑

i=1

xiyig(a) = g(a),

which is a contradiction. So λIJ < G. �

Lemma 4.2. If G =
⋃̇

g∈G IsomR(Eg−1 , Eg), then Rg := R1g is connected for each g ∈ G.

Proof. Suppose that G =
⋃̇

g∈G IsomR(Eg−1 , Eg). Then gGg = IsomR(Eg−1 , Eg). Assume
that Rg is not connected. Then there exists ag , 0, 1g, ag ∈ Rg such that a2

g = ag and
Eg = Egag ⊕ Eg(1g − ag). Since ag ∈ Rg, there exists r ∈ R such that ag = r1g. Thus,
g−1(ag) = g−1(r1g) = r1g−1 = ag−1 . Hence, Eg−1 = Eg−1 ag−1 ⊕ Eg−1 (1g−1 − ag−1 ). We have
two cases.

Case 1. |gGg| = 1. In this case, there exists only one partial isomorphism from Eg to
Eg−1 . But αg−1 : Eg → Eg−1 defined by αg−1 (xag + y(1g − ag)) = xag−1 + y(1g−1 − ag−1 )
and λg−1 : Eg → Eg−1 defined by λg−1 (xag + y(1g − ag)) = yag−1 + x(1g−1 − ag−1 ) are both
partial isomorphisms, which is a contradiction.

Case 2. |gGg| ≥ 2. Choose h ∈ gGg and h < G0 (which means that h , IdEg in the
case d(g) = r(g)). Thus, h−1 < G0 and h−1|Egag , IdEgag or h−1|Eg(1g−ag) , IdEg(1g−ag).
Assume, without loss of generality, that h−1|Eg(1g−ag) , IdEg(1g−ag). Define the map
λg−1 : Eg → Eg−1 by λg−1 (xag + y(1g − ag)) = xag−1 + h−1(y(1g − ag)), for all x, y ∈ S .
Then, by Lemma 4.1, λg−1 < G, which is a contradiction. So Rg is connected. �

Lemma 4.3. If G =
⋃̇

g∈G IsomR(Eg−1 , Eg) and |gGg| > 2 for all g ∈ G, then Eg is a
connected R-algebra, for all g ∈ G.

Proof. By Lemma 4.2, Rg is connected for all g ∈ G. We claim that Eg is connected
for all g ∈ G. In fact, since S is a groupoid Galois extension over R with groupoid G,
then, by [1, Theorem 5.3], S is a finitely generated R-module. Thus, S contains only
finitely many minimal idempotents. Since S =

⊕
e∈G0

Ee, Ee contains only finitely
many minimal idempotents, for all e ∈ G0.

Let g ∈ G and {ag,i | i = 1, 2, . . . , q} be the minimal central idempotents in Eg. As
well as Eg ' Eg−1 , the ideals Eg and Eg−1 have the same number of minimal central
idempotents. Let {ag−1,i | i = 1, 2, . . . , q} be the minimal central idempotents in Eg−1 . If
q = 1, we are done.

Assume q > 1. Let h ∈ gGg be such that h < G0 and h−1(ag,1) = ag−1, j, for some j.
Then we have the following four cases.

Case 1. j = 1 and h−1(sag,1) = sag−1,1 for all s ∈ S . Then, by Lemma 4.1, h−1 < G,
which is a contradiction.
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Case 2. j = 1 and h−1(sag,1) , sag−1,1 for some s ∈ S . Then we have the partial
isomorphism λg−1 : Eg → Eg−1 defined by λg−1 |S ag,1 = h−1|S ag,1 and λg−1 (sag,i) = sag−1,i
for all i , 1, s ∈ S . Thus, by Lemma 4.1, λg−1 < G, a contradiction again.

Case 3. j , 1 and q > 2. Consider the partial isomorphism λg−1 : Eg → Eg−1 such that
λg−1 |S ag,1 = h−1|S ag,1 : S ag,1 → S ag, j, λg−1 (sag, j) = sag−1,1 and λg−1 (sag,k) = sag−1,k, for all
k , 1, j. Then, by Lemma 4.1, λg−1 < G, a contradiction.

Case 4. j , 1 and q = 2. Then h−1(ag,1) = ag−1,2. Since |gGg| > 2, there exists
l ∈ gGg such that l , h and l < G0. Thus, l−1(ag,1) = ag−1,1 or l−1(ag,1) = ag−1,2. If
l−1(ag,1) = ag−1,1, then we have Case 1 or Case 2. Hence, assume l−1(ag,1) = ag−1,2.
Note that hl−1 exists, since d(h) = d(g) = d(l) = r(l−1). Then we have hl−1 : Eg → Eg,
hl−1(ag,1) = ag,1 and hl−1 <G0, since h , l. This is either Case 1 or Case 2, which leads
to a contradiction.

So, q = 1 and Eg is a connected R-algebra for all g ∈ G. �

Observation 4.4. Lemmas 4.2 and 4.3 are also true if G = IR(S ). But if S is a Galois
extension over R with Galois groupoid G such that G = IR(S ) and |gGg| > 2 for all
g ∈ G, all ideals of S generated by central idempotents are connected. In particular, S
is an ideal of itself and it is generated by a central idempotent, so S is connected. This
implies that 1e = 1S for all e ∈ G0, and then G0 = {e} which means that G is a group.
This case was worked out in [9].

In the particular case where G =
⋃̇

e∈G0
AutR(Ee), we have the commutativity of the

ideals Eg, g ∈ G, as the next result shows.

Theorem 4.5. Let S be a groupoid Galois algebra of R with Galois groupoid G. If
G =

⋃̇
e∈G0

AutR(Ee) and |gGg| > 2 for all g ∈ G, then Eg is a connected commutative
R-algebra, for all g ∈ G.

Proof. Since G =
⋃̇

e∈G0
AutR(Ee), we have G =

⋃̇
e∈G0

Ge. Let g ∈ G. As S |R is a
groupoid Galois extension with Galois groupoid G, Eg|E

Gr(g)
g

is a Galois extension with
group Gr(g). Note that in this case gGg = Gr(g) and so |Gr(g)| > 2. Next we will show
that Eg|E

Gr(g)
g

is a Galois algebra, that is, EGr(g)
g ⊆ Cg, where Cg is the centre of Eg.

Since S is a groupoid Galois algebra over R, R1g ⊆ C1g = Cg ⊆ S 1g. Note that
R1g = {xr(g) ∈ Eg | h(xr(g)) = xr(g),∀h ∈Gr(g)} = EGr(g)

g . Thus Eg|E
Gr(g)
g

is a Galois algebra.
So, by [9, Theorem 4.4], Eg is a connected commutative R-algebra. �

Theorem 4.6. Let S be a groupoid Galois algebra of R with Galois groupoid G.
If G =

⋃̇
e∈G0

AutR(Ee) and |gGg| = 2 for all g ∈ G, then either Eg is a connected
commutative R-algebra, or Eg = R1g ⊕ R1g, where R1g is connected, for all g ∈ G.

Proof. It was shown in the proof of the Theorem 4.5 that R1g = EGr(g)
g and that Eg|E

Gr(g)
g

is a Galois algebra. Since AutR(Ee) = Ge and gGg = Gr(g) for all g ∈ G, the result
follows from [9, Theorem 4.5]. �
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The converse of each of the two previous results is false. The following examples
shows that one can take a G-groupoid Galois algebra with Eg = R1g ⊕ R1g, where
R1g is connected, for all g ∈ G, or each Eg is a connected commutative ideal, but
G ,

⋃̇
e∈G0

AutR(Ee).

Example 4.7. Let K be a field and let S be a commutative K-algebra such that
S = Ke1 ⊕ Ke2 ⊕ Ke3 ⊕ Ke4, where e1, e2, e3 and e4 are minimal central idempotents of
S and R  K1S a subring of S such that 2 < |AutR(K)| < ∞. Define gσi j : Kei → Ke j

by gσi j(kei) = σ(k)e j, where σ ∈ AutR(K) and 1 ≤ i, j ≤ 4. Let G be the groupoid
G = {gσi j | σ ∈ AutR(K) and 1 ≤ i, j ≤ 4}. Then S G = {ae1 + ae2 + ae3 + ae4 | a ∈
KAutR(K)} and S |S G is a groupoid Galois algebra, with Galois coordinate system given
by {xi = yi = ei | 1 ≤ i ≤ 4}. Then |gGg| > 2, for all g ∈G. Clearly, G ,

⋃̇
e∈G0

AutR(Ee).

Example 4.8. Let C be the complex number field and S be a commutative C-algebra
such that S = Ce1 ⊕ Ce2 ⊕ Ce3, where e1, e2 and e3 are minimal central idempotents of
S . Define gσi j : Cei → Ce j by gσi j(xei) = σ(x)e j, where σ ∈ AutC(C) and 1 ≤ i, j ≤ 3.
Let G = {gσi j | σ ∈ AutC(C) and 1 ≤ i, j ≤ 3}. Then we see that G is a groupoid,
S G = {ae1 + ae2 + ae3 | a ∈ R} and S |S G is a groupoid Galois algebra, with Galois
coordinate system given by {xi = yi = ei | 1 ≤ i ≤ 3}. Note that, in this case, |gGg| = 2,
for all g ∈ G. Immediately, G ,

⋃̇
e∈G0

AutR(Ee).

Example 4.9. Let S be a commutative ring, R = S G and

G = {d(g), r(g), g, g−1, h, h−1 | d(h) = d(g) , r(g) = r(h)} ⊆ IR(S ).

Suppose that S = Rg−1 ⊕ Rg−1 ⊕ Rg ⊕ Rg, where Rg = R1g is connected. Then define
g : Rg−1 ⊕ Rg−1 → Rg ⊕ Rg by g(r11g−1 + r21g−1 ) = r11g + r21g, h : Rg−1 ⊕ Rg−1 → Rg ⊕ Rg

by h(r11g−1 + r21g−1 ) = r21g + r11g. Thus S is a groupoid Galois algebra over R, with
Eh−1 = Eg−1 = Rg−1 ⊕ Rg−1 , Eh = Eg = Rg ⊕ Rg and Galois coordinate system given by
{x1 = y1 = 1g−1 + 1g−1 , x2 = y2 = 1g + 1g}. Note that, in this case, |gGg| = 2, for all g ∈G.
We have |AutREg| = |AutREg−1 | = 2 and |AutREg ∪ AutR Eg−1 | = 4, which shows that
G ,

⋃̇
e∈G0

AutR(Ee), since |G| = 6.

In fact, in all of the previous examples, G =
⋃̇

g∈G IsomR(Eg−1 , Eg). At the end of
this section we give a complete characterisation of this case. First, to achieve the
commutativity of the ideals we need to add one more condition.

Theorem 4.10. If G =
⋃̇

g∈G IsomR(Eg−1 , Eg), |gGg| > 2 and EGr(g)
g ⊆ C1g, for all g ∈ G,

where C is the centre of S , then either Eg is a connected commutative algebra.

Proof. Note that C1g = Cg is the centre of the group Galois extension Eg|E
Gr(g)
g

with
Galois group Gr(g). Thus Eg|E

Gr(g)
g

is a Galois algebra. So the statement follows by
[9, Theorem 4.4]. �
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Theorem 4.11. If G =
⋃̇

g∈G IsomR(Eg−1 , Eg), |gGg| = 2 and EGr(g)
g ⊆ C1g, for all g ∈ G,

where C is the centre of S , then either Eg is a connected commutative algebra, or
Eg = EGr(g)

g ⊕ EGr(g)
g , where EGr(g)

g is connected for all g ∈ G.

Proof. As mentioned in the proof of the previous theorem, Cg is the centre of the
group Galois extension Eg|E

Gr(g)
g

with Galois group Gr(g). The statement follows by
[9, Theorem 4.5]. �

A more general characterisation is given in the next result.

Theorem 4.12. Let S |R be a groupoid Galois extension with Galois groupoid G
such that EGr(g)

g ⊆ C1g, for all g ∈ G, where C is the centre of S . Then we have
G =

⋃̇
g∈G IsomR(Eg−1 , Eg) if and only if Eg is a connected commutative algebra or

Eg = EGr(g)
g ⊕ EGr(g)

g , where EGr(g)
g is connected for all g ∈ G.

Proof. (⇒) This implication is a consequence of Theorems 4.10 and 4.11.
(⇐) Suppose that Eg is a connected commutative algebra. Then it is immediate that

S is a commutative algebra. So, by Corollary 3.5, G =
⋃̇

g∈G IsomR(Eg−1 , Eg).
Assume now that Eg = EGr(g)

g ⊕ EGr(g)
g , where EGr(g)

g is connected for all g ∈ G.
Then the only isomorphisms in IsomR(Eg−1 , Eg) are ψg(xg−1 ⊕ yg−1 ) = xg ⊕ yg and
φg(xg−1 ⊕ yg−1 ) = yg ⊕ xg, which means that |IsomR(Eg−1 , Eg)| = 2 = |gGg|. Because
gGg ⊆ IsomR(Eg−1 , Eg), it follows that gGg = IsomR(Eg−1 , Eg). Since G =

⋃̇
g∈G gGg,

we see that G =
⋃̇

g∈G IsomR(Eg−1 , Eg). �
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